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Abstract—Traditional network representation learning tech-
niques aim to learn latent low-dimensional representation of
vertices in graphs. This paper presents a novel edge representa-
tion learning framework, GANDLERL, that combines generative
adversarial network based multi-label classification with density-
adaptive local edge representation learning for producing high-
quality low-dimensional edge representations. First, we design a
generative adversarial network based multi-label edge classifica-
tion model to classify rarely labeled edges in graphs with a large
amount of noise data into K classes. A four-player zero sum
game model, with the mixed training of true and real-looking
fake edges as well as a contrastive loss containing a similar-loss
and a dissimilar-loss, is proposed to improve the classification
quality of unlabeled edges. Second, a local autoencoder edge
representation learning method is developed to design K local
representation learning models, each with individual parameters
and structure to perform local representation learning on each of
K classification-based subgraphs with unique local characteristic-
s and jointly optimize the loss functions within and across classes.
Third but last, we propose a density-adaptive edge representation
learning method with the optimization at both edge and subgraph
levels to address the representation learning of graph data with
highly imbalanced vertex degree and edge distribution.

Index Terms—generative adversarial network multi-label edge
classification, density-adaptive local edge representation learning

I. INTRODUCTION

Network representation learning, which aims to learn la-

tent low-dimensional representation of vertices in graphs, has

received increasing attention in recent years [1]–[13]. Net-

work representation learning techniques have great potential

for understanding of large-scale graphs and their underly-

ing processes. However, how to learn latent low-dimensional

representation of edges in graphs for further improving the

efficiency and scalability of compute-intensive edge analysis

tasks has not been adequately investigated yet.

Edge analysis tasks with high time complexity. As online

social media and online shopping sites become ubiquitous,

we have witnessed an increased interest in edge data analysis,

such as link prediction [14], [15], edge clustering [16]–[18],

edge classification [19], edge-weight anonymization [20], etc.

Scaling computation on large graphs with millions or billions

of edges is widely recognized as a challenging big data

research problem.

Data Sparsity and Imbalanced Graph Distribution. Al-

most all real-world graphs are extremely sparse. As shown

in Tables I, all graph datasets with small density values are

very sparse since #edges in these graphs is much smaller

than #edges in their corresponding complete graphs with the

density value of 1. Also, real sparse graphs commonly have

highly skewed vertex degree and edge distribution. Concretely,

a small number of high-degree vertices connect to a large

fraction of graph, but a large number of low-degree vertices

have very few or no edges connected to other vertices. In

reality, edge analysis applications often fail to analyze edges

associated with low-degree vertices or sparse subgraphs due

to inadequate information. Running global edge representation

learning on the whole graphs without considering density-

based local characteristics of edges and subgraphs, such as

vertex degree distribution, edge distribution, and size and

density of subgraphs, may lead to sub-optimal edge repre-

sentations. On one hand, if moderate global edge represen-

tation learning is performed to learn low-dimensional sparse

representation, then it may be insufficient to produce dense

enough representations for edges associated with low-degree

vertices and sparse subgraphs, and thus fail to capture the

underlying correlations between edges. On the other hand, it

is unnecessary for edges associated with high-degree vertices

and dense subgraphs to execute excessive global representation

learning targeting low-dimensional dense representation, since

there is already enough information for future prediction. In

addition, excessive global edge representation learning may

introduce huge reconstruction errors or random noise and

could result in serious efficiency deterioration.

Rarely labeled and noise data. A straightforward way

of local edge representation learning is to divide the whole

graph into K disjoint subgraphs, in which edges within each

subgraph have similar local characteristics, and use K local

edge representation learning models to train K subgraphs and

optimize the objective function on each subgraph. The unsu-

pervised and supervised learning approaches are two important

types of techniques to solve the problem of graph partitioning.

In comparison with unsupervised learning, supervised learning

can often achieve better graph partitioning result with the help
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of labeled training data. However, the reality is that real-world

graphs often contain a small portion of labeled data with a

large portion of unlabeled data.

This paper makes the following contributions to local edge

representation learning for sparse graphs with noise data.

A generative adversarial network (GAN) based multi-
label edge classification model is proposed to classify rarely

labeled edges in graphs with a large amount of noise data into

K classes. We introduce additional classifier and classification

learner to the GAN model and build a four-player zero sum

game model to handle the issue of multi-label edge classifica-

tion. In order to ensure the robustness to noise, we train the

classifier by mixing true edges and generated real-looking fake

edges. Also, a contrastive loss function is proposed to capture

the underlying edge homophily property in graph data as well

as improve the classification quality of unlabeled edges.

A local autoencoder edge representation learning ap-

proach is proposed to design K local representation learn-

ing models, each with individual parameters and structure,

including weights, biases, #neurons, #hidden layers, and

convergence, to perform local representation learning on each

of K classification-based subgraphs with unique local char-

acteristics and jointly optimize the loss functions within and

across classes. This framework helps reduce the reconstruction

error between the output and the input, preserve classification

and network structure, and make edges within/across classes

have similar/dissimilar representation features.

A density-adaptive edge representation learning method

with two-level optimization is proposed to address the repre-

sentation learning of sparse graph data with highly imbalanced

vertex degree and edge distribution. At edge level, based on

imbalanced degree distribution of two associated vertices, a

unique density control parameter is introduced and optimized

for each edge to control the activation of hidden neurons in

the learning process and the density of its final representation,

in case of overdense or too sparse final representation. At

subgraph level, in response to imbalanced size and density of

K subgraphs, we also introduce a density control parameter

for each local representation learning model to control the

density of the representation of the corresponding subgraph.

This allows to learn the dense representations of edges as-

sociated with low-degree vertices and sparse subgraphs to

introduce more auxiliary information for them, and thus help

improve the prediction quality. On the other hand, the sparse

representations of edges associated with high-degree vertices

and dense subgraphs are learnt to reduce information to be

processed, and thus avoid huge reconstruction errors as well

as help improve the prediction efficiency.

II. RELATED WORK

Network representation learning or network embed-
ding has become an active research field that learns low-

dimensional vertex representations from network structure [1]–

[13]. DeepWalk [1] learns latent social representations of

vertices, by using local information obtained from truncated

random walks and treating walks as the equivalent of sen-

tences. LINE [2] designes two loss functions to preserve both

the first-order and second-order proximities. node2vec [3] is

a scalable network feature learning framework by maximizing

the likelihood of preserving network neighborhoods of nodes.

M-NMF [5] combines network embedding and community

detection into a unified model to perform global network

embedding on the whole graph. TransNet [7] is a translation-

based network representation learning model to model and

predict social relations between vertices with translation mech-

anism. MCGE [8] is a multi-view clustering framework on

graph instances with graph embedding by taking advantages of

the consensus and complimentary information from multiple

views to partition multiple graphs into clusters. Abu-El-Haija

et al. [15] propose a link prediction method by modeling

an edge as a function of the embeddings of two vertices

and utilizing the graph likelihood technique to determine

whether there exists an edge between these two vertices.

GraphGAN [12] is a link prediction method to use the GAN

model to learn the connectivity distribution in graphs.

Node classification/clustering in networked data has at-

tracted active research in the last decade [16], [18], [19],

[26]–[34]. DYCOS [35] exhibited a node classification model

in dynamic information networks with both text content and

links. RankClass [36] integrates classification and ranking in

a mutually enhancing process to provide class summaries for

heterogeneous information networks. HCC [37] is a collective

classification algorithm for analyzing heterogeneous informa-

tion networks, by capturing different dependencies among

instances with respect to different meta paths. SCRN [17]

improves the classification quality by integrating both the

network topology and the social context features extracted

together. SNOC [38] is a node classification method for

streaming networks that integrates network structure and node

labels to find an optimal subset of features to represent the

network.

III. PROBLEM DEFINITION

We formally define our research problem as follows. A

graph is denoted as G = (V,E), where V is the set of

M vertices and E is the set of N edges. A vertex vi ∈
V (1 ≤ i ≤ M) represents an entity in G and each edge

xs = (vi, vj) ∈ E(1 ≤ s ≤ N) is associated with two vertices

vi, vj ∈ V and denotes the relationships between two corre-

sponding entities. Based on our previously proposed the edge-

centric random walk model [18], the original representation of

an edge xs, denoted by xs, is defined as the sth row in the

transition matrix T on the corresponding edge-centric graph of

G. The problem of Generative Adversarial Network multi-
label edge classification based Density-adaptive Local Edge
Representation Learning (GANDLERL) consists of the

following two analysis tasks.

Let C = {c1, c2, · · · , cK} be a finite set of K possible class

labels. Given a graph G = (V,E) with a small set of labeled

edges EL ⊂ E, a large set of unlabeled edges EU = E−EL,

and |EL| << |EU |. The task of semi-supervised multi-label
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edge classification is to use all edges in EL and some edges

in EU as the training data to classify other testing edges in

EU into K classes. We further convert the multi-label edge

classification result to the multi-class edge classification result.

We then reorganize the matrix T into K disjoint subgraphs

X1, · · · ,XK , such that edges with the same labels lie together,

i.e., T = [X1 . . .XK ]T . Each Xk corresponds to the transition

probabilities from edges belonging to class ck to all edges in

G. The density-adaptive local edge representation learning
is to map the original representation xs of each edge xs ∈ E
on each subgraph Xk to a low-dimensional representation ys,

i.e., xs : R
N �→ ys : R

D and D << N .

IV. GAN-BASED MULTI-LABEL EDGE CLASSIFICATION

Generative adversarial network (GAN) model was proposed

to generate photographs that look authentic to human ob-

servers [39]. Essentially, GAN can be treated as a two-class

classification model that determines whether an input image

is real or fake. One advantage of the GAN model is robust to

noise data, especially real-looking fake data. This motivates us

to extend it to a four-player game model to handle the multi-

label classification of rarely labeled edges with noise data.

Concretely, given the empirical distributions p(x) and p(y)
of real edges x and true labels y, our GAN-based multi-

label classification model contains four players: (1) a discrim-

inator D(x, y) determines whether a sample edge-label pair

(x, y) comes from the true distribution p(x, y) rather than

the prediction distribution pC(x, y) and the fake distribution

pG(x, y); (2) a generator x = G(y) takes a real label y as

input and generates a fake edge sample x based on the fake

conditional distribution pG(x|y), and then the generated fake

edge x = G(y) is fed into the discriminator D(x, y) or the

classification learner L(x, y). Thus, the fake edge-label pair is

a sample from the joint distribution pG(x, y) = p(y)pG(x|y);
(3) a multi-label classifier y = C(x) predicts the class labels

of a real edge x following the class conditional distribution

pC(y|x); and (4) a classification learner L(x, y) is used

to decide whether the sample edge-label pair (x, y) comes

from the prediction distribution pC(x, y) or not. As (x, y)
is sampled by drawing x from p(x) and drawing y from

the classifier y = C(x) following pC(y|x). Thus, the joint

distribution pC(x, y) = p(x)pC(y|x).
The goal of GAN-based multi-label edge classification is to

match the prediction distribution pC(x, y) produced by the

classifier y = C(x) with the true distribution p(x, y), i.e,

pC(x, y) = p(x, y).

min
C,G

max
D,L

V(D,L,C,G) = E(x,y)∼p(x,y) logD(x, y)+

Ex∼p(x),y∼pC(y|x) logL(x,C(x)) +KL
(
p(x, y)

∣∣pC(x, y)
)

Ey∼p(y),x∼pG(x|y) log
(
1−D(G(y), y)− L(G(y), y)

)
(1)

We further use the softmax assignment to normalize the

classifier output and produce the class-membership probabili-

ties of edges on each class.

p(x, y = k) =
epC(x,y=k)

ΣK
k=1e

pC(x,y=k)
, x ∈ E, k ∈ {1, · · · ,K} (2)
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Fig. 1. Density-adaptive Local Autoencoder Edge Representation Learning

Many vertex-centric graph mining algorithms are based

on the existence of vertex homophily. This motivates us to

propose the concept of edge homophily, i.e., similar edges in

nature share common vertices, to further improve the accuracy

of multi-label edge classification. We introduce a contrastive

loss L containing a similar-loss and a dissimilar-loss to capture

the edge homophily.
L =

min
C

γ
∑

xs,xt∈E,xs∧xt �=∅

(
1− cosine

(
pC(xs, ys), pC(xt, yt)

))
+

(1− γ)
∑

xs,xt∈E,xs∧xt=∅
max

{
0, cosine

(
pC(xs, ys), pC(xt, yt)

)−m
}

(3)
where xs∧xt denotes whether two edges xs and xt in E share

common vertices or not, and cosine
(
pC(xs, ys), pC(xt, yt)

)

specifies the cosine similarity between two edges regarding

their class-membership distributions ys and yt on K classes.

A positive margin value m indicates that the similarity between

two edges without common vertices that is below the margin

will not contribute to the loss.

Finally, we transform the multi-label edge classification

result into the multi-class edge classification result as follow.

y = argmax
k

p(x, y = k), ∀k, 1 ≤ k ≤ K (4)

V. DENSITY-ADAPTIVE LOCAL EDGE REPRESENTATION

LEARNING

We transmit each of K classification-based subgraphs with

unique density-based local characteristics to one of K local

representation learning models with exclusive hyperparame-

ters and structure, including weights, biases, #neurons, and

#hidden layers, to individually perform local edge represen-

tation learning with the joint objective function by considering

the correlations within and across classes. In response to

imbalanced vertex degree distribution, edge distribution, and

size and density of subgraphs, we develop a density-adaptive

edge representation learning method with the optimization at

both edge and subgraph levels. as shown in Figure 1.
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A. Local Edge Representation Learning

At subgraph level, in response to imbalanced edge distribu-

tion and size and density of subgraphs, each subgraph Xk has

its own local autoencoder edge representation learning model

and neural network with one input layer (Layer 1), multiple

hidden layers, one output layer (Layer 2Lk−1), unique weight

and bias parameters. Each local autoencoder model performs

individual feedforward representation learning to map the

original representation xs of each edge on each Xk to a

low-dimensional representation ys. We choose less neurons,

less hidden layers, and coarse-grained convergence to decrease

data transformation in autoencoder, and thus reduce the recon-

struction errors as well as improve the overall computational

cost of local representation learning on dense subgraphs, while

selecting more neurons, more hidden layers, and fine-grained

convergence for sparse subgraphs to introduce more auxiliary

information and thus help improve the prediction quality. In

addition, we introduce a density control parameter for each

subgraph to control the density of its final representation, i.e.,

perform dense/sparse representation learning on sparse/dense

subgraphs to learn the dense/sparse representations of edges.

At edge level, based on imbalanced degree distribution of

two associated vertices, a unique density control parameter

is introduced and optimized for each edge to control the

activation of hidden neurons in the learning process and the

density of its final representation. We control the activation

of the representation of each edge in each layer, to learn

the dense/sparse representations of edges with low/high-degree

vertices and make edges on the same subgraphs have similar

representation features.

Concretely, we use xs as the input of an edge xs in

class ck to learn its low-dimensional representation ys and

reconstruction representation x′
s. The kth neural network for

training edges on subgraph Xk has 2Lk − 1 layers: layer 1

inputs the original representation xs, layer Lk produces the

low-dimensional representation ys, and layer 2Lk− 1 outputs

the reconstruction x′
s of edge xs To compute the ys, and x′

s,

we need to compute all hidden representations from layers 2

to 2Lk − 1 below.

y(2)
s = f(W

(1)
k xs + b

(1)
k )

· · ·
y(l)
s = f(W

(l−1)
k y(l−1)

s + b
(l−1)
k )

(5)

where f(x) denotes the element-wise sigmoid function 1
1+e−x ,

W
(l)
k denotes the weights of the links between layers l and

l+1, and b
(l)
k is the bias associated with layer l+1. For ease of

presentation, we let symbol ys replace the final representation

y
(Lk)
s and use x′

s to substitute the reconstruction y
(2Lk−1)
s .

In order to define a density control parameter for each

subgraph Xk, we first compute its density value below.

D(Xk) =
nnz(Xk)

|ck| ×N
(6)

where nnz(Xk) denotes the number of non-zero elements in

the submatrix Xk, |ck| is the number of edges belonging to

ck, and the density D(Xk) is bounded in the range [0, 1].

A density control parameter πk for each local edge represen-

tation learning model to control the density of the intermediate

and final representations of the corresponding subgraph Xk.

πk =

⎧⎪⎨
⎪⎩

1− D(Xk)

max
1≤m≤K

D(Xm)
, D(Xk) �= max

1≤m≤K
D(Xm),

ε, otherwise.

(7)

where max
1≤m≤K

D(Xm) is the largest density among K sub-

graphs and ε is a small positive number to avoid zero activation

of the subgraph with the largest density. Intuitively, the larger

the D(Xk) is, the smaller the πk is.

We also define a density control parameter ρs for each

vertex xs = (vi, vj) to control the activation of hidden neurons

in each layer in the learning process and the density values of

the final representations of xs.

ρs =

⎧⎨
⎩

1− di + dj
2N

, di, dj �= N,

η, otherwise.
(8)

where dx is the degree of vx and η is a small positive number

to avoid zero activation of the vertices with the full degree of

N . The larger the di and dj are, the smaller the ρs is.

The first goal of our GANDLERL method is to minimize

the reconstruction error between the output and the input.

LRepr is thus defined below.

LRepr = ΣK
k=1Σxs∈ck ||x′s−xs||22+ω1Σ

K
k=1Σ

2Lk−2
l=1 ||W(l)

k ||2F (9)

where the first term denotes the reconstruction error between

the output x′
s and the input xs of edge xs belonging to class

ck, and the second term is a regularization term that decreases

the magnitude of the weights and prevents the overfitting.

In order to maintain the property of edge homophily, i.e.,

similar edges in nature share common vertices, the goal of

proximity preservation aims to make edges with/without com-

mon vertices have similar/dissimilar representation features.

LProx = ω2

∑
xs,xt∈E,xs∧xt �=∅

||ys − yt||22+

(1− ω2)
∑

xs,xt∈E,xs∧xt=∅
max

{
0,m− ||ys − yt||22

} (10)

The classification loss LClass is defined as the difference

between the intra-class distance and the inter-class distance

about edge representation features.

LClass =ω3Σ
K
k=1Σxs,xt∈ck

1

|ck||ck| ||ys − yt||22−

ω4Σ
K
k=1Σ

K
m=1Σxs∈ck,xt∈cm,k �=m

1

|ck||cm| ||ys − yt||22
(11)

where ω1 and ω2 are two user-defined weighting parameters

to control the term importance.

We control the activation of the representation of each

edge in each layer, in case of overdense or too sparse final

representations.

LDens =ω5Σ
K
k=1Σ

Lk
l=2KL(πk|π̂kl)+

ω6Σ
K
k=1Σxs=(vi,vj)∈ckΣ

Lk
l=2KL(ρs|ρ̂sl)

(12)

where ρ̂sl denotes the average activation of hidden neurons in

layer l on the neural network to train edge xs in class ck, i.e.,

the average of the components of the activation vector y
(l)
s .
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TABLE I
EXPERIMENT DATASETS

Graph #Vertices #Edges Density

BLOGCATALOG 10,312 667,966 1.3×10−2

FLICKR 80,513 11,799,764 3.6×10−3

YOUTUBE 1,138,499 5,980,886 9.2×10−6

π̂kl specifies the average of the activation vectors y
(l)
s for all

edges in ck, i.e., π̂kl = 1/|ck|Σxs∈ck ρ̂sl.
When we try to minimize LDens, the KL divergence tends

to achieve the minimum of 0 at π̂kl = πk and ρ̂sl = ρs. As

shown in Eq.(7), we force a dense/sparse subgraph Xk with a

small/large πk. As a result, few/many hidden neurons in layer

l will be activated. Thus, it is highly possible that the represen-

tations of Xk are sparse/dense. As for edges xs = (vi, vj) in

ck, we perform sparse/dense representation learning on edges

associated with high/low-degree vertices with a small/large ρs
to learn their sparse/dense representations.

Therefore, the overall loss function of the density-adaptive

local edge representation learning is given as follow.

LTotal = LRepr + LProx + LClass + LDens (13)

VI. EXPERIMENTAL EVALUATION

We have performed extensive experiments on three real

sparse graph datasets, as shown in Table I.

We compare GANDLERL with four recently developed

representative algorithms, DeepWalk [1], LINE [2], SDNE [4],

and M-NMF [5], which all perform global representation

learning on the whole graphs and learn low-dimensional vertex

representation. We use the same input of the transition matrix

of the edge-centric graph for all five methods.

We use multi-label edge classification and edge clustering

to evaluate the quality of representation learning results by

five algorithms. We utilize the LIBLINEAR package [40] to

train the multi-label classifiers and use Macro-F1 and Micro-

F1 [2] to evaluate the classification quality. Also, we choose

K-Means [41] to partition edges into clusters and adopt Dunn

index [42] to evaluate the clustering quality.

A. Multi-label Edge Classification Quality

Figures 2 and 3 exhibit the quality of multi-label classifica-

tion on learnt representation results by five network represen-

tation learning algorithms on FLICKR and YOUTUBE with

different proportions of training data. The low-dimensional

representations of edges by network representation learning

methods are used as features to classify each edge into a set

of K classes. It is observed from Figure 2 that among all

five network representation learning models, the classification

algorithm on the learnt representation results by GANDLERL

achieves the best quality in all experiments. Especially, as

shown in Figure 3, GANDLERL significantly outperform-

s all other models on YOUTUBE, which is very sparse,

showing the power of GANDLERL in the presence of data

sparsity and imbalanced graph distribution. Compared to all

other representation learning results, GANDLERL averagely

achieves 4.7% Micro-F1 increase and 9.9% Micro-F1 boost

on FLICKR and 6.6% Micro-F1 growth and 8.4% Macro-

F1 increase on YOUTUBE respectively. Note that even if
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Fig. 3. Classification on YOUTUBE

the proportion of training data is very small, such as 1%
and 2%, GANDLERL still can achieve considerable accuracy

improvement. It demonstrates that GANDLERL is robust to

rarely labeled data. This advantage is very important for graph

classification since the labeled data is usually scarce.

B. Edge Clustering Quality

Figure 4 presents the quality of edge clustering on learnt

representation results by five network representation learning

algorithms on BLOGCATALOG and YOUTUBE. As the

performance of K-means is very sensitive to initial centroids,

we repeat the clustering ten times, each with different K
initial centroids, and reported the average Dunn values. Similar

trends are observed for the clustering quality comparison:

GANDLERL achieves the largest Dunn values (>0.61), which

are obviously better than other four methods. This demon-

strates the integration of GAN-based multi-label classification,

local representation learning, and density-adapt representation

learning is able to make low-dimensional representations ro-

bust to graphs with different scales and densities.

C. Graph Visualization Performance

We map the low-dimensional vectors of edges from Y-

OUTUBE to a 2D space with the t-SNE tool [43], as shown in

Figure 5. We plot each edge as a colored point and each color

denotes one of three randomly selected categories. We have

observed that GANDLERL achieves the best visualization

performance in terms of community separation and boundary.

VII. CONCLUSIONS

We have presented our novel GANDLERL model. First, we

design a generative adversarial network based multi-label edge

classification model to classify rarely labeled edges in graphs

with noise data into K classes. Second, a local autoencoder
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Fig. 5. Visualization on YOUTUBE
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Fig. 4. Clustering

edge representation learning method is developed to perform

local representation learning on each of K subgraphs and

jointly optimize the loss functions within and across classes.

Finally, we propose a density-adaptive learning method with

the optimization at both edge and subgraph levels.
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