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Abstract—In Internet of Things (IoT) applications requiring
parameter estimation, sensors often transmit quantized obser-
vations to a fusion center through a wireless medium where
the observations are susceptible to unauthorized eavesdropping.
The fusion center uses the received data to estimate desired
parameters. To provide security to such networks, some low
complexity encryption approaches have been proposed. In this
paper, we generalize those approaches and present an analysis
of their estimation and secrecy capabilities. We show that the
dimension of the unknown parameter that can be efficiently esti-
mated using an unbiased estimator when using these approaches,
is upper bounded. Assuming that an unauthorized eavesdropper
is aware of the low complexity encryption process but is unaware
of the encryption key, we show successful eavesdropping, even
with a large number of observations, is impossible with unbiased
estimators and independent observations for these approaches.
Numerical results validating our analysis are presented.

I. INTRODUCTION

Advancements in technology have led to the development
of the popular concept called the Internet of things (IoT).
IoT consists of networks of sensors that are used to extract
information useful to control and command machines and
devices. Often this requires estimation of parameters from the
sensor data. In many of these applications, the sensors monitor
and communicate critical information to a central location,
called a legitimate fusion center (LFC). An LFC uses the
received sensor data to estimate a desired unknown parameter
θ. A drawback of such parameter estimation networks is that
they are vulnerable to passive eavesdropping by an intruder,
called a third party fusion center (TPFC). Protection against
eavesdropping is thus an important requirement. However, the
limited processing power, energy and memory size of the
sensors, along with the small required maximum latencies for
the applications, make it difficult to employ traditional en-
cryption schemes. For this purpose, low-complexity encryption
schemes were proposed by several authors and much of this
work is described in the survey paper [1].

As is the case of all digital communications, sensors quan-
tize their observations. In parameter estimation networks, the
quantized observations are encrypted and transmitted to an
LFC. For such networks a low complexity encryption approach
was proposed in [2] called binary stochastic encryption (BSE)
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for the case where each observation is quantized to a sin-
gle bit (binary quantization). In BSE, all employed sensors
employ identical binary quantization and encryption. In BSE,
quantized binary symbols are flipped to a 0 or a 1 with certain
probabilities, which serve as an encryption key. An LFC with
knowledge of the encryption key can estimate θ from received
encrypted data. The Maximum likelihood (ML) estimator and
the Cramér Rao lower bound (CRLB) for the LFC estimation
were derived in [2].

Recent work [3][4] has shown that the use of identical
binary quantization at all sensors limits parameter estimation
to scalar parameters for independent and identically distributed
(i.i.d.) observations, i.e., θ has to be a scalar parameter for
BSE. However, in practice we might need to estimate vector
parameters like the position of an object. With the objective
of making vector parameter estimation possible, we extended
BSE to a non-binary stochastic encryption (NBSE) [5] since
the use of higher order quantization enables vector parameter
estimation. In NBSE, all sensors employ identical non-binary
quantizers and the quantized symbols are flipped to differ-
ent non-binary symbols with certain probabilities (encryption
key). An LFC with knowledge of the encryption key would
be able to estimate θ from the encrypted data. For NBSE, we
described the LFC ML estimator along with the CRLB.

An analysis of any encryption scheme must include a study
of it’s secrecy capabilities against passive eavesdropping. Both
[2] and [5] present an analysis of the protection provided by
stochastic encryption under the same two assumptions. Firstly,
it is assumed that an eavesdropping TPFC has complete knowl-
edge of the quantizer at each sensor, i.e., the TPFC knows
the quantizer regions. Secondly, it is assumed that the TPFC
is unaware that encryption is being employed at each sensor
and hence considers the intercepted data to be unencrypted.
Under these assumptions, by deriving the asymptotic bias and
variance of the TPFC ML estimator, both the papers show
that the TPFC ML estimate with a proper stochastic encryption
would be biased and the estimation mean square error is large.

In this paper we present an analysis of the estimation
and secrecy capabilities of stochastic encryption. We make
three contributions. Firstly, we generalize BSE and NBSE to
generalized stochastic encryption (GSE). GSE is a stochastic
encryption scheme in which different sensors can employ
different quantization and stochastic encryption. Varying the
quantizer design across sensors enables us to perform efficient
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vector parameter estimation with lower order quantizers, for
example binary quantizers. Additionally, varying the encryp-
tion key across sensors enhances secrecy. We present the LFC
ML estimator and the CRLB for GSE.

Second, under the assumption of unbiased estimators we
present an analysis of the estimation capabilities of the three
stochastic encryption schemes: BSE, NBSE and GSE at an
LFC. Applying results from [3][4], we show that the maximum
dimension of θ that can be estimated, is upper bounded.

Finally, we analyze the secrecy provided by each stochastic
encryption scheme. In presenting this analysis, we make three
assumptions. First, we assume that the TPFC is aware of
the stochastic encryption approach that was used to encrypt
the data. For example, if the sensors employ BSE then we
assume that the TPFC knows that data is encrypted using
BSE. Second we assume that the TPFC uses an unbiased
estimator. Third, we assume that the TPFC does not the know
the stochastic encryption encryption key and the quantizer
regions. Under these assumptions for a TPFC to estimate θ
from the encrypted data, it has to perform joint estimation of
all the unknown parameters, which are the encryption keys,
quantizer regions and θ. Generally, one would think that given
enough observations a TPFC would be able to determine all
the unknown parameters including θ. But using results from
[3][4] we show that this is not true for any of the three
stochastic encryption schemes since the Fisher information
matrix (FIM) of the TPFC estimation is singular. Thus, there
exists no unbiased estimator that a TPFC can use to estimate
all the unknown parameters. Hence, stochastic encryption is
secure in the domain of unbiased estimators.

In this paper, bold upper case letters and bold lower case
letters are used to represent matrices and column vectors
respectively. The symbol 0 stands for the all-zero column
vector. The remainder of the paper is organized as follows.
In section II, we present the system model of a parameter
estimation system that uses GSE and derive the system models
for BSE and NBSE as special cases. Section III presents
the LFC ML estimators and the CRLBs for all three en-
cryption approaches. Section IV presents results from [3][4]
that we shall use in our analysis of estimation and secrecy
capabilities of stochastic encryption. Estimation capabilities of
each stochastic encryption approach at an LFC are discussed
in section V. Section VI analyzes the secrecy provided by
each stochastic encryption approach against an eavesdropping
TPFC. Section VII provides numerical results and finally
conclusions are drawn in section VIII.

II. SYSTEM MODEL

A. GSE System Model

Consider a parameter estimation network comprised of M
groups of sensors as shown in Fig. 1. The mth group includes
Nm sensors for m = 1, 2, . . . ,M . The total number of sensors
is N with

∑M
m=1Nm = N . The groups of sensors differ

from each other in the quantization and encryption they use,
but all the sensors in a group employ an identical quantizer
and stochastic encryption algorithm. The mth group employs

Figure 1. GSE system model

Figure 2. Stochastic Encryption for Rm = 3

Rm-level quantization and stochastic encryption with cm as
the stochastic encryption key.

The scalar observation of the kth sensor in the mth group is
xmk

1. The probability density function (pdf) of xmk depends
on an underlying vector parameter θ and is given by f(xmk|θ)
(all xmk are i.i.d.). The dimension of θ is Dθ. The observation
xmk is quantized to umk, where umk ∈ {0, 1, . . . , (Rm − 1)}.
For the mth group consider the set of non-overlapping regions{
Am0, Am1, ..., Am(Rm−1)

}
such that the Rm-level quantizer

will assign the symbol umk = i to any input xmk ∈ Ami
for i ∈ {0, 1, . . . , (Rm − 1)}. Then, the probability that the
quantizer output umk = i is

pr(umk = i|θ) =

∫
xmk∈Ami

f(xmk|θ)dxmk. (1)

The quantizer output umk is encrypted to ũmk with Sm as
the stochastic encryption matrix. Sm is a Rm × Rm matrix
with the (i + 1, j + 1)th entry as pr(ũmk = j|umk = i)
for i, j ∈ {0, 1, . . . , (Rm − 1)}. The sum of the elements in
each column of Sm is 1 and hence Sm has Rm(Rm − 1)
independent elements. These independent elements form the
stochastic encryption key cm. For us, cm consists of elements
of first Rm−1 rows of Sm in sequential order. Fig. 2 illustrates

1We consider a system model with scalar xmk but all our results can be
extended to include vector xmk .
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stochastic encryption for Rm = 3. The probability that the
encryption output ũmk = j is

pr (ũmk = j|θ) =

Rm−1∑
i=0

(
pr(ũmk = j|umk = i)

×pr(umk = i|θ)

)
. (2)

The encrypted symbols ũmk are then transmitted to the
LFC, and at the same time intercepted by an unauthorized
TPFC. The objective at both the LFC and TPFC, is to estimate
θ from the received ũmk.

B. BSE System Model

BSE was proposed in [2] for scalar parameter estimation.
According to BSE, all the sensors employ an identical binary
quantizer and stocastic encryption key. Hence for BSE we
have, M = 1, N1 = N and R1 = 2. Since M = 1 for BSE,
we discard the subscript m in all further discussions of BSE.
As BSE was proposed for scalar parameter estimation using
scalar observations we shall use θ and xk in all further BSE
discussions.

The GSE model discussed above is for a general estimation
problem in which the pdf of the observations is dependent
on the unknown parameter. However for BSE, the authors
considered a restricted estimation problem in which xk =
θ+nk, k = 1, 2, . . . , N where {nk, k = 1, 2, . . . , N} is an i.i.d
zero-mean sequence. Hence, all further discussions of BSE
will be for this restricted model.

Since we discarded the subscript m for BSE, for the
binary quantizer regions we will replace Ami with Ai for
i ∈ {0, 1}. Hence, for BSE the quantization regions are
{A0, A1}. In [2] the authors considered a binary quantizer
design with connected quantization regions and hence we have
A1 = {x ≥ τ} where τ is the binary quantizer threshold. The
BSE matrix SBSE is given as

SBSE =

[
Ω0 1− Ω1

1− Ω0 Ω1

]
.

where Ω1 = pr(ũk = 1|uk = 1) and Ω0 = pr(ũk = 0|uk =
0). The encryption key is cBSE = [Ω0, 1− Ω1]

T .

C. NBSE System Model

In [5] we proposed NBSE considering the general estima-
tion problem in which the pdf of the observations is dependent
on the parameter θ. According to NBSE, all the sensors
employ an identical non-binary quantizer and encryption key.
Therefore for NBSE we have, M = 1, N1 = N and
R1 = R where R ∈ {3, 4, . . .}. Since M = 1 for NBSE, we
discard the subscript m in all further discussions of NBSE.
Hence, similar to BSE the quantizer regions for NBSE are{
A0, A1, . . . , A(R−1)

}
. The NBSE matrix is SNBSE and the

encryption key is cNBSE .

III. LFC ML ESTIMATION

In this section, we present the LFC ML estimators and the
CRLBs for each of the three stochastic encryption schemes.
An LFC receiving the encrypted data can estimate θ since
it knows the encryption key and quantizer regions. In deriv-
ing the ML estimators and CRLBs, we make the following
assumptions.

Assumption 1: We assume that f(xmk|θ) obeys regularity
conditions [6] such that interchanges involving derivatives with
respect to θ and integrals with respect to xmk are valid.

Assumption 2: The LFC uses an unbiased estimator and the
observations at different sensors xmk are i.i.d.

Assumption 3: The stochastic encryption keys cm∀m for
GSE are chosen such that pr (ũmk = i|θ) 6= pr(umk =
i|θ)∀m ∈ {1, 2, . . . ,M} , i ∈ {0, 1, . . . , Rm − 1} , k ∈
{1, 2, . . . , Nm}. Equivalent conditions for BSE and NBSE can
be derived by removing the subscript m. This assumption
implies that the probability distribution of quantized data be-
fore encryption and after encryption are different for effective
encryption.

A. BSE ML Estimation

The BSE LFC ML estimate derived in [2] using the invari-
ance property of the ML estimate [7] is given as

θ̂BSE = τ − F−1
(∑N

k=1 ũk

N − Ω1

1− Ω1 − Ω0

)
. (3)

where F (.) is the cumulative distribution function of nk. The
ML estimate achieves the CRLB asymptotically. The CRLB
for BSE is

ΨBSE (θ) =
1

N(1− Ω1 − Ω0)2
[1− p(ũk = 1)] p(ũk = 1)

f2(τ − θ)
.

(4)
where f(.) is the pdf of nk.

B. NBSE ML Estimation

Differentiating the log-likelihood function for LFC obser-
vations with respect to θ, we obtained a necessary condition
for the NBSE LFC ML estimate in [5] as

1
N

∑N
k=1

∑R−1
j=0

(
I(ũk = j)×

∑R−1
i=0 pr(ũk=j|uk=i)

∫
xk∈Ai

d
dθ f(xk|θ)dxk∑R−1

i=0 pr(ũk=j|uk=i)
∫
xk∈Ai

f(xk|θ)dxk

)
= 0. (5)

where I(.) is the indicator function. Note that (5) is a vector
equation for θ. Using (5) with an appropriately initialized
iterative algorithm such as the Newton-Raphson method we
can obtain the ML estimate. The ML estimate achieves the
CRLB asymptotically. The CRLB matrix ΨNBSE (θ) for
NBSE is

ΨNBSE (θ) =

(
N
∑R−1
i=0

d
dθ pr(ũ1=i|θ)( d

dθ pr(ũ1=i|θ))T

pr(ũ1=i|θ) |θ=θ0

)−1
(6)

where θ0 is the true value of θ. Proofs for (5) and (6) are
available in [5].
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C. GSE ML Estimation

Differentiating the log-likelihood function for LFC obser-
vations with respect to θ, we obtain a necessary condition for
the GSE LFC ML estimate as

1
N

∑M
m=1

∑Nm

k=1

∑Rm−1
j=0

(
I(ũmk = j)×

∑Rm−1
i=0 pr(ũmk=j|umk=i)

∫
xmk∈Ami

d
dθ f(xmk|θ)dxmk∑Rm−1

i=0 pr(ũmk=j|umk=i)
∫
xmk∈Ami

f(xmk|θ)dxmk

)
= 0.(7)

Using the vector equation (7) with an appropriately initialized
iterative algorithm we can obtain the ML estimate. The CRLB
matrix ΨGSE (θ) for GSE is

ΨGSE (θ) =

(∑M
m=1Nm

∑Rm−1
i=0

d
dθ pr(ũm1=i|θ)( d

dθ pr(ũm1=i|θ))T
pr(ũm1=i|θ) |θ=θ0

)−1
(8)

where θ0 is the true value of θ. Proofs for (7) and (8) follow
the same steps as the proofs for (5) and (6).

IV. LIMITATION ON MAXIMUM PARAMETER DIMENSION
FOR ESTIMATION FROM QUANTIZED DATA

The authors of [3], [4] state the following theorem that
presents a limitation on the maximum dimension of a vector
parameter θ that can be estimated efficiently from quantized
data.

Theorem 1: Let Dθ be the dimension of a vector parameter
θ we want to estimate from L independent observations
quantized using Q distinct quantizer designs with Rj , j =
1, 2, . . . , Q symbols. Assume the jth group of observations, all
facing an identical quantizer, are generated from Hj different
pdfs. The FIM is singular if

Dθ >

Q∑
j=1

Hj(Rj − 1). (9)

Applying Theorem 1, and Assumptions 1 and 2 to the GSE
encryption model discussed in section II, we have L = N
independent observations from the N sensors, Q = M
since we have M groups each using a distinct quantizer and
encryption, Rj = Rm for the mth group, and Hj = 1
since all the sensors in a group use an identical quantizer and
encryption. Then (9) becomes

Dθ >
M∑
m=1

(Rm − 1) = DGSE . (10)

V. STOCHASTIC ENCRYPTION ESTIMATION CAPABILITY

In this section, we discuss the estimation capabilities of
stochastic encryption at an LFC. Specifically, using (10) we
present an upper bound on the maximum dimension of θ that
can be estimated using each of the three stochastic encryption
schemes.

A. BSE Estimation Capability

For BSE we have, M = 1, N1 = N and R1 = 2. Applying
(10) to BSE we obtain Dθ > 1 = DBSE which implies that
the maximum dimension of θ that we can estimate using BSE
is 1, i.e., scalar parameters under our assumptions.

B. NBSE Estimation Capability
For NBSE we have, M = 1, N1 = N and R1 = R.

Applying (10) to NBSE we obtain Dθ > R − 1 = DNBSE .
Hence, the maximum dimension of θ that can be estimated
with R-level NBSE is R − 1. For example, for NBSE with
R = 3 we can estimate either scalar parameters or 2-
dimensional parameters under our assumptions.

C. GSE Estimation Capability
For GSE, from (10) we can see that with GSE it is

possible to estimate larger vector parameters with lower order
quantizers. For example, to estimate a 2-dimensional θ we
can use R = 3 NBSE. Alternatively consider a GSE with
M = 2 groups of sensors, each with a distinct Rm = 2 binary
quantizer. Substituting M = 2 and Rm = 2 in (10) we obtain
DGSE = 2. Hence, using GSE with M = 2 we can estimate
2-dimensional θ with binary quantizers.

In [8] it is shown that by using distinct binary quantizers
for each of the M groups, it is possible to attain a lower
mean estimation variance compared to the case when all the
sensors use the same binary quantizer. Similarly, if θ has a
large dynamic range then by appropriately choosing distinct
Rm level quantizers and encryption keys cm for each of the M
groups, it is possible for us to achieve a lower mean estimation
variance for the entire range of θ with GSE when compared
to BSE and NBSE.

VI. STOCHASTIC ENCRYPTION SECRECY CAPABILITY

In this section, we discuss the secrecy capabilities of each
stochastic encryption scheme against an eavesdropping TPFC.
In addition to previous assumptions we make the following
three additional assumptions.

Assumption 4: Any eavesdropping TPFC uses an unbiased
estimator and is aware of the stochastic encryption approach
that was used to encrypt the data, i.e., BSE or NBSE or GSE.

Assumption 5: An eavesdropping TPFC is not aware of the
actual stochastic encryption key and quantizer regions that
were used to generate the encrypted data.

Under these assumptions, for a TPFC to estimate θ from
the encrypted data it must perform joint estimation of all the
unknown parameters, which are the stochastic encryption keys,
quantizer regions and θ. We shall first discuss the secrecy
capabilities of GSE and then derive the secrecy capabilities of
BSE and NBSE as special cases of GSE.

A. GSE Secrecy Capability
Consider a GSE system as described in section II. In

illustrating the secrecy capabilities of GSE, we shall consider
each Rm-level quantizer to have the following simple de-
sign with connected quantization regions. We quantize xmk
to umk directly by using the quantizer thresholds tm =[
tm0, tm1, . . . , tm(Rm−2)

]T
with each tmi ∈ R. We have

umk =


0 if xmk < tm0,

Rm − 1 if xmk ≥ tm(Rm−2),

i if xmk ∈
[
tm(i−1), tmi

)
∀i ∈ {1, 2, . . . , (Rm − 2)} .

(11)
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Let us define φm and φ as

φm = [tTm cTm]T (12)
φ = [θT φT1 φT2 . . .φTM ]T (13)

Each tm has Rm − 1 independent elements. Each cm has
Rm(Rm − 1) independent elements. Hence, each φm has
R2
m − 1 unknowns. Since we have M groups of sensors the

dimension of φ is Dφ = Dθ +
∑M
m=1R

2
m − 1. To determine

θ from the encrypted data, a TPFC has to estimate φ. From
(10) we have DGSE =

∑M
m=1(Rm− 1). Since Rm ≥ 2∀m ∈

{1, 2, . . . ,M} we will always have Dφ > DGSE . Then,
from Theorem 1 we can conclude that the FIM of TPFC
estimation is always singular. This implies that there is no
unbiased estimator of φ that a TPFC can use to estimate φ and
therefore TPFC cannot determine φ even if a large number of
observations are available. Thus, GSE is secure in the domain
of unbiased estimators.

Though we considered a simple quantizer design with
connected quantization regions in our analysis, our conclu-
sions hold true for any quantizer design with connected or
disconnected quantization regions. We prove this by showing
that the FIM remains singular even if the TPFC has knowledge
of the quantizer designs. If the TPFC has knowledge of the
quantizer regions, then we have φm = cm which gives
Dφ = Dθ +

∑M
m=1Rm(Rm − 1). Since Rm ≥ 2 we will

still have Dφ > DGSE resulting in a singular FIM.

B. BSE Secrecy Capability

For BSE we have, M = 1, N1 = N , R1 = 2 and t1 = τ .
Hence, we have Dφ = Dθ + 3. Since DBSE = 1 we have
Dφ > DBSE always true. Thus, BSE is secure in the domain
of unbiased estimators.

C. NBSE Secrecy Capability

For NBSE we have, M = 1, N1 = N , R1 = R and
tNBSE = t1. Hence, we have Dφ = Dθ+R2−1. Since R ≥ 3
and DNBSE = R − 1 we have Dφ > DNBSE always true.
Thus, NBSE is secure in the domain of unbiased estimators.

VII. NUMERICAL RESULTS

In this section we present numerical results supporting our
analysis of the estimation and secrecy capabilities of stochastic
encryption.

A. Comparison of BSE, NBSE and GSE

We first compare the three stochastic encryption schemes
with respect to the LFC CRLB in Fig. 3 for N = 1000
and xmk = θ + nmk,m = 1, 2, . . . ,M, k = 1, 2, . . . , Nm.
Let {nmk, k = 1, 2, . . . , Nm} be a sequence of independent
and identically distributed zero mean, unit variance Gaus-
sian random variables. We consider θ ∈ [−2, 2] and the
quantizer design of (11). For GSE, we choose M = 2
with each Rm = 2 and Nm = N/2. For group m = 1,
we choose t1 = −0.7 and c1 = [0.3, 0.57]

T . For group
m = 2, we select t2 = 0.7 and c2 = [0.64, 0.85]

T .
For BSE, we have M = 1, N1 = N and we choose

Figure 3. LFC CRLB as a function of θ

Figure 4. GSE LFC CRLB(µ) as a function of η

τ = 0, cBSE = [0.2, 0.3]
T . For NBSE, we have M = 1,

N1 = N and we choose R = 3, tNBSE = [−0.7, 0.7]
T ,

and cNBSE =
[
0.46, 0.33, 0.38, 0.39, 0.46, 0.32]T . With these

parameter choices, we plot the LFC CRLB vs θ for each of
the three approaches. Fig. 3 shows that NBSE has a lower
CRLB than BSE. This is intuitive since the higher order
quantization should improve estimation variance. We also see
that GSE has the lowest CRLB compared to NBSE and BSE
over the complete range of θ. Therefore, by designing the
GSE system appropriately it is possible to achieve lower
estimation variance and also improve the range of estimation.
Note however that the performance improvement with GSE
depends on the parameter choices. Hence, for other M , Rm,
tm and cm choices the GSE performance could be different
and possibly inferior to BSE and NBSE.

B. Estimation Capability

In section V we stated that the maximum dimension of
θ that can be estimated with stochastic encryption is upper-
bounded. To support that result we will show that BSE
can estimate only scalar parameters. We consider GSE with
M = 2, N = 1000, Nm = N/2 and xmk = µ + nmk,m =
1, 2, k = 1, 2, . . . , Nm. Let {nmk, k = 1, 2, . . . , Nm} be a
sequence of independent and identically distributed zero mean,
variance σ2 Gaussian random variables. For each group we
have Rm = 2 and cm = [0.8, 0.8]

T . We consider each binary
quantizer design as per (11) and we choose, t1 = −η and
t2 = η with η varying from η = 0 to η = 1. We consider

2018 52nd Annual Conference on Information Sciences and Systems (CISS)



Figure 5. GSE LFC CRLB(σ) as a function of η

Figure 6. TPFC log likelihood function for BSE as a function of Ω0 and Ω1

vector parameter estimation with θ = [µ, σ]
T . Fig. 4 illustrates

the LFC CRLB for µ (CRLB(µ)) as a function of η while Fig.
5 illustrates the LFC CRLB for σ (CRLB(σ)) a function of η.
CRLB(µ) and CRLB(σ) are the (1, 1) and (2, 2) elements of
the of the 2× 2 ΨGSE (θ) respectively. In Fig. 5 we see that
CRLB(σ)→∞ as η → 0 and that it improves with increasing
η. When η = 0 both the groups have the same quantizer
threshold along with the same Rm, Nm and cm, and hence
GSE becomes BSE. Since CRLB(σ)→∞ at η = 0 we see that
both µ and σ cannot be estimated with BSE2. As η increases
the system becomes GSE with M = 2 distinct groups and
hence by (10) vector parameter estimation is possible.

C. Secrecy Capability

In section VI we showed that stochastic encryption is secure
against eavesdropping in the domain of unbiased estimators.
We augment this by illustrating the TPFC estimation log
likelihood function for the simplest case of BSE. We consider
a network of N = 1000 sensors with the additive i.i.d
Gaussian noise samples having a standard normal distribution.
To estimate θ we employ BSE with τ = 0, Ω0 = 0.2 and
Ω1 = 0.7. A TPFC intercepting the encrypted data has to
estimate φ =

[
θ, τ,Ω0,Ω1]T to determine θ. Fixing θ = 0.7

and τ = 0, we plot the TPFC estimation log likelihood as
a function of Ω0 for two different values of Ω1 which are
0.7 and 0.88 in Fig. 6. From the figure, we can see that the

2The same singularity was observed with equal non-zero thresholds.

maximum TPFC log-likelihood for Ω1 = 0.7 is the same as
the maximum TPFC log-likelihood for Ω1 = 0.88. Hence, the
maxima (Ω1 = 0.88,Ω0 = 0.73, θ = 0.7, τ = 0) has the same
likelihood as the maxima (Ω1 = 0.7,Ω0 = 0.2, θ = 0.7, τ =
0) (True values). Similarly, there are multiple other points of
(Ω1,Ω0, θ, τ) that have the same likelihood. This indicates the
difficulty an estimator is faced with in this situation. See [4]
for further discussion.

VIII. CONCLUSION

In this paper we presented three results. First, we gener-
alized BSE and NBSE to GSE which has the capability to
provide a lower mean estimation variance and improved range
of estimation at a LFC depending on the system parameter
choices. Next, we presented an analysis of estimation and
secrecy capabilities of stochastic encryption. Applying results
from [4], we showed that for each stochastic encryption
scheme the dimension of θ that can be estimated using it
at a LFC, is upper bounded. Finally, we analyzed the secrecy
provided by each stochastic encryption scheme against passive
eavesdropping. Using results from [3][4] we showed that the
FIM of a TPFC trying to estimate φ from the encrypted data is
singular under our assumptions. Thus, there exists no unbiased
estimator that a TPFC can use to estimate φ. Hence, stochastic
encryption is secure in the domain of unbiased estimators.
Numerical results illustrating the three contributions were
presented. Currently, we are investigating efficient methods
to deploy the proposed approaches in practical situations.
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