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Abstract

Measurements of relative paleointensity are subject to temporal averaging

and random error. Both of these errors limit our ability to construct stochas-

tic models from paleomagnetic observations. Most of the difficulties for dipole

fluctuations occur at high frequencies. We exploit this behavior to construct

a stochastic model from two recent inversions of paleomagnetic observations

for the axial dipole moment. An estimate of the noise term in the stochastic

model is recovered from a high-resolution inversion (CALS10K2), while the

drift term is estimated from the low-frequency part of the power spectrum

for a long, but lower-resolution inversion (PADM2M). Realizations of the re-

sulting stochastic model yield a composite, broadband power spectrum that

agrees well with the spectra from both PADM2M and CALS10K2. A sim-

ple generalization of the stochastic model permits predictions for the mean

rate of magnetic reversals. We show that the reversal rate depends on the

time-averaged dipole moment, the variance of the dipole moment and a slow

timescale that characterizes the adjustment of the dipole toward the time-

averaged value. Predictions of the stochastic model give a mean rate of 4.2

Myr−1, which is in good agreement with observations from marine magnetic
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anomalies. We also show that the observed reversal rate is dependent on the

temporal resolution of the observations.

Keywords: geodynamo, geomagnetic spectrum, stochastic model

1. Introduction1

The spectrum of fluctuations in the geomagnetic dipole offer insights into2

the origin of the magnetic field and the dynamics of Earth’s core (Consta-3

ble and Johnson, 2005). Each distinct timescale bears the fingerprints of4

the underlying physical processes (e.g. Sakuraba and Hamano, 2007). Paleo-5

magnetic observations are essential for characterizing the long-term behavior,6

yet no single source of information is sufficient to capture the full range of7

dynamics. Instead, an integrated approach is needed to combine different8

types of measurements into a composite record that spans a broad range of9

timescales.10

One important source of information comes from measurements of rela-11

tive paleointensity in marine sediments (Valet, 2003). Records are stacked12

and calibrated using independent estimates of absolute paleointensity to pro-13

duce models for the virtual axial dipole moment (VADM) over the past two14

million years (Valet et al., 2005; Ziegler et al., 2011). Sediments acquire a15

magnetization over several thousand years (Roberts and Winkholfer, 2004),16

so the true signal is averaged in time. Uncertainties in dating can have a sim-17

ilar affect because paleomagnetic records from different times may be stacked18

together.19

Higher resolution records have been obtained for the past 10 kyr using20

a combination of archeomagnetic and lake sediment data. These data have21
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improved spatial resolution, so the geomagnetic field can be expanded in low-22

degree spherical harmonics (e.g. Korte and Constable, 2011). Even higher23

resolution records are available from historical observations (Jackson et al.,24

2000). Taken together these records provide a comprehensive description of25

fluctuations in the dipole field, but the task of combining these results into26

a single coherent model is a challenge.27

Stochastic models are a useful tool because they enable quantitative pre-28

dictions over a range of timescales. This facility is important for combining29

different types of data with different levels of temporal resolution. There is30

also good reason to think that stochastic models can represent the relevant31

processes in the core. Stochastic models have been constructed from geody-32

namo simulations with only a few model parameters, yet these models are33

able to reproduce most of the variability in these simulations (Kuipers et al.,34

2009; Buffett et al., 2014; Bouligand et al., 2016).35

Synthetic studies using geodynamo simulations are an ideal test of the36

general approach because the simulations have relatively low numerical error37

and we can control the temporal resolution of the output. None of these38

advantages are available when we apply stochastic models to paleomagnetic39

observations. Significant errors are present in the estimates of the dipole40

field, which affect the construction of the stochastic model. We also need41

to deal with temporal averaging because it limits our ability to sample the42

stochastic process. The goal of this study is to address the practical limi-43

tations of dealing with paleomagnetic observations and to devise a strategy44

for constructing models that best explain both paleomagnetic and historical45

records. We focus primarily on the power spectrum of dipole fluctuations,46
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although we find that the resulting stochastic models can also account for47

the observed reversal rate and the duration of polarity transitions.48

2. Stochastic Description of Dipole Fluctuations49

Stochastic models were introduced by Langevin (1908) to describe Brow-50

nian motion. A small particle in water was assumed to move under the51

combined influence of viscous resistance and a random force due to collision52

with (unseen) water molecules. The viscous force was treated as a slowly53

varying deterministic quantity, whereas the force due to collisions with water54

molecules was treated as a rapidly fluctuating random process.55

Brownian motion serves as a loose analogy for the evolution of the ge-56

omagnetic dipole moment. The deterministic part of the dipole moment57

can be represented by the opposing influences of dipole decay and the time-58

averaged dipole generation. Rapid fluctuations in dipole generation about59

the time average can be attributed to (unseen) turbulent flow, which we60

treat as a random process. We denote the axial dipole moment by x(t)61

and describe its time evolution using a stochastic differential equation (Van62

Kampen, 1992)63

dx

dt
= v(x) +

√
D(x)Γ(t) , (1)

where the drift term, v(x), describes the deterministic part of the evolution64

and the noise term, D(x), defines the amplitude of the random part. The65

time dependence of the random process, Γ(t), is assumed to be Gaussian66

with a vanishing time average67

< Γ(t) >= 0 . (2)
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We also assume that the correlation time of the noise source is short compared68

with the sampling of x(t). In this case the autocovariance function of Γ(t)69

can be approximated by a Dirac delta function,70

< Γ(t1)Γ(t2) >= 2δ(t1 − t2) , (3)

where the factor of two is a common convention (e.g. Risken, 1989).71

Estimates for v(x) and D(x) can be extracted from a realization of the72

stochastic process (e.g. Friedrich et al., 2011). The drift term is defined by73

< x(t+ ∆t)− x(t) >= v(x)∆t+O(∆t2) (4)

and the noise term can be approximated by74

< [x(t+ ∆t)− x(t)]2 >= 2D(x)∆t+O(∆t2) , (5)

where the time averages are taken for a specific value of x = x(t). In practice,75

the dipole moment is divided into a finite number of bins and the time average76

is evaluated for each bin. The time increment, ∆t, is chosen to be long enough77

that Γ(t) and Γ(t+ ∆t) are uncorrelated, but short enough that higher order78

terms in ∆t are small enough to neglect.79

Applying (4) and (5) to the output of a geodynamo model (Buffett et80

al., 2014; Meduri and Wicht, 2016) shows that the drift term, v(x), is well81

represented by82

v(x) = −γ(x− < x >) , (6)

where < x > denotes the time average and γ is a constant that defines the83

inverse timescale for slow adjustments of the dipole. A similar representation84

for v(x) has been recovered from VADM estimates (Brendel et al., 2007;85

5



Buffett et al., 2013). Indeed very similar values for the constant, γ ≈ 3486

Myr−1, are reported for the SINT-2000 model of Valet et al. (2005) and the87

PADM2M model of Ziegler et al. (2011). By comparison, the noise term,88

D(x), has a weaker dependence on x. It suffices for our purposes to adopt89

the approximation D(x) = Deq, where Deq denotes the value of the noise90

term at x =< x >.91

Simple representations for the drift and noise terms permit closed-form92

solutions for the power spectrum of fluctuations about the time average (e.g.93

ε(t) = x(t)− < x >). Defining the Fourier transform of ε(t) by94

ε(f) =

∫ ∞
−∞

ε(t)e−i2πft dt , (7)

the power spectrum becomes (Buffett and Matsui, 2015)95

Sε(f) = ε(f)ε(f)∗ =
Deq

(γ2 + 4π2f 2)
SΓ(f) , (8)

where the power spectrum of the noise is96

SΓ(f) = Γ(f)Γ(f)∗ = 2 . (9)

Here ∗ denotes the complex conjugate.97

The theoretical spectrum in (8) agrees well with a direct calculation of98

the power spectrum from a geodynamo model (see Fig. 1). Departures at99

high frequency can be improved by allowing for the influence of correlated100

noise (see Buffett and Matsui, 2015, for details). The resulting spectrum for101

correlated noise (denoted by Scε (f)) reduces the power at high frequencies,102

but it does not change the behavior at low frequencies. It is important to note103

that the drift and noise terms are recovered from the geodynamo model using104

(4) and (5) with a time difference of ∆t = 1 kyr. No long-period information105
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goes into the estimation of v(x) and D(x), yet the resulting predictions are106

in good agreement with the low-frequency part of the spectrum. This result107

suggests that simple stochastic models offer a good description of long-period108

dipole fluctuations.109

3. Recovering the Drift and Noise from Paleomagnetic Models110

Several complications arise when the drift and noise terms are computed111

from paleomagnetic models of the dipole moment. One complication is due to112

random error and the other is due to temporal averaging of the fluctuations.113

We explore both of these complications before proposing a possible solution.114

3.1. Influence of Random Error115

Random error alters the estimates of the dipole moment, so the drift and116

noise terms are computed from117

y(t) = x(t) + η(t) (10)

which includes a time-dependent error η(t). The drift term becomes118

v(y) =
< y(t+ ∆t)− y(t) >

∆t
(11)

or119

v(y) = v(x) +
< η(t+ ∆t)− η(t) >

∆t
(12)

on substituting for y(t) from (10). The presence of random error alters v(y)120

but the time average of the error in (12) is expected to vanish. The same is121

not true for the noise term. Using y(t) to evaluate D(y) gives122

D(y) =
< [y(t+ ∆t)− y(t)]2 >

2∆t
(13)
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which can be rearranged into the form123

D(y) = D(x) +
< ∆x∆η >

∆t
+
< ∆η2 >

2∆t
(14)

on introducing ∆x = x(t+ ∆t)−x(t) and ∆η = η(t+ ∆t)−η(t). Even when124

∆x and ∆η are uncorrelated and η(t) represents the effects of white noise,125

we are left with (Hoze and Holeman, 2015)126

D(y) = D(x) +
σ2
η

∆t
(15)

where σ2
η is the variance of the error. Thus the influence of random error127

becomes acute when ∆t is small. On the other hand, larger ∆t causes the128

higher order terms in (4) and (5) to become more important.129

We illustrate the problem using a synthetic example. Consider a stochas-130

tic model with a linear drift term (γ = 34 Myr−1 or 0.034 kyr−1) and a131

constant noise term (Deq = 69 × 1044 A2 m4 Myr−1 or 0.069 × 1044 A2 m4
132

kyr−1). These numerical values were recovered by Buffett et al. (2013) from133

model PADM2M of Ziegler et al. (2011). A numerical realization of the134

stochastic model is run for 2 Myr with values of x(t) recorded at 1 kyr in-135

tervals. Next we add uncorrelated and normally distributed random error136

to produce a noisy record, y(t), where the standard deviation of the error is137

ση = 0.5× 1022 A m2. Finally, we recover D(x) and D(y) from x(t) and y(t),138

respectively, assuming that both terms are independent of the amplitude of139

the dipole moment (i.e. a single bin for both x or y).140

Figure 2 shows the estimates for D(x) and D(y) as a function of ∆t. At141

the shortest time difference, ∆t = 1 kyr, we obtainD(x) = 0.068±0.002×1044
142

A2 m4 kyr−1 and D(y) = 0.297 ± 0.010 × 1044 A2 m4 kyr−1, where the143

uncertainties represent one standard deviation. These results are consistent144
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with expectations from (15). Large deviations from the true value of D are145

found with the noisy record when ∆t is small. Smaller deviations occur as ∆t146

increases, although these errors remain relatively large. On the other hand,147

the value recovered from the error-free record, x(t), is reliable at small ∆t148

but departs from the known value as ∆t becomes larger. Consequently, we149

cannot deal with the influence of random error by arbitrarily increasing ∆t.150

3.2. Influence of Temporal Averaging151

Temporal averaging of the paleomagnetic record can arise in several ways.152

Errors in dating allows measurements at different times to be stacked. In153

addition, magnetization is acquired in sediments over several thousand years154

(Roberts and Winkholfer, 2004). A prolonged acquisition time removes high-155

frequency variations and affects our ability to sample the stochastic process156

at short ∆t. One way to deal with the problem of averaging is to treat the157

measured record as a filtered version of the true signal (e.g. Leonard, 1974).158

We define the measured signal, x̄(t), as159

x̄(t) =

∫ ∞
−∞

x(t′)g(t− t′) dt (16)

where the filter function, g(t), smooths the true signal, x(t), over some pre-160

scribed time interval (denoted by T ). Two popular filter functions are the161

box-car and gaussian filters (see Fig. 3). The true signal is convolved with a162

suitable filter function to produce the measured record.163

The paleomagnetic record, x̄(t), still obeys a stochastic differential equa-164

tion, but it is not the same as the differential equation in (1). Applying the165

filter to (1) gives166

dx̄

dt
= −γ(x̄− < x >) +DeqΓ̄(t) (17)
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where we have adopted a constant noise term and a linear drift term. The167

only difference in (17) is that the random process is driven by Γ̄(t) rather168

than Γ(t). A power spectrum for ε̄ = x̄− < x > is defined by taking the169

Fourier transform of (17). Solving for ε̄(f) gives170

Sε̄(f) = ε̄(f)ε̄(f)∗ =
Deq

(γ2 + 4π2f 2)
SΓ̄(f) (18)

where171

SΓ̄(f) = Γ̄(f)Γ̄(f)∗ = 2 g(f) g(f)∗ (19)

and g(f) is the Fourier transform of the filter function. Equation (19) follows172

from the convolution theorem (e.g. Bracewell, 1999) because convolution in173

the time domain174

Γ̄(t) =

∫ ∞
−∞

Γ(t′)g(t− t′) dt (20)

corresponds to multiplication in the frequency domain175

Γ̄(f) = Γ(f)g(f) . (21)

Power spectra for x(t) and x̄(t) are the same at low frequencies because176

g(f)→ 1 as f → 0 (see Fig 3).177

We illustrate the consequences of time averaging using the stochastic178

model from Section 3.1. A 2-Myr realization is sampled at 1-kyr intervals and179

a smoothed version is produced using a box-car filter with an averaging time180

of T = 3 kyr. Figure 4 shows the power spectrum of the filtered signal, x̄(t),181

compared with the theoretical spectrum from (18). We also show the power182

spectrum for the original (unfiltered) time series, x(t), versus the theoretical183

spectrum from (8). Both theoretical spectra are in good agreement with the184

direct calculations from x(t) and x̄(t). Undulations in the spectrum of x̄(t) is185
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a consequence of the box-car filter, which is oscillatory in the Fourier domain.186

The main conclusion from this example is that temporal averaging affects187

only the high-frequency behavior of the record. The filtered dipole moment188

still obeys a stochastic differential equation and the spectrum is still reliably189

predicted at low frequencies from the drift and noise terms. Conversely, the190

low-frequency part of the spectrum constrains the drift and noise terms of191

the stochastic model.192

Figure 5 shows the noise term, D, recovered from x(t) and x̄(t) as a193

function of ∆t. The most reliable estimate for D comes from x(t) at the194

shortest possible ∆t (1 kyr in this case). Temporal filtering substantially195

reduces the estimate of D at low ∆t, although the recovered value approaches196

a constant once ∆t exceeds the filter width T . A rule of thumb based on the197

spectrum of the filter (say g(f) > 0.9) is that ∆t should be roughly twice T .198

Sampling the process at ∆t = 6 kyr gives an estimate for D that is nearly199

independent of ∆t. Unfortunately, this estimate is well below the known200

value (e.g. 0.044 versus 0.069). A similar departure in D at ∆t = 6 kyr201

is inferred from x(t) (e.g. 0.063 versus 0.069), although the error from the202

unfiltered time series is much smaller.203

The preceding results show that temporal averaging can affect the am-204

plitude noise term, particularly when ∆t is smaller than the duration of205

the averaging. Estimates for D appear to approach a constant value once206

∆t > 2T , although this constant can be significantly less than the true value.207

On the other hand, random noise causes the recovered estimate of D to ex-208

ceed the known value by an amount σ2
η/∆t, where σ2

η is the variance of the209

error. Both temporal averaging and random noise have the largest affect on210
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the high-frequency part of the spectrum. Averaging removes power at high211

frequency, whereas random error introduces power across all frequencies, al-212

though it is most evident at high frequency. Consequently, the low-frequency213

part of the spectrum is relatively unaffected by both sources of error. We214

exploit this result to construct a broadband paleomagnetic power spectrum.215

4. A Composite Paleomagnetic Power Spectrum216

We use two sources of information to construct the paleomagnetic spec-217

trum. Model PADM2M of Ziegler et al. (2011) gives the axial dipole moment218

over the past 2 Myr at intervals of 1 kyr, whereas CALS10K2 (Constable et219

al., 2016) gives the axial dipole moment (and other low-degree components220

of the magnetic field) over the past 10 kyr at intervals of 50 years. Figure221

6 shows the power spectrum for each model, calculated using a multi-taper222

method (function pmtm in Matlab). We also show two theoretical spectra.223

One spectrum is predicted using the parameters of a simple stochastic model224

derived from PADM2M (Buffett et al., 2013). We take γ = 34 Myr−1 and225

let Deq = 69× 1044 A2 m4 Myr−1 (or 0.069× 1044 A2 m4 kyr−1). The second226

spectrum is obtained by applying a gaussian filter to the stochastic model,227

using an averaging time of T = 2.4 kyr. The sampling used to construct the228

stochastic model from PADM2M was ∆t = 5 kyr, so the filter required to229

account for the power spectrum of PADM2M is broadly compatible with the230

proposed rule of thumb ∆t ≈ 2T .231

CALS10K2 possesses more power than PADM2M at overlapping frequen-232

cies. One interpretation is that temporal averaging has a greater influence233

on PADM2M, which acts to reduce the power at high frequencies. We might234
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remedy this problem by seeking an independent estimate for the noise term235

from CALS10K2. Figure 7 shows the resulting estimates for D as a function236

of ∆t. The noise term initially increases with ∆t, implying some tempo-237

ral averaging or possibly correlated noise in the stochastic model. A simple238

parametric fit of the form239

D(∆t) = Deq(1− e−∆t/T ) (22)

gives Deq = 0.34 × 1044 A2 m4 kyr−1 (340 × 1044 A2 m4 Myr−1) for the240

asymptotic value of the noise term. We fit (22) through the lower limit of241

the estimates in Fig. 7 to account for the influence of random error (which242

tends to increase D). A correlation time of T = 120 years suggests that the243

sampling of the stochastic process should be restricted to ∆t > 240 years.244

(We adopt ∆t = 300 years as a lower limit in our subsequent discussion.)245

The value of the noise term recovered from CALS10K2 is more than four246

times larger than the value we recovered from PADM2M, but it can account247

for the higher power in the CALS10K2 spectrum.248

Simply increasing the value of D in the stochastic model predicts more249

power at low frequencies, which is incompatible with the low-frequency part250

of the PADM2M spectrum. Since we expect random error and temporal251

averaging to have less affect at low frequencies, we choose to alter both D252

and γ to maintain agreement with PADM2M at low frequencies. In effect,253

we are use the low-frequency spectrum of PADM2M to estimate γ once D254

is inferred from CALS10K2. The predicted power at low frequency is D/γ2,255

so we take γ = 75 × 1022 A m2 Myr−1 and D = 340 × 1044 A2 m4 Myr−1
256

to retain consistency with the low-frequency power in PADM2M. While the257

slope of the drift term is more than twice the value recovered from PAD2M258
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using (4), it is in rough agreement with the value γ = 70× 1022 A m2 Myr−1
259

estimated for the PISO-1500 model (Channell et al., 2009). (The noise term260

for PISO-1500 near x =< x > is 540×1044 A2 m4 Myr−1, which is somewhat261

higher than the value recovered from CALS10K2. Interestingly, the preferred262

sampling interval for PISO-1500 is 4 to 5 kyr, which is close to the sampling263

interval adopted previously for PADM2M and SINT-2000 (Buffett et al.,264

2013). Thus the time averaging in all three VADM models is roughly the265

same).266

We test the revised values for γ and D by running a series of 100 real-267

izations of the stochastic model. The model parameters are fixed but the268

initial conditions and details of the each realization differ. The realizations269

are run for 2 Myr and the value of the dipole moment is recorded every 300270

years, corresponding to the sampling interval inferred from CALS10K2. It is271

possible that the short averaging time (nominally 120 years) corresponds to272

the lifetime of convective eddies in the core. We could account for this effect273

in the stochastic model by introducing a correlated noise source (Buffett and274

Matsui, 2015), but we avoid this complication by choosing ∆t to ensure the275

noise source, Γ(t) is uncorrelated. A power spectrum is computed for each276

realization and the results are superimposed on the power spectra computed277

from PADM2M and CALS10K2 (see Fig 8a). The cloud of power spectra278

for the realizations overlap the low-frequency part of the PADM2M power279

spectrum and most of the power spectrum for CALS10K2 below 1 cycle/kyr.280

However, a direct comparison of the realizations with the power spectrum281

for CALS10K2 is not appropriate because the CALS10K2 spectrum is com-282

puted from a 10-kyr time series. A better comparison would rely on 10-kyr283
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realizations (see Fig8b). A series of shorter realizations produces a cloud of284

power spectra that overlap the computed power spectrum for CALS10K2,285

suggesting that the revised stochastic model is broadly consistent with the286

CALS10K2 model.287

We also test the stochastic model against historical observations (Jackson288

et al., 2000). A steady decrease in the dipole field has lowered the dipole289

moment by ∆x = 0.68 × 1022 A m2 over a 150-year interval between 1860290

and 2010 (Gillet et al., 2013). Such a change is too large to be caused by291

the drift term, so it must be associated with the noise term. The root-292

mean-square (rms) variation in the dipole moment due to the noise term is293

< ∆x2 >1/2=
√

2D∆t. Using the revised estimate of D and ∆t = 0.15 kyr,294

we find < ∆x2 >1/2= 0.32×1022 A m2. Thus the historical variation is larger295

than the expected variation, but it is not implausible. A realization of the296

noise process is described by (Risken, 1989)297

∆x =
√

2D∆t w (23)

where w is a random variable drawn from a standard normal distribution298

(mean of zero and variance of 1). We require w = 2.13 to account for the299

recent variation in the dipole field, which would occur about 1.7% of the300

time. The actual probability could be somewhat lower if the noise source is301

correlated at ∆t = 0.15 kyr (a likely case given our estimate of the correlation302

time from CALS10K2). The preceding estimate would then represent an303

overestimate of the probability of occurrence. By comparison, the original304

value of D = 0.069×1044 A2 m4 kyr−1 from PADM2M would require w = 4.73305

to account for the historical variation. Such an event would occur less than306

0.0001% of the time. Such an event is fairly unlikely, so the historical record307
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lends support to the larger value for the noise term.308

Another useful prediction of the stochastic model is the variance of the309

dipole moment. We obtain an expression for the variance, σ2
x, by integrating310

the power spectrum over frequency311

σ2
x =

∫ ∞
−∞

Sε(f) df =
D

γ
. (24)

The revised values for D = 0.34×1044 A2 m4 kyr−1 and γ = 0.075 kyr−1 give312

σx = 2.13×1022 A m2. While this value exceeds the estimate σx = 1.48×1022
313

A m2 for PADM2M (Ziegler et al., 2011), it is not too far from the estimate314

σx = 1.97 × 1022 A m2 for SINT-2000 (Valet et al., 2005) and somewhat315

smaller than the estimate σx = 2.68 × 1022 A m2 for PISO-1500 (Channell316

et al., 2009). Thus the predicted variance lies within the range of estimates317

from recent VADM models.318

5. Geomagnetic Polarity Reversals319

A more general representation of the drift term is needed to describe ge-320

omagnetic polarity reversals. The linear approximation in (6) is useful when321

x varies about < x >, but its utility ceases when x approaches zero during322

a reversal. The invariance of the magnetic induction equation to a change323

in the sign of the magnetic field suggests that v(x) is an odd function of x.324

We expect the drift term to adjust x toward the negative value of the time325

average once x changes sign. A simple extension of the linear approximation326

is327

v(x) = − γ x

< x >
(x− < x >) for x ≥ 0 , (25)

where the expected symmetry is obtained by taking v(−x) = −v(x). The328

gradient of v(x) at x =< x > is consistent with the linear approximation329
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in (6), but the value of the drift now vanishes at x = 0. It is convenient to330

represent the drift as the negative gradient of a potential U(x). Integrating331

(25) for the U(x) gives332

U(x) =
1

2

γx2

< x >

[
2

3
x− < x >

]
for x ≥ 0 (26)

where the integration constant is chosen to make U(0) = 0. A comparison333

of U(x) with the potential recovered from the PADM2M model of Ziegler et334

al. (2011) is shown in Fig. 9. The barrier at x = 0 is comparable for both335

potentials, but the amplitudes of U(x) at large |x| differ. This is mainly336

a consequence of increasing γ in the revised stochastic model. A larger γ337

produces a narrower potential well and limits the variability of x at a fixed338

level of noise, consistent with the predicted standard deviation σx =
√
D/γ.339

We now use the generalization of the drift in (25) to predict the rate of340

magnetic reversals and the duration of polarity transitions.341

5.1. Rates of Reversals342

Random fluctuations in x enable the dipole to jump from one potential343

well to the other, leading to a magnetic reversal. The average frequency344

of this transition can be predicted using the stochastic model. Kramers345

(1940) derived an approximation expression for the reversal rate, r, when346

the barrier ∆U = U(0) − U(< x >) is large compared with the noise D.347

Kramers’ formula in our notation gives348

r =
γ

2π
e−∆U/D . (27)

Substituting for349

∆U =
1

6
γ < x >2 (28)
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from (26) and using the definition of the variance from (24) gives350

r =
γ

2π
e−<x>

2/(6σ2
x) . (29)

Remarkably, the rate of reversal depends on the time average, < x >, the351

variance, σ2
x, and the timescale for slow adjustments of the dipole field, γ−1;352

the slow timescale is thought to reflect the decay time of dipole fluctuations353

(e.g. Gubbins and Roberts, 1987). Geodynamo simulations suggest that the354

dipole fluctuations can be represented by the first few decay modes (Buffett355

et al., 2014). Using < x >= 5.3 × 1022 A m2, σx = 2.13 × 1022 A m2 and356

γ = 75 Myr−1 gives r = 4.2 reversals per Myr, which is comparable to the357

observed rate over the past 30 Myr (Lowrie and Kent, 2004). By comparison,358

a 60-Myr realization of the stochastic process yields 3.9 reversals per Myr359

when the realization is filtered to a resolution of 30 kyr, comparable to the360

resolution of marine magnetic anomalies (Gee and Kent, 2015). The need361

to filter the realization is connected to the complexity of polarity transitions362

when the noise term is large. We explore this question in the next section.363

5.2. Duration of Polarity Transitions364

The duration of polarity transitions depends on how the transitions are365

defined. A definition based on magnetic intensity might depend on the time366

required for the dipole to recover to the long-term average after a change367

in sign (i.e. a recovery time). This particular definition is useful for our368

purposes because it can be computed from the stochastic model. We expect369

the drift term to be small near x ≈ 0, so the evolution of the dipole during370

the transition is dominated by the noise term. A useful approximation for371

the time required for the field to rise above a particular threshold, xt, is372
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(Buffett, 2015)373

τ =
4x2

t

D(0)π2
(30)

where D(0) refers to the value of the noise term at x = 0. The general form374

of (30) is characteristic of a diffusive process, which includes no contribution375

from the drift term. A more exact treatment of the problem accounts for the376

drift term as x rises toward the threshold xt. Figure 10 shows a comparison of377

the approximation in (30) with the value computed from a numerical solution378

of the Fokker-Planck equation (e.g. Risken, 1989). Including the drift term379

shortens the recovery, but the difference is relatively small when we adopt380

the revised value for D. This implies that the recovery of the magnetic381

field following a reversal is driven mainly by noise (e.g. random turbulent382

fluctations in the field generation).383

We can compute a recovery time from the PADM2M model by interpo-384

lating the time when x rises above the time average after a reversal. Each385

reversal gives a different value for τ , but the average and its standard de-386

viation are shown in Fig. 10. The agreement with theory is surprisingly387

good. We also show the time required for the field to drop from the time-388

averaged value into a reversal (i.e. a decline time). The mean decline time389

from PADM2M is 41 kyr, whereas the mean recovery time is 27 kyr. This390

asymmetry is consistent with previous observations (Valet and Meynadier,391

1993). (The decline time was incorrectly reported as the recovery time in392

Buffett (2015), although the main point in that study was that these short393

durations require a noise term in excess of 300 × 1044 A2 m4).394

The difference between the recovery and decline times can be attributed395

to the role of the drift term. The recovery time is shorter than the ap-396
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proximation in (30) because the drift term drives the dipole moment toward397

the time average, increasing the rate of adjustment after a reversal. Con-398

versely, the dipole must work against the drift term during the decline phase.399

The approximation in (30) lies roughly midway between the estimates from400

PADM2M, which suggests that the drift lengthens and shortens the adjust-401

ment by comparable amounts, relative to a purely diffusive process with no402

drift term.403

It is reasonable to question whether the PADM2M model can adequately404

resolve the recovery time when the short-period behavior is not sufficient405

to compute D. A transition that lasts τ ≈ 30 kyr would correspond to406

a frequency of f = 1/2τ , assuming the transition represents half a cycle.407

A nominal frequency of 0.017 cycles kyr−1 lies in the part of the spectrum408

where PADM2M and the stochastic model are broadly consistent (see Fig.409

8). Consequently, there is internal consistency in our argument that the410

stochastic model is in agreement with both the transition duration and low-411

frequency power spectrum from PADM2M. It is encouraging that the same412

stochastic model gives a reasonable estimate for the reversal rate, particularly413

when no information about the reversal rate is used in the construction of414

the stochastic model.415

The dominance of the noise term during a polarity transition has inter-416

esting consequences for the complexity of reversals. A process that is driven417

solely by the noise term is analogous to a random walk. The probability of418

stepping back and forth across x = 0 increases with the number of steps n.419

Dasgupta and Rubin (1998) show that the expected number of zero-crossings420

is proportional to
√
n. As we decrease the step size in a numerical realiza-421
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tion, we take a large number of steps through the transition and produce422

a large number of zero-crossings during a single transition. In practice the423

time step is limited by the correlation time of the noise source. Independent424

realizations of the noise process require the time step to exceed the correla-425

tion time of the noise, so the number of steps through a transition cannot be426

arbitrarily large. Still, several zero crossings are likely.427

Numerical realizations with D(0) = 0.3× 1044 A2 m4 kyr−1 (close to the428

value proposed here) produced multiple zero-crossings in about 50% of the429

polarity transitions when ∆t = 1 kyr (Buffett, 2015). The average number430

of zero crossings is 2.8, but this number would go up if ∆t = 0.3 kyr is a431

more reasonable estimate for the time step. We could expect 3× more time432

steps through a transition and roughly
√

3× more zero crossings (on aver-433

age), corresponding to a total of 5 changes in sign during a transition. To434

make meaningful comparisons with geological observations we would want435

to remove these short-period polarity changes by filtering the numerical re-436

alization to the resolution of the observations. In the previous section we437

used T = 30 kyr to compare the reversal rate with estimates from marine438

magnetic anomalies.439

6. Conclusions440

Stochastic models have been successfully tested using geodynamo simulti-441

ons, but their use with paleomagnetic observations requires departures from442

the standard approach. Two main difficulties are identified. The first is443

due to random error in the estimates of the dipole moment, which cause the444

noise term to be over-estimated. The significance of this problem depends445
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on the sampling interval, ∆t, and the largest affects occur at short ∆t. A446

second difficulty arises from temporal averaging of dipole fluctuations, either447

due to errors in dating or gradual acquisition of magnetization in sediment.448

In either case, temporal averaging reduces the noise term at short ∆t, al-449

though estimates for D often converge to a constant value as ∆t increases.450

Unfortunately, the noise term does not necessarily converge to the correct451

value.452

An important feature of both random error and temporal averaging is453

that the largest influence is predicted at high frequency. Because the low-454

frequency behavior is less affected, we can use the low-frequency part of455

the observed power spectrum as a constraint on the stochastic model. We456

illustrate the approach using the PADM2M model of Ziegler et al. (2011) and457

the CALS10K2 model of Constable et al. (2016). An estimate of the noise458

term is recovered from the high-resolution CALS10K2 model, while the slope459

of the drift term, γ, is estimated from the low-frequency part of the spectrum460

for PADM2M. Realizations of the stochastic model yield a composite power461

spectrum that agrees reasonably well with both PADM2M and CALS10K2.462

A simple generalization of the stochastic model is needed to allow large463

deviations from the time-averaged moment. This modification enables pre-464

dictions for the mean rate of reversal. A reversal in the stochastic model465

occurs when a realization jumps between the minima in a double-well poten-466

tial. Application of Kramers’ formula (Kramers, 1940) gives a surprisingly467

simple expression for the reversal rate. We find that the reversal rate can468

be defined in terms of the time-averaged dipole moment, the variance of the469

dipole moment and a slow timescale that characterizes the adjustment of470
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the dipole toward the time-averaged value. Using values from the stochas-471

tic model gives a mean rate of 4.2 Myr−1, which is good agreement with472

observations (Lowrie and Kent, 2004). Comparable rates are obtained from473

realizations of the stochastic process, provided we filter the realization to the474

same resolution as the observations. The need for temporal filtering arises475

from the importance of noise in driving polarity transitions. Multiple po-476

larity changes can occur within a single transition field, so a quantitative477

comparison with observations depends on the temporal resolution of those478

observations.479

Acknowledgment480

This work is supported by the National Science Foundation (EAR-1644644)481

and by a Summer Undergraduate Research Fellowship (SURF) from Caltech.482

Brendel, K., Kuipers, J., Barkema, G.T., Hoyng, P., 2007. An analysis of the483

fluctuations of the geomagnetic dipole, Phys. Earth Planet. Inter., 162,484

249-255.485

Bouligand, C., Gillet, N., Jault, D., Schaeffer, N., Fournier, A. and Aubert,486

J., 2016. Frequency spectrum of the geomagnetic field harmonic coefficients487

from dynamo simulations, Geophys. J. Int., 207, 1142-1157.488

Bracewell, R., 1999. The Fourier Transform and its Applications, 3rd ed.,489

McGraw-Hill, New York.490

Buffett, B.A., Ziegler, L. and Constable, C.G., 2013. A stochastic model for491

palaeomagnetic field variations, Geophys. J. Int., 195, 86-97.492

23



Buffett, B.A., King, E.M. and Matsui, H., 2014. A physical interpretation of493

stochastic models for fluctuations in the Earth’s dipole, Geophys. J. Int.,494

199, 597-608.495

Buffett, B. and Matsui, H., 2015. A power spectrum for the geomagnetic496

dipole moment, Earth Planet. Sci. Lett., 411, 20-26.497

Buffett, B., 2015. Dipole fluctuations and the duration of geomagnetic po-498

larity transitions, Geophys. Res. Lett., 42, 7444-7451.499

Channell, J.E.T., Xuan, C., and Hodell, D.A., 2009. Stacking paleointensity500

and oxygen isotope data for the last 1.5 Myr (PISO-1500), Earth Planet.501

Sci. Lett., 283, 14-23.502

Constable, C. and Johnson, C., 2005. A paleomagnetic power spectrum,503

Phys. Earth Planet. Inter., 153, 61-73.504

Constable, C., Korte, M. and Panovska, S., 2016. Persistent high paleosecular505

variation activity in southern hemisphere for at least 10,000 years, Earth506

Planet. Sci. Lett., 453, 78-86.507

Dasgupta, A. and Rubin, H., 1998. Zero crossings of a gaussian process ob-508

served at discrete random times and some peculiar connections to the509

simple random walk, Technical Report 97-23, Department of Statistics,510

Purdue University, West Lafayette, IN.511

Friedrich, R., Peinke, J., Sahimi, M., and Reza Rahimi Tabar, M., 2011.512

Approaching complexity by stochastic methods: From biological system513

to turbulence, Phys. Rep., 506, 87-162.514

24



Gee, J.S. and Kent, D.V., 2015. Sources of oceanic magnetic anomalies and515

the geomagnetic polarity timescale, Treatise on Geophysics, 2nd Ed., Vol.516

5, 419-460.517

Gillet, N., Jault, D., Finlay, C. and Olsen, N., 2013. Stochastic model of the518

Earth’s magnetic field: Inversion for covariances over the observatory era,519

Geochem. Geophys. Geosys., 14, 766-786.520

Gubbins, D. and Roberts, P.H., 1987. Magnetohydrodynamics of the Earth’s521

core, in Geomagnetism, vol. 2, ed. Jacobs, J.A., Academic Press.522

Hoze, N. and Holeman, D., 2015. Recovering a stochastic process from super-523

resolution noisy ensembles of single particle trajectories, Phys. Rev. E., 92,524

052109.525

Jackson, A., Jonker, A.R.T., and Walker, M.R., 2000. Four centuries of ge-526

omagnetic secular variation from historical records, Phil. Trans. R. Soc.527

Lond. A, 358, 957-990.528

Kramers, H.A., 1940. Brownian motion in a field of force and the diffusion529

model of chemical reactions, Physica, 7, 284-304.530

Kuipers, J., Hoyng, P., Wicht, and Barkema, G.T., 2009. Analysis of the531

variability of the axial dipole moment of a numerical geodynamo model,532

Phys. Earth Planet. Inter., 173, 228-232.533

Korte, M. and Constable, C.G., 2011. Improving geomagnetic field recon-534

structions for 0-3 ka, Phys. Earth Planet. Inter., 188, 247-259.535

25



Leonard, A., 1974. Energy cascade in large-eddy simulations of turbulent536

flows, Adv. Geophys.,18, 237-248.537

Lowrie, W. and Kent, D.V., 2004. Geomagnetic polarity timescale and re-538

versal frequency regime, in Channell, J.E.T, Kent, D.V., Lowrie, W. and539

Meert, J., (eds.) AGU Geophysical Monograph, 145, Timescales of the Pale-540

omagnetic Field, 117-129, Washington DC, American Geophysical Union.541

Matsui, H., King, E. and Buffett, B., 2014. Multi-scale convection in a542

geodynamo simulation with uniform heat flux along the outer boundary,543

Geochem. Geophys. Geosys., 15, doi: 10.1029/2014GC005432.544

Meduri, D.G. and Wicht, J., 2016. A simple stochastic model for dipole545

moment fluctuations in numerical dynamo simulations, Front. Earth Sci.,546

4, doi: 10.3389/feart.2016.00038.547
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Figure 1: A power spectrum of dipole fluctuations from a numerical geodynamo simulation

(Matsui et al., 2014), compared to predictions from two stochastic models. One stochastic

model assumes a white noise source and the other assumes correlated noise. Both models

are capable of predicting the low-frequency fluctuations even though the drift and diffusion

terms are constructed from short-period information.
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Figure 2: Estimates for the noise term, D, computed from exact x(t) and noisy y(t) time

series. Addition of random error to y(t) causes D(y) to depart from the known value

D = 0.069 × 1044 A2 m4 kyr−1. Calculations using x(t) reproduce the known value to

within the uncertainties at ∆t = 1 kyr. Discrepancies in D(x) increase with ∆t due to

unmodelled contributions from higher-order powers in ∆t.
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Figure 3: (A) Two commonly used filters are the gaussian, g(t) =

(6/πT 2)1/2 exp(−6t2/T 2), and the box car, g(t) = 1/T for |t| < T/2, where T is

the averaging time. (B) Fourier transforms are given by g(f) = exp(−4π2f2T 2/24) and

g(f) = sin(πfT )/πfT , respectively.
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Figure 4: Power spectra of x(t) (blue) and x̄(t) (green) compared with theoretical spectra

Sε(f) and Sε̄(f) (see text). Undulations in the filtered spectrum arise from the box-car

filter, which is oscillatory in the frequency domain.
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Figure 5: Estimates for the noise term, D, computed from exact x(t) and filtered x̄(t) time

series. Temporal averaging substantially reduces the noise term when ∆t is less than the

averaging time T = 3 kyr. Estimates for D(x̄) approach a constant value once ∆t > 2T .
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Figure 6: Power spectra computed from PADM2M and CALS10K2 using a multi-taper

method. Theoretical spectra Sε(f) and Sε̄(f) are based on the stochastic model derived

from PADM2M and a filtered version of the stochastic model. We apply a gaussian filter

with an averaging time of T = 2.4 kyr to account for the abrupt decrease in power of

PADM2M at high frequency.
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Figure 7: Estimates for the noise term, D, recovered from CALS10K2 as a function of

sampling time ∆t. A simple parametric fit to D(∆t) in (22) gives D(∞) = 0.34× 1044 A2

m4 kyr−1. The effective correlation time of the noise source is T = 120 years.
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Figure 8: (A) Power spectra from 100 realizations of the stochastic model (in gray) com-

pared with the power spectra computed from PADM2M (blue) and CALS10K2 (green).

The ensemble of realizations is compatible with PADM2M at low frequencies and much of

the spectrum for CALS10K2 below 1 cycle/kyr. (B) Power spectra of 100 shorter (10-kyr)

realizations of the stochastic model.
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Figure 9: Potential U(x) computed from (26) compared with a potential recovered from

PADM2M. Both potentials have comparable barriers, ∆U , but different amplitudes at

large |x|. The width of the potential well is defined by the second derivative U ′′(x) = −γ

at x = ± < x >. We use γ = 73 Myr−1 for the potential in (26), but obtained γ = 34

Myr−1 from PADM2M.
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Figure 10: Mean recovery time for the dipole moment following a reversal. A numerical

solution of the Fokker-Planck equation (theory) is compared with the approximation in

(30), where the drift term is assumed to vanish. Discrete estimates from PADM2M are

shown for the recovery and decline times. The recovery time agrees well with theory,

whereas the decline time exceeds the recovery time, probably due to contributions from

the drift term. The approximation in (30), which includes no contribution from the drift

term, lies roughly midway between the recovery and decline times from PADM2M.

37


