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Abstract

Measurements of relative paleointensity are subject to temporal averaging
and random error. Both of these errors limit our ability to construct stochas-
tic models from paleomagnetic observations. Most of the difficulties for dipole
fluctuations occur at high frequencies. We exploit this behavior to construct
a stochastic model from two recent inversions of paleomagnetic observations
for the axial dipole moment. An estimate of the noise term in the stochastic
model is recovered from a high-resolution inversion (CALS10K2), while the
drift term is estimated from the low-frequency part of the power spectrum
for a long, but lower-resolution inversion (PADM2M). Realizations of the re-
sulting stochastic model yield a composite, broadband power spectrum that
agrees well with the spectra from both PADM2M and CALS10K2. A sim-
ple generalization of the stochastic model permits predictions for the mean
rate of magnetic reversals. We show that the reversal rate depends on the
time-averaged dipole moment, the variance of the dipole moment and a slow
timescale that characterizes the adjustment of the dipole toward the time-
averaged value. Predictions of the stochastic model give a mean rate of 4.2

Myr~!, which is in good agreement with observations from marine magnetic
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anomalies. We also show that the observed reversal rate is dependent on the
temporal resolution of the observations.

Keywords: geodynamo, geomagnetic spectrum, stochastic model

1. Introduction

The spectrum of fluctuations in the geomagnetic dipole offer insights into
the origin of the magnetic field and the dynamics of Earth’s core (Consta-
ble and Johnson, 2005). Each distinct timescale bears the fingerprints of
the underlying physical processes (e.g. Sakuraba and Hamano, 2007). Paleo-
magnetic observations are essential for characterizing the long-term behavior,
yet no single source of information is sufficient to capture the full range of
dynamics. Instead, an integrated approach is needed to combine different
types of measurements into a composite record that spans a broad range of
timescales.

One important source of information comes from measurements of rela-
tive paleointensity in marine sediments (Valet, 2003). Records are stacked
and calibrated using independent estimates of absolute paleointensity to pro-
duce models for the virtual axial dipole moment (VADM) over the past two
million years (Valet et al., 2005; Ziegler et al., 2011). Sediments acquire a
magnetization over several thousand years (Roberts and Winkholfer, 2004),
so the true signal is averaged in time. Uncertainties in dating can have a sim-
ilar affect because paleomagnetic records from different times may be stacked
together.

Higher resolution records have been obtained for the past 10 kyr using

a combination of archeomagnetic and lake sediment data. These data have
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improved spatial resolution, so the geomagnetic field can be expanded in low-
degree spherical harmonics (e.g. Korte and Constable, 2011). Even higher
resolution records are available from historical observations (Jackson et al.,
2000). Taken together these records provide a comprehensive description of
fluctuations in the dipole field, but the task of combining these results into
a single coherent model is a challenge.

Stochastic models are a useful tool because they enable quantitative pre-
dictions over a range of timescales. This facility is important for combining
different types of data with different levels of temporal resolution. There is
also good reason to think that stochastic models can represent the relevant
processes in the core. Stochastic models have been constructed from geody-
namo simulations with only a few model parameters, yet these models are
able to reproduce most of the variability in these simulations (Kuipers et al.,
2009; Buffett et al., 2014; Bouligand et al., 2016).

Synthetic studies using geodynamo simulations are an ideal test of the
general approach because the simulations have relatively low numerical error
and we can control the temporal resolution of the output. None of these
advantages are available when we apply stochastic models to paleomagnetic
observations. Significant errors are present in the estimates of the dipole
field, which affect the construction of the stochastic model. We also need
to deal with temporal averaging because it limits our ability to sample the
stochastic process. The goal of this study is to address the practical limi-
tations of dealing with paleomagnetic observations and to devise a strategy
for constructing models that best explain both paleomagnetic and historical

records. We focus primarily on the power spectrum of dipole fluctuations,
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although we find that the resulting stochastic models can also account for

the observed reversal rate and the duration of polarity transitions.

2. Stochastic Description of Dipole Fluctuations

Stochastic models were introduced by Langevin (1908) to describe Brow-
nian motion. A small particle in water was assumed to move under the
combined influence of viscous resistance and a random force due to collision
with (unseen) water molecules. The viscous force was treated as a slowly
varying deterministic quantity, whereas the force due to collisions with water
molecules was treated as a rapidly fluctuating random process.

Brownian motion serves as a loose analogy for the evolution of the ge-
omagnetic dipole moment. The deterministic part of the dipole moment
can be represented by the opposing influences of dipole decay and the time-
averaged dipole generation. Rapid fluctuations in dipole generation about
the time average can be attributed to (unseen) turbulent flow, which we
treat as a random process. We denote the axial dipole moment by z(t)
and describe its time evolution using a stochastic differential equation (Van
Kampen, 1992)

L — v(@) + VD) 1)
where the drift term, v(x), describes the deterministic part of the evolution
and the noise term, D(z), defines the amplitude of the random part. The

time dependence of the random process, I'(t), is assumed to be Gaussian

with a vanishing time average

<I'(t) >=0. (2)
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We also assume that the correlation time of the noise source is short compared
with the sampling of x(¢). In this case the autocovariance function of I'(¢)

can be approximated by a Dirac delta function,
< F(t1>r(t2) >= 2(5(t1 — tg) s (3)

where the factor of two is a common convention (e.g. Risken, 1989).
Estimates for v(z) and D(z) can be extracted from a realization of the

stochastic process (e.g. Friedrich et al., 2011). The drift term is defined by
< x(t + At) — 2(t) >= v(z)At + O(At?) (4)
and the noise term can be approximated by
<[zt + At) — z(t)]* >= 2D(x)At + O(At?), (5)

where the time averages are taken for a specific value of x = z(¢). In practice,
the dipole moment is divided into a finite number of bins and the time average
is evaluated for each bin. The time increment, At, is chosen to be long enough
that I'(¢) and I'(t + At) are uncorrelated, but short enough that higher order
terms in At are small enough to neglect.

Applying (4) and (5) to the output of a geodynamo model (Buffett et
al., 2014; Meduri and Wicht, 2016) shows that the drift term, v(z), is well
represented by

v(r) = —y(r— <z >), (6)

where < x > denotes the time average and 7 is a constant that defines the
inverse timescale for slow adjustments of the dipole. A similar representation

for v(x) has been recovered from VADM estimates (Brendel et al., 2007;
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Buffett et al., 2013). Indeed very similar values for the constant, v = 34
Myr~!, are reported for the SINT-2000 model of Valet et al. (2005) and the
PADM2M model of Ziegler et al. (2011). By comparison, the noise term,
D(z), has a weaker dependence on x. It suffices for our purposes to adopt
the approximation D(z) = D.,, where D,, denotes the value of the noise
term at © =< x >.

Simple representations for the drift and noise terms permit closed-form
solutions for the power spectrum of fluctuations about the time average (e.g.
€(t) = x(t)— < x >). Defining the Fourier transform of €(t) by

e(f) = / " ettye It gy (7)

o0

the power spectrum becomes (Buffett and Matsui, 2015)

D

o Sr(f) (8)

S = NU)" = ooy

where the power spectrum of the noise is

Se(f) =TT =2. (9)

Here * denotes the complex conjugate.

The theoretical spectrum in (8) agrees well with a direct calculation of
the power spectrum from a geodynamo model (see Fig. 1). Departures at
high frequency can be improved by allowing for the influence of correlated
noise (see Buffett and Matsui, 2015, for details). The resulting spectrum for
correlated noise (denoted by S¢(f)) reduces the power at high frequencies,
but it does not change the behavior at low frequencies. It is important to note
that the drift and noise terms are recovered from the geodynamo model using

(4) and (5) with a time difference of At = 1 kyr. No long-period information

6
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goes into the estimation of v(x) and D(x), yet the resulting predictions are
in good agreement with the low-frequency part of the spectrum. This result
suggests that simple stochastic models offer a good description of long-period

dipole fluctuations.

3. Recovering the Drift and Noise from Paleomagnetic Models

Several complications arise when the drift and noise terms are computed
from paleomagnetic models of the dipole moment. One complication is due to
random error and the other is due to temporal averaging of the fluctuations.

We explore both of these complications before proposing a possible solution.

3.1. Influence of Random Error

Random error alters the estimates of the dipole moment, so the drift and

noise terms are computed from

y(t) = x(t) +n(t) (10)

which includes a time-dependent error n(t). The drift term becomes

o(y) = <y(t+AAt3§—y(t) > (11)

or

oly) = o(z) + SIEED 200 > (12)

on substituting for y(¢) from (10). The presence of random error alters v(y)
but the time average of the error in (12) is expected to vanish. The same is

not true for the noise term. Using y(t) to evaluate D(y) gives

< [y(t+ A8 =y >

D(y) = N,

(13)
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which can be rearranged into the form

< AzAn> < Anp? >
14

A N (1)
on introducing Ax = x(t+ At) — z(t) and An = n(t + At) —n(t). Even when
Az and An are uncorrelated and 7(t) represents the effects of white noise,

we are left with (Hoze and Holeman, 2015)

2
o

D(y) =D 1 15

(4) = D(&) + 2 (15)

where 0,27 is the variance of the error. Thus the influence of random error

becomes acute when At is small. On the other hand, larger At causes the
higher order terms in (4) and (5) to become more important.

We illustrate the problem using a synthetic example. Consider a stochas-
tic model with a linear drift term (y = 34 Myr~' or 0.034 kyr™!) and a
constant noise term (D, = 69 x 10** A? m* Myr~—! or 0.069 x 10** A? m*
kyr~!). These numerical values were recovered by Buffett et al. (2013) from
model PADM2M of Ziegler et al. (2011). A numerical realization of the
stochastic model is run for 2 Myr with values of z(¢) recorded at 1 kyr in-
tervals. Next we add uncorrelated and normally distributed random error
to produce a noisy record, y(t), where the standard deviation of the error is
o, = 0.5 % 10** A m?. Finally, we recover D(z) and D(y) from z(¢) and y(t),
respectively, assuming that both terms are independent of the amplitude of
the dipole moment (i.e. a single bin for both z or y).

Figure 2 shows the estimates for D(x) and D(y) as a function of At. At
the shortest time difference, At = 1 kyr, we obtain D(z) = 0.0684-0.002x 10%
AZ m* kyr~! and D(y) = 0.297 & 0.010 x 10** A% m* kyr~!, where the

uncertainties represent one standard deviation. These results are consistent

8
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with expectations from (15). Large deviations from the true value of D are
found with the noisy record when At is small. Smaller deviations occur as At
increases, although these errors remain relatively large. On the other hand,
the value recovered from the error-free record, z(t), is reliable at small At
but departs from the known value as At becomes larger. Consequently, we

cannot deal with the influence of random error by arbitrarily increasing At.

3.2. Influence of Temporal Averaging

Temporal averaging of the paleomagnetic record can arise in several ways.
Errors in dating allows measurements at different times to be stacked. In
addition, magnetization is acquired in sediments over several thousand years
(Roberts and Winkholfer, 2004). A prolonged acquisition time removes high-
frequency variations and affects our ability to sample the stochastic process
at short At. One way to deal with the problem of averaging is to treat the
measured record as a filtered version of the true signal (e.g. Leonard, 1974).
We define the measured signal, z(t), as

z(t) = /OO z(t)g(t —t') dt (16)

where the filter function, ¢(t), smooths the true signal, x(t), over some pre-
scribed time interval (denoted by T'). Two popular filter functions are the
box-car and gaussian filters (see Fig. 3). The true signal is convolved with a
suitable filter function to produce the measured record.

The paleomagnetic record, Z(t), still obeys a stochastic differential equa-
tion, but it is not the same as the differential equation in (1). Applying the
filter to (1) gives
— = —y(T— < >)+ D,I'(t) (17)
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where we have adopted a constant noise term and a linear drift term. The
only difference in (17) is that the random process is driven by T'(t) rather
than I'(t). A power spectrum for € = — < x > is defined by taking the

Fourier transform of (17). Solving for €(f) gives

Pea_s:(p) (18)

Se(f) = e(f)e(f)" = (7 + 42 f2) )

where
Se(f) =TT =29(f) 9(f) (19)
and ¢(f) is the Fourier transform of the filter function. Equation (19) follows

from the convolution theorem (e.g. Bracewell, 1999) because convolution in

the time domain

[(t) = /_ h D(t)g(t —t')dt (20)

o0

corresponds to multiplication in the frequency domain

L) =TNg(f) - (21)

Power spectra for z(t) and Z(t) are the same at low frequencies because
g(f) — Las f — 0 (see Fig 3).

We illustrate the consequences of time averaging using the stochastic
model from Section 3.1. A 2-Myr realization is sampled at 1-kyr intervals and
a smoothed version is produced using a box-car filter with an averaging time
of T'= 3 kyr. Figure 4 shows the power spectrum of the filtered signal, Z(t),
compared with the theoretical spectrum from (18). We also show the power
spectrum for the original (unfiltered) time series, x(t), versus the theoretical
spectrum from (8). Both theoretical spectra are in good agreement with the

direct calculations from z(¢) and z(¢). Undulations in the spectrum of Z(t) is

10
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a consequence of the box-car filter, which is oscillatory in the Fourier domain.
The main conclusion from this example is that temporal averaging affects
only the high-frequency behavior of the record. The filtered dipole moment
still obeys a stochastic differential equation and the spectrum is still reliably
predicted at low frequencies from the drift and noise terms. Conversely, the
low-frequency part of the spectrum constrains the drift and noise terms of
the stochastic model.

Figure 5 shows the noise term, D, recovered from z(t) and Z(t) as a
function of At. The most reliable estimate for D comes from x(t) at the
shortest possible At (1 kyr in this case). Temporal filtering substantially
reduces the estimate of D at low At, although the recovered value approaches
a constant once At exceeds the filter width 7". A rule of thumb based on the
spectrum of the filter (say g(f) > 0.9) is that At should be roughly twice T'.
Sampling the process at At = 6 kyr gives an estimate for D that is nearly
independent of At. Unfortunately, this estimate is well below the known
value (e.g. 0.044 versus 0.069). A similar departure in D at At = 6 kyr
is inferred from z(t) (e.g. 0.063 versus 0.069), although the error from the
unfiltered time series is much smaller.

The preceding results show that temporal averaging can affect the am-
plitude noise term, particularly when At is smaller than the duration of
the averaging. Estimates for D appear to approach a constant value once
At > 2T, although this constant can be significantly less than the true value.
On the other hand, random noise causes the recovered estimate of D to ex-
ceed the known value by an amount o7 /At, where o is the variance of the

error. Both temporal averaging and random noise have the largest affect on

11
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the high-frequency part of the spectrum. Averaging removes power at high
frequency, whereas random error introduces power across all frequencies, al-
though it is most evident at high frequency. Consequently, the low-frequency
part of the spectrum is relatively unaffected by both sources of error. We

exploit this result to construct a broadband paleomagnetic power spectrum.

4. A Composite Paleomagnetic Power Spectrum

We use two sources of information to construct the paleomagnetic spec-
trum. Model PADM2M of Ziegler et al. (2011) gives the axial dipole moment
over the past 2 Myr at intervals of 1 kyr, whereas CALS10K2 (Constable et
al., 2016) gives the axial dipole moment (and other low-degree components
of the magnetic field) over the past 10 kyr at intervals of 50 years. Figure
6 shows the power spectrum for each model, calculated using a multi-taper
method (function pmtm in Matlab). We also show two theoretical spectra.
One spectrum is predicted using the parameters of a simple stochastic model
derived from PADM2M (Buffett et al., 2013). We take v = 34 Myr~! and
let Do, = 69 x 10* A% m* Myr~! (or 0.069 x 10** A% m* kyr™!). The second
spectrum is obtained by applying a gaussian filter to the stochastic model,
using an averaging time of 7' = 2.4 kyr. The sampling used to construct the
stochastic model from PADM2M was At = 5 kyr, so the filter required to
account for the power spectrum of PADM2M is broadly compatible with the
proposed rule of thumb At ~ 27T

CALS10K2 possesses more power than PADM2M at overlapping frequen-
cies. One interpretation is that temporal averaging has a greater influence

on PADM2M, which acts to reduce the power at high frequencies. We might

12
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remedy this problem by seeking an independent estimate for the noise term
from CALS10K2. Figure 7 shows the resulting estimates for D as a function
of At. The noise term initially increases with At, implying some tempo-
ral averaging or possibly correlated noise in the stochastic model. A simple

parametric fit of the form
D(At) = Dgy(1 — e 2T (22)

gives D, = 0.34 x 10" A% m?* kyr™!' (340 x 10* A% m* Myr™!) for the
asymptotic value of the noise term. We fit (22) through the lower limit of
the estimates in Fig. 7 to account for the influence of random error (which
tends to increase D). A correlation time of T' = 120 years suggests that the
sampling of the stochastic process should be restricted to At > 240 years.
(We adopt At = 300 years as a lower limit in our subsequent discussion.)
The value of the noise term recovered from CALS10K2 is more than four
times larger than the value we recovered from PADM2M, but it can account
for the higher power in the CALS10K2 spectrum.

Simply increasing the value of D in the stochastic model predicts more
power at low frequencies, which is incompatible with the low-frequency part
of the PADM2M spectrum. Since we expect random error and temporal
averaging to have less affect at low frequencies, we choose to alter both D
and v to maintain agreement with PADM2M at low frequencies. In effect,
we are use the low-frequency spectrum of PADM2M to estimate v once D
is inferred from CALS10K2. The predicted power at low frequency is D /2,
so we take v = 75 x 102 A m? Myr—! and D = 340 x 10** A2 m* Myr!
to retain consistency with the low-frequency power in PADM2M. While the

slope of the drift term is more than twice the value recovered from PAD2M
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using (4), it is in rough agreement with the value v = 70 x 102 A m? Myr~!
estimated for the PISO-1500 model (Channell et al., 2009). (The noise term
for PISO-1500 near v =< x > is 540 x 10** A% m* Myr~—!, which is somewhat
higher than the value recovered from CALS10K2. Interestingly, the preferred
sampling interval for PISO-1500 is 4 to 5 kyr, which is close to the sampling
interval adopted previously for PADM2M and SINT-2000 (Buffett et al.,
2013). Thus the time averaging in all three VADM models is roughly the
same).

We test the revised values for v and D by running a series of 100 real-
izations of the stochastic model. The model parameters are fixed but the
initial conditions and details of the each realization differ. The realizations
are run for 2 Myr and the value of the dipole moment is recorded every 300
years, corresponding to the sampling interval inferred from CALS10K2. It is
possible that the short averaging time (nominally 120 years) corresponds to
the lifetime of convective eddies in the core. We could account for this effect
in the stochastic model by introducing a correlated noise source (Buffett and
Matsui, 2015), but we avoid this complication by choosing At to ensure the
noise source, ['(t) is uncorrelated. A power spectrum is computed for each
realization and the results are superimposed on the power spectra computed
from PADM2M and CALS10K2 (see Fig 8a). The cloud of power spectra
for the realizations overlap the low-frequency part of the PADM2M power
spectrum and most of the power spectrum for CALS10K2 below 1 cycle/kyr.
However, a direct comparison of the realizations with the power spectrum
for CALS10K2 is not appropriate because the CALS10K2 spectrum is com-

puted from a 10-kyr time series. A better comparison would rely on 10-kyr
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realizations (see Fig8b). A series of shorter realizations produces a cloud of
power spectra that overlap the computed power spectrum for CALS10K2,
suggesting that the revised stochastic model is broadly consistent with the
CALS10K2 model.

We also test the stochastic model against historical observations (Jackson
et al., 2000). A steady decrease in the dipole field has lowered the dipole
moment by Az = 0.68 x 10?2 A m? over a 150-year interval between 1860
and 2010 (Gillet et al., 2013). Such a change is too large to be caused by
the drift term, so it must be associated with the noise term. The root-
mean-square (rms) variation in the dipole moment due to the noise term is
< Az? >'2= \/2DAt. Using the revised estimate of D and At = 0.15 kyr,
we find < Az? >1/2=0.32x 10> A m?. Thus the historical variation is larger
than the expected variation, but it is not implausible. A realization of the

noise process is described by (Risken, 1989)
Az = V2DAtw (23)

where w is a random variable drawn from a standard normal distribution
(mean of zero and variance of 1). We require w = 2.13 to account for the
recent variation in the dipole field, which would occur about 1.7% of the
time. The actual probability could be somewhat lower if the noise source is
correlated at At = 0.15 kyr (a likely case given our estimate of the correlation
time from CALS10K2). The preceding estimate would then represent an
overestimate of the probability of occurrence. By comparison, the original
value of D = 0.069x10** A% m* kyr~! from PADM2M would require w = 4.73
to account for the historical variation. Such an event would occur less than

0.0001% of the time. Such an event is fairly unlikely, so the historical record
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lends support to the larger value for the noise term.
Another useful prediction of the stochastic model is the variance of the
dipole moment. We obtain an expression for the variance, o2, by integrating

the power spectrum over frequency

= [ sinar=2. 1
The revised values for D = 0.34 x 10** A% m* kyr~! and v = 0.075 kyr—! give
0, = 2.13x 10?2 A m?. While this value exceeds the estimate o, = 1.48 x 10%?
A m? for PADM2M (Ziegler et al., 2011), it is not too far from the estimate
o, = 1.97 x 102 A m? for SINT-2000 (Valet et al., 2005) and somewhat
smaller than the estimate o, = 2.68 x 10> A m? for PISO-1500 (Channell

et al., 2009). Thus the predicted variance lies within the range of estimates

from recent VADM models.

5. Geomagnetic Polarity Reversals

A more general representation of the drift term is needed to describe ge-
omagnetic polarity reversals. The linear approximation in (6) is useful when
x varies about < x >, but its utility ceases when x approaches zero during
a reversal. The invariance of the magnetic induction equation to a change
in the sign of the magnetic field suggests that v(x) is an odd function of x.
We expect the drift term to adjust x toward the negative value of the time
average once x changes sign. A simple extension of the linear approximation
is

v
= — — fi >0 25
v(x) <x>(x <z >) forx >0, (25)

where the expected symmetry is obtained by taking v(—z) = —v(z). The

gradient of v(x) at * =< x > is consistent with the linear approximation
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in (6), but the value of the drift now vanishes at = 0. It is convenient to
represent the drift as the negative gradient of a potential U(x). Integrating
(25) for the U(x) gives

1 2 12
U(r) = §<Vj> [ggc— <w >] forz >0 (26)

where the integration constant is chosen to make U(0) = 0. A comparison
of U(z) with the potential recovered from the PADM2M model of Ziegler et
al. (2011) is shown in Fig. 9. The barrier at = 0 is comparable for both
potentials, but the amplitudes of U(z) at large |z| differ. This is mainly
a consequence of increasing ~ in the revised stochastic model. A larger ~
produces a narrower potential well and limits the variability of x at a fixed
level of noise, consistent with the predicted standard deviation o, = /D /7.
We now use the generalization of the drift in (25) to predict the rate of

magnetic reversals and the duration of polarity transitions.

5.1. Rates of Reversals

Random fluctuations in z enable the dipole to jump from one potential
well to the other, leading to a magnetic reversal. The average frequency
of this transition can be predicted using the stochastic model. Kramers
(1940) derived an approximation expression for the reversal rate, r, when
the barrier AU = U(0) — U(< x >) is large compared with the noise D.

Kramers’ formula in our notation gives

— l —AU/D 27
r=g-e : (27)
Substituting for
1
AU = g <% >2 (28)

17
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from (26) and using the definition of the variance from (24) gives

r = L em<e>?/(62) (29)
2m

Remarkably, the rate of reversal depends on the time average, < x >, the
variance, o2, and the timescale for slow adjustments of the dipole field, y~};
the slow timescale is thought to reflect the decay time of dipole fluctuations
(e.g. Gubbins and Roberts, 1987). Geodynamo simulations suggest that the
dipole fluctuations can be represented by the first few decay modes (Buffett
et al., 2014). Using < z >= 5.3 x 10*> A m?, 0, = 2.13 x 102 A m? and
v =75 Myr~! gives r = 4.2 reversals per Myr, which is comparable to the
observed rate over the past 30 Myr (Lowrie and Kent, 2004). By comparison,
a 60-Myr realization of the stochastic process yields 3.9 reversals per Myr
when the realization is filtered to a resolution of 30 kyr, comparable to the
resolution of marine magnetic anomalies (Gee and Kent, 2015). The need
to filter the realization is connected to the complexity of polarity transitions

when the noise term is large. We explore this question in the next section.

5.2. Duration of Polarity Transitions

The duration of polarity transitions depends on how the transitions are
defined. A definition based on magnetic intensity might depend on the time
required for the dipole to recover to the long-term average after a change
in sign (i.e. a recovery time). This particular definition is useful for our
purposes because it can be computed from the stochastic model. We expect
the drift term to be small near x ~ 0, so the evolution of the dipole during
the transition is dominated by the noise term. A useful approximation for

the time required for the field to rise above a particular threshold, z;, is
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(Buffett, 2015)
B 4 (30)
" Do)r?

where D(0) refers to the value of the noise term at = 0. The general form

of (30) is characteristic of a diffusive process, which includes no contribution
from the drift term. A more exact treatment of the problem accounts for the
drift term as x rises toward the threshold ;. Figure 10 shows a comparison of
the approximation in (30) with the value computed from a numerical solution
of the Fokker-Planck equation (e.g. Risken, 1989). Including the drift term
shortens the recovery, but the difference is relatively small when we adopt
the revised value for D. This implies that the recovery of the magnetic
field following a reversal is driven mainly by noise (e.g. random turbulent
fluctations in the field generation).

We can compute a recovery time from the PADM2M model by interpo-
lating the time when x rises above the time average after a reversal. Each
reversal gives a different value for 7, but the average and its standard de-
viation are shown in Fig. 10. The agreement with theory is surprisingly
good. We also show the time required for the field to drop from the time-
averaged value into a reversal (i.e. a decline time). The mean decline time
from PADM2M is 41 kyr, whereas the mean recovery time is 27 kyr. This
asymmetry is consistent with previous observations (Valet and Meynadier,
1993). (The decline time was incorrectly reported as the recovery time in
Buffett (2015), although the main point in that study was that these short
durations require a noise term in excess of 300 x 10** A? m*).

The difference between the recovery and decline times can be attributed

to the role of the drift term. The recovery time is shorter than the ap-
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proximation in (30) because the drift term drives the dipole moment toward
the time average, increasing the rate of adjustment after a reversal. Con-
versely, the dipole must work against the drift term during the decline phase.
The approximation in (30) lies roughly midway between the estimates from
PADM2M, which suggests that the drift lengthens and shortens the adjust-
ment by comparable amounts, relative to a purely diffusive process with no
drift term.

It is reasonable to question whether the PADM2M model can adequately
resolve the recovery time when the short-period behavior is not sufficient
to compute D. A transition that lasts 7 ~ 30 kyr would correspond to
a frequency of f = 1/27, assuming the transition represents half a cycle.
A nominal frequency of 0.017 cycles kyr~! lies in the part of the spectrum
where PADM2M and the stochastic model are broadly consistent (see Fig.
8). Consequently, there is internal consistency in our argument that the
stochastic model is in agreement with both the transition duration and low-
frequency power spectrum from PADM2M. It is encouraging that the same
stochastic model gives a reasonable estimate for the reversal rate, particularly
when no information about the reversal rate is used in the construction of
the stochastic model.

The dominance of the noise term during a polarity transition has inter-
esting consequences for the complexity of reversals. A process that is driven
solely by the noise term is analogous to a random walk. The probability of
stepping back and forth across x = 0 increases with the number of steps n.
Dasgupta and Rubin (1998) show that the expected number of zero-crossings

is proportional to y/n. As we decrease the step size in a numerical realiza-
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tion, we take a large number of steps through the transition and produce
a large number of zero-crossings during a single transition. In practice the
time step is limited by the correlation time of the noise source. Independent
realizations of the noise process require the time step to exceed the correla-
tion time of the noise, so the number of steps through a transition cannot be
arbitrarily large. Still, several zero crossings are likely.

Numerical realizations with D(0) = 0.3 x 10 A? m* kyr~! (close to the
value proposed here) produced multiple zero-crossings in about 50% of the
polarity transitions when At = 1 kyr (Buffett, 2015). The average number
of zero crossings is 2.8, but this number would go up if At = 0.3 kyr is a
more reasonable estimate for the time step. We could expect 3x more time
steps through a transition and roughly v/3x more zero crossings (on aver-
age), corresponding to a total of 5 changes in sign during a transition. To
make meaningful comparisons with geological observations we would want
to remove these short-period polarity changes by filtering the numerical re-
alization to the resolution of the observations. In the previous section we
used T" = 30 kyr to compare the reversal rate with estimates from marine

magnetic anomalies.

6. Conclusions

Stochastic models have been successfully tested using geodynamo simulti-
ons, but their use with paleomagnetic observations requires departures from
the standard approach. Two main difficulties are identified. The first is
due to random error in the estimates of the dipole moment, which cause the

noise term to be over-estimated. The significance of this problem depends
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on the sampling interval, At, and the largest affects occur at short At. A
second difficulty arises from temporal averaging of dipole fluctuations, either
due to errors in dating or gradual acquisition of magnetization in sediment.
In either case, temporal averaging reduces the noise term at short At, al-
though estimates for D often converge to a constant value as At increases.
Unfortunately, the noise term does not necessarily converge to the correct
value.

An important feature of both random error and temporal averaging is
that the largest influence is predicted at high frequency. Because the low-
frequency behavior is less affected, we can use the low-frequency part of
the observed power spectrum as a constraint on the stochastic model. We
illustrate the approach using the PADM2M model of Ziegler et al. (2011) and
the CALS10K2 model of Constable et al. (2016). An estimate of the noise
term is recovered from the high-resolution CALS10K2 model, while the slope
of the drift term, ~, is estimated from the low-frequency part of the spectrum
for PADM2M. Realizations of the stochastic model yield a composite power
spectrum that agrees reasonably well with both PADM2M and CALS10K2.

A simple generalization of the stochastic model is needed to allow large
deviations from the time-averaged moment. This modification enables pre-
dictions for the mean rate of reversal. A reversal in the stochastic model
occurs when a realization jumps between the minima in a double-well poten-
tial. Application of Kramers’ formula (Kramers, 1940) gives a surprisingly
simple expression for the reversal rate. We find that the reversal rate can
be defined in terms of the time-averaged dipole moment, the variance of the

dipole moment and a slow timescale that characterizes the adjustment of
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the dipole toward the time-averaged value. Using values from the stochas-

tic model gives a mean rate of 4.2 Myr~!

, which is good agreement with
observations (Lowrie and Kent, 2004). Comparable rates are obtained from
realizations of the stochastic process, provided we filter the realization to the
same resolution as the observations. The need for temporal filtering arises
from the importance of noise in driving polarity transitions. Multiple po-
larity changes can occur within a single transition field, so a quantitative

comparison with observations depends on the temporal resolution of those

observations.
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Figure 1: A power spectrum of dipole fluctuations from a numerical geodynamo simulation
(Matsui et al., 2014), compared to predictions from two stochastic models. One stochastic
model assumes a white noise source and the other assumes correlated noise. Both models
are capable of predicting the low-frequency fluctuations even though the drift and diffusion

terms are constructed from short-period information.
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Figure 2: Estimates for the noise term, D, computed from exact x(t) and noisy y(t) time
series. Addition of random error to y(t) causes D(y) to depart from the known value
D = 0.069 x 10** A2 m* kyr—!. Calculations using x(t) reproduce the known value to
within the uncertainties at At = 1 kyr. Discrepancies in D(z) increase with At due to

unmodelled contributions from higher-order powers in At.
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Figure 3: (A) Two commonly wused filters are the gaussian, g¢g(t) =
(6/7T?)Y/2 exp(—6t2/T?), and the box car, g(t) = 1/T for |t| < T/2, where T is
the averaging time. (B) Fourier transforms are given by g(f) = exp(—4m?f2T?/24) and
g(f) =sin(nfT) /7 fT, respectively.
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Figure 4: Power spectra of z(t) (blue) and Z(t) (green) compared with theoretical spectra
Se(f) and Se(f) (see text). Undulations in the filtered spectrum arise from the box-car

filter, which is oscillatory in the frequency domain.

31



0.06 % % % % J

s t 1
e oosf o
(o)
3< i % % % % %

o 0.04r * ]

Z *

O o03f 8

= *
2 oot D(x) * |
% * D(X) %
©
Z 001f 8
O 1 Il 1 Il 1 Il 1 Il 1 Il
0 1 2 3 4 5 6 7 8 9 10

Sampling Time At (kyr)
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series. Temporal averaging substantially reduces the noise term when At is less than the

averaging time T' = 3 kyr. Estimates for D(Z) approach a constant value once At > 2T
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Figure 6: Power spectra computed from PADM2M and CALS10K2 using a multi-taper
method. Theoretical spectra S¢(f) and Se(f) are based on the stochastic model derived
from PADM2M and a filtered version of the stochastic model. We apply a gaussian filter
with an averaging time of T' = 2.4 kyr to account for the abrupt decrease in power of

PADM2M at high frequency.
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Figure 7: Estimates for the noise term, D, recovered from CALS10K2 as a function of
sampling time At. A simple parametric fit to D(At) in (22) gives D(co) = 0.34 x 104+ A?

m* kyr~!. The effective correlation time of the noise source is T' = 120 years.
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Figure 8: (A) Power spectra from 100 realizations of the stochastic model (in gray) com-
pared with the power spectra computed from PADM2M (blue) and CALS10K2 (green).
The ensemble of realizations is compatible with PADM2M at low frequencies and much of
the spectrum for CALS10K2 below 1 cycle/kyr. (B) Power spectra of 100 shorter (10-kyr)

realizations of the stochastic model.
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Figure 9: Potential U(z) computed from (26) compared with a potential recovered from
PADM2M. Both potentials have comparable barriers, AU, but different amplitudes at
large |z|. The width of the potential well is defined by the second derivative U” (z) = —v
at v = + < o >. We use v = 73 Myr~! for the potential in (26), but obtained v = 34
Myr~! from PADM2M.
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Figure 10: Mean recovery time for the dipole moment following a reversal. A numerical
solution of the Fokker-Planck equation (theory) is compared with the approximation in
(30), where the drift term is assumed to vanish. Discrete estimates from PADM2M are
shown for the recovery and decline times. The recovery time agrees well with theory,
whereas the decline time exceeds the recovery time, probably due to contributions from
the drift term. The approximation in (30), which includes no contribution from the drift

term, lies roughly midway between the recovery and decline times from PADM2M.
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