Bug Synthesis:

Subhajit Roy Awanish Pandey
Computer Sc. and Engg. Computer Sc. and Engg.
II'T Kanpur, India IIT Kanpur, India
subhajit@cse.iitk.ac.in awpandey@cse.iitk.ac.in
ABSTRACT

In spite of decades of research in bug detection tools, there is a
surprising dearth of ground-truth corpora that can be used to eval-
uate the efficacy of such tools. Recently, systems such as LAVA
and EvilCoder have been proposed to automatically inject bugs
into software to quickly generate large bug corpora, but the bugs
created so far differ from naturally occurring bugs in a number
of ways. In this work, we propose a new automated bug injection
system, APOCALYPSE, that uses formal techniques—symbolic execu-
tion, constraint-based program synthesis and model counting—to
automatically inject fair (can potentially be discovered by current
bug-detection tools), deep (requiring a long sequence of dependen-
cies to be satisfied to fire), uncorrelated (each bug behaving indepen-
dent of others), reproducible (a trigger input being available) and
rare (can be triggered by only a few program inputs) bugs in large
software code bases. In our evaluation, we inject bugs into thirty
Coreutils programs as well as the TCAS test suite. We find that bugs
synthesized by ApocaLYPsE are highly realistic under a variety of
metrics, that they do not favor a particular bug-finding strategy
(unlike bugs produced by LAVA), and that they are more difficult to
find than manually injected bugs, requiring up around 240X more
tests to discover with a state-of-the-art symbolic execution tool.

CCS CONCEPTS

«» Software and its engineering — Software testing and de-
bugging; Formal software verification;

KEYWORDS

Bug Injection, Program Synthesis, Symbolic Execution, Constraint-
based Synthesis

ACM Reference Format:

Subhajit Roy, Awanish Pandey, Brendan Dolan-Gavitt, and Yu Hu. 2018.
Bug Synthesis: Challenging Bug-Finding Tools with Deep Faults. In Pro-
ceedings of the 26th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE ’18),
November 4-9, 2018, Lake Buena Vista, FL, USA. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3236024.3236084

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ESEC/FSE ’18, November 4-9, 2018, Lake Buena Vista, FL, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5573-5/18/11...$15.00
https://doi.org/10.1145/3236024.3236084

698

Challenging Bug-Finding Tools with Deep Faults

Yu Hu
Computer Sc. and Engg.
NYU Tandon, USA
yh570@nyu.edu

Brendan Dolan-Gavitt
Computer Sc. and Engg.
NYU Tandon, USA
brendandg@nyu.edu

1 INTRODUCTION

Decades of research has gone into eliminating bugs in software
through automated bug-finding tools such as static analyzers, run-
time sanitizers, symbolic execution tools, and fuzzers. Despite this
ongoing effort, there is a surprising dearth of ground-truth corpora
that allows us to evaluate the efficacy of such tools: most existing
corpora are small, do not come with triggering inputs, or feature
bugs that are often unrealistic. Moreover, the value of any indi-
vidual dataset drops over time as tools adapt to it. As a result, in
many cases we are forced to judge bug-finding tools on how many
previously unknown bugs they find—which leaves us in the dark
about how many they missed.

The lack of ground-truth datasets also means that it is difficult
to perform large-scale studies of bug discovery. For example, we
cannot run bug-finding tools on corpora of millions of bugs and
then attempt to draw conclusions about their relative strengths and
weaknesses, or statistically correlate features of bugs and programs
with their difficulty of discovery.

In recent work, two new systems, LAVA [14] and EvILCODER [27],
have sought to address the need for ground-truth corpora through
automated vulnerability addition. Briefly, these techniques take ex-
isting programs and seed them with vulnerabilities, either by adding
new, vulnerable code, or by identifying and removing safety checks
to make existing code vulnerable. These systems are an important
step forward.

We consider that injected bugs should have the following prop-
erties:

o Fair An injected bug is fair when it is possible to unearth
it by practical bug detection techniques. For example, a bug
guarded by a famous mathematical theorem (say, Fermat’s
Last Theorem) is not fair as it requires the proof of a difficult
mathematical theorem to detect the bug; common bugs in
programs do not resemble this.

Deep An injected bug is deep if it requires a long sequence
of data and control flow conditions to be met for it to trigger.
A bug guarded by a single branch condition is, for the same
reason, not a challenging bug.

Uncorrelated Multiple injected bugs must be uncorrelated;
that is, finding one of the bugs by a tool should not increase
(or decrease) the chances of catching the other injected bugs.
Reproducible An injected bug must come with a triggering
input that proves the existence of the bug.

Rare The bug should be triggered on a very small fraction
of all possible program inputs.

Considering these properties, we find that existing bug injection
techniques can be improved in several ways. EvilCoder, for example,
cannot produce triggering inputs, and hence fails to be reproducible
(related techniques, such as mutation testing [21], also fail to satisfy

ESEC/FSE ’18, November 4-9, 2018, Lake Buena Vista, FL, USA

this requirement). And we find that bugs injected by LAVA, although
rare, uncorrelated, and reproducible, fail to be fair and deep: the
triggers used (a comparison against a 32-bit “magic” constant) are
unusually difficult for techniques such as random testing to find,
and although the bugs manifest deep within programs, the injected
guard is a single branch that can be systematically targeted [32].

In this work, we introduce a new technique for bug injection,
based on symbolic execution, program synthesis and uniform sam-
pling. We build our ideas into a tool, APOCALYPSE, and use it to
introduce bugs in thirty Coreutils programs. APOCALYPSE uses con-
straint based program synthesis to embed a transition system, that
we refer to as the Error Transition System (ETS), on a judiciously
chosen program path. When the program is executed, the ETS is
advanced at certain locations along this execution path, leading to
a crash if the final state is reached. The state transitions on the ETS
are guarded by carefully synthesized predicates that ensure that
only a few executions can successfully reach the final state, and,
therefore, trigger the bug. We do so by enabling the synthesis engine
to perform a multi-variate hill climbing on the space of predicates at
the transition locations—searching for predicates that prevent most
executions from reaching the bug location. We estimate the set of
inputs that a predicate “blocks"” from reaching the error location by
model counting (approximated by uniform sampling). Model count-
ing and uniform sampling are not mature technologies yet, but are
quickly making progress with some significant contributions in
recent years.

We use APOCALYPSE to inject multiple bugs in thirty Coreutils
programs, and then attempt to detect these bugs using state-of-the-
art symbolic execution (KLEE [8]) and greybox fuzzing (AFL [1])
tools. Many of the injected bugs were discovered by the above
tools, showing that the injected bugs were fair: KLEE and AFL
were able to discover 31% and 38% of the bugs (respectively); at the
same time, many bugs were elusive, showing that these bugs can
act as subjects for further research: 47% of the bugs could not be
discovered by either of the tools. Similar to real bugs, different bugs
showed affinity to different tools: out of the 53% bugs discovered,
15% of the bugs could be discovered only by KLEE while 22% of the
bugs could be found only by AFL. Bugs synthesized by ApocALYPSE
needed about 240X more tests to be discovered than the manually
seeded bugs (on our benchmarks). We also compared our tool with
LAVA and found that the bugs injected by LAVA tend to be biased
to one of the bug-finding tools: about 80% of the bugs injected by
LAVA were discovered by KLEE while only about 41% of these bugs
were discovered by AFL; bugs injected by APoCALYPSE, on the other
hand, responded almost uniformly to both KLEE and AFL, showing
the bug corpora produced by ApocALyPsE do not favor a particular
bug-finding strategy.

As most bug-finding tools do not target any attributes of real-
world bugs but are driven solely by code-coverage (like KLEE
and AFL), ApocALYPSE synthesizes bugs that challenge the code-
coverage heuristics of these tools, stressing their competence at
uncovering deep paths.

The contributions of this paper are as follows:

e We propose a symbolic execution-based strategy to automat-
ically inject fair, deep, uncorrelated, reproducible and rare
bugs in programs;

699

Roy, Pandey, Dolan-Gavitt, Hu

e We propose a model counting-based strategy to reduce the
number of bug inducing inputs to make the injected bugs
difficult to find;

e We build our ideas into a tool, APOCALYPSE, and use it to
inject bugs into Coreutils programs;

e We attempt to gauge the quality of the bugs synthesized by
APOCALYPSE using a symbolic execution engine (KLEE) and
a greybox fuzzer (AFL).

2 OVERVIEW

Our bug injection system, APOCALYPSE, begins with a concrete
input and a program trace induced by that input. This input, which
can be taken from the program’s test suite or (as in our current
implementation) discovered through symbolic execution, serves as
a path along which we add one or more bugs to the program. One
can envisage bug synthesis as a game between the injector (who
wishes to add hard-to-find bugs to the program) and the bug-finder
(who would like to find the bugs added by the injector), the concrete
input serving as a source of asymmetric advantage in favor of the
injector: armed with a concrete input, the injector has knowledge
of an entire program path and all dynamic values along that path,
whereas the bug-finder must search for the same program path in
the space of all program paths.

APOCALYPSE embeds a state machine, which we refer to as the
error transition system (ETS), within the subset of the program
statememts described by the trace; this ETS is designed such that
the execution of the program on a pre-selected fault-revealing input
would incrementally advance this state machine towards an error
state (i.e., the program point where the injected bug will manifest).
A transition in the state machine is triggered whenever the current
values of pre-existing program variables (that are in scope at the
current location) meet certain conditions. To create a bug satisfying
the requirements described in §1, these conditions must be simple
(cause minimum perturbation to the dataflow and control-flow of
the existing program), non-trivial (are not always true or always
false), and useful (satisfied by a relatively small number of inputs).

ArocAaLYPsE achieves these goals by using program synthesis to
create candidate predicates from variables that are in scope at dif-
ferent points (transition points) along the trace. Not all points in the
trace are equally promising as transition points: we scan the trace
looking for program points that are deep in the program call graph,
guarded by many branch conditions, and have many variables in
scope. To ensure that the synthesized constraints that trigger each
transition meet our requirements, we use model counting to esti-
mate the number of solutions to the conjunction of ETS constraints
so far, and iteratively improve the constraint set by reducing the
number of possible solutions.

The state machine is tracked using the global program variables.
We encode the state machine to match the lexical charateristics of
the subject program: for example, if the program primarily manip-
ulates integer values, we use entities of the integer type (integer
variables, elements of integer arrays, integer fields in structures
etc.) to track the state (this is the encoding supported by our current
prototype). But we could also track the state using string matching,
or the position of some node in an aggregate data structure (such as
a list or a tree), depending on what data structures and operations

Bug Synthesis

void ALIM ()
{

othCap = climb + altVal;
L6: /+ if (ownRate < otherAlt && state == 6)
state = 19; =

}
int InhibitBiasedClimb
9 {

0

int up,down;

11| up = upSep + 100 +altVal;

down = upSep + OtherTrackedAlt;

13| L16: /« if (othCap < climb && state
state = 6;+/

-= 16)

15| return (climb ? up : down);
}
.
void main ()
9] {
input (curSep, ownAlt, ownRate, otherAlt,
21 altVal, upSep, downSep, othCap, climb);
LO:
* state = 16; =«
upPref = InhibitBiasedClimb () + downSep;
25| upCross = ownAlt + otherAlt;
ownRate = ownRate + curSep;
27| ALIM () ;
if (uppref > 5500){
29 result = altVal;
L19: /+« if (climb == result && state == 19)
31 state = 21;«/
}
33 L21: /« if (othAlt < upCros && state == 21)
state = 30;«
upCross = ownAlt — otherAlt;
L30: /«if (state == 30) assert(0);«/
}
Listing 1: Program with synthesized bug: the
statements commented in green are statements

inserted by ApocALYPSE (as per the ETS in Figure 1)

othCap < climb ownRate < otherAlt

Btart

Figure 1: ETS for the program in Listing 1

climb == result

othAlt < upCros

present in the subject program. We give some concrete examples
of possible state machine encodings in §3.7.

Finally, we create a buggy version of the program by adding, at
each transition point, a snippet of code that checks one of our ETS
transition predicates and then, accordingly, advances the state ma-
chine. When the state machine reaches its accepting state, we trig-
ger (a pre-defined) buggy behavior. In our current implementation,
we force an assertion failure, simply by adding an assert(false);
however, other buggy behaviours (like out of bounds memory ac-
cesses, double free, memory leaks, dereferencing of freed pointers,
floating-point exceptions) can also be added depending on the class
of the bug detector employed.

Listing 1 shows a program with an injected bug; the statements
synthesized by APocALYPSE are shown commented in green; the
program is instrumented with the ETS shown in Figure 1.

700

ESEC/FSE 18, November 4-9, 2018, Lake Buena Vista, FL, USA

Algorithm 1 APOCALYPSE

procedure MAIN(P)
: A « IDENTIFYTRACE(P)
L < IDENTIFYTRANSITIONPOINTS(A)
sym_pc, A < SYMBOLICEXEC(A, L)
Q « SYNTHESIZEETS(sym_pc, A)
: P’ « INSTRUMENTETS(P, Q)
7: return P’
8: end procedure

1:
2
3
4:
5
6

3 ALGORITHM

We define a program trace (or simply a trace) A as a sequence of
dynamic instructions. We assume each trace A to have a trigger-
ing input ip, that causes the program to execute the given trace,
and a symbolic path constraint, sym_pc, that encodes the condi-
tions on the inputs that would follow the given trace. Given a map
I': V + & from program variables v; € V to symbolic expressions
s € &, we use the notation I'[¢(v1,...,v,)] to denote the sym-
bolic constraint formed by replacing each v; € V by the respective
symbolic expression from the map T

3.1 Error Transition System

APOCALYPSE injects bugs in programs by interweaving an Error
Transition System along a path in the program. The ETS is a tuple
(L,P,(S,lo,lbug) where:

o L, the set of states, corresponds to program locations that
drive a transition on the ETS;

e P is a set of all predicates that can be constructed using the
program variables, array elements and structure fields in the
current scope;

e § : L XxP — L is the transition function that dictates the
transition on the ETS, given a predicates p € # at a location
li eL;

e [y € L is the initial state of the ETS; the ETS is set to this
state at the entry point of the program;

® lpyug € Lis the program location that is instrumented by the
buggy action (say simulating a program crash).

Figure 1 shows the ETS for the program in Listing 1: the labels
L6, L16 etc. (marked in red) show the transition locations where
the ETS makes its moves; the program entry point (L) sets the ETS
to the initial state (L16). The transition on location L16 is guarded
by the predicate‘ (othCap < climb) ‘; if this predicate holds, the
ETS transitions to state L6. Finally, if the execution can drive the
ETS to the final state (L39), an error is raised (say by simulating a
crash or violating an assertion).

3.2 Identify a Program Trace

The algorithm driving ApocALyPsE is shown in Algorithm 1. Given
a program %, the algorithm starts off by using IDENTIFYTRACE(P)
to identifying a trace A on which an ETS will be embedded.
IDENTIFYTRACE(P) uses symbolic exploration to collect multiple
possible interprocedural paths in the program and selects a path
based on the following parameters:

e Complexity of the path: We prefer program paths that con-
tain a large number of dynamic instructions, pass through

ESEC/FSE ’18, November 4-9, 2018, Lake Buena Vista, FL, USA

a large number of procedures and hit a large number of
branching instructions. As this path represents the secret
information that the adversary (bug detection tool) will need
to discover, a complex path makes the injected bugs more
elusive.

Number of useful variables: This refers to the quality
and quantity of the variables (including array elements and
structure fields) that are used by the participating instruc-
tions along this path. The quality of a variable is dictated
by distance of the instruction that defines the variable in
the program dependence graph from the input statements.
In essence, it captures the “complexity” of constructing a
required value into this variable from the program inputs.
We select paths with abundant good-quality variables as
these variables are eventually used by the ETS synthesizer to
construct transition predicates.

3.3

Next, IDENTIFYTRANSITIONPOINTS(A) attempts to find good pro-
gram locations on the error trace to embed ETS transitions. A
location is selected if it meets the following criteria:

Identify Transition Points in the Program

e Abundant “useful” variables are available at that program
location;

e The program location is deep in the call graph, making it
hard for bug detection tools to reach this location;

e The program location appears deep in the control depen-
dence graph; a location deep in the control dependence graph
is guarded by multiple predicates, making reachability chal-
lenging for bug-detection tools.

The above metrics on identifying a trace and transition locations
can be tuned to inject bugs of varying degrees of difficulty, thereby
allowing one to gauge the effectiveness of different bug detection
techniques. In this project, we have attempted to inject bugs that
are hard to find; we plan to investigate on the above questions in
future work.

3.4 Collect Symbolic Constraints

In the next phase, we run a symbolic execution engine on trace A
to collect the following:

e Symbolic Path Condition (sym_pc): The path condition
(sym_pc) for the trace (A) contains a symbolic summariza-
tion of all possible input values that would drive a program
execution along A.

e Symbolic Expression Dictionary (A): This dictionary
A: L (V- &) maps each identified transition location
l; € Lin the program to a dictionary of symbolic expressions
& for each program variable v € V.

¢ Concrete Value Dictionary (C): This dictionary
C : L+ (V + v) maps each identified transition location
l; € L in the program to a dictionary of concrete values v ob-
served for each program variable v € V along the execution
trace.

701

Roy, Pandey, Dolan-Gavitt, Hu

3.5 Synthesize the Error Transition
System (ETS)

In this phase, we use constraint solving to synthesize an Error
Transition System (ETS) that can be embedded in the program. The
synthesis algorithm is shown in Algorithm 2.

Synthesis of the ETS essentially involves identification of the
transition predicates that guard the automata transitions. The iden-
tified predicates should satisfy the following properties:

o Simple: The predicate should be simple to compute so as to
not change the control-flow and dataflow behaviour of the
existing program by much.

e Non-Trivial: The predicates should be non-trivial; for ex-
ample, (x > x), (x + 42 > x) etc. should not be produced.

o Useful: The predicate should effectively reduce the number
of inputs that could trigger the bug.

For all the transition locations I; € L, let pred : L — Predicate
denote a dictionary of the predicates synthesized, such that pred[i]
is the predicate at the i‘" location (/;). This map is initialized to
pred : AL.true.

We synthesize the predicates for the different locations in a
round-robin manner; each predicate, pred[i], is synthesized subject
to the current values of all other predicates. The predicate for the
k" transition location (denoted as (v1 op ’Uz)k) is synthesized using
the following synthesis condition:

[Equation Synth]

(01 0pv2)* =3y, e, (sympen [] predli]
l;eL,i+k
A [C(v1) op Cr(v2)])
A= Ag(vr) op Ag(v2)]

where
[Vi] < [V.2] forop='<’
[Viop Vo] =1[W] < [V2] forop="<’
[Vi] = [V2] forop ="=’

The above constraint synthesizes a guard (v op v) for the k? h
transition location if there exists a feasible execution (i.e. feasible
values of the input symbolic variables a1, . . .,a,) that meets the
above condition. Let us explore each term in the synthesis condition:

o The first term ensures that (by satisfying sym_pc) the syn-
thesized path preserves the seed execution path as the fault-
revealing run, and the respective input is secured as the
triggering input;

e The second term ([], cr,izk pred[i]) ensures that this path
satisfies the guard conditions synthesized at all other tran-
sition locations thereby creating an augmented path that is
traversed by fewer inputs;

e The next term ([Cx(v1) op Cr(v2)]|) synthesizes a guard
condition by searching for variables v; and vy, and an opera-
tor op, such that the concrete value of this predicate with the
current values of v1 and v2 (corresponding to the seed input)
is consistent with the seed execution path; this ensures that

Bug Synthesis

Algorithm 2 Synthesis Algorithm

1: procedure SYNTHESIZEETS(sym_pc, A, C, V)
2 forall/; € L do

3 pred[i] « true

4 sols[i] « {}

5: end for

6 tries < 0

7 while tries < MAX_TRIES do

8 tries <« tries +1

9 forall I € Ldo

10: ¥ (01 0p)" A o505y ~BLRI 0P 02)]
11: if ISSAT ¥ then

12: P < ¥[(v1 op v2)]

13: else

14: continue

15: end if

16 @ — sym_pe ATyer, ek predli]

17: countyyq « ModelCount(® A pred[k])

18: cOUNtper — ModelCount(® A p)

19: if countpew < count,;q then pred[k] « p
20: sols[k] « sols[k]U¥[a, . .., an]

21 end for

22: end while

23: return pred
24: end procedure

the injected bug would continue to be triggered by the seed
input with this freshly-synthesized guard condition;

o The final term (=] Ag(v1) op Ag(v2)]) ensures that there
exists a feasible execution along the false path of the synthe-
sized guard; this term is designed to ensure that the symbolic
values of the variables v1 and vy are capable of generating
an execution along the false branch of the guard condition,
thereby preventing generation of trivial predicates (that al-
ways evaluate to true).

Now, we lay out the complete synthesis algorithm in Algorithm 2.
Lines 3-4 initialize the dictionaries pred (that remembers the current
selection of the transition predicates) and sols (that remembers
the set of all solutions seen earlier). Then, the procedure enters
into an iterative refinement loop to inductively search for good
guards for transition predicates: for each transition location [€ L,

APOCALYPSE tries to find a feasible guard | (v1 op v2) |(as per Eqn

Synth). To ensure monotonicity, it searches for a solution (line 10)
while ensuring that any new solution does not include a solution
that we have seen earlier (cached in sols[k]).

If ¥ is satisfiable, the predicate is extracted from the model
associated with ¥ (lines 11-12); else we move to the next location.
The pred and sols dictionaries are finally updated at lines 19-20 as
per the new solution found.

Figure 2 provides a simplified view on the operation of our syn-
thesizer: assuming Trigger as the seed input, the synthesis con-
straint attempts to search for a point P1 and predicate (denoted
by the line) that divides the input space into two partitions: white-
region that would induce the bug, and blue-region that would not.
The existence of the point P1 is important to prevent generation
of trivial predicates that do not divide the input space (say as lines
that are tangents to the input space). Further, in the next iteration,

702

ESEC/FSE 18, November 4-9, 2018, Lake Buena Vista, FL, USA

Figure 2: Input space pruning

1| int approxModelCount(oldPred ,newPred) {
/+ "sample" is a set of inputs constructed by
3 » uniform sampling on the path condition =/
while (inp = sample.next()){
5 if (oldPred[inp]) countOld++;

if (newPred[inp]) countNew ++;
U

return (countNew < countOld);
of }

Listing 2: Approximate model counting

we further shrink the bug-inducing region by searching for another
point P2 from the bug-inducing region such that the new predicate
separates Trigger from both P1 and P2.

To estimate the usefulness of the synthesized predicates, we per-
form a hill-climing search over the multi-variate predicate space
corresponding to each location (lines 16-19). This search uses a
model-counter to estimate the number of feasible inputs corre-
sponding to the newly synthesized predicate and the older predicate
(cached in pred[k]); we select a predicate that maximally shrinks
the space of bug inducing inputs. The search is designed similar to
a Gibbs sampler [9] for multi-variate problems, wherein we make
the decision about one variable conditioned on the current values
of every other variable.

As invoking a model-counter twice in each iteration is quite
expensive, in our implementation, we approximate the relative
usefulness of the predicates by performing uniform sampling on
sym_pc to create a sampled space of inputs (tests) that follow the
same path as the seed input. We, then, generate and execute a
program on these tests to count the number of inputs satisfied by
the competing guard predicates; we show a sketch of our generated
program in Listing 2.

An important design decision was to ensure that our algorithm
generates the guard predicates such that the seed input ends up as
the trigger for the bug. This is crucial as the symbolic execution
engines often concretize parts of the execution state (for instance,
return values from external library calls, results of floating-point
operations, effects of system calls etc.). The map A, then, captures
only an incomplete symbolic model, potentially leading to path
divergence [18].

Let us explain the problem: in Listing 3, assuming sqrt() as
an external function, its output will concretized. Hence, the path
condition (of an execution where both branches evaluate to true)
would be an incomplete (a > 42) (rather than (a > 42) A (¢ > 10)).
If we desire inputs that would trigger the bug by hitting locations
Lo, L6, and L10, we would need to solve the respective path condi-
tion (a > 42) for which a constraint solver can return a solution
a = 95, z = 0 (unaware of the branch constraint (¢ > 10)). This

ESEC/FSE ’18, November 4-9, 2018, Lake Buena Vista, FL, USA

1| Lo:
/[« state = 6+«

;| make_symbolic(a,
if(a > 42) ¢ =
if (¢ >10){

L6:

/«if (c < a && state
}
9| L10:
wif (

z);
sqrt(z);

== 6) state = 9+/

state == 9) assert(0)«/

Listing 3: Problem of path divergence

input fails to trigger the bug as the program diverges to a different
path at the branch “if (c > 10)”. We handle this problem by main-
taining the seed input (which is consistent with all concretizations)
as the trigger for the bug.

For simplicity, the above algorithm assumes that each program
location is hit at most once. In our implementation, if a program
location is hit multiple times (say in a loop or a procedure), we use
only the first few (bounded) instances when the location is reached
as possible transition points.

3.6 Embed the Synthesized ETS in the Program

In the final phase, ApocaLYPSE embeds the synthesized ETS in the
program by instrumenting the transition locations with guarded
state transitions (dictated by the synthesized ETS). Listings 4 and 5
show two possible instrumentation schemes: Listing 5 is a better
scheme as it avoids creating path explosion, and hence, creates
buggy programs that are closer to the input program in terms of
the total number of paths.

Different instrumentation scheme can be adopted to camouflage
the ETS transitions: Listing 6 shows a possible camouflage for the
ETS transitions for string-processing programs, and Listing 7 for
bit-manipulating programs. As our current prototype was meant
to study the properties of our injected bugs for automated bug
detection systems (and not human subjects), all our experiments
were conducted on the instrumentation scheme shown in Listing 5.

3.7 Running Example

To begin with, APOocALYPSE needs to be provided with a seed input
that drives the program through a path on which we are inter-
ested in inducing a fault; a good seed path for bug-injection can be
discovered by symbolic execution (see §3.2).

Let us work our way through the program in Listing 1: as-
sume that select the seed inputs as (curSep=1258, ownAlt=897,
ownRate=174, otherAlt=7253, altVal=1, upSep=629,
downSep=5000, otherRAC=0, climb=1). The symbolic and con-
crete values selected for the inputs are shown in Table 1.

To embed an Error Transition System (ETS) along this path, Apoc-
ALYPSE also needs a set of good program locations to drive the ETS
transitions (see §3.3). Our system identifies the lines marked as L16,
L6,L19 and L21 as the transition locations.

Armed with the seed inputs and the set of transition locations,
APOCALYPSE runs symbolic execution along the seed path to col-
lect the symbolic path condition (sym_pc), and the symbolic and
concrete expression maps, A and C (see Table 2).

703

Roy, Pandey, Dolan-Gavitt, Hu

Table 1: Symbolic and Concrete inputs for the trace
Variable Value Variable Value
curSep (g, 1258) ownAlt (a3, 897)
ownrate (ay, 174) otherAlt | (as, 7253)
altVal (a,1) upSep (a7, 629)
downSep | (as, 5000) othCap (a0, 0)
climb (11, 1)

Table 2: Symbolic and concrete maps

Variable Loc16 Loc6 Loc19 Loc21
Sym | Conc Sym Conc Sym Conc Sym Conc
othCap a0 0 as + a11 2 ag + a1 2 ag + a1 2
ownRate ay 174 ap + ay 1432 ag + oy 1432 ap + ay 1432
climb a11 1 11 1 11 1 a11 1
othAlt as 7253 as 7253 as 7253 as 7253
up ag + a7 730
+ 100
down as + a7 | 7882
uppref ap + a7 5730 ap + a7 5730
+ ag +100 +ag + 100
upCros a3 + as 8150 a3 + as 8150
result a6 1 g 1

APOCALYPSE, now, synthesizes an ETS as follows: for the lo-

cation L16, it finds a predicate ‘ (othCap < climb) ‘ to move the

transition system by a step. It does so by building a synthesis
constraint that ensures that the predicate is simple, non-trivial

(disallowing predicates like ‘ (upPref > downSep) ‘that are invari-

ants) and useful (discussed next). Similarly, it synthesizes predicates
‘ (ownRate < otherAlt) H (upPref < upCros) ‘
and‘ (othCap < climb) ‘for locations L6, L19 and L21.

Next, APOCALYPSE makes more passes over these locations in a

search for better predicates. Attempting another synthesis cycle
over L19 (and disallowing the previous solution), it synthesizes a

new predicate ‘ (climb == result) ‘ Now, it checks the model

count for:
sym_pc : (a10 # —1) A (@11 # 0) A (a6 + ag > 5400) A (a5 — az >
0) A (ag # 0) A (ag # 0)
¥ s sym_pe A (11 == a6) A (a10 < a11) A (o + aa < as5) A (a5 <
a3 + as), and,
¥y : sym_pcA(ag+a7+ag+100 < az+as)A(aio < a11)A(ap+as <
0(5) A (0(5 < a3+ 6(5).

In this case, it finds that the model count of ¥, is smaller than
that of ¥1, and hence it goes about replacing the older predicate

‘ (upPref < upCros) ‘by the newer‘ (climb == result) ‘pred—
icate. On the other hand, if the count of ¥; was smaller, it would
have rejected it and persisted with the older predicate. This hill
climbing over the multi-variate space of predicates at the different
locations allows us to “shrink” the space of inputs that would trig-
ger the bug. Table 3 shows the set of all predicates produced by
APoCALYPSE, with the ones finally selected marked in blue. In our
experiments, this procedure increased the bug detection time of
the injected bugs by about 390x (on AFL). The synthesized ETS is
shown in Figure 1.

Finally, the generated ETS is inserted into the existing code. We
show the statements injected by APOCALYPSE as comments (in green)
in Listing 1; these statements drive the program to a crash at L30.

Bug Synthesis ESEC/FSE 18, November 4-9, 2018, Lake Buena Vista, FL, USA

int state; int state; i| char s[50]= int state = 0xffffo011;
2 "hello\0world\0 for\0bug?| void buggy () {

void buggy () { void buggy () { 3| void buggyFunction () { if (p1 && (state

| if (pl && state == 0) 4| state += 3x(pl = !(state — 0)); if (p1 && !(cmp(s,"hello"))) & 0x0000ffff == 3))
state = 5; state += 5+(p2 « !(state — 3)); I += (strlen(s)+1); state |= 0xff000022;

of if (p2 && state == 5) | state += 3+(p3 = !(state — 8)); if (p2 && !(emp(s+1,"world")))| if(p2 && (state
state = 9; state += —12«(p4 « !(state — 11)7 1 += strlen(s); & 0x0000ffff == 0))

s| if (p3 && state == 9)) if (p3 && !(cmp(s+l,"for"))) = state |= 0xffo0ffoo;
state = —1; 8 1 += strlen(s); if (p3 && (state

| if (p4 && state ==-1) if (state == -1) if (p4 && !(cmp(s+1,"bug"))) 1w & 0x0000ffff == 3))
crash () ; 10 crash () ; 11 crash () ; crash () ;

2]} } } 2]}

Listing 4: ETS encoding Listing 5: ETS smart encoding for Listing 6: ETS encoding for
for integer programs integer programs string based programs

Listing 7: ETS encoding for
bit manipulating programs

Table 3: Synthesized predicates at ETS locations 4.1 RQ1: Fairness of our Synthesized Bugs

Loc Predicates Loc Predicates We demonstrate that our bugs are fair by employing two state-of-
L16 | othCap <climb || L6 | ownRate < otherAlt the-art bug detection tools, KLEE (based on symbolic execution)
L19 climb == result L21 othAlt < upCros

upPref < upCros climb < othCap and AFL (employing greybox fuzzing) for discovering the bugs

synthesized by APoCALYPSE in thirty GNU Coreutils programs [3].
We use APOCALYPSE to inject four bugs in each program; we then
challenge KLEE [8] and AFL [1] discover the bugs (running them
for one hour each). The results are shown in Figure 3.

The first bar for each benchmark shows the time spent by AFL
to hit each of the bugs, normalized to the time taken to reach the
last bug (or timeout when no bug is found). The second bar for each
benchmark shows the number of test cases that must be generated
by KLEE to find the first test that reveals a bug, normalized to the
number of tests required to reach the last bug that it could find.

For example, for the experiments on KLEE (second bars), in the
program cat, KLEE is able to find only one bug (so the bar for the
first bug reaches all the way to one). In cases where all bugs are
found, for example in df, the first bug is found at 15%, the second
bug at 32%, and the third at 64% of the total number of testcases
needed to find the last bug. Cases where we were unable to find
any bug (like test) are shown as timeout (TO).

For the experiments involving AFL (first bars): Because AFL
generates tests only for failing executions, we show the amount of
time spent to reach a bug (instead of the number of tests). The first
bar of each cluster shows how much relative time AFL has invested
in finding each bug compared to the last bug. If AFL is not able to
find any bug, the whole bar is set to timeout (TO). For example, in
the case of cat, the first bug is found at 2%, the second bug is found
at 7%, and the third is found at 46% of the time at which the final
bug was found.

Overall, KLEE could find 31% of the bugs while AFL found 38.33%
of the bugs; 36% of the bugs were found only by one of the two tools
while 47% of the bugs could not be found by either. This illustrates
common traits exhibited by real bugs:

4 EXPERIMENTS

APOCALYPSE is based on multiple tools: it uses Clang [2] for in-
strumentation (for dynamic analysis for selecting good transition
locations as well as for embedding the ETS in the program). We
modified Crest [7] for running symbolic execution to collect the
symbolic path conditions and the expression maps. The ETS synthe-
sizer uses Z3 [11] for constraint solving. We use a modifed version
of Boolector [26] to create SAT encodings of SMT constraints, and
QuickSampler [15] for uniform sampling on the boolean path con-
ditions.

For the purpose of our experiments, we insert assert(false)
statements at our bug injection points. Our experiments were con-
ducted on a 2 GHz Intel Xeon(R) machine with 12 cores and 32 GB
RAM. To understand the quality of the bugs injected by Aroca-
LYPSE, we attempted to uncover the injected bugs using two popular
bug finding techniques:

e Symbolic Execution: We use the state-of-the-art symbolic
execution engine KLEE [8] to unearth the bugs. KLEE is run
with the default search strategy within a timeout of 1 hr.

e Greybox Fuzzing: Coverage-guided fuzzing tools perform
executions on randomly mutated inputs, guided by coverage
metrics. We use the popular greybox fuzzer AFL [1] for our
experiments, running it with default settings and a timeout
of 1 hr.

Our experiments attempt to answer the following research ques-
tions:

¢ Discoverability: State-of-the-art bug detection tools have
been successful in dicovering many bugs in large programs.
Even for our injected bugs, all in all, 53% of the bugs are
discovered by at least one of the tools.

o Elusiveness: Certain bugs are still elusive, showing that
these injected bugs (resembling real bugs) can now be em-
ployed to stress tools for new bug detection techniques;
about 47% of the bugs could not be discovered by either
of the tools.

RQ1 Are our automatically synthesized bugs fair?

RQ2 Is there any correlation between multiple injected bugs?

RQ3 Are the bugs injected by ApocALYPSE reproducible?

RQ4 Are our bugs deeper and rarer than manually seeded bugs?

RQ5 What is the effect of sampling on the difficulty of an injected
bug?

RQ6 How does APOCALYPSE compare with state-of-the-art bug
injection tools?

704

ESEC/FSE ’18, November 4-9, 2018, Lake Buena Vista, FL, USA

o Affinity to tools: Certain bugs are more likely to be found
by one type of technique than by another; 22% of the bugs
were only discovered by AFL while 15% of the bugs were
only discovered by KLEE.

e Variance in tool effort: Some bugs require more effort to be
discovered than others; on the discovered bugs, AFL shows
a standard deviation of 583 seconds (on a total running time
of 1 hour for each program).

4.2 RQ2: Correlation of Bugs Injected by
APOCALYPSE

Figure 3 shows that the number of tests (using KLEE) and the time
taken (by AFL) to discover the different bugs is almost uniformly
distributed; also, in many cases, even after discovering a few bugs,
the tools fail to unearth the rest of the bugs. This shows that there
exists almost no correlation among the different bugs injected by
ArocALypsk. Together, KLEE and AFL are able to catch 53% of all
bugs; there are 7 programs (out of 30) where none of the tools is
able to catch any bug.

4.3 RQ3: Reproducibility

Because APOCALYPSE generates triggering inputs for each bug it cre-
ates, reproducibility is satisfied by design. Nevertheless, we checked
that the generated inputs really did trigger each bug, and found
that we could reproduce all the injected bugs.

4.4 RQ4: Comparison with Manually Seeded
Bug

To compare with manually seeded bugs, we used the TCAS [13]
benchmark. TCAS contains 41 buggy versions, each version contain-
ing exactly one manually seeded bug. As the seeded bugs produce
an incorrect output (but not a crash or assertion failure), we use
KLEE to generate a set of tests; any test that that produces an in-
correct output or reaches our injected bug location is designated as
a failing test.

We use APOCALYPSE to inject two additional bugs into each TCAS
version. KLEE was able to discover all the injected bugs as well as
the manually seeded bugs in all versions except versions 33 and
38. Figure 5 shows the number of test cases KLEE had to generate
before hitting the test case that triggers the bug (ploted on the log-
scale for the average of three runs of KLEE). This experiment shows
the elusiveness of our bugs with respect to the manually seeded
ones: on an average, the bugs injected by APocALYPSE require 240X
more tests than the manually seeded bugs.

Table 4 shows the rarity of our bugs: this table shows the number
of generated test cases on which a bug induced a failure. (F,S) and
MSB denote the number of failing testcases on our 1st (F) and 2nd (S)
injected bug, and manually seeded bug, respectively. On an average,
the bugs injected by ApocALYPSE induce failures on 30x fewer tests
over the manually seeded bugs.

4.5 RQ5: Searching for Stronger Transition
Predicates

Figure 4 shows how our hill climbing search for guard conditions
improves the rarity of the bugs on the different versions of the

705

Roy, Pandey, Dolan-Gavitt, Hu

Table 4: Number of testcases generated by KLEE that reveal
our bugs (F, S) and manually seeded bug (MSB).

V] (FES) |[#MSB | V| (FS) |#MSB| V | (FS) | #MSB
1] (251,1) | 232 | 14| (1,1) 39 |27 (1,19) | 659
2 | (1,1) 160 || 15| (1,19) | 658 | 28| (2,2) | 302
3] (1,1) 41 16 | (1. 1) 43 [29] (1) 97
4| @3) | 3714 |[17] (@,1) 37 30| (1,1) 56
5 | (1,19) | 654 || 18| (L 1) 33 |31 (1,1) 35
6 | (I1) 30 |[19] (1,1) 45 32| (1,12) | 81
7| (1,1) 41 20 | (1,1) 124 |34 | (341,2) | 1805
8 | (1,1) 39 [[21] (9,1) | 162 |35 (2,2) | 273
9 [(117,1) | 883 |[22| (L1) | 172 |36 | (1,1) | 429
10 (L) | 418 [[23| (1L1) | 424 |[37] (55) 24
11| (1) | 1110 |24 | (156, 1) | 937 [39| (1,1) | 209
12| (1,13) | 1783 | 25| (1,1) | 213 |40 | (1,1) | 345
13| @1 | 310 | 26| (1,1) | 201 |41 (L1) | 577

TCAS program. We conducted the experiment by comparing the
bugs generated when we always picked the first predicate found
(red line) versus when the hill-climbing searcher is switched on
(blue line). The search for good predicates is effective as it increases
the time needed to find the triggering inputs for the bugs by about
390X on average.

4.6 RQ6: Comparison with LAVA

We compare ApocALYPSE with LAVA on nine Coreutils programs
(shown in Figure 6). Let us discuss the results on the two tools
separately:

o KLEE: KLEE uses constraint solving to discover newer paths.
In LAVA, as the bug location is essentially guarded by a
magic number, it is quite easy for KLEE to use the constraint
solver to “guess” this magic number. Hence, on most of the
benchmarks, KLEE is able to discover almost all bugs. On an
average, KLEE discovers 80% of the bugs.

e AFL: AFL uses random mutations to discover test cases
(guided by coverage information). Hence, AFL finds it hard
to guess the magic numbers by random mutations, thereby
finding many fewer bugs. On an average, AFL discovers 41%

of the bugs.

As can be seen, the bugs injected by LAVA, in general, show
affinity towards a certain tool (KLEE). Over a set of injected bugs,
each bug may show affinity towards a certain tool, but overall, all
bugs injected by a tool should be unbiased. For the bugs injected by
APOCALYPSE, though a certain bug may be discovered by a certain
tool more easily than the other, overall both tools are almost equally
effective (30% of bugs discovered by KLEE, 47% of bugs discovered
by AFL on these nine programs) at discovering the bugs injected by
our tool. This shows that the bugs synthesized by APOoCALYPSE are
more “natural” than those injected by LAVA as they do not exhibit
“artificial” attributes that can be exploited by bug-finding tools.

5 RELATED WORK

The work most directly related to our current work is LAVA [14]
and EvilCoder [27]. As we discuss the relationship of our work
to these systems in detail elsewhere in the paper, we omit a com-
plete discussion here, noting only that while our system shares the
goals of this prior work, we improve upon the state of the art by

Bug Synthesis ESEC/FSE *18, November 4-9, 2018, Lake Buena Vista, FL, USA
1st s 2Nnd memmm 3rd Smm 4th s TO o
1
[e}
5 o e LR, . 55 B T 2 DO OO Sy Sk Sy CS Lo xS Co b2 4G L2
& S C;g—oégo;bf @ng o0 S 2 @%:?é 5% (29((0,5@//000?. N 4’:;/@60@\5\50 /5,>)o
o 2 2 =g

Figure 3: Normalised time (AFL) or testcases (KLEE) needed to find the respective bug; the first bar is for AFL and second for
KLEE. The Venn Diagram shows the distribution of the bugs found by KLEE and AFL.

2500 T T

T T
with hill climbing
witrhwout hill climbing

|

2000

1500

#testcase

1000

500

20 25
Program

15 45

Figure 4: Effect of the hill climbing search on the time to find
the bug using AFL in TCAS

4

1stBug
2ndBug
3.5 ActualBug -
3 = -
@ 25 1
=
3
¥ 27 1
1.5 H q
1 |- |
0.5

OIS 629 AL S AS SIS SO TS TS S SO PSP

Program

Figure 5: Number of tests generated before hitting a bug
(plotted on log-scale for the average of three runs of KLEE)

706

LAVA-KLEE
Apocalypse-KLEE =

LAVA-AFL s
Apocalypse-AFL

100 [
80 - _
60 - _
40 - .
20 4
oL 4
[¢) @} 2 Ry 2 % 2 & 1,
e My T ey, S, Tk TR X
% 1,
‘7¢ (]
0

Figure 6: Percentage of bugs found by KLEE and AFL among
bugs injected by ApocaLYPSE and LAVA

generating deep bugs that do not favor a particular bug-finding
approach.

Bug injection systems are intended to automate the creation of
bug corpora; however, it should be noted that there are a number of
existing public corpora of buggy programs as well, and studies have
been performed to evaluate bug-finders using these systems. For
example, Wilander and Kamkar [37, 38] performed a pair of studies
using synthetic bugs that evaluated the effectiveness of static and
dynamic bug-finding tools. NIST’s SAMATE group hosts a collec-
tion of buggy software data sets known as the Software Assurance
Reference Datasets (SARD) [5]. And in 2016, DARPA hosted an auto-
mated bug-finding Cyber Grand Challenge (CGC) [4]; this competi-
tion resulted in a collection of 247 programs with known vulnerabil-
ities and triggering inputs, and has been used extensively since its
creation for evaluating new bug-finding techniques [29, 31, 32]. The
CGC corpus is very high quality, but it is expected that bug-finding
software will eventually improve to be able to find all known bugs
in the 247 programs. And all of these corpora suffer from one or
more of the following issues: they contain few programs or each

ESEC/FSE ’18, November 4-9, 2018, Lake Buena Vista, FL, USA

Roy, Pandey, Dolan-Gavitt, Hu

num_input_files = argc — optind;
case 'r': input_reference = 1;

statel12 += (num_input_files > input_reference)
. * (449- 614) * —(statel2 -614)

case 'a': need_deadprocs = 1;

trimmed_name = extract_trimmed_name (utemp_buffer);

statel12 += (trimmed_name[2] need_deadprocs)
* (431 - 428) x (! (statel2 - 428));

(a) ptx

(b) who

case 'd':
output_unique = 1

thisfield = find_field (thisline);

statel12 += (thisfield[1] == output_unique) *
7 (458 - 457) x (! (statel2 - 457));

if (+~optarg == '+') from_start = 1;

if (!(xstrtod (optarg, &s, c_strtod) && 0 <= s))
sleep_interval = s;

statel2 += (*sleep_interval == from_start) *
(621 - 668) = (! (statel2 - 668));

(c) uniq (d) tail
case f: interactive = 1; if (~optarg == '+') from_start = 1;
ok =symbolic_link ? symlink(source,dest) if (!(xstrtod (optarg, &s, c_strtod) && 0 <= s))
link (source, dest) 4 sleep_interval = s;
6| state12 += (remove_existing_files < ok) * 6| state12 += (*sleep_interval == from_start) =*
(136 - 112) * (! (statel2 - 112)); (621 - 668) * (! (statel2 - 668));
(e) uniq (f) tail

Figure 7: Some of the predicates synthesized by ApocaLYPSE for bugs in injected on some Coreutils programs

individual program is small, the bugs may be shallow or unrealistic,
or the bugs may not come with triggering inputs.

Another technique for creating bugs is found in the field of
mutation testing [12, 20-22], in which random mutation operators
are applied to a program. The resulting (presumably incorrect)
program is then run against its test suite in an attempt to judge
the robustness of the test suite. In some sense, bug injection is an
extension of mutation testing, in that it automatically creates buggy
versions of a program. However, the effects of the mutants created
by mutation testing are difficult to predict, and do not come with
triggering test cases—in other words, they fail to be reproducible
(under the definition given in §1). While mutation testing is good
for evaluating the quality of a test suite, it is less clear how to apply
it to the task of evaluating effectiveness of a bug-finding system
such as KLEE [8].

Finally, our bug synthesis strategy is based on the formal tech-
niques like program synthesis and model counting. Techniques for
automatically generating programs have a long history (dating back
perhaps as early as 1957, if one includes Church’s discussion of
the problem of circuit synthesis [10]), but have recently seen a
flurry of activity due to the emergence of fast SAT and SMT solvers
combined with the work of Solar-Lezama [30], which showed that
program synthesis could be cast in terms of satisfiability. Since then,
program synthesis has been applied to a wide variety of problems,
including automating string processing in spreadsheets [19], heap-
manipulations [16, 28] and automated program repair [6, 23, 25, 35].
Model counting [33, 34, 36] and uniform sampling [15, 24] have
elicited huge interest due to their applications in bayesian infer-
ence and probabilistic programming. Model counting has been
successfully employed for probabilistic symbolic execution [17]
that assigns probabilities to program paths to aid understanding.
We use model counting in a similar context to synthesize a low
probability path for the buggy executions.

707

6 DISCUSSION

Figure 7 shows some the predicates synthesized for a few of the
bugs injected by ApocAaLYPSE in the Coreutils programs. One can
see that the predicates are non-trivial—spanning array accesses,
pointer deferences and access to fields of aggregate structures. The
asymmetric advantage enjoyed by APOCALYPSE (as explained in §2)
allows it to expend all its reasoning ability on one trace to create
challenging bugs, while the bug-finder is required to reason on the
whole program. Hence, even with similar compute resources and
reasoning ability as the bug-finding tools, APOCALYPSE is capable of
constructing challenging bugs for even state-of-the-art bug-finding
tools. We believe that large corpus of injected bugs from Aroca-
LYPSE will help us better understand the pecularities and relative
merits of different bug-detection tools. There exist threats to valid-
ity to our experimental results, in particular from the choice of the
subject programs and the seed inputs. We were careful to select a
large number of programs and inject multiple bugs; nevertheless,
more extensive experiments can be performed.

Acknowledgements. The first author wishes to thank the third au-
thor for hosting him at the NYU Tandon School of Engineering,
where this work was conceived. Funding for this research was
provided under NSF Award #1657199 and ONR Award N00014-15-
1-2180.

REFERENCES
I

American Fuzzy Lop (AFL) Fuzzer. http://lcamtuf.coredump.cx/afl/technical_
details.txt. (visited on 21th January 2018).

Clang: a C language family frontend for LLVM. http://clang.llvm.org/. (visited
on 21th September 2017).

Coreutils - GNU core utilities. https://www.gnu.org/software/coreutils/coreutils.
html. (visited on 15th September 2017).

DARPA. Cyber Grand Challenge. http://archive.darpa.mil/cybergrandchallenge/.
(visited on 9th March 2018).

NIST Software Assurance Reference Dataset Project. https://samate.nist.gov/
SRD/. (visited on 1st January 2018).

Bug Synthesis

(6]

(71

[10]

[11

[12

[13]

[14]

[15

[16

[17]

(18]

[19

[20

[21]

Rohan Bavishi, Awanish Pandey, and Subhajit Roy. 2016. To Be Precise: Regres-
sion Aware Debugging. In Proceedings of the 2016 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA 2016). ACM, New York, NY, USA, 897-915. https://doi.org/10.1145/
2983990.2984014

J. Burnim and K. Sen. 2008. Heuristics for Scalable Dynamic Test Generation. In
Proceedings of the 2008 23rd IEEE/ACM International Conference on Automated
Software Engineering (ASE "08). IEEE Computer Society, Washington, DC, USA,
443-446. https://doi.org/10.1109/ASE.2008.69

Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted and
Automatic Generation of High-coverage Tests for Complex Systems Programs.
In Proceedings of the 8th USENIX Conference on Operating Systems Design and
Implementation (OSDI'08). USENIX Association, Berkeley, CA, USA, 209-224.
George Casella and Edward I. George. 1992. Explaining the Gibbs Sampler. The
American Statistician 46, 3 (1992), 167-174. http://www.jstor.org/stable/2685208
Alonzo Church. 1957. Application of Recursive Arithmetic to the Problem of
Circuit Synthesis. Summaries of the Summer Institute of Symbolic Logic.
Leonardo De Moura and Nikolaj Bjerner. 2008. Z3: An Efficient SMT Solver.
In Proceedings of the Theory and Practice of Software, 14th International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’08/ETAPS 08). Springer-Verlag, Berlin, Heidelberg, 337-340. http://dl.
acm.org/citation.cfm?id=1792734.1792766

R. A. DeMillo, R. J. Lipton, and F. G. Sayward. 1978. Hints on Test Data Selection:
Help for the Practicing Programmer. Computer 11, 4 (April 1978), 34-41. https:
//doi.org/10.1109/C-M.1978.218136

Hyunsook Do, Sebastian G. Elbaum, and Gregg Rothermel. 2005. Supporting
Controlled Experimentation with Testing Techniques: An Infrastructure and its
Potential Impact. Empirical Software Engineering: An International Journal 10, 4
(2005), 405-435.

B. Dolan-Gavitt, P. Hulin, E. Kirda, T. Leek, A. Mambretti, W. Robertson, F. Ulrich,
and R. Whelan. 2016. LAVA: Large-Scale Automated Vulnerability Addition. In
2016 IEEE Symposium on Security and Privacy (SP). 110-121. https://doi.org/10.
1109/SP.2016.15

Rafael Dutra, Kevin Laeufer, Jonathan Bachrach, and Koushik Sen. 2018. Efficient
Sampling of SAT Solutions for Testing. In Proceedings of the 40th International
Conference on Software Engineering (ICSE '18). ACM, New York, NY, USA, 549-559.
https://doi.org/10.1145/3180155.3180248

Anshul Garg and Subhajit Roy. 2015. Synthesizing Heap Manipulations via
Integer Linear Programming. In Static Analysis, Sandrine Blazy and Thomas
Jensen (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 109-127.

Jaco Geldenhuys, Matthew B. Dwyer, and Willem Visser. 2012. Probabilistic
Symbolic Execution. In Proceedings of the 2012 International Symposium on Soft-
ware Testing and Analysis (ISSTA 2012). ACM, New York, NY, USA, 166-176.
https://doi.org/10.1145/2338965.2336773

Patrice Godefroid, Michael Y. Levin, and David Molnar. 2012. SAGE: Whitebox
Fuzzing for Security Testing. Queue 10, 1, Article 20 (Jan. 2012), 8 pages. https:
//doi.org/10.1145/2090147.2094081

Sumit Gulwani. 2011. Automating String Processing in Spreadsheets Using
Input-output Examples. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL '11). ACM, New York,
NY, USA, 317-330. https://doi.org/10.1145/1926385.1926423

R. G. Hamlet. 1977. Testing Programs with the Aid of a Compiler. IEEE Trans.
Softw. Eng. 3, 4 (July 1977), 279-290. https://doi.org/10.1109/TSE.1977.231145
Y. Jia and M. Harman. 2011. An Analysis and Survey of the Development of
Mutation Testing. IEEE Transactions on Software Engineering 37, 5 (Sept 2011),
649-678. https://doi.org/10.1109/TSE.2010.62

708

ESEC/FSE 18, November 4-9, 2018, Lake Buena Vista, FL, USA

[22

(23]

[24

[25]

[26

[27

[28

[29

[32

[33

[34

(36]

[37

[38

Richard Lipton. 1971. Fault Diagnosis of Computer Programs. (1971). Student
report, Carnegie Mellon Univ.

Fan Long and Martin Rinard. 2015. Staged Program Repair with Condition
Synthesis. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering (ESEC/FSE 2015). ACM, New York, NY, USA, 166-178. https://doi.
org/10.1145/2786805.2786811

Kuldeep S Meel, Moshe Y Vardi, Supratik Chakraborty, Daniel] Fremont, Sanjit A
Seshia, Dror Fried, Alexander Ivrii, and Sharad Malik. 2016. Constrained Sampling
and Counting: Universal Hashing Meets SAT Solving.

Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chan-
dra. 2013. SemFix: Program Repair via Semantic Analysis. In Proceedings of the
2013 International Conference on Software Engineering (ICSE ’13). IEEE Press, Pis-
cataway, NJ, USA, 772-781. http://dl.acm.org/citation.cfm?id=2486788.2486890
Aina Niemetz, Mathias Preiner, and Armin Biere. 2014 (published 2015). Boolector
2.0 system description. Journal on Satisfiability, Boolean Modeling and Computa-
tion 9 (2014 (published 2015)), 53-58.

Jannik Pewny and Thorsten Holz. 2016. EvilCoder: Automated Bug Insertion.
In Proceedings of the 32Nd Annual Conference on Computer Security Applications
(ACSAC ’16). ACM, New York, NY, USA, 214-225. https://doi.org/10.1145/2991079.
2991103

Subhajit Roy. 2013. From Concrete Examples to Heap Manipulating Programs. In

Static Analysis, Francesco Logozzo and Manuel Fahndrich (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 126—149.

Yan Shoshitaishvili, Michael Weissbacher, Lukas Dresel, Christopher Salls, Ruoyu
Wang, Christopher Kruegel, and Giovanni Vigna. 2017. Rise of the HaCRS:
Augmenting Autonomous Cyber Reasoning Systems with Human Assistance. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security (CCS ’17). ACM, New York, NY, USA, 347-362. https://doi.org/10.1145/
3133956.3134105

Armando Solar-Lezama. 2008. Program Synthesis by Sketching. Ph.D. Dissertation.
University of California, Berkeley.

Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,
Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.
2016. Driller: Augmenting Fuzzing Through Selective Symbolic Execution.. In
Network and Distributed Systems Symposium (NDSS).

Laszl6 Szekeres. 2017. Memory corruption mitigation via hardening and testing.
Ph.D. Dissertation. Stony Brook University.

Marc Thurley. 2006. sharpSAT - Counting Models with Advanced Component
Caching and Implicit BCP. In Theory and Applications of Satisfiability Testing -
SAT 2006, Armin Biere and Carla P. Gomes (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 424-429.

Leslie G Valiant. 1979. The Complexity of Enumeration and Reliability Problems.
SIAM J. Comput. 8, 3 (1979), 410-421.

Sahil Verma and Subhajit Roy. 2017. Synergistic Debug-repair of Heap Ma-
nipulations. In Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering (ESEC/FSE 2017). ACM, New York, NY, USA, 163-173.
https://doi.org/10.1145/3106237.3106263

Wei Wei and Bart Selman. 2005. A New Approach to Model Counting. In Inter-
national Conference on Theory and Applications of Satisfiability Testing. Springer,
324-339.

John Wilander and Mariam Kamkar. 2002. A Comparison of Publicly Available
Tools for Static Intrusion Prevention. In Proceedings of the 7th Nordic Workshop
on Secure IT Systems.

John Wilander and Mariam Kamkar. 2003. A Comparison of Publicly Available
Tools for Dynamic Buffer Overflow Prevention. In Proceedings of the 10th Network
and Distributed System Security Symposium (NDSS).

	Abstract
	1 Introduction
	2 Overview
	3 Algorithm
	3.1 Error Transition System
	3.2 Identify a Program Trace
	3.3 Identify Transition Points in the Program
	3.4 Collect Symbolic Constraints
	3.5 Synthesize the Error Transition System (ETS)
	3.6 Embed the Synthesized ETS in the Program
	3.7 Running Example

	4 Experiments
	4.1 RQ1: Fairness of our Synthesized Bugs
	4.2 RQ2: Correlation of Bugs Injected by Apocalypse
	4.3 RQ3: Reproducibility
	4.4 RQ4: Comparison with Manually Seeded Bug
	4.5 RQ5: Searching for Stronger Transition Predicates
	4.6 RQ6: Comparison with LAVA

	5 Related Work
	6 Discussion
	References

