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ABSTRACT

In spite of decades of research in bug detection tools, there is a

surprising dearth of ground-truth corpora that can be used to eval-

uate the efficacy of such tools. Recently, systems such as LAVA

and EvilCoder have been proposed to automatically inject bugs

into software to quickly generate large bug corpora, but the bugs

created so far differ from naturally occurring bugs in a number

of ways. In this work, we propose a new automated bug injection

system, Apocalypse, that uses formal techniquesÐsymbolic execu-

tion, constraint-based program synthesis and model countingÐto

automatically inject fair (can potentially be discovered by current

bug-detection tools), deep (requiring a long sequence of dependen-

cies to be satisfied to fire), uncorrelated (each bug behaving indepen-

dent of others), reproducible (a trigger input being available) and

rare (can be triggered by only a few program inputs) bugs in large

software code bases. In our evaluation, we inject bugs into thirty

Coreutils programs as well as the TCAS test suite. We find that bugs

synthesized by Apocalypse are highly realistic under a variety of

metrics, that they do not favor a particular bug-finding strategy

(unlike bugs produced by LAVA), and that they are more difficult to

find than manually injected bugs, requiring up around 240× more

tests to discover with a state-of-the-art symbolic execution tool.
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1 INTRODUCTION

Decades of research has gone into eliminating bugs in software

through automated bug-finding tools such as static analyzers, run-

time sanitizers, symbolic execution tools, and fuzzers. Despite this

ongoing effort, there is a surprising dearth of ground-truth corpora

that allows us to evaluate the efficacy of such tools: most existing

corpora are small, do not come with triggering inputs, or feature

bugs that are often unrealistic. Moreover, the value of any indi-

vidual dataset drops over time as tools adapt to it. As a result, in

many cases we are forced to judge bug-finding tools on how many

previously unknown bugs they findÐwhich leaves us in the dark

about how many they missed.

The lack of ground-truth datasets also means that it is difficult

to perform large-scale studies of bug discovery. For example, we

cannot run bug-finding tools on corpora of millions of bugs and

then attempt to draw conclusions about their relative strengths and

weaknesses, or statistically correlate features of bugs and programs

with their difficulty of discovery.

In recent work, two new systems, LAVA [14] and EvilCoder [27],

have sought to address the need for ground-truth corpora through

automated vulnerability addition. Briefly, these techniques take ex-

isting programs and seed themwith vulnerabilities, either by adding

new, vulnerable code, or by identifying and removing safety checks

to make existing code vulnerable. These systems are an important

step forward.

We consider that injected bugs should have the following prop-

erties:

• Fair An injected bug is fair when it is possible to unearth

it by practical bug detection techniques. For example, a bug

guarded by a famous mathematical theorem (say, Fermat’s

Last Theorem) is not fair as it requires the proof of a difficult

mathematical theorem to detect the bug; common bugs in

programs do not resemble this.

• Deep An injected bug is deep if it requires a long sequence

of data and control flow conditions to be met for it to trigger.

A bug guarded by a single branch condition is, for the same

reason, not a challenging bug.

• Uncorrelated Multiple injected bugs must be uncorrelated;

that is, finding one of the bugs by a tool should not increase

(or decrease) the chances of catching the other injected bugs.

• Reproducible An injected bug must come with a triggering

input that proves the existence of the bug.

• Rare The bug should be triggered on a very small fraction

of all possible program inputs.

Considering these properties, we find that existing bug injection

techniques can be improved in several ways. EvilCoder, for example,

cannot produce triggering inputs, and hence fails to be reproducible

(related techniques, such as mutation testing [21], also fail to satisfy

698



ESEC/FSE ’18, November 4ś9, 2018, Lake Buena Vista, FL, USA Roy, Pandey, Dolan-Gavitt, Hu

this requirement). Andwe find that bugs injected by LAVA, although

rare, uncorrelated, and reproducible, fail to be fair and deep: the

triggers used (a comparison against a 32-bit łmagicž constant) are

unusually difficult for techniques such as random testing to find,

and although the bugs manifest deep within programs, the injected

guard is a single branch that can be systematically targeted [32].

In this work, we introduce a new technique for bug injection,

based on symbolic execution, program synthesis and uniform sam-

pling. We build our ideas into a tool, Apocalypse, and use it to

introduce bugs in thirty Coreutils programs. Apocalypse uses con-

straint based program synthesis to embed a transition system, that

we refer to as the Error Transition System (ETS), on a judiciously

chosen program path. When the program is executed, the ETS is

advanced at certain locations along this execution path, leading to

a crash if the final state is reached. The state transitions on the ETS

are guarded by carefully synthesized predicates that ensure that

only a few executions can successfully reach the final state, and,

therefore, trigger the bug.We do so by enabling the synthesis engine

to perform a multi-variate hill climbing on the space of predicates at

the transition locationsÐsearching for predicates that prevent most

executions from reaching the bug location. We estimate the set of

inputs that a predicate łblocks" from reaching the error location by

model counting (approximated by uniform sampling). Model count-

ing and uniform sampling are not mature technologies yet, but are

quickly making progress with some significant contributions in

recent years.

We use Apocalypse to inject multiple bugs in thirty Coreutils

programs, and then attempt to detect these bugs using state-of-the-

art symbolic execution (KLEE [8]) and greybox fuzzing (AFL [1])

tools. Many of the injected bugs were discovered by the above

tools, showing that the injected bugs were fair: KLEE and AFL

were able to discover 31% and 38% of the bugs (respectively); at the

same time, many bugs were elusive, showing that these bugs can

act as subjects for further research: 47% of the bugs could not be

discovered by either of the tools. Similar to real bugs, different bugs

showed affinity to different tools: out of the 53% bugs discovered,

15% of the bugs could be discovered only by KLEE while 22% of the

bugs could be found only by AFL. Bugs synthesized by Apocalypse

needed about 240× more tests to be discovered than the manually

seeded bugs (on our benchmarks). We also compared our tool with

LAVA and found that the bugs injected by LAVA tend to be biased

to one of the bug-finding tools: about 80% of the bugs injected by

LAVA were discovered by KLEE while only about 41% of these bugs

were discovered by AFL; bugs injected by Apocalypse, on the other

hand, responded almost uniformly to both KLEE and AFL, showing

the bug corpora produced by Apocalypse do not favor a particular

bug-finding strategy.

As most bug-finding tools do not target any attributes of real-

world bugs but are driven solely by code-coverage (like KLEE

and AFL), Apocalypse synthesizes bugs that challenge the code-

coverage heuristics of these tools, stressing their competence at

uncovering deep paths.

The contributions of this paper are as follows:

• We propose a symbolic execution-based strategy to automat-

ically inject fair, deep, uncorrelated, reproducible and rare

bugs in programs;

• We propose a model counting-based strategy to reduce the

number of bug inducing inputs to make the injected bugs

difficult to find;

• We build our ideas into a tool, Apocalypse, and use it to

inject bugs into Coreutils programs;

• We attempt to gauge the quality of the bugs synthesized by

Apocalypse using a symbolic execution engine (KLEE) and

a greybox fuzzer (AFL).

2 OVERVIEW

Our bug injection system, Apocalypse, begins with a concrete

input and a program trace induced by that input. This input, which

can be taken from the program’s test suite or (as in our current

implementation) discovered through symbolic execution, serves as

a path along which we add one or more bugs to the program. One

can envisage bug synthesis as a game between the injector (who

wishes to add hard-to-find bugs to the program) and the bug-finder

(who would like to find the bugs added by the injector), the concrete

input serving as a source of asymmetric advantage in favor of the

injector: armed with a concrete input, the injector has knowledge

of an entire program path and all dynamic values along that path,

whereas the bug-finder must search for the same program path in

the space of all program paths.

Apocalypse embeds a state machine, which we refer to as the

error transition system (ETS), within the subset of the program

statememts described by the trace; this ETS is designed such that

the execution of the program on a pre-selected fault-revealing input

would incrementally advance this state machine towards an error

state (i.e., the program point where the injected bug will manifest).

A transition in the state machine is triggered whenever the current

values of pre-existing program variables (that are in scope at the

current location) meet certain conditions. To create a bug satisfying

the requirements described in ğ1, these conditions must be simple

(cause minimum perturbation to the dataflow and control-flow of

the existing program), non-trivial (are not always true or always

false), and useful (satisfied by a relatively small number of inputs).

Apocalypse achieves these goals by using program synthesis to

create candidate predicates from variables that are in scope at dif-

ferent points (transition points) along the trace. Not all points in the

trace are equally promising as transition points: we scan the trace

looking for program points that are deep in the program call graph,

guarded by many branch conditions, and have many variables in

scope. To ensure that the synthesized constraints that trigger each

transition meet our requirements, we use model counting to esti-

mate the number of solutions to the conjunction of ETS constraints

so far, and iteratively improve the constraint set by reducing the

number of possible solutions.

The state machine is tracked using the global program variables.

We encode the state machine to match the lexical charateristics of

the subject program: for example, if the program primarily manip-

ulates integer values, we use entities of the integer type (integer

variables, elements of integer arrays, integer fields in structures

etc.) to track the state (this is the encoding supported by our current

prototype). But we could also track the state using string matching,

or the position of some node in an aggregate data structure (such as

a list or a tree), depending on what data structures and operations
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1 vo id ALIM ( )
{

3 othCap = c l imb + a l t V a l ;
L6: / ∗ i f ( ownRate < o t h e rA l t && s t a t e == 6 )

5 s t a t e = 1 9 ; ∗ /
}

7

i n t I n h i b i t B i a s e dC l imb ( )
9 {

i n t up , down ;
11 up = upSep + 100 + a l t V a l ;

down = upSep + Othe rTrackedAl t ;
13 L16: / ∗ i f ( othCap < c l imb && s t a t e == 16 )

s t a t e = 6 ; ∗ /
15 r e t u r n ( c l imb ? up : down ) ;

}
17

vo id main ( )
19 {

i npu t ( curSep , ownAlt , ownRate , o th e rA l t ,
21 a l t V a l , upSep , downSep , othCap , c l imb ) ;

L0:

23 / ∗ s t a t e = 1 6 ; ∗ /
upPre f = I n h i b i t B i a s e dC l imb ( ) + downSep ;

25 upCross = ownAlt + o t h e rA l t ;
ownRate = ownRate + curSep ;

27 ALIM ( ) ;
i f ( uppre f > 5 5 0 0 ) {

29 r e s u l t = a l t V a l ;
L19: / ∗ i f ( c l imb == r e s u l t && s t a t e == 19 )

31 s t a t e = 2 1 ; ∗ /
}

33 L21: / ∗ i f ( o t hA l t < upCros && s t a t e == 21 )
s t a t e = 3 0 ; ∗ /

35 upCross = ownAlt − o t h e rA l t ;
L30: / ∗ i f ( s t a t e == 30 ) a s s e r t ( 0 ) ; ∗ /

37 }

Listing 1: Program with synthesized bug: the

statements commented in green are statements

inserted by Apocalypse (as per the ETS in Figure 1)

Figure 1: ETS for the program in Listing 1

present in the subject program. We give some concrete examples

of possible state machine encodings in ğ3.7.

Finally, we create a buggy version of the program by adding, at

each transition point, a snippet of code that checks one of our ETS

transition predicates and then, accordingly, advances the state ma-

chine. When the state machine reaches its accepting state, we trig-

ger (a pre-defined) buggy behavior. In our current implementation,

we force an assertion failure, simply by adding an assert(false);

however, other buggy behaviours (like out of bounds memory ac-

cesses, double free, memory leaks, dereferencing of freed pointers,

floating-point exceptions) can also be added depending on the class

of the bug detector employed.

Listing 1 shows a program with an injected bug; the statements

synthesized by Apocalypse are shown commented in green; the

program is instrumented with the ETS shown in Figure 1.

Algorithm 1 Apocalypse

1: procedure Main(P)

2: ∆← IdentifyTrace(P)

3: L ← IdentifyTransitionPoints(∆)

4: sym_pc, Λ← SymbolicExec(∆, L)

5: Ω ← SynthesizeETS(sym_pc, Λ)

6: P′ ← InstrumentETS(P, Ω)

7: return P′

8: end procedure

3 ALGORITHM

We define a program trace (or simply a trace) ∆ as a sequence of

dynamic instructions. We assume each trace ∆ to have a trigger-

ing input ip, that causes the program to execute the given trace,

and a symbolic path constraint, sym_pc, that encodes the condi-

tions on the inputs that would follow the given trace. Given a map

Γ : V 7→ E from program variables vi ∈ V to symbolic expressions

s ∈ E, we use the notation Γ[ϕ (v1, . . . ,vn )] to denote the sym-

bolic constraint formed by replacing each vi ∈ V by the respective

symbolic expression from the map Γ.

3.1 Error Transition System

Apocalypse injects bugs in programs by interweaving an Error

Transition System along a path in the program. The ETS is a tuple

(L,P,δ ,l0,lbuд ) where:

• L, the set of states, corresponds to program locations that

drive a transition on the ETS;

• P is a set of all predicates that can be constructed using the

program variables, array elements and structure fields in the

current scope;

• δ : L × P → L is the transition function that dictates the

transition on the ETS, given a predicates p ∈ P at a location

li ∈ L;

• l0 ∈ L is the initial state of the ETS; the ETS is set to this

state at the entry point of the program;

• lbuд ∈ L is the program location that is instrumented by the

buggy action (say simulating a program crash).

Figure 1 shows the ETS for the program in Listing 1: the labels

L6, L16 etc. (marked in red) show the transition locations where

the ETS makes its moves; the program entry point (L0) sets the ETS

to the initial state (L16). The transition on location L16 is guarded

by the predicate (othCap < climb) ; if this predicate holds, the

ETS transitions to state L6. Finally, if the execution can drive the

ETS to the final state (L30), an error is raised (say by simulating a

crash or violating an assertion).

3.2 Identify a Program Trace

The algorithm driving Apocalypse is shown in Algorithm 1. Given

a program P, the algorithm starts off by using IdentifyTrace(P)

to identifying a trace ∆ on which an ETS will be embedded.

IdentifyTrace(P) uses symbolic exploration to collect multiple

possible interprocedural paths in the program and selects a path

based on the following parameters:

• Complexity of the path:We prefer program paths that con-

tain a large number of dynamic instructions, pass through
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a large number of procedures and hit a large number of

branching instructions. As this path represents the secret

information that the adversary (bug detection tool) will need

to discover, a complex path makes the injected bugs more

elusive.

• Number of useful variables: This refers to the quality

and quantity of the variables (including array elements and

structure fields) that are used by the participating instruc-

tions along this path. The quality of a variable is dictated

by distance of the instruction that defines the variable in

the program dependence graph from the input statements.

In essence, it captures the łcomplexityž of constructing a

required value into this variable from the program inputs.

We select paths with abundant good-quality variables as

these variables are eventually used by the ETS synthesizer to

construct transition predicates.

3.3 Identify Transition Points in the Program

Next, IdentifyTransitionPoints(∆) attempts to find good pro-

gram locations on the error trace to embed ETS transitions. A

location is selected if it meets the following criteria:

• Abundant łusefulž variables are available at that program

location;

• The program location is deep in the call graph, making it

hard for bug detection tools to reach this location;

• The program location appears deep in the control depen-

dence graph; a location deep in the control dependence graph

is guarded by multiple predicates, making reachability chal-

lenging for bug-detection tools.

The above metrics on identifying a trace and transition locations

can be tuned to inject bugs of varying degrees of difficulty, thereby

allowing one to gauge the effectiveness of different bug detection

techniques. In this project, we have attempted to inject bugs that

are hard to find; we plan to investigate on the above questions in

future work.

3.4 Collect Symbolic Constraints

In the next phase, we run a symbolic execution engine on trace ∆

to collect the following:

• Symbolic Path Condition (sym_pc): The path condition

(sym_pc) for the trace (∆) contains a symbolic summariza-

tion of all possible input values that would drive a program

execution along ∆.

• Symbolic Expression Dictionary (Λ): This dictionary

Λ : L 7→ (V 7→ E) maps each identified transition location

li ∈ L in the program to a dictionary of symbolic expressions

E for each program variable v ∈ V .

• Concrete Value Dictionary (C): This dictionary

C : L 7→ (V 7→ ν ) maps each identified transition location

li ∈ L in the program to a dictionary of concrete values ν ob-

served for each program variable v ∈ V along the execution

trace.

3.5 Synthesize the Error Transition
System (ETS)

In this phase, we use constraint solving to synthesize an Error

Transition System (ETS) that can be embedded in the program. The

synthesis algorithm is shown in Algorithm 2.

Synthesis of the ETS essentially involves identification of the

transition predicates that guard the automata transitions. The iden-

tified predicates should satisfy the following properties:

• Simple: The predicate should be simple to compute so as to

not change the control-flow and dataflow behaviour of the

existing program by much.

• Non-Trivial: The predicates should be non-trivial; for ex-

ample, (x ≥ x ), (x + 42 > x ) etc. should not be produced.

• Useful: The predicate should effectively reduce the number

of inputs that could trigger the bug.

For all the transition locations li ∈ L, let pred : L → Predicate

denote a dictionary of the predicates synthesized, such that pred[i]

is the predicate at the ith location (li ). This map is initialized to

pred : λL.true.

We synthesize the predicates for the different locations in a

round-robin manner; each predicate, pred[i], is synthesized subject

to the current values of all other predicates. The predicate for the

kth transition location (denoted as (v1 op v2)
k ) is synthesized using

the following synthesis condition:

[Equation Synth]

(v1 op v2)
k
≡∃α1, ...,αn (sym_pc ∧

∏

li ∈L,i,k

pred[i]

∧ J Ck (v1) op Ck (v2) K)

∧ ¬J Λk (v1) op Λk (v2) K

where

JV1 op V2 K =





JV1K < JV2K for op =′<′

JV1K ≤ JV2K for op =′≤′

JV1K = JV2K for op =′=′

The above constraint synthesizes a guard (v1 op v2) for the k
th

transition location if there exists a feasible execution (i.e. feasible

values of the input symbolic variables α1, . . . ,αn ) that meets the

above condition. Let us explore each term in the synthesis condition:

• The first term ensures that (by satisfying sym_pc) the syn-

thesized path preserves the seed execution path as the fault-

revealing run, and the respective input is secured as the

triggering input;

• The second term (
∏

li ∈L,i,k pred[i]) ensures that this path

satisfies the guard conditions synthesized at all other tran-

sition locations thereby creating an augmented path that is

traversed by fewer inputs;

• The next term (J Ck (v1) op Ck (v2) K) synthesizes a guard

condition by searching for variablesv1 andv2, and an opera-

tor op, such that the concrete value of this predicate with the

current values ofv1 andv2 (corresponding to the seed input)

is consistent with the seed execution path; this ensures that
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1 L0:

/ ∗ s t a t e = 6 ∗ /
3 make_symbol ic ( a , z ) ;

i f ( a > 4 2 ) c = s q r t ( z ) ;
5 i f ( c >10) {

L6:

7 / ∗ i f ( c < a && s t a t e == 6 ) s t a t e = 9 ∗ /
}

9 L10:

/ ∗ i f ( s t a t e == 9 ) a s s e r t ( 0 ) ∗ /

Listing 3: Problem of path divergence

input fails to trigger the bug as the program diverges to a different

path at the branch łif (c > 10)ž. We handle this problem by main-

taining the seed input (which is consistent with all concretizations)

as the trigger for the bug.

For simplicity, the above algorithm assumes that each program

location is hit at most once. In our implementation, if a program

location is hit multiple times (say in a loop or a procedure), we use

only the first few (bounded) instances when the location is reached

as possible transition points.

3.6 Embed the Synthesized ETS in the Program

In the final phase, Apocalypse embeds the synthesized ETS in the

program by instrumenting the transition locations with guarded

state transitions (dictated by the synthesized ETS). Listings 4 and 5

show two possible instrumentation schemes: Listing 5 is a better

scheme as it avoids creating path explosion, and hence, creates

buggy programs that are closer to the input program in terms of

the total number of paths.

Different instrumentation scheme can be adopted to camouflage

the ETS transitions: Listing 6 shows a possible camouflage for the

ETS transitions for string-processing programs, and Listing 7 for

bit-manipulating programs. As our current prototype was meant

to study the properties of our injected bugs for automated bug

detection systems (and not human subjects), all our experiments

were conducted on the instrumentation scheme shown in Listing 5.

3.7 Running Example

To begin with, Apocalypse needs to be provided with a seed input

that drives the program through a path on which we are inter-

ested in inducing a fault; a good seed path for bug-injection can be

discovered by symbolic execution (see ğ3.2).

Let us work our way through the program in Listing 1: as-

sume that select the seed inputs as (curSep=1258, ownAlt=897,

ownRate=174, otherAlt=7253, altVal=1, upSep=629,

downSep=5000, otherRAC=0, climb=1). The symbolic and con-

crete values selected for the inputs are shown in Table 1.

To embed an Error Transition System (ETS) along this path, Apoc-

alypse also needs a set of good program locations to drive the ETS

transitions (see ğ3.3). Our system identifies the lines marked as L16,

L6, L19 and L21 as the transition locations.

Armed with the seed inputs and the set of transition locations,

Apocalypse runs symbolic execution along the seed path to col-

lect the symbolic path condition (sym_pc), and the symbolic and

concrete expression maps, Λ and C (see Table 2).

Table 1: Symbolic and Concrete inputs for the trace

Variable Value Variable Value

curSep (α0 , 1258) ownAlt (α3 , 897)
ownrate (α4 , 174) otherAlt (α5 , 7253)
altVal (α6 ,1) upSep (α7 , 629)

downSep (α8 , 5000) othCap (α10 , 0)
climb (α11, 1)

Table 2: Symbolic and concrete maps

Variable Loc16 Loc6 Loc19 Loc21

Sym Conc Sym Conc Sym Conc Sym Conc

othCap α10 0 α6 + α11 2 α6 + α11 2 α6 + α11 2

ownRate α4 174 α0 + α4 1432 α0 + α4 1432 α0 + α4 1432

climb α11 1 α11 1 α11 1 α11 1

othAlt α5 7253 α5 7253 α5 7253 α5 7253

up α6 + α7 730

+ 100

down α5 + α7 7882

uppref α6 + α7 5730 α6 + α7 5730

+ α8 +100 + α8 + 100

upCros α3 + α5 8150 α3 + α5 8150

result α6 1 α6 1

Apocalypse, now, synthesizes an ETS as follows: for the lo-

cation L16, it finds a predicate (othCap < climb) to move the

transition system by a step. It does so by building a synthesis

constraint that ensures that the predicate is simple, non-trivial

(disallowing predicates like (upPref ≥ downSep) that are invari-

ants) and useful (discussed next). Similarly, it synthesizes predicates

(ownRate < otherAlt) , (upPref < upCros)

and (othCap < climb) for locations L6, L19 and L21.

Next, Apocalypse makes more passes over these locations in a

search for better predicates. Attempting another synthesis cycle

over L19 (and disallowing the previous solution), it synthesizes a

new predicate (climb == result) . Now, it checks the model

count for:

sym_pc : (α10 , −1) ∧ (α11 , 0) ∧ (α6 + α8 > 5400) ∧ (α5 − α3 >

0) ∧ (α8 , 0) ∧ (α6 , 0)

Ψ1 : sym_pc ∧ (α11 == α6) ∧ (α10 < α11) ∧ (α0 + α4 < α5) ∧ (α5 <

α3 + α5), and,

Ψ2 : sym_pc∧(α6+α7+α8+100 < α3+α5)∧(α10 < α11)∧(α0+α4 <

α5) ∧ (α5 < α3 + α5).

In this case, it finds that the model count of Ψ2 is smaller than

that of Ψ1, and hence it goes about replacing the older predicate

(upPref < upCros) by the newer (climb == result) pred-

icate. On the other hand, if the count of Ψ1 was smaller, it would

have rejected it and persisted with the older predicate. This hill

climbing over the multi-variate space of predicates at the different

locations allows us to łshrinkž the space of inputs that would trig-

ger the bug. Table 3 shows the set of all predicates produced by

Apocalypse, with the ones finally selected marked in blue. In our

experiments, this procedure increased the bug detection time of

the injected bugs by about 390× (on AFL). The synthesized ETS is

shown in Figure 1.

Finally, the generated ETS is inserted into the existing code. We

show the statements injected byApocalypse as comments (in green)

in Listing 1; these statements drive the program to a crash at L30.
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i n t s t a t e ;
2

vo id buggy ( ) {
4 i f ( p1 && s t a t e == 0 )

s t a t e = 5 ;
6 i f ( p2 && s t a t e == 5 )

s t a t e = 9 ;
8 i f ( p3 && s t a t e == 9 )

s t a t e = −1;
10 i f ( p4 && s t a t e ==−1)

c r a sh ( ) ;
12 }

Listing 4: ETS encoding

for integer programs

i n t s t a t e ;
2

vo id buggy ( ) {
4 s t a t e += 3 ∗ ( p1 ∗ ! ( s t a t e − 0 ) ) ;

s t a t e += 5 ∗ ( p2 ∗ ! ( s t a t e − 3 ) ) ;
6 s t a t e += 3 ∗ ( p3 ∗ ! ( s t a t e − 8 ) ) ;

s t a t e += −12 ∗ ( p4 ∗ ! ( s t a t e − 1 1 )
) ;

8

i f ( s t a t e == −1)
10 c r a sh ( ) ;

}

Listing 5: ETS smart encoding for

integer programs

1 char s [ 5 0 ]=
" h e l l o \ 0 world \ 0 f o r \ 0 bug " ;

3 vo id buggyFunct ion ( ) {
i f ( p1 && ! ( cmp ( s , " h e l l o " ) ) )

5 l += ( s t r l e n ( s ) +1 ) ;
i f ( p2 && ! ( cmp ( s+ l , " world " ) ) )

7 l += s t r l e n ( s ) ;
i f ( p3 && ! ( cmp ( s+ l , " f o r " ) ) )

9 l += s t r l e n ( s ) ;
i f ( p4 && ! ( cmp ( s+ l , " bug " ) ) )

11 c r a sh ( ) ;
}

Listing 6: ETS encoding for

string based programs

i n t s t a t e = 0 x f f f f 0 0 1 1 ;
2 vo id buggy ( ) {

i f ( p1 && ( s t a t e
4 & 0 x 0 0 0 0 f f f f == 3 ) )

s t a t e | = 0 x f f 0 0 0 0 2 2 ;
6 i f ( p2 && ( s t a t e

& 0 x 0 0 0 0 f f f f == 0 ) )
8 s t a t e | = 0 x f f 0 0 f f 0 0 ;

i f ( p3 && ( s t a t e
10 & 0 x 0 0 0 0 f f f f == 3 ) )

c r a sh ( ) ;
12 }

Listing 7: ETS encoding for

bit manipulating programs

Table 3: Synthesized predicates at ETS locations

Loc Predicates Loc Predicates

L16 othCap < climb L6 ownRate < otherAlt
L19 climb == result L21 othAlt < upCros

upPref < upCros climb < othCap

4 EXPERIMENTS

Apocalypse is based on multiple tools: it uses Clang [2] for in-

strumentation (for dynamic analysis for selecting good transition

locations as well as for embedding the ETS in the program). We

modified Crest [7] for running symbolic execution to collect the

symbolic path conditions and the expression maps. The ETS synthe-

sizer uses Z3 [11] for constraint solving. We use a modifed version

of Boolector [26] to create SAT encodings of SMT constraints, and

QuickSampler [15] for uniform sampling on the boolean path con-

ditions.

For the purpose of our experiments, we insert assert(false)

statements at our bug injection points. Our experiments were con-

ducted on a 2 GHz Intel Xeon(R) machine with 12 cores and 32 GB

RAM. To understand the quality of the bugs injected by Apoca-

lypse, we attempted to uncover the injected bugs using two popular

bug finding techniques:

• Symbolic Execution: We use the state-of-the-art symbolic

execution engine KLEE [8] to unearth the bugs. KLEE is run

with the default search strategy within a timeout of 1 hr.

• Greybox Fuzzing: Coverage-guided fuzzing tools perform

executions on randomly mutated inputs, guided by coverage

metrics. We use the popular greybox fuzzer AFL [1] for our

experiments, running it with default settings and a timeout

of 1 hr.

Our experiments attempt to answer the following research ques-

tions:

RQ1 Are our automatically synthesized bugs fair?

RQ2 Is there any correlation between multiple injected bugs?

RQ3 Are the bugs injected by Apocalypse reproducible?

RQ4 Are our bugs deeper and rarer than manually seeded bugs?

RQ5 What is the effect of sampling on the difficulty of an injected

bug?

RQ6 How does Apocalypse compare with state-of-the-art bug

injection tools?

4.1 RQ1: Fairness of our Synthesized Bugs

We demonstrate that our bugs are fair by employing two state-of-

the-art bug detection tools, KLEE (based on symbolic execution)

and AFL (employing greybox fuzzing) for discovering the bugs

synthesized by Apocalypse in thirty GNU Coreutils programs [3].

We use Apocalypse to inject four bugs in each program; we then

challenge KLEE [8] and AFL [1] discover the bugs (running them

for one hour each). The results are shown in Figure 3.

The first bar for each benchmark shows the time spent by AFL

to hit each of the bugs, normalized to the time taken to reach the

last bug (or timeout when no bug is found). The second bar for each

benchmark shows the number of test cases that must be generated

by KLEE to find the first test that reveals a bug, normalized to the

number of tests required to reach the last bug that it could find.

For example, for the experiments on KLEE (second bars), in the

program cat, KLEE is able to find only one bug (so the bar for the

first bug reaches all the way to one). In cases where all bugs are

found, for example in df, the first bug is found at 15%, the second

bug at 32%, and the third at 64% of the total number of testcases

needed to find the last bug. Cases where we were unable to find

any bug (like test) are shown as timeout (TO).

For the experiments involving AFL (first bars): Because AFL

generates tests only for failing executions, we show the amount of

time spent to reach a bug (instead of the number of tests). The first

bar of each cluster shows how much relative time AFL has invested

in finding each bug compared to the last bug. If AFL is not able to

find any bug, the whole bar is set to timeout (TO). For example, in

the case of cat, the first bug is found at 2%, the second bug is found

at 7%, and the third is found at 46% of the time at which the final

bug was found.

Overall, KLEE could find 31% of the bugs while AFL found 38.33%

of the bugs; 36% of the bugs were found only by one of the two tools

while 47% of the bugs could not be found by either. This illustrates

common traits exhibited by real bugs:

• Discoverability: State-of-the-art bug detection tools have

been successful in dicovering many bugs in large programs.

Even for our injected bugs, all in all, 53% of the bugs are

discovered by at least one of the tools.

• Elusiveness: Certain bugs are still elusive, showing that

these injected bugs (resembling real bugs) can now be em-

ployed to stress tools for new bug detection techniques;

about 47% of the bugs could not be discovered by either

of the tools.
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• Affinity to tools: Certain bugs are more likely to be found

by one type of technique than by another; 22% of the bugs

were only discovered by AFL while 15% of the bugs were

only discovered by KLEE.

• Variance in tool effort: Some bugs requiremore effort to be

discovered than others; on the discovered bugs, AFL shows

a standard deviation of 583 seconds (on a total running time

of 1 hour for each program).

4.2 RQ2: Correlation of Bugs Injected by
Apocalypse

Figure 3 shows that the number of tests (using KLEE) and the time

taken (by AFL) to discover the different bugs is almost uniformly

distributed; also, in many cases, even after discovering a few bugs,

the tools fail to unearth the rest of the bugs. This shows that there

exists almost no correlation among the different bugs injected by

Apocalypse. Together, KLEE and AFL are able to catch 53% of all

bugs; there are 7 programs (out of 30) where none of the tools is

able to catch any bug.

4.3 RQ3: Reproducibility

Because Apocalypse generates triggering inputs for each bug it cre-

ates, reproducibility is satisfied by design. Nevertheless, we checked

that the generated inputs really did trigger each bug, and found

that we could reproduce all the injected bugs.

4.4 RQ4: Comparison with Manually Seeded
Bug

To compare with manually seeded bugs, we used the TCAS [13]

benchmark. TCAS contains 41 buggy versions, each version contain-

ing exactly one manually seeded bug. As the seeded bugs produce

an incorrect output (but not a crash or assertion failure), we use

KLEE to generate a set of tests; any test that that produces an in-

correct output or reaches our injected bug location is designated as

a failing test.

We useApocalypse to inject two additional bugs into each TCAS

version. KLEE was able to discover all the injected bugs as well as

the manually seeded bugs in all versions except versions 33 and

38. Figure 5 shows the number of test cases KLEE had to generate

before hitting the test case that triggers the bug (ploted on the log-

scale for the average of three runs of KLEE). This experiment shows

the elusiveness of our bugs with respect to the manually seeded

ones: on an average, the bugs injected by Apocalypse require 240×

more tests than the manually seeded bugs.

Table 4 shows the rarity of our bugs: this table shows the number

of generated test cases on which a bug induced a failure. (F,S) and

MSB denote the number of failing testcases on our 1st (F) and 2nd (S)

injected bug, and manually seeded bug, respectively. On an average,

the bugs injected by Apocalypse induce failures on 30× fewer tests

over the manually seeded bugs.

4.5 RQ5: Searching for Stronger Transition
Predicates

Figure 4 shows how our hill climbing search for guard conditions

improves the rarity of the bugs on the different versions of the

Table 4: Number of testcases generated by KLEE that reveal

our bugs (F, S) and manually seeded bug (MSB).

V (F,S) #MSB V (F,S) #MSB V (F,S) #MSB

1 (251, 1) 232 14 (1, 1) 39 27 (1, 19) 659

2 (1, 1) 160 15 (1, 19) 658 28 (2, 2) 302

3 (1, 1) 41 16 (1, 1) 43 29 (1, 1) 97

4 (4, 3) 374 17 (1, 1) 37 30 (1, 1) 56

5 (1, 19) 654 18 (1, 1) 33 31 (1, 1) 35

6 (1, 1) 30 19 (1, 1) 45 32 (1, 12) 81

7 (1, 1) 41 20 (1, 1) 124 34 (341, 2) 1805

8 (1, 1) 39 21 (9, 1) 162 35 (2, 2) 273

9 (117, 1) 883 22 (1, 1) 172 36 (1, 1) 429

10 (1, 1) 418 23 (1, 1) 424 37 (5, 5) 24

11 (1, 1) 1110 24 (156, 1) 937 39 (1, 1) 209

12 (1, 13) 1783 25 (1, 1) 213 40 (1, 1) 345

13 (1, 1) 310 26 (1, 1) 291 41 (1, 1) 577

TCAS program. We conducted the experiment by comparing the

bugs generated when we always picked the first predicate found

(red line) versus when the hill-climbing searcher is switched on

(blue line). The search for good predicates is effective as it increases

the time needed to find the triggering inputs for the bugs by about

390× on average.

4.6 RQ6: Comparison with LAVA

We compare Apocalypse with LAVA on nine Coreutils programs

(shown in Figure 6). Let us discuss the results on the two tools

separately:

• KLEE: KLEE uses constraint solving to discover newer paths.

In LAVA, as the bug location is essentially guarded by a

magic number, it is quite easy for KLEE to use the constraint

solver to łguessž this magic number. Hence, on most of the

benchmarks, KLEE is able to discover almost all bugs. On an

average, KLEE discovers 80% of the bugs.

• AFL: AFL uses random mutations to discover test cases

(guided by coverage information). Hence, AFL finds it hard

to guess the magic numbers by random mutations, thereby

finding many fewer bugs. On an average, AFL discovers 41%

of the bugs.

As can be seen, the bugs injected by LAVA, in general, show

affinity towards a certain tool (KLEE). Over a set of injected bugs,

each bug may show affinity towards a certain tool, but overall, all

bugs injected by a tool should be unbiased. For the bugs injected by

Apocalypse, though a certain bug may be discovered by a certain

tool more easily than the other, overall both tools are almost equally

effective (30% of bugs discovered by KLEE, 47% of bugs discovered

by AFL on these nine programs) at discovering the bugs injected by

our tool. This shows that the bugs synthesized by Apocalypse are

more łnaturalž than those injected by LAVA as they do not exhibit

łartificialž attributes that can be exploited by bug-finding tools.

5 RELATED WORK

The work most directly related to our current work is LAVA [14]

and EvilCoder [27]. As we discuss the relationship of our work

to these systems in detail elsewhere in the paper, we omit a com-

plete discussion here, noting only that while our system shares the

goals of this prior work, we improve upon the state of the art by
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num_ inpu t _ f i l e s = a rgc − op t i nd ;
2 . . .

c a s e ' r ' : i n p u t _ r e f e r e n c e = 1 ;
4 . . .

state12 += (num_input_files > input_reference )

6 * (449- 614) * ¬(state12 -614)

(a) ptx

1 c a s e ' a ' : need_deadprocs = 1 ;
. . .

3 trimmed_name = ext rac t_ t r immed_name ( u t emp_bu f f e r ) ;
. . .

5 state12 += (trimmed_name[2] == need_deadprocs)

* ( 431 - 428 ) * ( ! ( state12 - 428 ));

(b) who

1 c a s e ' d ' :
ou tpu t_un ique = 1

3 . . .
t h i s f i e l d = f i n d _ f i e l d ( t h i s l i n e ) ;

5 . . .
state12 += (thisfield[1] == output_unique) *

7 ( 458 - 457 ) * ( ! ( state12 - 457 ));

(c) uniq

i f ( ∗ op t a rg == '+ ' ) f r om_ s t a r t = 1 ;
2 . . .

i f ( ! ( x s t r t o d ( optarg , &s , c _ s t r t o d ) && 0 <= s ) )
4 s l e e p _ i n t e r v a l = s ;

. . .
6 state12 += (*sleep_interval == from_start ) *

( 621 - 668 ) * ( ! ( state12 - 668 ));

(d) tail

c a s e f : i n t e r a c t i v e = 1 ;
2 . . .

ok = s ymbo l i c _ l i n k ? syml ink ( source , d e s t )
4 : l i n k ( source , d e s t )

. . .
6 state12 += ( remove_existing_files < ok ) *

( 136 - 112 ) * ( ! ( state12 - 112 ));

(e) uniq

i f ( ∗ op t a rg == '+ ' ) f r om_ s t a r t = 1 ;
2 . . .

i f ( ! ( x s t r t o d ( optarg , &s , c _ s t r t o d ) && 0 <= s ) )
4 s l e e p _ i n t e r v a l = s ;

. . .
6 state12 += (*sleep_interval == from_start ) *

( 621 - 668 ) * ( ! ( state12 - 668 ));

(f) tail

Figure 7: Some of the predicates synthesized by Apocalypse for bugs in injected on some Coreutils programs

individual program is small, the bugs may be shallow or unrealistic,

or the bugs may not come with triggering inputs.

Another technique for creating bugs is found in the field of

mutation testing [12, 20ś22], in which random mutation operators

are applied to a program. The resulting (presumably incorrect)

program is then run against its test suite in an attempt to judge

the robustness of the test suite. In some sense, bug injection is an

extension of mutation testing, in that it automatically creates buggy

versions of a program. However, the effects of the mutants created

by mutation testing are difficult to predict, and do not come with

triggering test casesÐin other words, they fail to be reproducible

(under the definition given in ğ1). While mutation testing is good

for evaluating the quality of a test suite, it is less clear how to apply

it to the task of evaluating effectiveness of a bug-finding system

such as KLEE [8].

Finally, our bug synthesis strategy is based on the formal tech-

niques like program synthesis and model counting. Techniques for

automatically generating programs have a long history (dating back

perhaps as early as 1957, if one includes Church’s discussion of

the problem of circuit synthesis [10]), but have recently seen a

flurry of activity due to the emergence of fast SAT and SMT solvers

combined with the work of Solar-Lezama [30], which showed that

program synthesis could be cast in terms of satisfiability. Since then,

program synthesis has been applied to a wide variety of problems,

including automating string processing in spreadsheets [19], heap-

manipulations [16, 28] and automated program repair [6, 23, 25, 35].

Model counting [33, 34, 36] and uniform sampling [15, 24] have

elicited huge interest due to their applications in bayesian infer-

ence and probabilistic programming. Model counting has been

successfully employed for probabilistic symbolic execution [17]

that assigns probabilities to program paths to aid understanding.

We use model counting in a similar context to synthesize a low

probability path for the buggy executions.

6 DISCUSSION

Figure 7 shows some the predicates synthesized for a few of the

bugs injected by Apocalypse in the Coreutils programs. One can

see that the predicates are non-trivialÐspanning array accesses,

pointer deferences and access to fields of aggregate structures. The

asymmetric advantage enjoyed by Apocalypse (as explained in ğ2)

allows it to expend all its reasoning ability on one trace to create

challenging bugs, while the bug-finder is required to reason on the

whole program. Hence, even with similar compute resources and

reasoning ability as the bug-finding tools, Apocalypse is capable of

constructing challenging bugs for even state-of-the-art bug-finding

tools. We believe that large corpus of injected bugs from Apoca-

lypse will help us better understand the pecularities and relative

merits of different bug-detection tools. There exist threats to valid-

ity to our experimental results, in particular from the choice of the

subject programs and the seed inputs. We were careful to select a

large number of programs and inject multiple bugs; nevertheless,

more extensive experiments can be performed.
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