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Abstract—In this paper, a novel load-balancing technique for
local or metro-area traffic is proposed in mesh-style topologies.
The technique uses Software-Defined Networking (SDN) archi-
tecture with virtual local area network (VLAN) setups typically
seen in a small-to-medium enterprise networks. This was done
to provide a possible solution for the load-balancing dilemma of
congestion and under-utilization of network links. The transport
layer protocol Multi-Path TCP (MPTCP) coupled with IP aliasing
is used, which enables formation of multiple subflows depending
on the availability of IP addresses at either ends and helps to
divert traffic in the subflows across all available paths. The traffic
formed of each subflow would be forwarded across the network
based on Hamiltonian ‘paths’ that are created in association
with each ingress/egress switch directly connected to hosts. Our
study shows the advantages of using MPTCP for load balancing
purposes in SDN architectures and provides a platform for using
VLANSs, SDN, and MPTCP for traffic management.

I. INTRODUCTION

Network traffic load balancing has been a critical challenge
faced by network administrators. The ability to balance traffic
across two or more links has been getting harder as the
networks are increasing in size and speed. A major recent
change to the networking practice, Software-Defined Net-
working (SDN), advocates techniques to facilitate the design,
delivery and operation of network services in a deterministic,
dynamic and more scalable manner [1]. It assumes the intro-
duction of a high level of automation in the overall service
delivery and operation procedures. Basically, SDN involves a
physical separation of the control plane and the forwarding
plane [2] and argues for handling complex tasks such as load
balancing in the control plane with a centralized view of
the network. The functional separation benefits of the SDN
technology enable networks to be directly programmable, and
more agile as abstracting control from the forwarding plane lets
administrators dynamically adjust network-wide traffic flow to
meet the changing needs of the network.

However, SDN still is quite some strides away from
maturing in load-balancing. For example, Zhou et al. [3]
discuss problems that could exists in the link between the
controller and the switch in case of overwhelming traffic.
The authors point out that even if we deploy switches and
their controllers very carefully, it’s difficult for controllers to
adapt to the changing traffic load. This could affect resource
utilization. It is essential to balance a load across different
controllers in any networking cluster instead of a static network
configuration. Load balancing at the controllers’ end is a
common obstacle which SDN administrators face. Supporting
the argument, Yannan Hu et al. [4], while making use of
the OpenFlow protocol for communicating to switches, report
on issues with load balancing between SDN controller and
switches. They proposed an architecture called BalanceFlow
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for wide-area OpenFlow networks which can partition control
traffic load among different controller instances in a more
flexible way. Both of these studies on balancing load between
controllers and switches give approaches and solutions to
solve the problem with that perspective in mind. However, the
problem of balancing load from switch to switch, especially
when there are multiple links/paths available to move from
source to destination is still an open issue.

With the advent of Multi-Path TCP (MPTCP) [7] offering
multiple flows, the load-balancing problem becomes more
complicated. In this paper, we focus on the SDN-based load-
balancing problem within the context of local and metro-area
networks utilizing Virtual LANs (VLANs) [11]. We use SDN
and MPTCP in combination and make use of additional paths
from source to destination other than just the shortest or the
one which is already being used. Accordingly, MPTCP would
balance out the load in the paths between each of its subflows.
Keeping this in mind, our key contributions are as follows:

e To design and develop an SDN framework that allows
exploration of how MPTCP could be beneficial for
network administrators who are responsible for estab-
lishing VLANs which make use of OpenFlow.

e To give statistics that would give a fair distinction
on how much improvements MPTCP brings to load
balancing on mesh style topologies.

e  To develop heuristics which would help direct MPTCP
flows across the network in an efficient manner that
would further help in improving load balancing and
network utilization across the network.

The rest of the paper is organized as follows: Section II
describes our SDN-based framework for VLAN load balancing
with randomly generated Hamiltonian Paths (HPs). In Section
III, we further present a heuristic for load balancing via the
HPs to forward the packets. Section IV showcases performance
evaluations followed by the conclusions and future work.

II. SDN-BASED VLAN LOAD BALANCING
A. Hamiltonian Paths with IP Aliasing

The main idea is to maximize the potential of MPTCP and
improve network utilization by coupling it with IP Aliasing.
Consequently, more than one IP address can be associated
with a network interface. Then by using the SDN format of
forwarding, we can accordingly divert where the subflows
are to be forwarded in the network. To achieve this, we
create Hamiltonian paths which are associated to each switch
connected directly to the hosts in our topology.

Hamiltonian paths span all the switches in the topology,
and that guarantees reachability. The typical learning switch
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Fig. 1: Topology 1

algorithm establishes a spanning tree among the switches to
achieve that guarantee. Yet, spanning trees are less flexible than
Hamiltonian paths in terms of placing each flow to a separate,
potentially non-shortest, path. Since, for load-balancing, we
desire to take non-shortest paths for some flows, we choose
to use Hamiltonian paths as a building block. It is possible to
expand our framework to spanning trees as well.

An additional issue is how MPTCP utilizes the additional
paths existing between sender and receiver while controlling
the congestion on each path? The solution to this question
lies in congestion control algorithms like Linked Increase
Algorithms (LIA) [10], Opportunistic Linked Increase Algo-
rithm (OLIA) [8], and Balanced Adaptation Linked Increase
Algorithm (BALIA) [9] which are used during traffic flow
across the paths in an MPTCP connection. As per RFC
6356, these new congestion control algorithms are necessary
for multipath transport protocols such as Multipath TCP and
traditional single path congestion control algorithms (e.g.,
Additive Increase Multiplicative Decrease) have problems in a
multipath context. In this paper, we use the LIA algorithm for
our experiments. We will next explain our framework via an
example topology.

1) Topology Setup: Lets take an example of a sample topol-
ogy given in Fig. 1. The topology is created using Mininet [12]
which is a popular network simulating tool. The SDN con-
troller, which is the FloodLight SDN controller, will be running
on a separate Ubuntu Linux virtual machine and will listen for
OpenFlow messages from switches that are trying the connect
to it. The Static Entry Pusher REST application [13] is used
to push flows to switches which forward packets from their
source to destination. The Static Entry Pusher application is
part of the Floodlight Controller and is already activated upon
setting up the Floodlight Controller. In the topology, we see
that there are 5 switches and 8 hosts. Each host is placed
in different VLANs mentioned in the diagrams. Port Numbers
where links are connected to the switched and the link numbers
that connect switches are marked in green & red respectively.

2) Hosts and IP Aliases: MPTCP allows for multiple TCP
streams called as MPTCP subflows to form between sender to
receiver depending on IP availability in both machines. This
means that if there is more than one IP address associated
with a host, MPTCP starts up another TCP session using
the additional IP with the destination machine’s IP if the
destination machine is also MPTCP capable. Thereby, to make
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complete use of the traits of MPTCP, IP aliasing is used to
associate multiple IP addresses with each host. The amount
of IP addresses associated with a host would be dependent on
the number of links passing out of the first switch which is
directly connected to the host. This switch is called the Ingress
Switch, I, of the host and all other switches adjacent to the
switch is called the Core switch, C, of the host. For example,
H1 in Fig. 1 is connected to sl, which is H1’s I switch.
s1 has three links passing on to the C' switches, s2, s3 and
s4. Thereby, H1 would have two IP alias addresses associated
to it and one original IP address giving it a total of three IP
addresses which would be used during the creation of subflows
when MPTCP is active in any connection.

3) Ingress Fan-Out: The subflows created would be for-
warded out of the I switch based on flows pushed through
the Static Entry pusher. Also, each subflow associated with
an IP of the host would be forwarded out through different
ports going to the next core switch. For example, as discussed
above, H1 would have three IP addresses, subflows associated
with each of the three IPs would be forwarded out through
three different ports. This means that if the IP addresses are
10.0.0.1, 10.0.0.11 and 10.0.0.21, then subflows associated
with 10.0.0.1 as source address would be forwarded out of the
I switch from the port which leads to the C' switch s2. The
subflows associated with 10.0.0.11 as source address would
be forwarded out of the I switch from the port which leads to
the C' switch s3 and the subflows associated with 10.0.0.21
as source address would be forwarded out of the I switch
from the port which leads to the C' switch s4. This phase of
the procedure is called the ‘Fan-Out’ phase which is forcing
the MPTCP subflows to utilize different links enroute to the
destination. Every connection from a host would have a fan-
out phase once the packets reach the I switch which would be
advantageous in balancing traffic during subflow creation in
the MPTCP process. Fig. 2 is an example diagram showing
the Ingress fan-out phase from Host H8 which would be
associated with two IP addresses due to two links exiting out
of its I switch towards the C' switches.

4) Subflow Identifiers: Once packets from a host leave the
I switch and move towards destination through C' switches,
they follow Hamiltonian paths which would be preset for the
host and its TCP streams once they reach the C' switches.
A Hamiltonian path is a path in an undirected or directed
graph that visits each vertex exactly once. Another important
property to Hamiltonian graphs is that all Hamiltonian graphs
are biconnected, however every biconnected graph need not be
Hamiltonian. All topologies that are going to be used in this
paper would satisfy the Hamiltonian graph property.
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Moreover, due to the fan-out mechanism implemented for
each connection going out of the ingress switch, each IP
address from hosts connected to the I switch would have
a common egress port that takes traffic to the C switches.
Using such an idea, we can conclude that whenever traffic
from an I switch leaves towards the C' switch, the traffic can
move out from any one of its outgoing ports which is directly
connected to one of the core switches and thereby the identifier
element for all the host’s traffic moving outwards from its
I switch is the pair of Datapath ID of the I switch and
the outgoing port number associated with one of its source
address. Thereby using these flow identifiers, we can create
a HashMap associated to all hosts in the topology where the
HashMap would consist of the Datapath ID of the switch
and an outgoing port which would be the egress port that
takes traffic from the host to one of the C' switches in the
topology. Fig. 2 shows how the paths for each of hosts on [
switch would be around the topology. Here we see 10.0.2.14
belonging to Host H8 and 10.0.0.14 belonging to Host H6
having the same path around the network due to having the
same [ and same outgoing port in the fan out phase and we
also see 10.0.2.4 belonging to Host H8 and 10.0.0.4 belonging
to Host H6 having the same path due to similar reasons.

5) VLAN-Specific Hamiltonian Paths: The above concept
can be further improved for better load balancing in the
network, when the VLAN setups are considered. This is done
by creating separate paths for every host belonging to different
VLANSs, which are connected to a particular I switch (refer
Fig. 1). This ensures further segregation of paths for better
load balancing and also monitors subflows through links based
on VLANSs present in the topology which would give network
administrators more control in the network.

Again, we can compute the number of paths that would
be associated to hosts connected to any [ switch. Here, the
average space complexity of the flow tables in the switches
would be O(Vnk) where V' is the number of VLANSs present
among all the hosts connected to the I switches, n is the
number of I switches and k is the average number of outgoing
ports that takes traffic from an I switch to the C' switches.

With the number of paths that would need to be created for
the topology based on the above discussion known, now the
question is how the paths are to be created. The most important
factor in the creation of paths is to balance out load across each
link of the topology that all paths would use. This means that
on creating paths, there could be a likelihood that high number
of paths utilize one particular link in the topology which could
overload that link and create an imbalance. To avoid this, we
create a range (upper bound and lower bound) of flows that a
link can have by inspecting the standard deviation of the count
of flows traversing a link.

III. LOAD BALANCING HEURISTICS

Moving further, to systematize the path finding process for
each subflow, we associate a Hamiltonian path traversing the C
switches to each HashMap associated to hosts connected to an |
switch. This means that once a packet belonging to a HashMap
associated with a host leaves its I switch towards a C switch,
there would be flow identifier entries in that C switch which
can be associated to a path for this HashMap. Using this flow
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identifier entry, the C switch takes the flow’s packets towards
other C switches and finally to its destination. The diagram
in Fig. 2 shows example Hamiltonian paths of host H8 and
host H6 connected to I switch S4 and their subflow identifiers:
HashMap < DatapathlID : S4, Portl >, HashMap <
DatapathlID : S4, Port2 > .

An important property of all paths in the topology is that
each path should be allowed to visit a node, which is a switch
in this case, only once. This is done to avoid loops in the
topology which is also the main property of Hamiltonian paths.
Going by this approach, the number of paths that all hosts
connected to any I switch will be the number of flow identifier
entries each switch must maintain. This space complexity can
be abbreviated into O(nk) where n is the number of I switches
in the topology and k is the number of outgoing ports in an [
switch to the C switches in the topology which corresponds to
each HashMap having a path associated to it. The question here
is how does the packet reach its destination host once it reaches
the switch which contains the connection straight to the host.
Here, the packet must come out of the port that is directly
connected to its destination. Priorities for flows within the
switch in its flow table is made use off to overcome this. For
all switches that contain direct connections to hosts, there are
flows set up in switches which match to the destination host’s
IP address and these flows have a higher priority compared to
the other flows in the flows table. Thus, when the packet first
reaches any switch, it checks if there is direct connection to
the host from this switch through the destination flow, and if
not, it continues the direction that the path flows forward it to.

Algorithm 1: Random Hamiltonian Path Selection Al-
gorithm

Output: Random Path P,

Input : Graph G, Starting Node H

-

Procedure randomHPath (G, Hy)
// Setup and find possible Hamiltonian paths.

2 PathsList = Call pathHSeup (G, Hp)
3 Random RNG = new Random()

4 Idx = RNG.nextInt(PathsList.Size())

5 return P,=PathsList.Get(Idz)

6 end

1 Procedure pathHSeup (G, Hy)

2 path = new array[G.length()]

3 path[0] = H)

/I Find position of Hy in G.

4 colNo = findCol(G, Hyp)

5 Paths = Call findHPath (G, colNo, 0)

6 return Paths

7 end

1 Procedure findHPath (G, colNo, pathPos)

2 Recursively find paths starting from H

3 Backtrack through the latest path to find the next

path PList contains all paths
return PList

£

5 end

A. Random Creation of Hamiltonian Paths

As presented in Algorithm 1, we first create Hamiltonian
Paths (HPs) randomly for each existing HashMap in the
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topology using the principle that a switch in the topology can
be visited only once and each time a packet leaves its host
towards the destination there must be an Ingress Fan-Out phase
from the Ingress switch. The process for random path creation
would be computed in the controller’s end, and hence, this
would not take up processing memory in the switches end as
the switch would only be responsible for saving up flows in
the flow table. Further, randomly generating paths ensures that
the load is already spread out across multiple links.

Let’s take an example using HPs in Fig. 1. A set of
randomly created HPs are given in Table I. Taking H1 as an
example in the topology, H1 would have three random paths
associated with it due to three links exiting its I switch. As
we see in these three paths, the I switch of host HI1 is switch
S1. 10.0.0.1 is the original IP address of H1 while 10.0.0.11
and 10.0.0.21 are aliased IP addresses created using IP aliasing
for the purpose of MPTCP and path creation. We also notice
that each node or switch is visited just once. Similar to this, a
sample set of randomly generated HPs for all other hosts are
listed in the table with their IP addresses.

TABLE I: Randomly Generated Hamiltonian Paths in Topology 1

Possible Hosts Ingress Random HPs
‘ Switch
H1(10.0.0.1, 10.0.0.11, 10.0.0.21) S1 S1 —S3 —S2 — S5 — S4
S1 — 82 — S3 — S5 — S4
S1 — S4 — S5 — S2 — S3
H2(10.0.2.1, 10.0.2.11, 10.0.2.21) S1 S1 — S3 —S2 — S5 — S4

Sl — S2 — S3 — S5 — S4
SI —+S4 — S5 — S3 — S2
S2 —+S1 —S4 - S5 —+S3
S2 —+S3 — S5 — S4 — S1
S2 —+ S5 — S3 — SI — $4
S2 —+S1 —-S3 — S5 — $4
S2 —+S3 —-S1 -S4 —S5
S2 — S5 — S3 — S1 — S4
S5 —S2 — S3 — S1 — S4
S5 — S4 —+ S1 — S2 — S3
S5 —+S3 — S2 — SI — S4

H3(10.0.0.2, 10.0.0.12, 10.0.0.22) S2

H4(10.0.2.2, 10.0.2.12, 10.0.2.22) S2

H5(10.0.0.3, 10.0.0.13, 10.0.0.23) S5

H6(10.0.0.4, 10.0.0.14) S4 S4 - S1 — S3 — S5 — S2
S4 —+ S5 — S3 — SI — S2
H7(10.0.2.3, 10.0.2.13, 10.0.2.23) S3 S3 -+ S1 — S4 — S5 — S2
S3 —+S2—S1 —S4—+5S5
S3 —+ S5 —8S2 — Sl — $4
H8(10.0.2.4, 10.0.2.14) S4 S4 — S1 — S3 — S5 — S2

S4 — S5 — S3 — SI — S2

Table II shows the flow tables in Switch 1 of how it would
look like depending on which switch would forward packets.
Here, we see that there are three flow tables containing various
flow entries. These flow entries are matched with the packets
parameters and accordingly forwarded out of a certain port in
the switch. Table 1 contains flow entries involving the Ingress
Fan-out flows and Destination flows, that is if a host is directly
connected to the switch. These contain highest priority and
will be looked at first for a match to take an action. If none of
these flows match, that would mean that the incoming packet
is not an ingress fan out packet nor a destination packet for a
host directly connected to that host. This would imply that this
packet is heading towards a host directly connected to another
switch. In this case, the VLAN ID of the packet would be
matched depending on which the packet would be directed for
a match in Table 2 or Table 3. Table 2 contains HashMaps
for packets belonging to VLAN 100 and Table 3 contains
HashMaps for packets belonging to VLAN 105. Accordingly,
packets would be mapped to their respective HashMaps and
passed on to the next switch. In this manner, flow tables would
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be created in all switches in the topology. Note that the flow
table setup in Table II is for VLAN-specific HP configurations.
Since we have two VLANs in our example, we have two
additional tables (Table 2 and Table 3). For the case when
the HPs are created in a non-VLAN-specific way, we do not
need to match packets to their respective VLANSs in the flows
and thereby can set up our flows using one flow table which
would contain matching HashMaps along with other flows like
destination flows and ingress fan out flows.

TABLE II: Flow Tables in Switch 1 of Topology 1.
Match

[ Action
Flow Table 1

[ Priority |

Source IP — 10.0.0.1
Source IP — 10.0.0.11
Source IP — 10.0.0.21
Source IP — 10.0.2.1
Source IP — 10.0.2.11
Source IP — 10.0.2.21
Dest IP — 10.0.0.1
Dest IP — 10.0.0.11
Dest IP — 10.0.0.21
Dest IP — 10.0.2.1
Dest IP — 10.0.2.11
Dest IP — 10.0.2.21
VLAN ID — 100
VLAN ID — 105

Output:- Port 5 100
Output:- Port 4 100
Output:- Port 3 100
Output:- Port 5 100
Output:- Port 4 100
Output:- Port 3 100
Output:- Port 1 100
Output:- Port 1 100
Output:- Port 1 100
Output:- Port 2 100
Output:- Port 2 100
Output:- Port 2 100
Go to Table 2 80

Go to Table 3 80

Flow Table
HashMap < DatapathID: S4, Port 1>
HashMap < DatapathID: S4, Port 2>
HashMap < DatapathID: S5, Port 1>
HashMap<DatapathID: S5, Port 2>
HashMap <DatapathID: S5, Port 3>
HashMap < DatapathID: S2, Port 1>
HashMap < DatapathID: S2, Port 2>
HashMap < DatapathID: S2, Port 3>

Flow Table 3
HashMap < DatapathID: S4, Port 1>
HashMap < DatapathID: S4, Port 2>
HashMap <DatapathID: S3, Port 2>
HashMap < DatapathID: S3, Port 4>
HashMap < DatapathID: S2, Port 3>
HashMap < DatapathID: S2, Port 1>

S8}

Output:- Port 4 50
Output:- Port 5 50
Output:- Port 5 50
Output:- Port 3 50
Output:- Port 3 50
Output:- Port 3 50
Output:- Port 3 50
Output:- Port 4 50

Output:- Port 4 50
Output:- Port 5 50
Output:- Port 5 | 50
Output:- Port 3 50
Output:- Port 4 50
Output:- Port 3 50

B. Rerouting Hamiltonian Paths for Load Balancing

Given randomly created HPs, we need to balance out the
subflows on each path as much as possible to equally spread
the traffic across the topology. Considering the three HPs from
Table I, we see that the link between S4 and S5 is present as a
route taken for all three HPs, thereby, this link has 3 subflows
passing through it just based on these paths. The flow count
is bi-directional since the layer 2 protocol between switches
is assumed to be an Ethernet-like protocol. Likewise, the link
between S1 and S2 is just being used once which is on the
second path, thereby this link has 1 subflow passing through
it. In this manner, we can calculate the number of subflows
passing through all the links in this topology assuming all
hosts are active and sending traffic. We create a table shown
in Fig. 3(a) showing the number of subflows passing through
each link in this topology. The port numbers to the links that
are connecting the switches are given in Fig. 1.

Once the table in Fig. 3(a) is created, we observe the
number of flows going through each link. As a first step, we
try to reduce the maximum load on any link. If we observe
that a link is the only maximally loaded link (e.g., link 4 in
the table), we try to reroute the paths which are going through
that link so that they avoid that link thus reducing the load
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Link | Number of Link | Number of Link Number of
Flows Flows Flows
1 15 1 15 1 15
2 10 2 10 2 12
3 9 3 9 3 10
4 17 4 16 4 15
5 10 5 10 5 14
6 12 6 12 6 10
7 15 7 16 7 12
(a) (b) (c)

Fig. 3: Number of Flows per Link in Topology 1

on that link. While rerouting the paths, we avoid paths which
would be forced to use that link due to the fan-out phase of the
process and modify the routes of other paths. We keep selecting
the link with the maximum count of flows and rerouting those
paths traversing that link until we get to a point where we have
at least two links having the same maximum number of flows
as shown in a table Fig. 1(b) for the same topology. Here in
this table, we notice that links 4 and 7 have the same amount
of maximum flows, which is 16, passing through them.

Next, we calculate the standard deviation of the flow counts
on each link to get an upper bound and lower bound for flows
that can pass through each link. The range obtained for the
above topology after calculation of the standard deviation was
10-15 where 10 is the minimum flow count that can traverse
a link and 15 is the maximum flow count. Once the bounds
are obtained, we keep rerouting the obtained paths iteratively
until we have met the requirements of each link in the topology
having the flow count within the targeted range. After rerouting
the paths within this requirement, finally, we come up with
the table shown in Fig. 1(c) which meets the lower and upper
bound requirements to balance out the flows across each link
in the topology. In the table, all the links have their flow counts
as per the bounds calculated. Once this is calculated and now
that the paths are set, we push flows to the switches in Mininet
using Floodlight’s Static Flow Pusher. After this is done, the
hosts would then communicate with MTPCP using the paths
which are set up in each of the switches.

This load balancing heuristic is a rudimentary approach
and provides one possible solution to this problem and, in our
experimentation, we have done this manually. However, this
entire process can be automated and the processing could be
done in the controllers end while after processing the controller
would push the obtained optimal paths to the switches thus
saving processing memory in the switches and using it only
to store flows in flow tables. One intuitive way could be to
randomly pick one of the paths on the maximally loaded link,
lm, and try rerouting it by calling Algorithm 1 with the input
graph G not including the link [,,,

IV. PERFORMANCE EVALUATION

We present the simulation results of the proposed scheme
in comparison to the regular TCP. We used VLAN specific path
creation for hosts and paths, which do not consider the number
of unique VLAN hosts connected to an Ingress switch. We
also measured the performance using standard MPTCP without
the use of any path creation. Collectively, we compared the
following three techniques against TCP: 1) VS: MPTCP with
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VLAN-Specific Hamiltonian paths in place in the switches, 2)
NVS: MPTCP with paths without considering the number of
unique VLAN hosts which are directly connected to the switch,
and 3) MPTCP: MPTCP without any paths incorporated.

Simulations were carried out in three different mesh like
topologies involving client-server communication using the
iperf tool' in Linux. Topology 1 is the referred topology as
shown in Fig. 1, which resembles an Enterprise-Level Local
Area Network. While Topology 2 and 3 resemble a Mid-
Size Metro-Area Network and Large Metro-Area or Datacenter
Network as shown in Fig. 4. To send traffic from source to
destination, Standard MPTCP and Regular TCP used a reactive
SDN approach i.e. when a switch receives an unknown packet
for the first time, it forwards it to the SDN controller as
a PACKET-IN message. Then, the controller calculates the
shortest path to the destination and sends that information back
to the switch as a PACKET-OUT message. In the end, switch
receives this forwarding information and forwards the packet
towards the direction of the destination accordingly.

Furthermore, we divided experiments into three categories
(i.e., LOW, MEDIUM, and HIGH) based on the amount of
traffic load. A LOW loaded case refers few client-server
communications, for example in a eight hosts case, there would
be between two to four client-server communications and apart
from this, there would be no ongoing parallel sessions, where
one server can serve multiple clients. Whereas, a MEDIUM
loaded case depicts servers serving multiple clients simulta-
neously and clients are allowed to connect multiple different

'A performance tool that is used for measuring the maximum achievable
bandwidth on IP networks.
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Fig. 5: Throughput Results for LOW, MEDIUM, & HIGH Load Cases

servers, which increases the number of ongoing TCP sessions
across the network. Finally, a HIGH loaded case considers all
hosts communicating with each other, either as a client or as a
server, thus maximizing the traffic load to the maximum. Each
iper f session in any case between client and server was run for
a fixed amount of time and equally to get a fair estimation of
the overall bandwidth. For each case, we considered multiple
separate simulation runs and showcase averaged results with
the confidence interval of 90% approximately.

We found that MPTCP with VLAN specific paths (VS)
and MPTCP without VLAN specific paths (NVS) achieves
better throughput ahead of standard MPTCP as compared to
regular TCP. On average, for LOW load cases in all three
topologies, we can see 40% increase as compared to the
regular TCP in MPTCP with VLAN specific paths, whereas,
over 32% increase is noted against regular TCP in MPTCP
without VLAN specific paths. Further, the trends are similar
in case of MEDIUM load for all the three topologies, in
fact better performance was observed, as depicted that 55%
increase compared to regular TCP in MPTCP with VLAN
specific paths, whereas, we see over 40% increase compared
to regular TCP in MPTCP without VLAN specific paths and
over 18% increase in standard MPTCP compared to regular
TCP. Lastly, for HIGH Load cases, we found 25% increase

864

compared to regular TCP in MPTCP with VLAN specific
paths, whereas, over 19% increase compared to regular TCP
in MPTCP without VLAN specific paths. Also, 10% increase
in standard MPTCP as compared to regular TCP is reported in
Fig. 5. Conclusively, we state that applying Hamiltonian paths
for load balancing via OpenFlow and MPTCP in local and
metro-area networks is a worthy solution and can enhance the
overall network performance.

V. CONCLUDING REMARKS

In this paper, we investigated MPTCP that can greatly
improve load balancing and network utilization. Whereas di-
recting MPTCP traffic with the use of VLAN specific paths
and even without VLAN specific paths produces even better
results in the overall throughput of the network. Also, the
concept of IP Aliasing could assist with associating multiple IP
addresses with any host which would help with the generation
of additional MPTCP subflows using OpenFlow. Future work
includes the automation of the path calculation process at the
switch level that can be beneficial and cost effective.
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