
An Efficient Implementation of Next Generation
Access Control for the Mobile Health Cloud

Rejina Basnet∗, Subhojeet Mukherjee †, Vignesh M. Pagadala‡, Indrakshi Ray§
Department of Computer Science, Colorado State University

Fort Collins, CO, 80523, USA
Email: ∗Rejina.Basnet@colostate.edu, †Subhojeet.Mukherjee@colostate.edu,

‡Vignesh.Pagadala@colostate.edu, §Indrakshi.Ray@colostate.edu

Abstract—In today’s era health informatics is a major con-
tributor to the advancements in ubiquitous computing. Of late,
the concept of mobile health (mHealth) systems has attracted
considerable attention from both medical computer science
communities. mHealth devices generate a significant amount of
patient data on a timely basis. This data is often stored on
cloud-based EHR and PHR systems to aid in timely and better
quality healthcare service. However, as has been seen lately,
stored personal records act as honeypots for malicious entities
and the internet underground. It is thus imperative to prevent
unauthorized leakage of mHealth data from cloud-based E/PHR
systems. As observed from some of our preliminary research,
NIST’s policy machine (PM) framework suits the access control
modeling requirements posed by mHealth systems. Moreover, the
graph-based model adopted by this framework allows efficient
policy management through advanced graph search techniques.
In this paper, we leverage the policy machine model to propose a
cloud-based service that achieves secure storage and fine-grained
dissemination of mHealth data. The primary goal of this work
is to demonstrate the applicability of the PM framework to the
mHealth domain and illustrate the workflow of an algorithm to
resolve access decisions in theoretically faster time than achieved
by existing implementations.

I. INTRODUCTION

A. Mobile Health Systems

Recent years have witnessed a significant growth in the
field of healthcare information technology. This, coupled with
advances made in mobile computing, have essentially laid
the foundation for the advent of mobile-healthcare systems,
abbreviated as ‘mHealth’. mHealth can be broadly described as
a system which involves the use of mobile computing devices
in discharging healthcare-related services [1]. The architecture
of this system, as described by Avancha et al. [2], comprises of
a set of sensor nodes, mobile nodes, and a remote, centralized
repository. Sensor nodes (SN) are basically attached to the
patient’s body in different configurations (based on what type
of health-data is required), and are responsible for detecting
and relaying information in real-time. For example, a sensor
node attached to a person’s wrist could be used in assessing
the pulse rate of the user and relaying it to the appropriate
end-point. Mobile nodes (MN), on the other hand, capture the
information sent by the SNs and transmit the same to the re-
mote repository, possibly after performing some processing, on
the received data, and aggregating the same. These MNs could
either be a mobile phone or a Mobile Internet Device (MID),
and this is, in addition to the SN’s, carried by the patient. The
remote repository is referred to as the Health Records System

(HRS), which is the centralized storage system holding the
records of all the patients who have registered to the mHealth
service, where data received from different MNs are stored
after performing some preprocessing. Any entities such as
physicians, researchers, insurance companies or lawyers who
require access to patients’ data, can obtain it from the HRS,
with suitable permissions from the patient.

Fig. 1: mHealth Architecture

B. Threat Model and Problem Description

The mHealth system could be under threat by a myriad of
sources in different ways. The sources of threat can, however,
be broadly categorized as (1) Patient (the patient himself or
herself), (2) Internal entities like doctors, insurance companies
and HRS cloud service providers who can gain authorized
access to some portion of the patient’s data and (3) External
entities like hackers and thieves who do not have authorized
access to any portion of the patient’s data [3]. As seen from
Fig. 1, the assets in consideration are the MID, SNs, the
preprocessing unit and the HRS itself. Any threat sources can
get unauthorized access to stored records, perform malicious
alterations or deny services provided by the critical units in
the mHeatlh infrastructure (from Fig. 1). Although, all of the
above mentioned cases are possible, in this paper, we only
address the privacy concerns raised by unauthorized access to
the mHealth data stored on the HRS. As observed by Kotz
et al. [3], the concerned threat agents can be any of the three
entities listed in the beginning of this paragraph.

From above mentioned threat model it is evident that it
is imperative to prevent unauthorized access or disclosure of

2018 Third International Conference on Fog and Mobile Edge Computing (FMEC)

978-1-5386-5896-3/18/$31.00 ©2018 IEEE 131

stored mHealth data. There are, however, two critical aspects
to this problem that need attention. Firstly, an authorized entity
may only require data access for a limited number of features
in the patient’s data record, which means, fine-grained access
to data is required. An insurance company, for example, might
have a need to peruse cardiovascular data only. Secondly, in
the context of healthcare applications, fast access decisions
are an absolute requirement. A slow HRS server can lead
to catastrophic consequences for a patient in an emergency
situation.

C. Existing Approaches Based on the Role and Attribute-based
Access Control Paradigms

Role-based access control (RBAC) is made use of in
traditional mHealth systems [2]. RBAC-based systems use
user roles (eg. doctor, insurance-agent etc.) to make access
decisions. Kulkarni et al. [4] have implemented the use of an
RBAC mechanism for their mobile-healthcare solution. They
argue that, RBAC would be more meaningful in the context
of healthcare when compared with Mandatory Access Control
(MAC). MAC’s mechanism involves designating varying levels
of sensitivity to an object based upon the information contained
in it, and granting access to any subject based upon the subjects
clearance. This mechanism is not suitable in the context of
healthcare applications, since in this case, it is not only
necessary to consider the information’s sensitivity, but it is also
required to ensure control over individual action, which leads
to preference for RBAC. Kotz [3] suggests RBAC as well,
for controlling access to a patient’s records. RBAC, however,
suffers from its own share of pitfalls, Firstly, role explosion
and the presence of multiple domains will complicate policy
management. In the context of a large organization such
as a healthcare institute with many different administrative
domains, RBAC is going to complicate things when it comes
to making an access decision based on a role [5]. This is
because, the concept of a role might differ across organizations
or different domains withing an organization. Furthermore, the
process of assigning roles and managing them is very difficult
in a large organization [2]. Finally, RBAC does not consider
object-level attributes in making access decisions, and there-
fore, is incapable of achieving finer levels of granularity[6].

Lu et al. [7] suggests the use of Attribute-Based Access
Control (ABAC) in implementing an efficient access-control
methodology to achieve privacy in their mHealth system. As
an example, in RBAC all doctors can get access to certain
objects, while in ABAC doctors who are employees of a certain
hospital (“employeeOf” can be treated as an attribute here) can
only get access to those objects. ABAC successfully overcomes
the drawback presented by RBAC by making access decisions
based upon different attributes of the user, object and the
environment [8]. But it is still not a possibility to enforce
multiple policy classes with their approach. We resolve this
problem using PM.

D. Policy Machine for mHealth Systems

The problem domain addressed in this paper requires
effective policy representation and enforcement in the mHealth
cloud service’s access-control system. PM [9] provides us with
a suitable framework for defining policies and implementing
them. In the context of mHealth, using PM can help us

overcome drawbacks with respect to an RBAC methodology
where it’s difficult to identify and manage roles. Enforcement
of policies are ensured using PM. Then again, as observed by
Mell et al. [10], the PM framework can be represented using di-
rected acyclic graphs (DAG), thereby opening up a wide range
of possibilities for optimizing search and retrieval techniques.
This, in turn, can speed up the process of evaluating access
decisions. Considering these advantageous aspects of PM, we
propose using PM to model the access control framework in
mHealth systems. PM also forms the basis for the development
of Next Generation Access Control (NGAC), and hence we use
these two terms (PM and NGAC) interchangeably throughout
the rest of the paper.

Using the PM framework we attempt to answer two types
of user queries [10]:

1) Can a particular user u perform an operation op on
an object o, i.e. < u, op, o >? As an example, “can
Dr. Jekyll, read patient Mr. Hyde’s cardiovascular
records?”.

2) What privileges does a user u have, i.e. < u, ∗, ∗ >?
As an example, “can Dr. Jekyll review all objects in
the system that he can read or write?”.

Apart from establishing the significance of both these types
of queries, Mell et al. [10] also make the first attempt to
implement graph search techniques to evaluate them. Their
algorithms run in linear time with respect to the number
of edges, under the assumption that the number of nodes
are lesser than the number of edges in the PM graph. To
demonstrate the efficiency of their approach, they compare its
performance characteristics with that of the existing implemen-
tations and show significant improvement. Since the PM graph
is a directed acyclic graph, in the worst case, the number of
edges can reach up to

(
n
2

)
and since this approach is very close

to traditional exhaustive search techniques the time complexity
can be anywhere from linear to quadratic in the number of
nodes (O(n2)). Consequently, in this paper we present an
approach that is theoretically faster than their approach. To
achieve this we make use of a modified version of an algorithm
[11] that finds common predecessors of two nodes in a DAG. It
must be noted, the performance evaluation shown in [10] are
for queries executed on an in-memory representation of the
PM graph. In contrast, we store and evaluate the same queries
on persistent storage.

In this paper, we also devise a model for representing
access control policies that allows fine-grained release of
patient records. For example, if a patient’s record consists of
more than one item such as cardiovascular and mental health-
related data, our model enables authorized release of individual
items. Finally, we implement our NGAC framework on a graph
database. This allows us to execute graph search algorithms
natively on persistently stored access control policies.

E. Paper Outline

The rest of the paper is organized as follows. In section II
we present, in details, the background knowledge required to
clearly comprehend the work done in this paper. This includes
a brief overview of the NIST NGAC [9] framework, the Neo4j
graph database and the common predecessor finding algorithm
[11]. Section III presents the salient features of the solution

2018 Third International Conference on Fog and Mobile Edge Computing (FMEC)

132

architecture presented in this paper. We start by describing
our solution architecture, followed by a thorough description
of the NGAC graph generation process and algorithms used in
answering access queries. In section IV we present a detailed
analysis of our algorithms. Finally in section V, we summarize
the contributions made in this paper, followed by a concise
description of the tasks we aim to accomplish in the future.

II. BACKGROUND

A. Policy Machine and Next Generation Access Control

PM is, in general, termed as a “logical machine” which
consists of a fixed set of relations and functions between the
policy elements.

1) NGAC Constructs: NGAC is constructed with basic
policy elements and a fixed set of relationships. The policy
elements and relationaships used in this paper are mentioned
below.

a) Policy Elements:

• Users (U) The individuals authenticated by the sys-
tem are called Users. They are identified by unique
identifier in the system.

• Objects (O) Objects can be defined as system entities
that are governed by one or more defined policies.
They have a unique identifier in the system.

• Operations (OP) Operations denote actions that can
be performed on the contents of objects that represent
resources, or on NGAC data elements and relations,
that represent policy.

• Access Right (AR) For users to carry out any oper-
ation, they need to have proper access rights. Access
rights can be categorized as administrative and non-
administrative.

• Policy Classes (PC) A policy class is used to organize
and distinguish between different types of policies
being expressed and enforced. A policy class can be
thought of as a container for policy elements and
relationships, that pertain to a specific policy.

• User Attribute (UA) User attributes also play a similar
role as policy classes, that is, they act as containers
which help with organizing and distinguishing be-
tween distinct classes of users.

• Object Attribute (OA) The role of user and object
attributes are the same, besides the fact that object
attributes help in distinguishing objects. Every object
serves as an object attribute in the PM model, that is,
objects are a subset of object attributes. However, this
isn’t true for user and user attributes.

b) Relationships: Relationships in the NGAC model are
categorized into two groups.

• Assignment (ASSIGN) Assignments are used as a
means to express relationships between users and user
attributes, objects and object attributes, user (object)
attributes and user (object) attributes, and user (object)
attributes and policy classes.

Fig. 2: Example PM Instantiation

• Association (ASSOC) Associations define relation-
ships that involve the authorization of access rights
between policy elements. They are the policy settings
that govern which users are authorized to access
which objects, and exercise which access rights. An
association is represented as a ternary relation (UA x
ARs x OA).

PM also consists of a notion of prohibitions and obligations
which further assist in making the policies granular. However,
we do not consider these constructs in our implementation.
Also, an authorization graph can consist of more than one
policy class. For the purpose of this paper, we utilize only one
policy class.

2) Evaluating User Privileges: We make use of the sample
policy shown in Fig. 2 to demonstrate the process of evaluating
user privileges. Policy machine [9] defines a user privilege as
the triple (u, op, o), where u ∈ U, op ∈ OP and o ∈ O. In
our model, OP = {r, w}. Using this notion, an access request
of the form (u1, r, o2) would be authorized from Fig. 2, if
the user and object nodes share a common operation node
of the form r and policy classes. Mell et al. provide a more
intuitive graph-theory oriented definition in [10]. According to
the authors, the user u1 can perform an operation r on the
object o2 if there exists an edge labeled r, the tail of which
can reach u1 and the head of which can reach o2. Mell et
al. also mandate that, a privilege is considered granted (for a
user u1 to access an object o1) if, the set of all policy class
nodes reachable from the head nodes is a superset of the set
of policy class nodes reachable from o1. However, since we
use only one policy class in this work, our evaluation does not
incorporate this aspect.

B. Graph Database: Neo4j

Neo4j is a NoSQL native (graph specific storage and
processing engine) graph database that implements property
graph model [12] to the storage label. In addition, it provides

2018 Third International Conference on Fog and Mobile Edge Computing (FMEC)

133

Fig. 3: Proposed Solution Architecture

facilities such as ACID properties. A property graph model is
comprised of nodes, relationship, properties and labels. Nodes
are main data elements connected with each other via rela-
tionships. The nodes, as well as the connecting relationship,
can have properties of their own. In order to categorize the
nodes into the related groups, labels are used. A node can have
multiple labels at the same time. All the labels are indexed, in
order to accelerate the process of finding nodes in the graph.
Neo4j makes use of Cypher Query Language for its operation.
Cypher is a declarative graph query language, inspired by
SQL, with pattern-matching capabilities. Finally, Neo4j allows
computation of a record’s location in O(1) time. This is made
possible by storing the file records into multiple node storage
files. The records stored are fixed-sized (9 bytes). Therefore,
if we have a node with an id equal to 100, then we know
that the record begins 900 bytes into the file. Also, the use of
relationships instead of indexes further aids into fast traversal
of the graph. This feature of Neo4j is our motivation behind
selecting it as our primary choice for storing and processing
policies.

C. Common Predecessor Finding Algorithm

This algorithm is a graph traversal algorithm that allows
us to find the common predecessor given a node in a directed,
acyclic graph. It utilizes basic depth-first search to do so.
The following paragraph describes the algorithm in a nutshell.
Let us consider a graph G(V, E), where V represents vertices
and E, the edges. Gt would represent the transpose of the
graph G where all the directed edges of graph G are inversed.
The vertex having zero incoming edges are the source nodes.
Similarly, a vertex v is said to be a successor of a vertex w, if
there exists a direct path from w and v. A vertex v is said to be
a predecessor of a vertex w, if there is a direct path from v to
w. Therefore, given two vertices u,v, this algorithm effectively
solves the problem of finding whether u and v have a common
predecessor. To solve this problem, a very naive way would
be to run a depth-first search from u in Gt marking all the

visited vertices and then performing a depth-first search from
v in Gt, and determining whether any marked vertices are
encountered. The time complexity of the algorithm, which is
O(m), might increase to quadratic with increase in number of
queries. Therefore, an indexed version of common predecessor
is used which runs depth-first search from each source node,
labeling all its successors with the source nodes. In cases where
there are multiple sources in same node, they are appended to
the back. If the labels to each vertices are at most p then the
time complexity of the labeling would be O(pm) and the query
takes O(p) to determine if the queried vertices share a common
label.

III. METHODOLOGY

A. Solution Architecture

Fig. 3 shows the architecture of our reference implemen-
tation. As mentioned earlier in section II-A, the NGAC model
includes user (u), user attribute (ua), object (o) and object
attribute (oa) nodes. We obtain information pertaining to o
and oa nodes from the incoming traffic that is received from
the MN nodes (refer to section I-A). For the purpose of
instantiating the model, we make use of a Fitbit dataset that
is obtained from [13]. The dataset includes attributes such as
‘Calories’ (amount of calories burned by the wearer), ‘Steps’
(number of steps taken), ‘Date-Time’ (date and time of the
observation), ‘Distance’ (distance traversed), ‘PID’ (patient
ID), ‘Elevation’ (elevation at which the wearer is) etc. For the
sake of simplicity and brevity, in this work, we only consider
the features ‘PID’, ‘Date-Time’, ‘Calories’ and ‘Steps’. This
can be seen in Fig. 3 where, to be more application specific,
we rename the ‘PID’ attribute to ‘ownerid’. Each measurement
(eg. “xx” for calorie or “yy” Step) is envisioned as a data object
o ∈ O.

The architecture also consists of a Registration Portal via
which we collect user information. Users are those entities
which request for access to the data from HRS. Users can

2018 Third International Conference on Fog and Mobile Edge Computing (FMEC)

134

Fig. 4: An Example NGAC Policy for the mHealth Cloud

include, but are not restricted to, physicians, insurance com-
panies, lawyers and patients. User attributes can be role, name
etc. Once a user is registered, they are assigned and provided
with a system-wide unique identifier. At the time of data
retrieval users query via the Access portal and their queries
are converted into NGAC formalized access requests. These
requests are then evaluated using algorithms demonstrated
later in the section III-D. If granted access, authorized objects
(or set of objects) are returned to the user. Although, it is
recommended to have user-centric policies in an mHealth
system [14], in this work we assume this responsibility to
be fulfilled by the system administrator. We however, plan to
address this issue in future.

B. An Example NGAC Policy for the mHealth Domain

An institute using our mHealth-based cloud service can
have its policies as shown in Fig. 4. The system protects
unauthorized access to fitness-data, which in turn consists of
the features calories and steps. Each object node has three
attributes - date (the date on which the observation was made),
owner (the patient with whom the data is associated to) and
type (the type of data being recorded). There are a total of five
users in the system. Users u1 and u2 are owners, that is, they
are the patients in the mHealth system. Patients are allowed
to possess read and write privileges over their records, since
the institute does not consider knowledge of these features to
be in any way a detrimental to the patient, and also believes
that incorrect alteration of this data by the patient would not
result in any significant harm. Users u3 and u4 identify as
researchers, and are allowed read access to all fitness-data
features of all the patients, by the institute. User u5 identifies
as a doctor, and according to the policies of this institute, is
only allowed read access to his own patient u2’s steps on the
date “aa/bb/cc”.

C. Constructing the PM Graph

To construct the authorization graph for NGAC, we need
to figure out the users, objects, user attributes, object attributes
and permissions. Since, we have only one policy class we
assign every element in the system to a single policy class.
For the purpose of explaining the construction process we will
be using the example policy from Fig. 4 as a reference.

1) Adding Nodes and Edges: As mentioned earlier, we
collect objects and object attributes from the incoming traffic.
As data is received, new object and object attribute nodes are
added to the NGAC graph. Although, every incoming data
item is considered to be a unique object, this might not be
same for object attributes. This is because, in our simulation,
we receive the same type attributes (calories and steps) every
time. We however, might receive different ownerids and date-
time attributes, in which case, new oa nodes are created. When
objects are created, they are assigned to all three types of object
attributes namely, type (representing the type of recording it
represents), ownerids (representing the ownership) and date-
time representing the time at which it was received. For users
and user attributes we utilize the information received from
the Access portal. It should be noted that we do not allow
object creation before a patient’s information is received. This
is because, once patient data is received from the MNs, we
assign patients default r, w privileges to the objects they own.
For other users, once they register, they are provided unique
ids, which become their primary attribute in the graph. The
other user attribute supported in our simulation is role that
determines the designation of a user in the system. Finally, at
the time of installing policies the administrator makes changes
to the NGAC graph by adding association relationships from
user attributes to objects or object attributes. Unlike, the origi-
nal NGAC guidelines, association relationships are represented
as nodes (referred to as op nodes) which contain privileges to
be assigned and connect them by incoming edges from user
and object attributes. This makes it possible to find the required
privileges through the modified common predecessor algorithm
which will be explained later.

The system updates every time a new node or edge is
added to the PM graph. And as it is seen above, a new node
or edge is added once new object attributes/assignments (like
“Calories” and “ownerid”) or user attributes/assignments (like
a new role) are being added. If new policies are requested, they
are review by the administrator and corresponding associations
are created. The Neo4j representation will contain all the policy
elements as nodes relationships as edges. Each element of
the graph are labeled respectively. The association relation
represented as node will be labeled “action”.

2) Constructing the Index: During the indexing process the
authorization graph is indexed by two different kind of indexes
depending on the nature of node being indexed. The user and
object nodes i.e. (source nodes with in-degree 0) are indexed
with the reachable op nodes, and the op nodes themselves are
indexed with the source nodes they can reach.

In algorithm 1 we first traverse the PM graph in a depth-
first manner from both user and object source nodes and
add the visited nodes to userlist and objectlist (lines 1-7).
This phase involves all the disk access and the next steps of
processing in the indexing phase are all performed in-memory.
Next we intersect the each userlist and objectlist and store
every common node on the corresponding user and objects
nodes in sorted order of id (note that each node in Neo4J is
provided a unique identifier). This process indexes op nodes on
user and object nodes (lines 8-14). At the same time, we also
store the same user and object nodes on the op nodes (lines
15-22) in two separated sorted indexes. Both these indexes are
used in next phases of the algorithm.

2018 Third International Conference on Fog and Mobile Edge Computing (FMEC)

135

Algorithm 1 Indexing
for all source nodes do

if source is an instance of user then
Assign user userlist=set of all the nodes visited

during DFS traversal from user
else

Assign object objectlist=set of all the nodes visited
during DFS traversal from object

end if
end for
for all nodesA in user.userlist do

for all nodesB in object.objectlist do
if nodeA.id = nodeB.id then . nodeA is an op

node
user.cp list ← user.cp list ∪ nodeA
sort(user.cp list)
object.cp list ← object.cp list ∪ nodeA
sort(object.cp list)
if nodeA.userlist does not contain user node

then
nodeA.u cp list← nodeA.u cp list ∪ user
sort(nodeA.u cp list)

end if
if nodeA.objectlist does not contain object node

then
nodeA.o cp list ← nodeA.o cp list ∪ ob-

ject
sort(nodeA.o cp list)

end if
end if

end for
end for

Note that the indexing procedure is done for every change
in the graph, i.e. new either a new node or a new edge is added.
However, since the index is precomputed we do not consider
the indexing time for the purpose of performance evaluation.
Furthermore, assuming unbounded disk space, since the index
is stored in-disk with the nodes we do not consider the space
overhead for the indexing process.

D. Evaluating Access Requests

After every indexing the graph is ready to be queried.
As already mentioned earlier in section I-D, we address two
types of queries in this paper. The following two subsections
delineate the procedure of evaluating these queries.

1) Queries of the form < u, op, o >: For the query of
the form < u, op, o > we first get the indexes for each of
the u and o nodes as shown in lines 1-2 of algorithm 2. We
then perform an intersection on the two lists. Intersection of
two lists of length n and m respectively, typically take n ∗m
operations. However, the same process can be done on sorted
lists using n+m operations by traversing each list only once.
This is shown in lines 4-15. We start by initiating two pointers
i and j to point at the two indexes. If the items pointed to by
the pointers are matching and of the form of op (“r” or “w” for
example) we return at line 7 thereby granting the operation.
Otherwise, increment pointer which points to the lower value.

Algorithm 2 Evaluate < u, op, o >

cplist for u ← get cp list property of node u
cplist for o ← get cp list property of node o
Let i = 0, j = 0
while i < len(cplist for u) ∨ j < len(cplist for o) do .
Intersection of sorted list

if cplist for u[i] = cplist for o[j] then
if cplist for u[i] is the op node in the query then

return Granted
end if

else
if cplist for u[i] < cplist for o[j] then

increment i by 1
else

increment j by 1
end if

end if
end while
return Denied

In this way, we only traverse both the indexes once. Eventually,
if no matching node is found, we deny access.

Algorithm 3 Evaluate < u, ∗, ∗ >
for all op nodes do

if op.userlist contains user then . Perform binary
search

return op and op.objectlist
end if

end for

2) Queries of the form < u, ∗, ∗ >: Algorithm 3 shows the
final procedure where the user attempts to review all his/her
rights. In this case, we traverse the list of all op nodes and
for each node we perform a binary search on the sorted index
of reachable user nodes (refer to section III-C2). If a match
is found, the indexed object list is returned, denoting the user
can perform op on the returned set of o nodes.

IV. ANALYSIS AND DISCUSSION

A. Complexity Evaluation

Let us consider the number of user nodes to be |U |,
object nodes to be |O|, user attribute nodes to be |UA|, object
attribute nodes to be |OA| and operation nodes |OP |. In this
section we evaluate the worst case runtime complexities of the
two types of queries namely, < u, op, o > and < u, ∗, ∗ >.

a) Evaluating < u, op, o >: For this query request, we
pull the sorted index property of both u and o nodes, which
is O(1) for Neo4j. An intersection, which is performed on
this sorted list, would have less complexity than a regular
intersection. In algorithm 2, since we only traverse each index
once for the intersection, the complexity at the worst case is
O(|OP |+ |OP |) or O(| OP |).

b) Evaluating < u, ∗, ∗ >: As seen in algorithm 3, for
each op node that is scanned we perform a binary search on
the indexed user nodes. This leads to a time complexity of
O(|OP |log(|U |)).

2018 Third International Conference on Fog and Mobile Edge Computing (FMEC)

136

Fig. 5: Custom PM Graph for Worst Case Experiments

B. Performance Analysis

1) Experimental Setup: To evaluate the performance char-
acteristics of our approaches, we performed a few experiments
in two categories namely, the worst case scenario and real
world (average case) scenario. It must be noted for conducting
experiments in both categories, we used a

a) Worst Case Scenario: The worst case scenario
demonstrates the theoretical upper bounds of our approaches,
as deduced in the the previous section. For this purpose we
conducted 3 experiments with a custom generated PM graph
(Fig. 5) that reflects the worst case scenario. To generate this
graph we first created two separate single-rooted tree structures
using ua and oa nodes respectively. We then mapped each ua
node to each oa node thus creating a total of |UA| ∗ |OA| op
nodes. We then added new u1 and o1 nodes and made them
new roots as shown in Fig. 5. Under this model, the user in the
graph is allowed to perform each operation on the o1 node and
hence the indexing processes would index every op node for
user node. For the first two experiments (querying < u, op, o >
and < u, ∗, ∗ > respectively), we steadily increased the height
(h) of both trees to generate 2h+1 − 1 ua and oa nodes in
each iteration and connected each combination to increase
the number of op nodes. Eventually, we stopped at a total of
16000 op nodes. For both experiments we disabled the return
statement at line 7 of algorithm 2 to enable full scan of the
index and noted the time elapsed after each query thereby
plotting the results as shown in figures 6a and 6b respectively.
For the third experiment in this category, we steadily created
a large number u nodes and assigned each u node to the root
ua node, thus allowing the indexing process to index every
op node for each user and vice-versa. We then executed the
< u, ∗, ∗ > query for each incrementing value of |U | and
noted the time elapsed after each query and plotted the results
as shown in figures 6c. Finally, for this experiment, we query
by setting the user node identifier to the minimum so as to
enable full binary search on the index.

b) Real World (average case) Scenario: In their work,
Mell et al. [10] evaluated the performance of their approach
on simulated PM graphs that reflect a real world scenario. In
accordance with their experimental setup, we increased 4 u
nodes, 4 user attributes, 20 o nodes and 12 object attributes
in each iteration. Mell et al. generated operation edges, the
number of which is determined by the probability where Edros-

Renyi graph will have mean edges per node less than five.
Since, in our approach, we convert these edges into nodes (op
nodes), we did the same but for the number of nodes. With
this setup we noted the time taken for each type of query
(< u, op, o > and < u, ∗, ∗ >) with the number of nodes
in each iteration. The rate of increment could not be fixed
to 1 because of the randomness introduced by Edros-Renyi
principle.

2) Discussion: As can be seen in Fig. 6, in the worst
case our approach performs linearly with increasing number
of operation nodes and in a slowly rising manner for the user
nodes. Although, the curve in Fig. 6c did not exactly follow
in a logarithmic pattern, our approach performed significantly
well, achieving an almost constant curve with respect to
increasing number of user nodes. We believe that the most
significant revelation from these experiments was that, even in
the worst case and in spite of the disk access overhead, the
performance of our approach was in order of a much lower
value than a tenth of a second for about 16000 op or u nodes.

The performance curves observed in Fig. 6 prompted us
to believe that in a real world scenario our algorithm would
perform even better. Fig. 7 validates the same. Our average
case analysis did not show any increasing trend with increasing
the number of nodes. This leads us to believe that, in spite
of the disk access times, our approach can run in almost
constant time with increasing number of nodes, thus yielding a
significant performance boost while evaluating access requests
in a real world scenario. This performance also aligns with
what has been observed by Mell et al. in [10]. Although, we
achieve increased performance, we must note that Mell et al.
perform an extra step for validating the containment of policy
classes, which we avoid in this paper.

V. CONCLUSION AND FUTURE WORK

In this work, we looked into the prospect of harness-
ing NGAC for designing an access-control framework for
mHealth systems. We examined some basic concepts involved
in NGAC, and assessed its feasibility for use in mHealth.
An example policy use-case was used to construct the NGAC
graph and evaluate access requests. Our investigations revealed
that using NGAC gives us a boost in terms of speed, and
that our approach could theoretically achieve a lesser time
complexity (as compared to the previous work by Mell et
al. [10]) in evaluating access decisions. The complexity to
evaluate access decisions achieved by Mell et al. was reported
to be linear in the number of edges while in our case, it is linear
in the number of operation nodes (we converted operation
labeled edges into nodes) for making access decisions and
loglinear in the number of user and operation nodes to review
access rights. Furthermore, NGAC supports the enforcement
of multiple policy classes in one policy and is a less compli-
cated access-control system to implement and manage, thereby
justifying its use for an mHealth system.

In future we aim to extend our reference implementation
in more than one way. Firstly, we want to make policy
management more owner-centric. We plan to use web-based
authentication schemes like o-auth/openid-connect to achieve
this. Secondly, we aim to further optimize the process of query
evaluation. Thirdly, we plan to integrate more policy classes

2018 Third International Conference on Fog and Mobile Edge Computing (FMEC)

137

(a) Worst Case Performance for < u, op, o >
with increasing |OP |

(b) Worst Case Performance for < u, ∗, ∗ >
with increasing |OP |

(c) Worst Case Performance for < u, ∗, ∗ >
with increasing |U |

Fig. 6: as

(a) Real World Performance for < u, op, o > (b) Real World Performance for < u, ∗, ∗ >

Fig. 7

into the PM graph thereby better utilizing its features. Fourthly,
we plan to implement a faster, non-exhaustive search technique
to construct the index. This will allow better and more timely
policy management. Finally, we aim to formalize and extend
the current model to inculcate more versatile models like
spatio-temporal schemes for access control.

ACKNOWLEDGEMENT

The work is supported in part by grants from NIST under
contract number 60NANB16D250, NSF under award number
CNS 1650573, AFRL, SecureNok, CableLabs, and Furuno
Electric Company.

REFERENCES

[1] S. Adibi, Mobile Health: A Technology Road Map. Springer Publishing
Company, Incorporated, 2015.

[2] S. Avancha, A. Baxi, and D. Kotz, “Privacy in mobile technology for
personal healthcare,” ACM Comput. Surv., vol. 45, no. 1, pp. 3:1–3:54,
Dec. 2012.

[3] D. Kotz, “A threat taxonomy for mhealth privacy,” in Proceedings of the
3rd International Conference on Communication Systems and Networks.
IEEE, Jan 2011, pp. 1–6.

[4] P. Kulkarni and Y. Ozturk, “mphasis: Mobile patient healthcare and
sensor information system,” Journal of Network and Computer Appli-
cations, vol. 34, no. 1, pp. 402–417, 2011.

[5] A. Karp, H. Haury, and M. Davis, “From abac to zbac: The evolution
of access control models,” in Proceedings of the 5th International
Conference on Information Warfare and Security 2010. Academic
Conferences Ltd, 2010, pp. 202–211.

[6] S. Mukherjee, I. Ray, I. Ray, H. Shirazi, T. Ong, and M. G. Kahn,
“Attribute based access control for healthcare resources,” in Proceedings
of the 2Nd ACM Workshop on Attribute-Based Access Control, ser.
ABAC ’17. ACM, 2017, pp. 29–40.

[7] R. Lu, X. Lin, and X. Shen, “Spoc: A secure and privacy-preserving
opportunistic computing framework for mobile-healthcare emergency,”
IEEE Transactions on Parallel and Distributed Systems, vol. 24, no. 3,
pp. 614–624, March 2013.

[8] V. C. Hu, D. Ferraiolo, R. Kuhn, A. R. Friedman, A. J. Lang, M. M.
Cogdell, A. Schnitzer, K. Sandlin, R. Miller, K. Scarfone et al., “Guide
to attribute based access control (abac) definition and considerations
(draft),” NIST special publication, vol. 800, no. 162, 2013.

[9] D. Ferraiolo, V. Atluri, and S. Gavrila, “The policy machine: A novel
architecture and framework for access control policy specification and
enforcement,” Journal of Systems Architecture, vol. 57, no. 4, pp. 412–
424, 2011.

[10] P. Mell, J. M. Shook, and S. Gavrila, “Restricting Insider Access
Through Efficient Implementation of Multi-Policy Access Control Sys-
tems,” in Proceedings of the 8th ACM CCS International Workshop on
Managing Insider Security Threats. ACM, 2016, pp. 13–22.

[11] M. Toahchoodee, I. Ray, and R. M. McConnell, “Using graph theory
to represent a spatio-temporal role-based access control model,” Inter-
national Journal of Next-Generation Computing, vol. 1, no. 2, 2010.

[12] J. J. Miller, “Graph database applications and concepts with neo4j,”
in Proceedings of the Southern Association for Information Systems
Conference, Atlanta, GA, USA, vol. 2324, 2013, p. 36.

[13] R. D. Furberg, “Self-generated Fitbit dataset 10.22.2011-09.20.2014,”
Feb. 2015. [Online]. Available: https://doi.org/10.5281/zenodo.14996

[14] B. Martı́nez-Pérez, I. De La Torre-Dı́ez, and M. López-Coronado,
“Privacy and security in mobile health apps: a review and recommen-
dations,” Journal of medical systems, vol. 39, no. 1, p. 181, 2015.

2018 Third International Conference on Fog and Mobile Edge Computing (FMEC)

138

