2018 IEEE International Conference on Data Mining

Density-adaptive Local Edge Representation
Learning with Generative Adversarial Network
Multi-label Edge Classification

Yang Zhou', Sixing Wuf, Chao Jiang', Zijie Zhang', Dejing Douf, Ruoming Jin¥, Pengwei Wang|

f Auburn University tpeking University

$University of Oregon

TKent State University Il Alibaba

yangzhou, ¢zj0043, zzz0092} @auburn.edu, wusixing @pku.edu.cn, dou@cs.uoregon.edu
g g@p g
jin@cs.kent.edu, hoverwang.wpw @alibaba-inc.com

Abstract—Traditional network representation learning tech-
niques aim to learn latent low-dimensional representation of
vertices in graphs. This paper presents a novel edge representa-
tion learning framework, GANDLERL, that combines generative
adversarial network based multi-label classification with density-
adaptive local edge representation learning for producing high-
quality low-dimensional edge representations. First, we design a
generative adversarial network based multi-label edge classifica-
tion model to classify rarely labeled edges in graphs with a large
amount of noise data into K classes. A four-player zero sum
game model, with the mixed training of true and real-looking
fake edges as well as a contrastive loss containing a similar-loss
and a dissimilar-loss, is proposed to improve the classification
quality of unlabeled edges. Second, a local autoencoder edge
representation learning method is developed to design K local
representation learning models, each with individual parameters
and structure to perform local representation learning on each of
K classification-based subgraphs with unique local characteristic-
s and jointly optimize the loss functions within and across classes.
Third but last, we propose a density-adaptive edge representation
learning method with the optimization at both edge and subgraph
levels to address the representation learning of graph data with
highly imbalanced vertex degree and edge distribution.

Index Terms—generative adversarial network multi-label edge
classification, density-adaptive local edge representation learning

I. INTRODUCTION

Network representation learning, which aims to learn la-
tent low-dimensional representation of vertices in graphs, has
received increasing attention in recent years [1]-[13]. Net-
work representation learning techniques have great potential
for understanding of large-scale graphs and their underly-
ing processes. However, how to learn latent low-dimensional
representation of edges in graphs for further improving the
efficiency and scalability of compute-intensive edge analysis
tasks has not been adequately investigated yet.

Edge analysis tasks with high time complexity. As online
social media and online shopping sites become ubiquitous,
we have witnessed an increased interest in edge data analysis,
such as link prediction [14], [15], edge clustering [16]-[18],
edge classification [19], edge-weight anonymization [20], etc.
Scaling computation on large graphs with millions or billions
of edges is widely recognized as a challenging big data
research problem.
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Data Sparsity and Imbalanced Graph Distribution. Al-
most all real-world graphs are extremely sparse. As shown
in Tables I, all graph datasets with small density values are
very sparse since #edges in these graphs is much smaller
than #edges in their corresponding complete graphs with the
density value of 1. Also, real sparse graphs commonly have
highly skewed vertex degree and edge distribution. Concretely,
a small number of high-degree vertices connect to a large
fraction of graph, but a large number of low-degree vertices
have very few or no edges connected to other vertices. In
reality, edge analysis applications often fail to analyze edges
associated with low-degree vertices or sparse subgraphs due
to inadequate information. Running global edge representation
learning on the whole graphs without considering density-
based local characteristics of edges and subgraphs, such as
vertex degree distribution, edge distribution, and size and
density of subgraphs, may lead to sub-optimal edge repre-
sentations. On one hand, if moderate global edge represen-
tation learning is performed to learn low-dimensional sparse
representation, then it may be insufficient to produce dense
enough representations for edges associated with low-degree
vertices and sparse subgraphs, and thus fail to capture the
underlying correlations between edges. On the other hand, it
is unnecessary for edges associated with high-degree vertices
and dense subgraphs to execute excessive global representation
learning targeting low-dimensional dense representation, since
there is already enough information for future prediction. In
addition, excessive global edge representation learning may
introduce huge reconstruction errors or random noise and
could result in serious efficiency deterioration.

Rarely labeled and noise data. A straightforward way
of local edge representation learning is to divide the whole
graph into K disjoint subgraphs, in which edges within each
subgraph have similar local characteristics, and use K local
edge representation learning models to train K subgraphs and
optimize the objective function on each subgraph. The unsu-
pervised and supervised learning approaches are two important
types of techniques to solve the problem of graph partitioning.
In comparison with unsupervised learning, supervised learning
can often achieve better graph partitioning result with the help
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of labeled training data. However, the reality is that real-world
graphs often contain a small portion of labeled data with a
large portion of unlabeled data.

This paper makes the following contributions to local edge
representation learning for sparse graphs with noise data.

A generative adversarial network (GAN) based multi-
label edge classification model is proposed to classify rarely
labeled edges in graphs with a large amount of noise data into
K classes. We introduce additional classifier and classification
learner to the GAN model and build a four-player zero sum
game model to handle the issue of multi-label edge classifica-
tion. In order to ensure the robustness to noise, we train the
classifier by mixing true edges and generated real-looking fake
edges. Also, a contrastive loss function is proposed to capture
the underlying edge homophily property in graph data as well
as improve the classification quality of unlabeled edges.

A local autoencoder edge representation learning ap-
proach is proposed to design K local representation learn-
ing models, each with individual parameters and structure,
including weights, biases, #neurons, #hidden layers, and
convergence, to perform local representation learning on each
of K classification-based subgraphs with unique local char-
acteristics and jointly optimize the loss functions within and
across classes. This framework helps reduce the reconstruction
error between the output and the input, preserve classification
and network structure, and make edges within/across classes
have similar/dissimilar representation features.

A density-adaptive edge representation learning method
with two-level optimization is proposed to address the repre-
sentation learning of sparse graph data with highly imbalanced
vertex degree and edge distribution. At edge level, based on
imbalanced degree distribution of two associated vertices, a
unique density control parameter is introduced and optimized
for each edge to control the activation of hidden neurons in
the learning process and the density of its final representation,
in case of overdense or too sparse final representation. At
subgraph level, in response to imbalanced size and density of
K subgraphs, we also introduce a density control parameter
for each local representation learning model to control the
density of the representation of the corresponding subgraph.
This allows to learn the dense representations of edges as-
sociated with low-degree vertices and sparse subgraphs to
introduce more auxiliary information for them, and thus help
improve the prediction quality. On the other hand, the sparse
representations of edges associated with high-degree vertices
and dense subgraphs are learnt to reduce information to be
processed, and thus avoid huge reconstruction errors as well
as help improve the prediction efficiency.

II. RELATED WORK

Network representation learning or network embed-
ding has become an active research field that learns low-
dimensional vertex representations from network structure [1]—
[13]. DeepWalk [1] learns latent social representations of
vertices, by using local information obtained from truncated
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random walks and treating walks as the equivalent of sen-
tences. LINE [2] designes two loss functions to preserve both
the first-order and second-order proximities. node2vec [3] is
a scalable network feature learning framework by maximizing
the likelihood of preserving network neighborhoods of nodes.
M-NMF [5] combines network embedding and community
detection into a unified model to perform global network
embedding on the whole graph. TransNet [7] is a translation-
based network representation learning model to model and
predict social relations between vertices with translation mech-
anism. MCGE [8] is a multi-view clustering framework on
graph instances with graph embedding by taking advantages of
the consensus and complimentary information from multiple
views to partition multiple graphs into clusters. Abu-El-Haija
et al. [15] propose a link prediction method by modeling
an edge as a function of the embeddings of two vertices
and utilizing the graph likelihood technique to determine
whether there exists an edge between these two vertices.
GraphGAN [12] is a link prediction method to use the GAN
model to learn the connectivity distribution in graphs.

Node classification/clustering in networked data has at-
tracted active research in the last decade [16], [18], [19],
[26]-[34]. DYCOS [35] exhibited a node classification model
in dynamic information networks with both text content and
links. RankClass [36] integrates classification and ranking in
a mutually enhancing process to provide class summaries for
heterogeneous information networks. HCC [37] is a collective
classification algorithm for analyzing heterogeneous informa-
tion networks, by capturing different dependencies among
instances with respect to different meta paths. SCRN [17]
improves the classification quality by integrating both the
network topology and the social context features extracted
together. SNOC [38] is a node classification method for
streaming networks that integrates network structure and node
labels to find an optimal subset of features to represent the
network.

III. PROBLEM DEFINITION

We formally define our research problem as follows. A
graph is denoted as G = (V,FE), where V is the set of
M vertices and E is the set of N edges. A vertex v; €
V(1 < i < M) represents an entity in G and each edge
zs = (v;,v;) € E(1 <s < N) is associated with two vertices
v;,v; € V and denotes the relationships between two corre-
sponding entities. Based on our previously proposed the edge-
centric random walk model [18], the original representation of
an edge x,, denoted by x,, is defined as the s** row in the
transition matrix T on the corresponding edge-centric graph of
G. The problem of Generative Adversarial Network multi-
label edge classification based Density-adaptive Local Edge
Representation Learning (GANDLERL) consists of the
following two analysis tasks.

Let C = {c1,¢2, -+ ,ci } be a finite set of K possible class
labels. Given a graph G = (V, E)) with a small set of labeled
edges E;, C FE, alarge set of unlabeled edges £y = E— Ej,
and |Ep| << |Ey|. The task of semi-supervised multi-label



edge classification is to use all edges in Ey, and some edges
in Ey as the training data to classify other testing edges in
Fy into K classes. We further convert the multi-label edge
classification result to the multi-class edge classification result.

We then reorganize the matrix T into K disjoint subgraphs
X1, -+, Xk, such that edges with the same labels lie together,
ie, T =[X;...Xg]T. Each X}, corresponds to the transition
probabilities from edges belonging to class ¢ to all edges in
G. The density-adaptive local edge representation learning
is to map the original representation x, of each edge zs € E/
on each subgraph X, to a low-dimensional representation ys,
ie, xs :RY =y, :RP and D << N.

IV. GAN-BASED MULTI-LABEL EDGE CLASSIFICATION

Generative adversarial network (GAN) model was proposed
to generate photographs that look authentic to human ob-
servers [39]. Essentially, GAN can be treated as a two-class
classification model that determines whether an input image
is real or fake. One advantage of the GAN model is robust to
noise data, especially real-looking fake data. This motivates us
to extend it to a four-player game model to handle the multi-
label classification of rarely labeled edges with noise data.

Concretely, given the empirical distributions p(z) and p(y)
of real edges x and true labels y, our GAN-based multi-
label classification model contains four players: (1) a discrim-
inator D(z,y) determines whether a sample edge-label pair
(z,y) comes from the true distribution p(zx,y) rather than
the prediction distribution pc(z,y) and the fake distribution
pa(z,y); (2) a generator x = G(y) takes a real label y as
input and generates a fake edge sample x based on the fake
conditional distribution pg(x|y), and then the generated fake
edge = G(y) is fed into the discriminator D(z,y) or the
classification learner L(z, y). Thus, the fake edge-label pair is
a sample from the joint distribution pg(z,y) = p(y)pa(z|y);
(3) a multi-label classifier y = C(z) predicts the class labels
of a real edge x following the class conditional distribution
pc(y|z); and (4) a classification learner L(z,y) is used
to decide whether the sample edge-label pair (x,y) comes
from the prediction distribution pc(z,y) or not. As (z,y)
is sampled by drawing x from p(x) and drawing y from
the classifier y = C(z) following pc(y|x). Thus, the joint
distribution pc(z,y) = p(z)pc(y|z).

The goal of GAN-based multi-label edge classification is to
match the prediction distribution pc(x,y) produced by the
classifier y = C(x) with the true distribution p(z,y), i.e,
pc(z,y) = p(z,y).

rcr:llcr;l rg?g(V(D, L,C,G) = Eq y)~p(ay) log D(z, y)+

Eonp(z),y~pc(yle) log L(z, C(z)) + KL (p(% y)|pc(z, y)) )

Eyp(y)amp el 108 (1= D(G(y), y) — L(G(y),v) )

We further use the softmax assignment to normalize the
classifier output and produce the class-membership probabili-
ties of edges on each class.

epc(@,y=k)
ze B ke{l,---,K} (2

p(z,y=Fk) = W7

Joint Optimization
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Fig. 1. Density-adaptive Local Autoencoder Edge Representation Learning

Many vertex-centric graph mining algorithms are based
on the existence of vertex homophily. This motivates us to
propose the concept of edge homophily, i.e., similar edges in
nature share common vertices, to further improve the accuracy
of multi-label edge classification. We introduce a contrastive
loss £ containing a similar-loss and a dissimilar-loss to capture
the edge homophily.
L=
min

© Pyzs,ngE,ZIs/\zf,#Q)

(1—9) >

25,2t €EE,xs Ny =0

(1 — cosine(pc(zs, ys), pc (€, yt)))+

max {07 cosine(pc(acs, Ys), pc (@, yt)) — m}
©)]

where x, Az; denotes whether two edges = and x; in E share
common vertices or not, and cosine(pc(s, ys), pc (e, yi))
specifies the cosine similarity between two edges regarding
their class-membership distributions y; and y; on K classes.
A positive margin value m indicates that the similarity between
two edges without common vertices that is below the margin

will not contribute to the loss.
Finally, we transform the multi-label edge classification
result into the multi-class edge classification result as follow.
y =argmax p(z,y =k),Vk,1 <k <K 4

k

V. DENSITY-ADAPTIVE LOCAL EDGE REPRESENTATION
LEARNING

We transmit each of K classification-based subgraphs with
unique density-based local characteristics to one of K local
representation learning models with exclusive hyperparame-
ters and structure, including weights, biases, #neurons, and
#hidden layers, to individually perform local edge represen-
tation learning with the joint objective function by considering
the correlations within and across classes. In response to
imbalanced vertex degree distribution, edge distribution, and
size and density of subgraphs, we develop a density-adaptive
edge representation learning method with the optimization at
both edge and subgraph levels. as shown in Figure 1.
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A. Local Edge Representation Learning

At subgraph level, in response to imbalanced edge distribu-
tion and size and density of subgraphs, each subgraph Xj has
its own local autoencoder edge representation learning model
and neural network with one input layer (Layer 1), multiple
hidden layers, one output layer (Layer 2L; — 1), unique weight
and bias parameters. Each local autoencoder model performs
individual feedforward representation learning to map the
original representation x, of each edge on each Xj; to a
low-dimensional representation y;. We choose less neurons,
less hidden layers, and coarse-grained convergence to decrease
data transformation in autoencoder, and thus reduce the recon-
struction errors as well as improve the overall computational
cost of local representation learning on dense subgraphs, while
selecting more neurons, more hidden layers, and fine-grained
convergence for sparse subgraphs to introduce more auxiliary
information and thus help improve the prediction quality. In
addition, we introduce a density control parameter for each
subgraph to control the density of its final representation, i.e.,
perform dense/sparse representation learning on sparse/dense
subgraphs to learn the dense/sparse representations of edges.
At edge level, based on imbalanced degree distribution of
two associated vertices, a unique density control parameter
is introduced and optimized for each edge to control the
activation of hidden neurons in the learning process and the
density of its final representation. We control the activation
of the representation of each edge in each layer, to learn
the dense/sparse representations of edges with low/high-degree
vertices and make edges on the same subgraphs have similar
representation features.

Concretely, we use x, as the input of an edge z; in
class ¢ to learn its low-dimensional representation y, and
reconstruction representation x4. The k** neural network for
training edges on subgraph Xj has 2L; — 1 layers: layer 1
inputs the original representation xg, layer Lj; produces the
low-dimensional representation y, and layer 2L — 1 outputs
the reconstruction x/, of edge x5 To compute the y;, and x,
we need to compute all hidden representations from layers 2
to 2L, — 1 below.

v = f(W %, +bi")

O]

vy = fwW Ty 4 b Y)
where f(x) denotes the element-wise sigmoid function ﬁ,
W,(Cl) denotes the weights of the links between layers [ and
{+1, and b,(cl) is the bias associated with layer [+ 1. For ease of
presentation, we let symbol y replace the final representation
ygL’“) and use x/, to substitute the reconstruction y£2L’“_1).

In order to define a density control parameter for each
subgraph X, we first compute its density value below.

nnz(Xy)
where nnz(Xy) denotes the number of non-zero elements in
the submatrix Xy, |c| is the number of edges belonging to
¢k, and the density D(Xy) is bounded in the range [0, 1].

A density control parameter 7y, for each local edge represen-
tation learning model to control the density of the intermediate
and final representations of the corresponding subgraph Xj.

1-— &, D(Xy) # max D(Xm),
mo= 0 B P 1K ™
€, otherwise.
where max D(X,,) is the largest density among K sub-

1<m<K
graphs and ¢ is a small positive number to avoid zero activation
of the subgraph with the largest density. Intuitively, the larger
the D(X}) is, the smaller the 7y, is.

We also define a density control parameter pg for each
vertex «, = (v;,v;) to control the activation of hidden neurons
in each layer in the learning process and the density values of
the final representations of .

1 ditd
ps = 2N
n, otherwise.

7di7dj7éN7 (8)

where d, is the degree of v, and 7 is a small positive number
to avoid zero activation of the vertices with the full degree of
N. The larger the d; and d; are, the smaller the p; is.

The first goal of our GANDLERL method is to minimize
the reconstruction error between the output and the input.
L Repr is thus defined below.

Lrepr = Sh1Sacep [|Xe = x| 3+ S, 2222 W3 (9)

where the first term denotes the reconstruction error between
the output x/, and the input x; of edge z, belonging to class
ck, and the second term is a regularization term that decreases
the magnitude of the weights and prevents the overfitting.

In order to maintain the property of edge homophily, i.e.,
similar edges in nature share common vertices, the goal of
proximity preservation aims to make edges with/without com-
mon vertices have similar/dissimilar representation features.

Lproz = wa > llys — yell3+

z5,21 €E, x5 Ay £D
(1—w2) >
zs,xtEE,xs Azt =0
The classification loss Lcyqss 18 defined as the difference
between the intra-class distance and the inter-class distance
about edge representation features.

max {0,m — ||y« = yel3 |

Eclass ZUJBE?:lECL'vatEUk |C |y‘5 - ytllg_

kHCk||
1
K K 2
W4Ek:1EnL:lEwseck,l‘zECm,k#T’LiHyS - ytHz
lek]lem]
an
where w; and wy are two user-defined weighting parameters
to control the term importance.

We control the activation of the representation of each
edge in each layer, in case of overdense or too sparse final

representations.
Lpens =ws Sz 52 KL(mi|frw )+ 1)
wﬁzgzlza:s:(vi.vj)Gck ElL:k2KL(pS ‘ﬁSl)

where pg; denotes the average activation of hidden neurons in
layer [ on the neural network to train edge = in class ¢, i.e.,
the average of the components of the activation vector yg).
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TABLE 1
EXPERIMENT DATASETS

Graph #Vertices| #Edges | Density
BLOGCATALOG| 10,312 | 667,966 [1.3x10~2
FLICKR 80,513 [11,799,764|3.6x10~3
YOUTUBE 1,138,499 5,980,886 [9.2x 10~

7 specifies the average of the activation vectors ygl) for all
edges in cg, i.e., T = 1/|ck|Xz. ccp Psi-

When we try to minimize £peys, the KL divergence tends
to achieve the minimum of 0 at 7 = 7, and pg = ps. As
shown in Eq.(7), we force a dense/sparse subgraph X with a
small/large 7. As a result, few/many hidden neurons in layer
[ will be activated. Thus, it is highly possible that the represen-
tations of Xy, are sparse/dense. As for edges z, = (v;,v;) in
cr, we perform sparse/dense representation learning on edges
associated with high/low-degree vertices with a small/large p,
to learn their sparse/dense representations.

Therefore, the overall loss function of the density-adaptive
local edge representation learning is given as follow.

£Total = £Repr + £P7‘oa: + Eclass + EDens (13)
VI. EXPERIMENTAL EVALUATION

We have performed extensive experiments on three real
sparse graph datasets, as shown in Table I.

We compare GANDLERL with four recently developed
representative algorithms, DeepWalk [1], LINE [2], SDNE [4],
and M-NMF [5], which all perform global representation
learning on the whole graphs and learn low-dimensional vertex
representation. We use the same input of the transition matrix
of the edge-centric graph for all five methods.

We use multi-label edge classification and edge clustering
to evaluate the quality of representation learning results by
five algorithms. We utilize the LIBLINEAR package [40] to
train the multi-label classifiers and use Macro-F1 and Micro-
F1 [2] to evaluate the classification quality. Also, we choose
K-Means [41] to partition edges into clusters and adopt Dunn
index [42] to evaluate the clustering quality.

A. Multi-label Edge Classification Quality

Figures 2 and 3 exhibit the quality of multi-label classifica-
tion on learnt representation results by five network represen-
tation learning algorithms on FLICKR and YOUTUBE with
different proportions of training data. The low-dimensional
representations of edges by network representation learning
methods are used as features to classify each edge into a set
of K classes. It is observed from Figure 2 that among all
five network representation learning models, the classification
algorithm on the learnt representation results by GANDLERL
achieves the best quality in all experiments. Especially, as
shown in Figure 3, GANDLERL significantly outperform-
s all other models on YOUTUBE, which is very sparse,
showing the power of GANDLERL in the presence of data
sparsity and imbalanced graph distribution. Compared to all
other representation learning results, GANDLERL averagely
achieves 4.7% Micro-F1 increase and 9.9% Micro-F1 boost
on FLICKR and 6.6% Micro-F1 growth and 8.4% Macro-
F1 increase on YOUTUBE respectively. Note that even if

k .
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Fig. 2. Classification on FLICKR
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(a) Micro-F1 (b) Macro-F1

Fig. 3. Classification on YOUTUBE

the proportion of training data is very small, such as 1%
and 2%, GANDLERL still can achieve considerable accuracy
improvement. It demonstrates that GANDLERL is robust to
rarely labeled data. This advantage is very important for graph
classification since the labeled data is usually scarce.

B. Edge Clustering Quality

Figure 4 presents the quality of edge clustering on learnt
representation results by five network representation learning
algorithms on BLOGCATALOG and YOUTUBE. As the
performance of K-means is very sensitive to initial centroids,
we repeat the clustering ten times, each with different K
initial centroids, and reported the average Dunn values. Similar
trends are observed for the clustering quality comparison:
GANDLERL achieves the largest Dunn values (>0.61), which
are obviously better than other four methods. This demon-
strates the integration of GAN-based multi-label classification,
local representation learning, and density-adapt representation
learning is able to make low-dimensional representations ro-
bust to graphs with different scales and densities.

C. Graph Visualization Performance

We map the low-dimensional vectors of edges from Y-
OUTUBE to a 2D space with the t-SNE tool [43], as shown in
Figure 5. We plot each edge as a colored point and each color
denotes one of three randomly selected categories. We have
observed that GANDLERL achieves the best visualization
performance in terms of community separation and boundary.

VII. CONCLUSIONS

We have presented our novel GANDLERL model. First, we
design a generative adversarial network based multi-label edge
classification model to classify rarely labeled edges in graphs
with noise data into K classes. Second, a local autoencoder
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(¢) GANDLERL

Fig. 5. Visualization on YOUTUBE
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edge representation learning method is developed to perform
local representation learning on each of K subgraphs and
jointly optimize the loss functions within and across classes.
Finally, we propose a density-adaptive learning method with
the optimization at both edge and subgraph levels.
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