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and control capabilities via the aid of modern digital com-

munication, signal processing, and massive deployment of
sensors but presents severe security challenges. Attackers can
modify the data entering or communicated from the IoT sen-
sors, which can have a serious impact on any algorithm using
these data for inference. This article describes how to provide
tight bounds (with sufficient data) on the performance of the best
unbiased algorithms estimating a parameter from the attacked
data and communications under any assumed statistical model
describing how the sensor data depends on the parameter before
attack. The results hold regardless of the unbiased estimation al-
gorithm adopted, which could employ deep learning, machine
learning, statistical signal processing, or any other approach.
Example algorithms that achieve performance close to these
bounds are illustrated. Attacks that make the attacked data use-
less for reducing these bounds are also described. These attacks
provide a guaranteed attack performance in terms of the bounds
regardless of the algorithms the unbiased estimation system em-
ploys. References are supplied that provide various extensions
to all of the specific results presented in this article and a brief
discussion of low-complexity encryption and physical layer se-
curity is provided.

The Internet of Things (IoT) improves pervasive sensing

Introduction

The IoT will introduce an unprecedented increase in sensor
resources and data-producing sensor-like objects for many ap-
plications. Over 1 trillion IoT sensors, machines, objects, and
devices are expected to be connected to the Internet by 2022.
The top three IoT applications by market share are anticipated
to be health care (41%), manufacturing, (37%), and electricity
grids (7%). Even more impressive, IoT smart objects are ex-
pected to generate 45% of all Internet traffic by 2022. While
the Internet has been available for many years, the integration
of sensing technology into the Internet is still very immature
and brings new problems that have not yet been addressed.
Serious security concerns for IoT systems have already been
demonstrated, and the future brings even more concerns. For
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example, self-driving cars could become dangerous weapons
unless adequate security solutions are developed. For these
reasons, many researchers are focused on finding new cyberse-
curity technologies for the IoT to augment current technology
[1], [2]. Each new technology, including the inferential sensor
processing technology that is the focus of this article, can form
one layer of a multilayer security paradigm, with the other lay-
ers employing different approaches drawn from both new and
existing alternatives. The hope is that if one layer is defeated,
the other layers could still provide protection.

Typically, large IoT systems are composed of low-cost and
spatially distributed sensor nodes with limited battery power
and low computing capacity, which makes them particularly
vulnerable to cyberattacks by adversaries. This has led to
great interest in studying the vulnerability of the IoT in vari-
ous applications and from different perspectives; see [3]-[24]
and the references therein. Moreover, due to the dominance
of digital technology, quantization has been widely employed
at the sensors in IoT systems. The more recent topic of cyber-
security for IoT has received less attention than the topic of
cybersecurity for other systems, but the increasing adoption of
sensors and IoT networks makes this a very important issue.
This article focuses on machine-learning (we do not study
attacks on the training here) and signal processing approaches
to the development of security in inferential sensor processing
for the IoT using quantized data. The discussion will mainly
focus on estimation in the presence of active cyberattacks that
manipulate the data in IoT systems, although the ideas can also
be generalized in many interesting ways beyond estimation
applications. To provide a clear picture in a limited space, we
focus on techniques to allow the estimation system to identify
such attacks and perform robust processing in their presence.
In fact, we provide tight bounds (for sufficient sample sizes)
on the best possible performance the unbiased estimation sys-
tem can achieve. We also describe optimized attacks from the

attacker’s point of view. At the end of the article, we provide
a brief discussion of some specific aspects of some related top-
ics of interest, including eavesdropping, secrecy, encryption,
and authentication.

The topic of impact and mitigation of cyberattacks on sys-
tems solving hypothesis testing problems was studied in [3],
[4], [7]-[9], and references therein. Investigations on cyberat-
tacks on estimation systems have been studied in [6], [7], [10]—
[15], [17], [23], and references therein. The early work in [3],
[4], [6], [7]-[9], [13]-[15], and [23] set the tone for many later
investigations and influenced most of the discussions in this
article. In particular, the impact and mitigation of cyberattacks
on systems solving hypothesis testing problems was studied in
[3], [4], [7], [9], and references therein. Distributed detection in
tree topologies in the presence of cyberattacks was considered
in [8]. Investigations of cyberattacks on estimation systems
have been studied in [6], [7], [10]-[15], [17], [23], and referenc-
es therein. The problem of distributed spectrum sensing in a
cognitive radio network under cyberattacks was studied in [4],
[5], and [25]. Several cyberattack detection techniques were
proposed for IoT localization systems in [6], [12], [18], and [19].
More recently, the data-injection attacks in smart grids were
considered in [13]-[15], [26], and the references therein.

According to where they occur, cyberattacks in IoT systems
can be categorized into two classes, as illustrated in Figure 1.
We call any attack modifying a signal in the IoT system prior
to quantization a spoofing attack. It has been shown [12] that
the same changes in the signals in the IoT system produced
by any spoofing attack can also be produced by changing the
data going into the sensors to be different from that coming
from the physical phenomenon being monitored. We call any
attack modifying a signal in the IoT system after quantization
aman-in-the-middle attack (MiMA). The same changes in the
signals in the IoT system produced by any MiMA [12] can
also be produced by changing the quantized data transmitted
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FIGURE 1. Cyberattacks in loT systems.
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by the sensors. Further, combinations of these two possible
classes of attacks can represent any type of possible attack
even if the actual attack modifies the sensor hardware or soft-
ware as opposed to changing the data entering or leaving the
sensor node.

MiMAs caused by an attacker intercepting a communica-
tion packet and changing its contents or by an attacker forc-
ing a sensor node to transmit false data have received previous
research attention. For instance, MiMAs were studied for dis-
tributed spectrum sensing in a cognitive radio network in [4],
[5], and [25]. The distributed detection problem in the pres-
ence of MiMAs was investigated in [3]. Mitigation techniques
for MiMAs were studied in localization problems in [6] and
[12]. Spoofing attacks have also been studied for localization
problems; see [18], [19], and the references therein. In [18,
Table I], a summary of different types of spoofing attacks
for localization problems is provided. The dangers of spoof-
ing attacks on global positioning system (GPS) receivers that
provide important information to everything from car naviga-
tion to national power grids have drawn serious public concern
[27], [28]. Radar and sonar systems also suffer from spoofing
attacks in practice. As an example of a spoofing attack tech-
nique, the application of an electronic countermeasure (ECM),
which is designed to deceive a radar or sonar system, can criti-
cally degrade the detection and estimation performance of the
system [29]. One popular technique for the implementation of
ECMs employs digital radio-frequency memory (DRFM) to
store a received radar signal and transmit it back to the radar
receiver to confuse the victim radar system. DRFM can mis-
lead the estimation of the range of the target by altering the
delay of the pulses received by the radar system and fool the
system into incorrectly estimating the velocity of the target by
introducing a fake Doppler shift in the retransmitted signal
[30]. Since radar systems are being installed by most car manu-
facturers, with the ultimate application being self-driving cars,
spoofing attacks are potentially very dangerous. The data-
injection attack in smart grids is another typical example of a
spoofing attack; see [13]-[15], [26], and the references therein.

Regarding MiMAs, we focus on the fundamental problems
in identifying and mitigating the impact of malicious cyberat-
tacks. In particular, it is shown that, under some assumptions, it is
possible to correctly identify the attacked sensors and catego-
rize them into differently attacked groups. One such assump-
tion is that the largest group of similarly attacked sensors are
unattacked. Furthermore, once the differently attacked sensors
have been categorized, necessary and sufficient conditions are
provided that describe when the attacked sensor data can and
cannot improve the estimation performance in terms of the
Cramér—Rao bound (CRB).

All existing research on attacks on IoT systems perform-
ing inference considers cases in which the attacker replaces
the unattacked sensor or communication data by a function of
the unattacked data where the form of the function is known
down to some unknown scalar quantities which are called
attack parameters. For example, a specific type of spoofing
attack, called a data-injection attack, adds an unknown attack

parameter to the sensor data. Thus, the function here is a lin-
ear function with unit slope, and the attack parameter is the
value added to the sensor data. We consider much more gen-
eral types of attacks and describe the functions that guarantee
the IoT estimation system can achieve, at best, a given level
of performance no matter what approach the estimator takes.
This shows the existence of very powerful attacks, from the
attacker’s point of view, such that the attacker is guaranteed to
force the estimation system to have performance below some
unacceptable value. To be precise, for a generalized spoofing
attack using known functions with unknown attack param-
eters, necessary and sufficient conditions are provided under
which the attack provides a guaranteed attack performance
in terms of CRB degradation regardless of the processing the
IoT system employs, thus defining a highly desirable attack.
Further analysis of these attacks reveals that the quantiza-
tion imposes a limit on the capability of the system to defend
against attacks, which can be exploited to construct an optimal
attack by properly employing a sufficiently large dimensional
attack vector parameter relative to the number of quantization
symbols employed.

The most general attacks, which include combinations of
MiMAs and spoofing attacks, are illustrated in the section
“General Attacks in Vector Parameter Estimation Systems,”
when estimating the location of an object. With the help of two
secure sensors, a class of detectors is proposed to detect the
attacked sensors by scrutinizing the existence of a geometric
inconsistency. Moreover, it is shown that the error probabil-
ity of the proposed attack detector decays exponentially by
employing large deviations techniques.

Originally motivated by our research on cybersecurity, we
reveal a fundamental limitation on quantized estimation sys-
tems not under attack. A critical quantity called inestimable
dimension for quantized data (IDQD) is introduced, which
does not depend on the estimation problem, the quantization
regions, or the exact statistical models of the observations but
instead depends only on the number of sensors and on the pre-
cision of the quantizers employed by the system. It is shown
that, if the dimension of the desired vector parameter is larger
than the IDQD of the quantized estimation system, then the
Fisher information matrix (FIM) for estimating the desired
vector parameter is singular, and, moreover, there exist infi-
nitely many nonidentifiable vector parameter points in the vec-
tor parameter space.

MiMAs
To introduce a simple problem, we consider a set of N dis-
tributed IoT sensors, each making K time observations of a
deterministic scalar parameter 6 corrupted by additive noise.
At the jth sensor, the observation at the kth time instant is de-
scribed by
Xjk=60+npVj=12,.,N,Vk=1,2,...,K, (1)
where nj denotes an additive noise sample with zero-mean
probability density function (pdf) f(nj) and {n;} is an

IEEE SIGNAL PROCESSING MAGAZINE | September 2018 |



independent and identically distributed sequence. (Extensions
to general estimation problems and nonbinary quatization are
considered in [11].) Each observation xj is individually quan-
tized, and the result is denoted by u . All of the quantized
observations are sent to the fusion center (FC) for use in es-
timating 6. While we allow these communications to be at-
tacked, we ignore any other errors in the communications to
keep things simple, including those due to noise or fading.

Lately, there has been great interest in the extreme case
where each sensor is restricted to transmitting a single bit per
observation to the FC. A basic approach is to decide uj = 1
if xj > v, where v is a fixed threshold, and ujx = O other-
wise. Thus, without attacks Pr(ujx = 016) = F(v —6) and
Pr(up=116) = | — F(v — 6), where F(x) & f f(t)dt de-
notes the cumulative distribution function (cdf) corresponding
to the pdf f(x). By employing the invariance of the maximum
likelihood estimate (MLE), the naive MLE (NMLE), the MLE
formulated under the assumption of no attack, of the parameter
0 can be expressed as

R B 1 &K
9NML:V—F1(1——Z Zu-k>, 2
KNj:Ik:I !

which, without the presence of an adversary, can be expected
to provide asymptotically unbiased and efficient estimation.

Let, at most, P distinct malicious attacks (P arbitrary) be
launched at a given time, where each attack follows a fairly
general adversary model to be described next. Let A, denote
the set of sensors subjected to the pth attack, and let i rep-
resent the after-attack quantized observation, which is a modi-
fied version of u . The statistical description of the pth attack
can be represented by a probability transition matrix ¥,

y, & Y L 3)

Ypo  WYpi
where W 0 £ Pr(ijx =0|ujx =0) and w1 £ Prii;=1|
ujr = 1) are attack parameters that determine the modifica-
tion probabilities (flipping probabilities). Here, we assume the
attacker does not know 6, and so the attack parameters do not
depend on 6. Extended discussion of various cases in which
the attacker has more or less information about the estimation
system and the estimation problem are considered in [11]. Due
to the pth attack, the after-attack probability mass function
(pmf) of the observations can be related to the before-attack
pmf using

1- f’(\PmQ) A
[3(\?1776)

For the sake of expressing the after-attack pmfs of observations
in a uniform form for both attacked and unattacked sensors,
define the set Ao of unattacked sensors, that is, if j & Ao,
then % and ujx have the same distribution.

Pr(itje = 0|6) _
Pr(itje = 1|6) N

Pr(uj = 0]6)
F[Pr(l/ljk = 1|6)]' @)

Assumption 1
The following assumption on attacks is made throughout this
article.

1) Over the K sample estimation time interval described in
(1) and for all p, the pth attack is statistically described
as in (4) for all the sensors in the set A,. The set A,
and the attack parameters are unknown to the FC. Let
Pp é|\.ﬂp /N. Moreover, we assume that the group of
unattacked sensors is the largest group $o > P, + Ao for
all p = 1 where Ao is a positive constant. Further, the sets
Ao, Ay,...,Ap are disjoint A,NAy =0 if p#p.

2) Significant attacks. Since attacks that cause very small
changes to p(Wo, 6) cause very little impact on perfor-
mance (similar to small noise), we only consider attacks
that produce at least a minimum distortion dimpact On
p(¥o,0) and tamper with at least A percent of sensors
so that

‘ i’(lpﬂ’e) _i)(lpo’e) | = dimpacl, Vp = 1,2,...,P, (5)

P, LA, IN=A>0, Vp=1,2,...P. ©)

3) Various attacks. The changes caused by two distinct types
of attacks are considerably different; otherwise, these two
types of attacks can be treated as identical. To this end, we
assume that

| p(¥1,0) —p(¥m,0)| = daie, VI#m. (7

It is worth mentioning that the adversary model assumed in
(4) can change the after-attack pmf to have any desired valid
values satisfying (5) and (7) through proper choice of the two
attack parameters w0 and y,.1. In this sense, it is a fairly
general adversary model.

Identification and categorization of attacked sensors
The following theorem describes the identification and catego-
rization of the attacked sensors.

Theorem 1
Under Assumption 1, for any N as K — oo, the FC can always
identify from the observations, without further knowledge, a
%o percentage group of sensors that contains 0% attacked sen-
sors. Similarly, as K — oo, the FC is also able to identify P
other groups of sensors that, respectively, make up { Pp}i -1
percent of all sensors, such that for p = 1,2,...,P, group p
contains 0% sensors not experiencing attack p.

On the other hand, assume each sensor observes a finite

number K of time samples such that

8In2

>___ olmzs
k= v min{AAo,A*}

+1, )
where y* is a constant defined in [10]. Under Assump-
tion 1, as N — oo, the FC can determine P and a group
of sensors ﬁp corresponding to A, for p=1,...,P,
with P, L1 A, N, P 2(ANA) U(ANA,)|IN,  and
8§ =—(4In2/A(K — 1)y"), which satisfy

0<|P— Pl P <. )
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One should notice the stark differences in Theorem 1 when
we increase N to large values instead of K. Given that we
define a sensor as attacked or unattacked, this does make sense.
When we are given more data at a given sensor for which we
already had some data, then the new data will certainly help us
better categorize the statistical model for the data at this sensor.
If we increase K at a group of fixed sensors, this will help us
determine which sensors are attacked, which are not, and which
sensors are similarly attacked. If we are given data from a new
sensor, from which we had not previously been given data, then
we are also given a new problem: “Is this sensor attacked?”
Thus, given our problem formulation, increasing K to large
values is more helpful than increasing N to large values.

The essential idea toward accomplishing the identification and
categorization of the attacked sensors is to recognize that the statis-
tical description of the data at the differently attacked sensors will
be significantly different based on Assumption 1. Thus, one could
estimate the pmfs of the quantized data at each sensor using histo-
grams and then classify the sensors into different groups represent-
ing the different attacks or the group of unattacked sensors. As the
number of observations at each sensor K becomes large, it seems
reasonable that the estimates become more accurate for larger K.
Many other methods can also be used for identification and cat-
egorization. We can use the estimate in (2) to also see the statistical
differences from sensor to sensor for sufficiently large K given the
good properties of this estimate for the described problem. Note
that Assumption 1 defines significant differences in the pmfs of
unattacked and attacked data [numerical values for dimpact in (5)
can be chosen based on which differences cause significant per-
formance degradation to the estimation performance when the
data are assumed to be unattacked]. Note that Assumption 1
also defines significant differences in the pmfs of differently
attacked data [numerical values for dgifr in (7) can be chosen
based on which differences cause significant degradation if
ignored]. We also need a way to distinguish which group is unat-
tacked. If we know the largest group is unattacked, as assumed
in Assumption 1, or if we have some protected sensors, these are
some methods to distinguish which group is unattacked from
among the groups of sensors deemed to be statistically different.

Estimation performance improvement
via using attacked sensor data
As demonstrated by Theorem 1, when each sensor accumulates
sufficiently many time samples, then the FC is able to determine
the number of attacks in the network and very accurately catego-
rize the sensors into different groups according to distinct types
of attacks. In the rest of this section, we assume that the sensors
have been well categorized into the groups {ﬂ]}}ip;:(), and we
attempt to estimate the desired parameter 6. For simplicity, we
assume the categorizations are exactly correct (K — oo), but the
following results would only be approximately true if errors are
made (K +4 o). There are two approaches:

1) Ignore the data at the attacked sensors and just employ the
data at the unattacked sensors to estimate the desired
parameter. We refer to this approach as the simple estima-
tion approach (SEA).

2) Use the data at the attacked sensors and jointly estimate the
desired parameter and the unknown attack parameters.

It requires less complexity to take approach 1), which avoids
estimating any parameters describing the attacks. However,
to attempt to take approach 2), and potentially do better than
approach 1), we will investigate the performance of the joint
estimation of the desired parameter and the unknown attack
parameters. Let 6 é [9, V1.0,W1.1,...,¥Po0, l//P,l]T denote a vec-
tor containing the desired scalar parameter 6 along with all of
the unknown parameters of the attacks. The estimation perfor-
mance is evaluated by the mean-squared error (MSE), which is
lower bounded in a positive definite sense using

E{[6(u)—-6]6(u)—6]"} =] (0), (10)
where 0 is any unbiased estimator of 6, u denotes the vec-
tor that contains all employed quantized observations {u i},
J(0)is the FIM, and the (1, 1) component of J7'(e) is the
CRB for estimating the desired scalar parameter 6. Note that
the CRB is an asymptotically achievable bound on MSE. In
typical applications, a good estimator with the required num-
ber of observations to achieve the desired performance usually
performs close to the CRB. We will make use of the CRB and
FIM to benchmark the estimation performance of unbiased
parameter estimators. In our studies of inference for the IoT in
this article, we restrict attention to unbiased estimators. Exten-
sions to biased estimators is a topic of current research. If the
FIM is singular for the data from a specific sensor, then those
data are no longer useful to reduce the MSE when the data
are fused with data from other sensors [17]. An attacker can
create this situation with a proper attack [17]. Thus, the FIM
can provide a rigorous way to identify good attacks that make
the attacked data useless. Knowing that attacked data are use-
less for reducing the MSE when those data are fused with data
from other sensors is also useful in the estimation procedure
[10]. Thus, the CRB and FIM are very powerful while being
relatively easy to compute. General calculations of MSE are
generally intractable. This explains why the CRB is the most
widely used lower bound and why analysis based on the FIM is
so common. One can certainly expand the work discussed here
to go beyond these metrics, but there will be a cost in terms
of computational complexity and the simplicity of explanation
obtained by simple closed-form expressions.

It is shown in [10] that using the fixed threshold approach
described before (2) will not allow joint estimation of the
desired and attack parameters, since the FIM for that estima-
tion is singular. This phenomenon is explained by the theory we
provide in the section “Implications for Unattacked Systems.”
There we show that the quantized observations from a given
quantization approach are really only capable of accurately
estimating a parameter with dimension smaller than a given
value. The quantization approach with a common threshold for
all sensors and for all samples at each sensor can only esti-
mate a scalar parameter for the given problem. This approach
cannot jointly estimate both the desired scalar parameter
and the attack parameters. To overcome this, we can employ a
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quantization scheme that allows us to estimate a larger dimen-
sional parameter, with a dimension 2P + 1 for the 2P attack
parameters and the desired scalar parameter 6. In particular,
we define a set of Q distinct thresholds T = {v1,va,...,vo}
and employ different thresholds over Q distinct time slots
{772 |, while using the same threshold at each sensor. We refer
to this approach as the time-variant quantization approach
(TQA). Let p¥ & Pr(ii =1/0) for j € Apk € T, and let
= Adpn S0 S0

=p de psPpses Pp ]

In Theorem 2, we provide necessary and sufficient con-
ditions under which the CRB performance of estimating the
desired scalar parameter 6 can be improved by employing obser-
vations from an attacked sensor.

Theorem 2
The FIM for estimating € is nonsingular provided that Q = 2.
Moreover, the CRB for the desired scalar parameter 6 can be
improved by utilizing the observations from the set of attacked
sensors in our proposed fashion (TQA) if and only if for some
p e {l1,2,.., P}, rank(E,) = 3. Otherwise, there is no CRB
improvement, but also no loss in CRB, from utilizing the at-
tacked observations.

In particular, by employing the TQA, the relative CRB gain
from utilizing the observations at the attacked sensors is

CRB using SEA
CRB using TQA
1 Lodet(T, ({1,2p,2p + 1}1,{1,2p,2p + 1}))
[Tolyy /= det(T,({2p.2p + 1},{2p.2p + 1})) °
an

1+

where T, ({i1,i2,..., 1.}, {j1, j2,..., ju}) denotes the sub-
matrix of I, 4 =Z,A,E7 (p=0,1,...,P), which consists of
the elements located in the {i;}_ th rows and {j.}"_,th col-
umns. [To]1,1 is the (1,1) component of T'g. The matrix A,
is a Q-by-Q diagonal matrix, and the tth diagonal element of
A, is Kﬂ’,,/i)ﬁ,’)(l —pW), where K, is the number of time
samples in 7.

Interpretation of Theorem 2 and (11) is now given. Recall
that the CRB is a lower bound on the MSE of any unbiased
estimator. The CRB is achieveable with a reasonable number of
observations. The ratio of the CRB of the approach that ignores
the attacked data to the CRB of the approach using the attacked
data is shown in (11). Here, we see the power of the CRB in
allowing us to obtain fairly simple closed-form expressions that
we could not obtain using general expressions of MSE. One of
the most interesting aspects of (11) is when the ratio is larger
than unity. If the ratio is larger than unity, then it is advanta-
geous to use the attacked data in terms of CRB. If the ratio is
unity, then the estimator can ignore the attacked data. From (11),
and noting the provable nonnegativity of the second term due
to the positive semidefiniteness of I, the ratio must be unity
or larger. Thus, (11) describes the utility of the attacked data in
a very simple manner. Note that (11) also describes the exact
value of the improvement. Since the determinant of any rank
deficient matrix is zero, (11) also verifies Theorem 2, since the

denominator matrix in the second term is always full rank and
the numerator needs the matrix &, referred to in Theorem 2
to have rank three for some p to ensure that the ratio of CRBs
will be greater than unity. Note that each entry of one of the
columns of =, is obtained by taking a derivative with respect
to one of the components of the vector 6. Since the pmf of the
data under the pth attack can depend only on 6 and the two pth
attack parameters and not on the other attack parameters, then
=, can have at most three nonzero rows. Due to this, I', can
have only nine nonzero entries, which explains the form of (11).

Generalizations and motivating loT estimation problems

In [11], we provide extensions to the previously discussed re-
sults for nonbinary quantization and general estimation prob-
lems. For these cases, we provide a theorem similar to Theo-
rem 1 on the ability to categorize and classify the differently
attacked and unattacked sensors. After classification, one can
similarly judge if the data at a group of similarly attacked sen-
sors can be useful to improve estimation performance in terms
of CRB. Once again, some attacks will make the attacked data
useless for this purpose. This generalization allows us to con-
sider many important IoT estimation applications.

One application that has drawn significant attention lately
is that of self-driving cars. Attacks in this application are espe-
cially concerning since loss of life could result. This application
clearly convinces us of the importance of further developing the
kind of theory initiated in this article. It turns out that most car
manufacturers are convinced that the best way to stop self-driv-
ing cars from injuring people is to fuse radar and video data. In
fact, some may want to fuse other sensors as well. Car manufac-
turers are all developing inexpensive integrated circuit chips to
fully incorporate the radar processing. Interestingly, when these
inexpensive integrated circuit chips become available, this will
encourage extensive use of radar in all kinds of applications and
products, beyond autonomous vehicles. Surveillance applica-
tions will certainly benefit. In fact, the same process will likely
be followed for other complicated sensors. Thus, when inexpen-
sive integrated circuits become available for these other sensors,
this will encourage extensive use of these sensors in all kinds of
applications and products. Since these sensors can be attacked,
methods for protecting these sensors, like the ones presented
here, become extremely important. Attacks on the sensors (the
GPS is also a sensor) or communications in self-driving cars are
one application motivating this work.

In [12], we focus on location estimation under possible simul-
taneous MiMAs and spoofing attacks, but similar approaches
can be applied for other vector parameter estimation problems.
These vector parameter estimation problems can be important
in medical, manufacturing, and smart grid applications, among
others. We discuss [12] in more detail in the section “General
Attacks in Vector Parameter Estimation Systems.”

llustrative example: Identification and categorization of
attacked sensors

Consider a network with N =10 sensors, which is subject
to two attacks that control 30% and 20% of the sensors,
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respectively, and modify their observations with attack param-
eters (w10, w1,1) =(0.2,0.8) and (w20, ¥21)=(0.7,0.1).
The parameter to be estimated is 6 = 1, the threshold of the
quantizer in (2) is v =1, Ao =A =20%, and the additive
noise obeys a standard normal distribution. In agreement with
Theorem 1, Figure 2 depicts a 200-run Monte Carlo approxi-
mation of the average percentage of miscategorized sensors
that appears to decrease toward zero as the number of time
samples at each sensor increases.

llustrative example: CRB comparison

between the TQA and the SEA

Consider a network with N = 100 sensors, 8 = 2, and two dif-
ferent attacks. The first attack tampers with 25% of the sen-
sors using attack parameters y 1.0 = 0.9 and w11 = 0.95. The
other attack controls 20% of the sensors while using the attack
parameters w20 =0.15 and w21 =0.2. The length of each
time slot is fixed at K; = 10, and the set of 801 thresholds is

T ={0,-0.125,0.125, = 0.250, 0.250,..., —5,5}. All other
settings are similar to those of Figure 2. Figure 3 depicts the
CRB when estimating 6 for the two approaches with varying
Q, the total number of time slots. For a given Q, each sensor
observes QK time samples and picks the first O thresholds
from the set of thresholds T to quantize the time samples in
different time slots. It is seen that the CRBs for both approach-
es decrease as Q grows, which is reasonable since the number
of time samples at each sensor increases. Moreover, Figure 3
illustrates that the TQA provides significant CRB performance
gain when compared to the SEA, which implies that the set
of thresholds leads to rank(Z,) =3 for at least one p based
on Theorem 2, and the number of p for which this occurs in-
creases with the increase in Q over the region shown.

Highly desirable spoofing attacks
In the previous section, we essentially described optimum pro-
cessing of MiMA data for cases with a sufficiently large num-
ber of observations. We described how to find which sensors
were attacked and how to develop groups of similarly attacked
sensors. We also described how and when to use the data at the
attacked sensors and when to not use these data. The method
we proposed to use the attacked data involved estimating the
attack parameters of a model describing the attack. With this
model, we can follow accepted estimation theory to develop an
estimation procedure using both the unattacked data and the
attacked data. We could use, for example, an MLE procedure
since we assume a large number of observations. Grouping to-
gether the similarly attacked data would help this procedure.
We note that one could develop algorithms to automatically do
the sensor grouping of similarly attacked sensors, determina-
tion of which sensors are unattacked, and MLE using an ap-
proach similar to that in [17]. Further, one can extend many of
the ideas considered in this section to spoofing attacks; see [12].
In this section, besides considering spoofing attacks, we
shift our considerations to find highly desirable attacks from
the attacker’s point of view. In particular, we are interested in
attacks that will guarantee that the after-attack estimation per-
formance must produce a CRB larger than some specified value,
regardless of how the estimation system processes the data. To
provide insight into spoofing attacks, vector-desired parameter
estimation cases, arbitrary nonbinary quantization, and noniden-
tically distributed samples, we consider all of these in this section.
Let the after-attack unquantized observation X jx be a com-
ponent of an independent sequence over (j,k) € {1,...,N} X
{1,....,K}, and assume each X may be exposed to a spoofing
attack to yield a pdf that can be expressed as

5 {fjk(iik|9), if j € Ao,

Y g (Gl 0,7?), if jE A,. 12)

The notations X and i denote the after-attack unquantized
and quantized measurements regardless of whether the jth sen-
sor is attacked or not, respectively. From (12), if j € A, for
p = 1,2,...,P, then the after-attack pdf gt (Xjk‘e,f(p)) is pa-
rametrized by the desired vector parameter @ with dimension
Do and the attack vector parameter T with dimension D,.
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To conform to previous work on spoofing attacks, the functional
forms of the attacks, and equivalently {g}, are assumed known
to the attacked system, but the desired and attack vector param-
eters are not. All existing research considers cases in which the
attacker replaces the unattacked sensor data by a function of the
unattacked data, where the form of the function is known down to
some unknown scalar quantities, which we call attack parameters.
For example, a specific type of spoofing attack, called a data-in-
Jection attack, adds an unknown attack parameter to the sensor
data. Thus, the function here is a linear function with unit slope,
and the attack parameter is the value added to the sensor data.
Along with considering a vector desired parameter, this sec-
tion generalizes the quantization model to allow nonbinary quan-
tization. At the jth sensor, each after-attack measurement X j; is
quantized to u j by using an R ;-symbol quantizer with quantiza-
tion regions {I;")}R’ that is,

r=1°

Rj
ap=Y, {xxel}r, (13)

r=1

where {-} is the indicator function. Let

0 2", (zV), . (z™)T (14)

denote a vector containing the unknown vector parameter 6
along with all of the unknown attack vector parameters that pa-
rametrize the spoofing attacks.

Optimal guaranteed degradation spoofing attack
Now we define a highly desirable attack.

Definition 1

Consider attacks imposing { fix (xx| ©)} and { gk <5c ile, ’L'(p)>}.
The optimal guaranteed degradation spoofing attack (OGDSA)
maximizes the degradation of the CRB for the vector parameter
of interest at the FC when the attacked sensors are well identified
and categorized according to distinct types of spoofing attacks
by the FC. The CRB for the case where the attacked sensors are
well identified and categorized provides a lower bound on the
CRB for any case, including cases with unidentified and uncat-
egorized attacked sensors, thus providing guaranteed sufficiently
undesirable estimation performance for the estimation system
and justifying the name. One class of attacks that are OGDSA
are called inestimable spoofing attacks (ISAs), defined next and
further illuminated by Theorem 3.

Definition 2 (Inestimable spoofing attack)

The pth spoofing attack is referred to as an ISA if the correspond-
ing FIM for estimating T% is singular. Such an attack can re-
sult from a sufficiently powerful attack relative to the number of
quantization symbols employed by the quantizers as quantified
by Theorem 3.

Theorem 3
For the pth spoofing attack, if the dimension D, of the attack
parameter ¥ satisfies

D,> Y K(Rj—1), (15)
JEA,

then the FIM for estimating T is singular, and, furthermore,
the FIM for estimating © is also singular.

Recall from the discussion just prior to Theorem 2 that the
fixed threshold quantization approach fails for MIMAs due to
a singular FIM. Theorem 3 shows that similar failures (certain
FIMs become singular) can occur for spoofing attacks. The
failures occur because the quantization approach produces data
that cannot be used to estimate more parameters than the right-
hand side of (15). Thus, if we form an attack that involves more
attack parameters than the right-hand side of (15), then the FIM
for estimating T%' is singular. To attack the estimation system
and cause such a failure, one only needs to map the unattacked
data through a function depending on all of the components of
the attack parameter vector whose dimension is larger than the
right-hand side of (15). A polynomial with coefficients that are
the components of the attack parameter vector is one such func-
tion. Now, after quantization, an unbiased estimation approach
is not capable of estimating the attack parameters to statistically
model the attacked data (by modeling the function), so it can-
not recover the desired parameter. The other possible class of
OGDSAs, called optimal estimable spoofing attacks (OESAs),
are a subset of estimable spoofing attacks (ESAs), defined next.

Definition 3 (ESA)

The pth OGDSA spoofing attack is said to be estimable if the
corresponding FIM for estimating 7% is nonsingular. Reference
[17] demonstrates that the attacked observations are useless
for estimating the desired vector parameter under an OESA.
Theorem 4 is useful for catagorizing ESAs.

Theorem 4
In the presence of ESAs, the CRB must satisfy

CRBEsa(0) 2 [Jo'lipo < J 7 (16)

where Jo denotes the FIM for estimating ©, and [J 0'11:p0 is
the Deo-by- Do leading principal minor of Je. The matrix Ja,
is the FIM for estimating the desired vector parameter € by
using only the data from HAo.

In [17], necessary and sufficient conditions are provided for
the equality in (16) that ultimately defines the class of OESAs
for a given estimation problem. The necessary and sufficient
conditions are provided in terms of a relationship between the
subspaces spanned by the columns of certain matrices related
to the FIMs for estimating 6 and T% using data under the pth
attack. One trivial example of an OESA, which may be rela-
tively easy to detect, is to replace the original measurements at
the attacked sensors by some regenerated data obeying a distri-
bution not parametrized by 6. Nontrivial OESAs can also be
given. For example, it is also shown in [17] that a generalization
of an additive shiftin @, the attack thus replacing 6 by 6 + T,
is always an OESA for any estimation problem. It is clear that
such an attack is very hard for the estimation system to deal with
since the unattacked estimation algorithm will be capable of
estimating 6 + =% but it cannot resolve © and T since an
uncountable number of choices for ® and T will all lead to
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FIGURE 4. The attack performance of the data-injection attacks (non-
OGDSA).

the same value of @ + 7. The estimation system has no way
to choose the right one in this settling. On the other hand, other
attacks, with different functional forms, can be OESAs for one
estimation problem but not for another problem.

Itis worth mentioning that, if sensors are correctly categorized,
the CRB cannot be worse than the one that ignores the attacked
sensors, so the attacked sensors can generally help in terms of
reducing CRB. This explains (16) in an intuitive way. However,
from the definitions of the ISA and OESA, the OGDSAs essen-
tially make the data from the attacked sensors useless in terms of
reducing CRB. Thus they give the equality in (16).

llustrative example: Comparison between
OGDSA and non-OGDSA for multiple-input,
multiple-output (MIMO) radar
Previously, we explained how radars are being used in self-driv-
ing cars to avoid accidents in which humans and animals might
be seriously hurt. Here, we give an example where a radar is
spoofed. Consider a multiple-transmitter, multiple-receiver ra-
dar (often called a MIMO radar) with one transmit station and
N = 10 receive stations. The first three receive stations are under
spoofing attacks. Each station makes M measurements of each
pulse in the pulse train and employs an identical 4-bit quantizer
with a set of thresholds { — oo, — 5, — 4, — 3,...,8,9,00} to con-
vert analog measurements to quantized data before transmitting
them to the FC. Without any attack, the mth measurement of the
kth pulse in the pulse train at the jth station can be expressed as
X =V E;ajs(15, = 0)) + nj (17)
where 6 is the desired parameter (delay of the transmitted signal af-
ter reflection from the radar target), m =1, 2,....M, k =1,2,...,K,
and K is the total number of pulses in the pulse train. Assume { ny;,z }
is an independent and identically distributed zero-mean Gaussian
noise sequence with variance 6> = 5. The signal s () is a Gaussian
pulse signal [31], that is, s(¢) = (2/ Tz)l/4 exp(— #t?/T%), and the
sampling times are t% =(m—1)At,Vm=1,2,...,M. To sim-

plify the model, we assume that the distance between the target and
any receiving station is much larger than the distances between ev-
ery pair of receive stations, and, hence, we can assume that 6; = 6
for all j. We set the quantities 7= 0.1, Ar = 0.001, 6 = 0.02,
and E; = 1,a; = 1forall .

First, we consider the attack performance of a non-OGDSA
for this estimation problem, called a data-injection attack. If
the jth station is under a data-injection attack for j = 1,2,3,
the mth after-attack measurement of the kth pulse in the pulse
train is given by

K = VEjajs(i5y = 0) + &+ nj. (18)
where the attack parametersare £1 = 1, £, =—2,and &3 = — 1.

We employ an expectation-maximum-based joint attack iden-
tification and parameter estimation approach proposed in [17]
to estimate the desired parameter 6. Figure 4 depicts the MSE
performance of the employed estimator plotted on a log scale,
where M = 40. The clairvoyant CRB for estimating 6, which
knows which sensors are attacked and uses data from all sen-
sors, s also plotted in Figure 4 along with the CRB for estimat-
ing 6, which uses data only from unattacked sensors. Figure 4
shows that the CRB that uses only the unattacked sensor data
is strictly larger than the CRB that uses all the data, which im-
plies that the attacked data are useful for reducing the CRB. As
expected, the data-injection attack does not make the attacked
data useless for reducing the CRB as opposed to an OGDSA.
Moreover, the employed estimation approach can outperform
the CRB that uses only the unattacked data and asymptotically
achieves the clairvoyant CRB that uses all sensor data.

Next, we consider another spoofing attack, called a delay
attack, which is a shift-in-parameter OESA (previously dis-
cussed and mentioned after Theorem 4). This attack alters the
delay in the received signal, possibly by employing DRFM
along with a receiver/transmitter [17] to transmit the signal
back toward the receive antennas with an arbitrary delay cho-
sen by the attacker. For the jth station, which is under a delay
attack for j = 1,2,3, the mth after-attack measurement of the
kth pulse in the pulse train is given by

X = VEja;s(t), — 6, — £)) + ), (19)
where £; is the delay introduced by the delay attack. It can be
shown that the delay attack in (19) is an OGDSA [17], which is
also an OESA. In Figure 5, the simulation setting is the same
as that in Figure 4, except M = 3 and the attack parameters are
&1 =10.04, &2 = 0.05,and &3 = 0.06. We employ the same es-
timation approach as that employed in Figure 4. Figure 5 illus-
trates the MSE performance of the employed estimator along
with the CRB for 6, which knows which sensors are attacked
and uses data only from unattacked sensors. It is worth men-
tioning that the employed approach can perfectly identify the
attacked sensors with large K [17], and it is seen that the MSE
performance of the employed estimator converges to the CRB
using only unattacked data. Most importantly, the large K re-
sults in Figure 5 agree with the previously stated theoretical
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results saying the attacked data are not useful in reducing the
CRB under an OGDSA.

General attacks in vector parameter

estimation systems

In the sections “MiMAs” and “Highly Desirable Spoofing
Attacks,” we considered MiMAs and spoofing attacks sepa-
rately. In this section, we consider the most general attacks,
which include combinations of MiMAs and spoofing at-
tacks, when estimating the location of an acoustic emitter [6]
at {1 = [yT, zr], where yt and zt denote the coordinates of
the emitter location in the two-dimensional plane. We as-
sume that the emitter is in some region of interest (ROI) S.
For the jth sensor, we use {; = [y}, z,] to denote its location.
In addition to N insecure sensors, the estimation system has
access to two secure sensors, considered the (N + 1)th and
(N + 2)th sensors, respectively. These two secure sensors are
well protected and thereby are guaranteed to be unattacked,
while the other N sensors are open to attacks. We assume
that the signal radiated from the emitter obeys an isotropic
power attenuation model [6] and each sensor observes K data
samples. The kth data sample at the jth sensor is described as
xjk = Po(Do/D)" + njx, j = 1,2,...,N+2, where the dis-
tance D; between the jth sensor and the emitter is defined by
D; (&= Cr| = y(y; —yrF +(zj—2rF. ¥j. the quantity
Py is the power measured at a reference distance Do, y is the
path-loss exponent that is a positive constant, and 7 j denotes the
additive noise sample with pdf f;(n ). We assume that Po, Do,
7, {/i() §V=+12’ and {{;} 7:*12 are known to the FC. Moreover, we
assume {n;} are independent and, for each j, {n} £-1is an
identically distributed sequence.

Each sensor j quantizes its sample x jx to one-bit data u jx by
using the threshold v;, and then transmits u i to the FC, that is,
U ji 4 {xjr € (vj,00)},Vj and Vk, where {-} is the indicator
function. We assume that the thresholds {v;} ?’I ? are known to
the FC.

If j€ A, for some p = 1, the after-attack quantized data
can be generally expressed as i jx = h k( {hjk(xp) € (vj,00)}),
where the maps %jx(-) and h () represent the effects of the
spoofing attack and the MiMA at time k, respectively. Similar to
(2), the NMLE of the distance D; can be expressed as

1
1 K Ty
DY :DOPg[Vf_FjI(%Z (1 —iuo)] REC)
k=1

which yields that, for the two secure sensors, that is, the (N + 1)th
and (N + 2)th sensors, we have

b%ﬁl — Dy+1and i)ﬁﬁz — Dy+2 almost surely,as K — oo,
2D

since #jx = ujx for j = N+ 1 and N + 2. Based on this fact, we
can generate two circles that are centered at the (N + 1)th and
(N + 2)th sensors with radii equal to Ds\ﬁ 1 and bﬁv’(lz, respec-
tively. In the asymptotic regime, where K — oo, the intersection
point of these two circles pinpoints the location of the emitter
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FIGURE 5. The attack performance of the DRFM attacks (OGDSA).

FIGURE 6. A geometric illustration of the proposed detectors.

under the assumption that the ROI S is contained in one of the
two half spaces produced by dividing the whole space by the line
passing through the two secure sensors. Similarly, if the jth sen-
sor is unattacked (attacked), the circle centered at the jth sensor
with radius equal to bg-K) should (should not) pass through this
intersection point in the asymptotic regime where K — oo. Thus,
we can determine whether the jth sensor is attacked or not by
checking this geometric consistency among the circles associated
with the two secure sensors and the jth sensor in the asymptotic
regime where K — oo.

In the regime where K is finite, the attack-detection proce-
dure is similar except that, for each of the two secure sensors, the
associated circle is replaced by a ring with some constant width
ge; see Figure 6. We declare that the jth sensor is unattacked
(attacked) if the circle (the blue dashed circle in Figure 6) associ-
ated with the jth sensor passes (does not pass) through the overlap
area (the area enclosed by the red curves in Figure 6) of the rings
associated with the two secure sensors. In the exact situation in
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Figure 6, we would declare an attack. The mathematical formula-
tion of this attack-detection idea can be found in [12].

By employing large deviations principles, we derive the
following theorem regarding the performance of the pro-
posed detectors.

Theorem 5

If widths of the rings associated with the two secure sensors
are smaller than Co, where Cy is a constant defined in [12],
then the false alarm and miss probabilities are upper bounded
by two exponentially decaying functions of K, respectively.
The rates of decay can also be found in [12].

The idea of detecting attacks in this emitter localization prob-
lem can be generalized to the general IoT sensor network esti-
mation problem equipped with secure sensors. In particular, we
can employ the data from the secure sensors to generate some
constraints that are satisfied by the desired parameters with high
probability (that the desired parameters must lie in the overlap
of two rings for the just-described localization example was one
such constraint). Then we can detect whether or not each inse-
cure sensor is attacked by checking whether or not the NMLE
based on the data from the sensor satisfies the constraints.

Illustrative example: Proposed detector for general attacks
To illustrate Theorem 5, we test the performance of the proposed
detector for an example case. The system configuration is illus-
trated in Figure 7. Consider a network consisting of two groups
of sensors with N = 500. The two secure sensors are located at
Cso1 = (—10°,0) and Ls02 = (10%,0), respectively. The rest of
the sensors are all located along the x-axis and are partitioned into
two groups. In the first group, the sensors {1,2,...,250,501} are
evenly spaced between (— 10%,0) and (—0.9 X 10°,0), while
sensors in second group {251,252,...,500,502} are evenly
spaced between (0.9 X 10°,0) and (10°,0). The ROI S is a disc
centered at (0, 103 ) and with radius equal to 7,500. The emitter is
located at {1 = (0, 10%). We assume that Po = 1, Do = 10°, and
y = 2. The thresholds v; = 1 forall j and 7 follow a Gaussian
distribution with zero mean and unit variance. We assume that 250
sensors {1,2,...,250} are under a MiMA as described in (3) with
vio=0 and w;1 = 0.94 for j = 1,2,...,250. The rest of the
sensors are unattacked.

The average false alarm and miss probabilities versus K are
depicted on a log scale in Figures 8 and 9 for four detectors with
€ =2,100;2,300;2,500; and 2,700, respectively. Figures 8
and 9 show that, for each detector, the average false alarm and
miss probabilities decrease exponentially as K grows, which
agrees with the theoretical results in Theorem 5. Moreover, as
illustrated in Figure 8, the larger the value of €, the smaller the
average false alarm probability. On the other hand, Figure 9
shows that the larger the value of €, the larger the average miss
probability. Thus, the proper tradeoff between the false alarm and
miss probabilities can be chosen by adjusting the value of €.

Implications for unattacked systems
Motivated by Theorem 3, a fundamental limitation on quan-
tized estimation systems not under attack is uncovered. Before
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proceeding, we first provide two definitions on the identifiabil-
ity of a vector parameter point and a vector parameter space.
Let @ € R denote the parameter space of interest with a
nonempty interior.

Definition 4 (Identifiable vector parameter point)

The vector parameter point 6 € Q is called identifiable if the
conditional distribution of the data conditioned on € is not
identical to that for any other vector parameter point in Q.

Definition 5 (Identifiable vector parameter space)
The vector parameter space Q is considered identifiable if ev-
ery vector parameter point in Q is identifiable.

Under some mild assumptions [32], we can derive Theorem 6
on the fundamental limitation of quantized estimation systems.

Theorem 6

Let Do be the dimension of a vector parameter in  we want
to estimate from L independent observations quantized using
Q distinct quantizer designs with R;, j = 1,2,...,0 symbols.
Assume the jth group of observations, all quantized by an iden-
tical quantizer, are generated from M; different pdfs. If

Q
Do> 3 Mi(R;— 1), (22)
j=1
then the FIM is singular, and, moreover, the vector parameter
space () is not identifiable.

In addition, for any open subset O € Q in R”*, there are
infinitely many vector parameter points in O that are not
identifiable.

For identical (Q = 1) binary (R; = 1) quantization at each
sensor and identically distributed observations (M = 1) at each
Sensor, ZJQZIM,-(R] —1) =1, so a scalar parameter (Do = 1)
alone will not satisfy the sufficient condition in (22) for FIM sin-
gularity in this case. Note that we have already given just such an
example in the section “MiMAs” (Z_?: \Mj(R;j—1)=1)inthe
discussion just prior to Theorem 2, where the fixed threshold
quantization approach worked well (no singular FIM) when
there was no attack, since we were estimating a scalar param-
eter 6. However, the approach failed (singular FIM) with the
attack since the parameter to estimate had dimension three
and, yet, the right-hand side of (22) is exactly one.

Note that the quantity Z_,QZIM i(R;j—1) does not depend
on the quantization regions, the number L of observations, the
pdfs that generate the observations, or the particular estima-
tion problem but instead depends only on the number of dif-
ferent pdfs involved, the number of quantizers employed, and
the number of quantization symbols. This critical quantity is
referred to as the IDQD.

Theorem 6 reveals a fundamental limitation when utiliz-
ing quantized data for estimating a vector parameter and sheds
light on the preliminary design of a quantized estimation sys-
tem. To be specific, the quantization and sensing approach
employed should guarantee that the IDQD of the quantized
estimation system is larger than or equal to the dimension of
the vector parameter of interest. For some specific estimation

problems, the singularity of the FIM and the nonidentifiability
of the parameter space can exist even if the condition in (22)
does not hold.

In some cases, where Dy is larger than the IDQD, all vector
parameter points in { are nonidentifiable, while in some other
cases, there exist some parameter points in  that are identifi-
able. Thus, a singular FIM does not necessarily determine the
nonidentifiability of the parameter point though it does deter-
mine the nonidentifiability of the parameter space. Moreover,
it can be shown that, if D is larger than the IDQD, the cardi-
nality of a set of parameter points such that the conditional dis-
tribution of the data conditioned on the parameter is identical
to that for some other parameter point can be as small as one
and can also be uncountably infinite. Generalized results that
do not require some assumptions in Theorem 6, e.g., indepen-
dence, can be found in [32].

Some recent work on related protection

layers employing signal processing

Many IoT applications, for example, smart grid and manufactur-
ing, require sensor data to be sent from one location to a different
location so the data can be used to change a control or reconfig-
ure the grid or manufacturing process. To provide the low latency
required to avoid unstable control loops, low-complexity encryp-
tion approaches have received attention for estimation using sen-
sor data in the IoT. An interesting low-complexity approach to
encrypt binary quantized data was suggested in [33], which is
called stochastic encryption. The basic idea is to flip the binary
data using an approach similar to our attack model in (4). Then
the desired user, who knows the flipping probabilities, will use a
maximum likelihood decoding approach to estimate the desired
parameter, 6, in (1). The estimation performance loss due to not
knowing how each bit was flipped but knowing only the flipping
probabilities is shown to be small in [33] with proper design.

It is also shown in [33] that any eavesdroppers will have very
poor estimation performance for properly chosen flipping prob-
abilities. The flipping probabilities act as an encryption key for
a very low-complexity encryption process that is suitable for a
low-complexity sensor node. Using Theorem 6, we have shown
[34] that the approach in [33] can only estimate a scalar param-
eter, so in [34] and [35], we generalized the approach by using
different quantizers and flipping probabilities at each sensor,
which can also employ nonbinary quantization. Based on Theo-
rem 6, such approaches can be designed to potentially estimate
vector parameters of any size while retaining the advantages of
the approach suggested in [33]. Now, one might think that, after
observing a sufficiently large window of data, an eavesdropper
might be able to estimate the flipping probabilities and break
the code to estimate the parameter of interest. In [34], we show
this is not possible if the eavesdropper employed an unbiased
estimator based on Theorem 6. The quantization approach is
not of sufficient complexity to allow the eavesdropper to esti-
mate all the quantities needed for him or her to develop an accu-
rate estimate of the parameter of interest.

Stochastic encryption was also considered for defending
against eavesdroppers in the context of sequential hypothesis
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testing in [36]. Since the flipping probabilities are known only
to the desired user but not to the eavesdropper, the desired user
employs the optimal sequential probability ratio test (SPRT) for
sequential detection, whereas the eavesdropper employs a mis-
matched SPRT. However, every stochastic encryption degrades
the performance of the SPRT at the desired user by increasing the
expected sample size. In [36], an optimal stochastic encryption
is obtained analytically in the sense of maximizing the difference
between the expected sample sizes required at the eavesdropper
and the desired user, provided that the acceptable tolerance of the
increase in the expected sample size at the desired user induced
by the stochastic encryption is small enough.

We next describe a technology based on information the-
ory that can provide additional layers of protection that has
received recent attention. All communications networks are
designed using layers that are different than the security lay-
ers we mentioned previously. The lowest layer of a communi-
cation network is the physical layer. Most currently employed
security procedures are implemented in the network or higher
layers, which are a few layers above the physical layer. Since
one can do things at the physical layer that cannot be done at
the higher layers, the idea of physical layer security seems very
attractive. Using physical layer security for the right situations,
one can design signals that ensure a required information rate
is received by the desired user, but the rates received by the
eavesdropper are guaranteed to be less than some small value.
Such results exploit information-theoretic ideas and have been
called information-theoretic secrecy.

The seminal work of Shannon [37] and Wyner [38] laid the
foundation for physical layer security, by providing basic for-
malisms for security in cipher systems and wiretap channels,
respectively. Csiszar and Korner generalized Wyner’s work to
the broadcast channel with confidential messages in [39], which
provides a model that aids in the understanding of security in
wireless systems. Excellent surveys on physical layer security
can be found in [40]-[42]. Authentication, a counterpart of secre-
cy, has also been given a physical layer security treatment. The
study of authentication in an information-theoretic context began
with [43] and was extended to the physical layer by Lai et al.
in [44]. Besides the information-theoretic investigations, much
work has also been done with authentication at the physical layer
with practical schemes that utilize the characteristics of the chan-
nel and the communication devices to uniquely identify sources.
A survey on this topic can be found in [45], and practical meth-
ods for wireless authentication utilizing fingerprint embedding at
the physical layer can be found in [46] and [47].

Condlusions

In this article, the estimation of an unknown deterministic scalar
parameter in the presence of MiMAs has been introduced first.
The capability of the IoT systems, in terms of identifying and
categorizing the attacked sensors into different groups accord-
ing to distinct types of attacks, has been outlined in the face of
MiMAs. Necessary and sufficient conditions have been provided
under which utilizing the attacked sensor data will lead to a more
favorable CRB when compared to approaches where the attacked

sensors are ignored. Next, necessary and sufficient conditions
have been provided under which spoofing attacks provide a guar-
anteed attack performance in terms of the CRB for estimating a
deterministic parameter vector regardless of the processing the
estimation system employs. It has been shown that it is always
possible to construct such a highly desirable attack by properly
employing an attack vector parameter having a sufficiently large
dimension relative to the number of quantization symbols em-
ployed, which had not been observed previously. In addition, the
most general attacks, which include combinations of MiMAs and
spoofing attacks, have been considered in an emitter localization
system. Attack detectors have been proposed whose false alarm
and miss probabilities decrease exponentially as the number of
measurement samples increases. For unattacked quantized esti-
mation systems, a general limitation on the dimension of a vector
parameter that can be accurately estimated has been uncovered.
References that provide various extensions to all of the specific
results presented in this article have been supplied, and a brief
discussion of low-complexity encryption and physical layer secu-
rity has been provided.
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