INVITED
PAPER

ARMET: Behavior-Based
Secure and Resilient
Industrial Control Systems

This paper describes a reliable/secure-by-design methodology for industrial control

systems and complementary online monitoring approach.

By MuHAMMAD TAIMOOR KHAN, DIMITRIOS SERPANOS, AND HOWARD SHROBE

ABSTRACT | In this paper, we introduce a design methodology
to develop reliable and secure industrial control systems (I1CSs)
based on the behavior of their computational resources (i.e.,
process/application) and underlying physical resources (e.g., the
controlled plant). The methodology has three independent, but
complementary, components that employ novel approaches
and techniques in the design of reliable and secure ICSs. First,
we introduce reliable-and-secure-by-design development of
secure industrial control applications through stepwise sound
refinement of an executable specification, employing deductive
synthesis to enforce functional and nonfunctional (e.g., security
and safety) properties of ICS applications. Second, we present
a runtime security monitor at the middleware level of ICSs that
protects ICS operation in the field through comparison of the
application execution and the application specification execution
inreal time; the runtime security monitor can be synthesized from
the executable specification. Finally, based on the specification,
we perform a vulnerability analysis for false data injection (FDI)
attacks, which leads to ICS application designs that are resilient
to this type of attacks. We demonstrate the methodology through
its application to a basic and typical ICS example application,
describing all the tools used and ARMET, the middleware monitor
that constitutes the core component of the methodology.

KEYWORDS | Computational attacks; cyber-physical systems
(CPSs); efficient; false data injection (FDI) attacks; industrial
control systems (I1CSs); reliable-and-secure-by-design; resilient;
runtime monitoring

Manuscript received March 25, 2017; revised June 8, 2017; accepted June 30, 2017.
Date of publication August 16, 2017; date of current version December 20, 2017.
(Corresponding author: Muhammad Taimoor Khan.)

M. T. Khan is with the Institute of Informatics Systems, Alpen-Adria University,

9020 Klagenfurt, Austria (e-mail: muhammad.khan@aau.at).

D. Serpanos is with the Industrial Systems Institute/ATHENA RC, GR-26504 Patras,
Greece, and also with the ECE Department, University of Patras, GR-26504 Patras,
Greece (e-mail: serpanos@ece.upatras.gr).

H. Shrobe is with the MIT Computer Science and Artificial Intelligence Laboratory
(MIT CSAIL), Cambridge, MA 02139 USA (e-mail: hes@csail.mit.edu).

Digital Object Identifier: 10.1109/JPROC.2017.2725642

I. INTRODUCTION

Industrial control systems (ICSs) are a significant class
of cyber—physical systems (CPSs) that are increasingly
employed in the control and management of critical infra-
structure around the world, from transport systems to water
management systems and from the manufacturing floor to
smartgrids. They constitute typical hybrid systems and their
control process models are adopted to several other appli-
cation domains, especially health systems and the emerging
Industrial Internet of Things (IIoT). Importantly, from the
computational point of view, ICSs constitute special pur-
pose computing systems with different characteristics from
typical information technology (IT) systems, in terms of pur-
pose, ownership, interfaces, functional and nonfunctional
requirements, etc. ICSs are considered a different form of
computation from IT system and as such are referred to as
operational technology (OT) systems [1]. As special purpose
systems, ICSs (OT systems) are embedded, cyber—physical
systems with restricted functionality, typically, to the appli-
cation domain targeted by the system.

A typical ICS is shown in Fig. 1. In this typical configura-
tion, measurements of a process’ data are collected by the
sensors and delivered to the programmable logic control-
lers/remote terminal units (PLCs/RTUs) through a network,
while commands from PLCs/RTUs travel back through the
network to actuators. PLCs/RTUs typically implement sim-
ple operations and control sensors and actuators, while they
are managed and coordinated by the hierarchically higher
layer supervisory control and data acquisition (SCADA) sys-
tem, which implements a control application or plant.

The reliability and security of ICSs is of major impor-
tance considering the effects of their compromise or
failure. A failed ICS can cause serious damage beyond the
ICS itself, for example, through release of toxic chemicals.
An attack on the power grid may have major secondary

0018-9219 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Khan et al.: ARMET: Behavior-Based Secure and Resilient Industrial Control Systems

SCADA & c
Network - — I
/o |

PLC 1 PLC &% | c

I

Network ppm—— —i-_ Dete
1] |
G e -l

valve pump

Fig. 1. overview of ICS design.

effects, disabling transportation, medical systems, and
pipelines. The ability to cause such effects through cyber
means alone was first demonstrated in the well-known
Aurora experiment where a pure cyber attack successfully
destroyed a diesel generator [2]; Stuxnet [3] and the recent
Ukrainian smartgrid attack [4] as well as several additional
less known incidents have demonstrated the potential of
cyber attacks to inflict serious societal damage. Finally, ICSs
may be compromised to serve as elements of a Botnet as the
recent Mirai attack indicates [5].

To address reliability and security in ICSs, one needs to
take into account the characteristics of OT technology that
differentiates ICSs from typical IT systems, because this influ-
ences the security methods and solutions that are appropriate
for ICSs. ICSs typically have real-time requirements, often
hard ones, whose violation may have significant, or even cata-
strophic, results. It is important to note that functional and
nonfunctional requirements of ICSs, and CPSs in general, are
different from the requirements of typical IT systems and,
thus, need to be carefully considered in the design and devel-
opment of security and safety solutions. In fact, requirements
for ICSs involve domains for cyber and physical resources that
have discrete and continuous operations based on linear and
nonlinear constraints with strict time bounds.

Until recently, security of the ICS infrastructure has not
been a significant requirement although safety and dependa-
bility have been quite strong requirements. The reason is that
ICSs and networks have been typically considered as vulner-
able mainly to failures and not to attackers who target them
on purpose. So, methodologies for dependability and safety
have been developed assuming stochastic models of failures
of components and subsystems. Although these method-
ologies have served control processes well until recently, the
growth of cyber attacks and the interest of strong actors to
damage critical infrastructure lead to the need of develop-
ing new methods that protect ICSs and networks against
purposeful cyber attacks. The first efforts in this direction

have been to harden systems and interconnections, adding
security methods and modernizing systems that have been
in the field, unprotected for long periods. Operating systems
are being increasingly adopted, mostly specialized real-time
operating systems (RTOSs) or variations of workstation oper-
ating systems such as Windows and Linux, providing access
control mechanisms. Intrusion detection mechanisms for the
systems themselves or for the networks are becoming com-
mon, but most of them are adopting tools and methods from
the IT environment, i.e., malware detection and intrusion
detection methods and tools that have been developed for
general IT environments [6], [7]. Importantly, little effort has
been made to include in the security methods the processes/
applications that get implemented by the ICSs, although the
requirements on the ICSs are placed by them for both func-
tional and nonfunctional ones. Recently, the OT character-
istics and differentiators from classical IT systems have been
introduced in the efforts to develop effective security and
safety solutions, especially for defensing against false data
injection (FDI) attacks, which constitute a special class of
attacks that has been emerging against CPSs. In these attacks,
attackers do not compromise the computational systems or
their networks, but introduce false data at points of measure-
ments, i.e., at sensors, introducing false data to the sensors,
who, in turn, send them to control centers and lead them to
wrong actions [8], [9].

We introduce a design methodology for developing
reliable and secure ICSs based on the process (applica-
tion) behavior rather than the classical intrusion detection
mechanisms. We define as “behavior” of an ICS process,
in terms of software engineering, the set of functional and
nonfunctional (e.g., security, performance) characteristics
of both the cyber and the physical resources of the process.
Typically, the cyber resources have a discrete behavior,
while the physical resources have a continuous one. The
complexity of modeling such a process increases when
functional and nonfunctional characteristics are a mix of
discrete and continuous ones. We manage the modeling
complexity by describing the “behavior” of an ICS process

o

Water Level

\ Sensor

Sensor value

Controller
Application
.,.". ® .
® Pump g L7
2o\ <o .
o > =

Command !
(Voltage V) |
|

Setpoint 1

|
|
: (User Input)
| T
| |
-/ |
|
< — 4

“.,,—I Specified

Plant

I I Drain

Fig. 2. Gravity-draining water tank-an example scenario.

Khan et al.: ARMET: Behavior-Based Secure and Resilient Industrial Control Systems

with an executable specification based on an abstract data
type (in Coq). We derive reliable and secure implemen-
tations of the ICS process by stepwise refinement of the
specification applying deductive synthesis (in Coq); each
refinement formally preserves the behavioral semantics.
Furthermore, we assure that the derived implementation is
reliable in respect to characteristics of functional behavior
and is secure and efficient conforming to characteristics of
nonfunctional behavior. Importantly, the proof obtained
through deductive synthesis assures that only the derived
implementation is reliable and secure and not the execu-
tion of the implementation. Thus, from the given execut-
able specification, we generate a runtime monitor that
assures that the behavior of the implementation execution
is also reliable, secure and efficient at runtime by check-
ing consistency between the specification produced predic-
tions and the runtime execution produced observations.
The monitor is bound to detect any arising inconsistency
under the assumption that the execution of the specifica-
tion is always correct, i.e., that it cannot be attacked; this
can be achieved by executing the specification in a strongly
protected environment, such as SGX (Intel) or Trust Zone
(ARM). Hence, the runtime monitor detects any compu-
tational attack but may not be able to detect FDI attacks.
Therefore, we synthesize the executable specification after
vulnerability analysis that identifies potential FDI attacks
through the application of an SMT solver for nonlinear, real
functions. Based on the results of the solver, we either syn-
thesise the specification so that the implementation is not
vulnerable to false data attacks, or consider the values of the
identified FDI attacks as attack vectors to be monitored and
detected at runtime.

Our threat model includes both computational attacks
and FDI attacks. As computational, we consider all attacks
that lead to the active alteration (injection, deletion, or
replacement) of application code and/or system code, or
of variable values (data or control) that lead to the incor-
rect execution of the application code on the ICSs; such
attacks include viruses, worms, etc. As FDI attacks, we con-
sider the ones that input (insert) into the ICSs values that
are different from the intended ones, i.e., sensor measure-
ments that have been tampered with, for example, between
the environment and sensors, sensors and PLC/RTUs, etc.
Importantly, our approach leads to systems that defend
against the attacks, both computational and data ones, of
our threat model because the attacks constitute violations of
the security requirements.

In this paper, we demonstrate our approach to secure
and safe ICSs by describing the design methodology using
a simple example of a control application for a water tank.
We describe the methods and the tools that we use as parts
of the methodology, focusing on ARMET, the real-time
security monitor that constitutes our main research con-
tribution. Although our work is currently progressing the
three components of the methodology separately, i.e., the

secure-by-design application development, the real-time
security monitor, and the vulnerability analysis, our ongo-
ing work focuses on the integration of the three components
in a unified environment that will enable synthesis of the
application code, the real-time monitor, and the FDI attack
monitor automatically.

The paper is organized as follows. Section II presents our
threat model. Section III introduces an approach to develop
reliable and secure ICS applications by design. Section IV
demonstrates our approach for runtime security monitor-
ing, including a proof for system defense against known and
unknown computational attacks. Section V presents our
approach for vulnerability analysis of FDI attacks in ICSs.
We demonstrate each of the aforementioned approaches
with the help of an example of a water tank, as the con-
trolled plant, in each corresponding section. In Section VI,
we present prior art for each component of our approach
separately.

II. THREAT MODEL

A program for an ICS, e.g., a typical controller (PLC) pro-
gram or a supervisory (SCADA) program, is composed of
instructions (also known as source code) operating on some
external-input data values. Based on this view, we consider
a threat model that includes computational attacks for
instructions as well as FDI attacks for external-input values.
The program implementation P, its execution Pg, or the pro-
gram external-input values are considered to have a threat,
when some insider or external adversary (e.g., user or other
program) with legitimate or illegitimate access attempts to
affect their behavior.

In a computational attack, on one hand, the adver-
sary attempts to modify the behavior of the program by:
1) modifying the instructions or internal-data values of the
implementation or execution of P; 2) exploiting any vul-
nerability or a bug in them; or 3) injecting an additional
code (e.g., command) into P or Pg. On the other hand, the
adversary may attempt to affect the nonfunctional behav-
ior of Pg by running some other program, for instance,
running a malware that may affect the performance of Pg.
Note that P refers to the program of the application imple-
mentation and not the program of the specification imple-
mentation. The latter always runs correctly as discussed in
Section I.

In an FDI attack , the adversary attempts to change
external data values that are input for computation at the
controller by attacking sensors or the network between
sensors and the computing system. However, as the values
belong to data-type “real,” therefore, small variation in the
values may not violate the system constraints and thus goes
undetected leading to some advanced persistent threat.

The specification of functional and nonfunctional behav-
ior of a program allows us to detect computational threats
by comparing the behavior of P or Pr with the specified

Khan et al.: ARMET: Behavior-Based Secure and Resilient Industrial Control Systems

behavior. Such specification also enables identification of
legal data values that lead to FDI attacks by the application
of the nonlinear verification method.

ITI. RELTIABLE-AND-SECURE-BY-
DESIGN APPLICATIONS

Developing reliable and secure ICS applications by design
through derivation of the application implementation from
a given declarative specification formally assures that the
application meets its requirements on one hand and is free
from various classes of vulnerabilities and attacks (e.g., FDI,
cross-site scripting) on the other hand. Furthermore, runtime
monitoring of such an application based on the declarative
specification assures that the application execution is reli-
able and secure at runtime. However, formally deriving such
reliable and secure implementations for ICS applications is
challenging because it involves reasoning about both dis-
crete and continuous system behavioral models.

Most of the existing approaches have focused on either
deriving reliable or secure implementations of ICS applica-
tions. Many of these approaches only allow modeling of timed
security properties or security policies of ICS applications,
and then deriving application implementations that assure
enforcing the security properties and policies at runtime
[10]-[13]. Quite a few have attempted to derive reliable ICS
application implementations, for instance, Soulat [14] derives
correct implementation of schedulers of hybrid systems.

Based on Fiat [15], we introduce a different approach
that employs deductive synthesis to develop reliable-and-
secure-by-design ICS applications through interactively
stepwise refinement of declarative specifications, where
description of both cyber and physical resources of ICSs are
first class models on one hand and nonfunctional proper-
ties (i.e., security, performance) are modeled integral to
functional properties on the other hand. In this approach,
the user starts with an initial nondeterministic program/
specification with obscure nonfunctional characteristics, for
example, security and efficiency. Then, the specification is
synthesized through stepwise refinements; each refinement
replaces some statements in the specification with other at
least equally deterministic statements such that no extra
behavior is introduced that is beyond that of the replaced
statements on one hand, and none of the security properties
are violated on the other hand, as depicted in Fig. 3. Finally,

Single
-) . program
® o 00 “9,° o
o PY ®
o ® o) meliin 5Ny Proof (2
o P [Proof () | —

Specification (set of
acceptable behaviors) N L

Fig. 3. Deductive program synthesis through sound refinements.

the specification is refined into a fully deterministic imple-
mentation that is not only correct with respect to its specifi-
cation but is also obviously secure and efficient, respecting
security constraints and employing efficient representations
and algorithms, respectively. In detail, first the initial pro-
gram is realized by its high-level declarative specification of
its functionality and security. Then, through an iteration of
semantically preserved optimizations, an efficient and cor-
rect executable implementation is generated that also con-
forms specified security constraints. The optimizations can
be modified through sound refinements to meet nonfunc-
tional requirements, e.g., security and performance.

In the reliable-and-secure-by-construction approach,
we use the Coq proof assistant to encode an abstract-data-
type-based declarative specification of an ICS behavior that
includes both functional and nonfunctional properties as its
first class elements. The encoding is based on abstraction
relation as specified by Hoare [16]. Then, we employ deduc-
tive synthesis of the specification through sound refine-
ments. Importantly, all refinement steps are encoded in
the proof assistant and thus provide high assurance of reli-
able resulting implementation that is correct, secure, and
efficient. Every refinement corresponds to an optimization
script that resolves nondeterminism of the program in a
(functional and nonfunctional) behavior-preserving way as
shown in Fig. 3.

A. Example

Based on the water tank example (see Fig. 2), we dem-
onstrate our approach in a familiar notation, i.e., Java-like
syntax as shown in Listing 1.

For our example specification (Listing 1), in each
clock tick, either the pump FILLs the water tank, or does
NOTHING. The water tank is continuously DRAINing as
enumerated by “Action” [see L(ine).1]. The specification
says that the water tank is initially empty (see L.4). When a
user issues a command to fill the water tank up to a certain
level, if the command (i.e., reading) is in the range of sensor
accuracy (see L.7), then we either accept the value or any

public enum Action { FILL, DRAIN, NOTHING }

3] cla

s WaterTankSpec {

4 private int water_level = 0;
6 public void newSensorReading (int reading) {

if (abs (reading-water_level) > SENSOR_ACCURACY)
8 water_level = {n | True}; }

10 public Action timestamp (int target_level) {

1 Action act =

12 {al] (a = FILL —->

13 water_level + FILL_RATE - GRAVITY_DRAIN <= TANK_MAX)

14 /\ (a = DRAIN —>

15 water_level - GRAVITY_DRAIN >= 0) };

16 if (act == FILL)

17 water_level += FILL_RATE - GRAVITY_DRAIN;
18 else if (act == DRAIN)

19 water_level —-= GRAVITY_DRAIN;

20 return act; } }

Listing 1. water tank specification.

Khan et al.: ARMET: Behavior-Based Secure and Resilient Industrial Control Systems

public enum Action { FILL, DRAIN, NOTHING }

3| class WaterTankSpec {
vate int water_estimate = 0;

4 P

6 public void newSensorReading(int reading) {
water_estimate = reading; }

10 public Action timestamp (int target_level) {

if (water_estimate < target_level &&
(water_estimate + SENSOR_ACCURACY +

1 FILL_RATE - GRAVITY_DRAIN <= TANK_MAX)) {

14 water_estimate += FILL_RATE - GRAVITY_ DRAIN;

15 return FILL;

6 }else if (water_level - GRAVITY_DRAIN >= 0) {

7 water_estimate —-= GRAVITY_DRAIN;

8 return DRAIN;

9 }else

) return NOTHING; } }

Listing 2. water tank code.

value (see L.8). At each time stamp (see L.10), the water
tank is either in

+ FILLing state, i.e., the pump is pumping in the water
such that water tank does not overflow (see L.13-14)
and the water tank attains a new water level (see
L.19); or

+ DRAINing state, i.e., the water is draining at a con-
stant GRAVITY_RATE assuring that the tank 1) does
not underflow (see L.15-16) and 2) attains a new
water level (see L.20).

Based on design decisions and synthesising the speci-
fication (Listing 1), we derive the Java implementation
(Listing 2).

Analogous to specification description, water tank
implementation (Listing 2) says that initially water tank is
empty (see 1.4). We accept any value from a user command
(see L.7). At each time stamp, we

+ FILL the water tank to attain new height of the water
(see L.14), if the tank does not overflow (see L.11-13); or

+ DRAIN the water tank to attain new height of the
water (see L.17), if the tank does not underflow (see
L.16); or

+ do NOTHING (see L.20), if all the water has been
drained.

Although deductive synthesis produces a correct-and-
secure-by-construction controller, this by itself is inad-
equate. The proof is constructed under the assumption that
the operating system and runtime environment in which
the controller executes are correct. These assumptions are
not generally correct; the runtime libraries supporting C
(and other language) code are known to contain vulner-
abilities and these vulnerabilities can be exploited to change
the code that executes in the controller. Furthermore, FDI
attacks (i.e., corrupting the sensor data before it reaches the
controller) can cause the control algorithm to issue com-
mands that will have disastrous effects, even if the control-
ler is unmodified (for example, corrupting the water level

sensor data to be lower than it should be will result in the
controller issuing a “FILL” command when it should not).
Thus, while it is certainly an advantage to have constructed
a provably correct and secure controller, one must also
actively monitor the runtime behavior of the system to guar-
antee that the controller continues to behave correctly.

IV. RUNTIME SECURITY MONITOR

The workflow of our runtime security monitor (RSM)
is shown in Fig. 4. The RSM requires both the specifica-
tion (AppSpec) and implementation (AppImpl) of an ICS
application for monitoring [17]. Since the specification and
implementation of the application operate at different levels
of abstraction, the “Wrapper” wraps the implementation in
order to share the observed data of interest with the RSM
in a way that is comparable to the executable specification
of the application. During monitoring, the RSM checks for
the consistency of the runtime behavior (observations gen-
erated by the “Wrapper”) of the application and the appli-
cation’s expected behavior (predictions generated by the
“AppSpec”). The RSM raises an alarm if an inconsistency is
detected. To support the real-time constraints of ICSs, the
alarm can be used by AWDRAT [18], which may first sus-
pend the execution and later resume the execution in a safe
state, after diagnosis.

In detail, the “AppSpec” allows us to model the behavior
of cyber and physical resources of ICSs as first class models
through description of

+ the normal behavior (“good behavior”) of the (cyber
and physical) resources by decomposing their behav-
ior into various submodules, by encoding precondi-
tion and postconditions and invariant(s) for each
submodule;

+ the flow and control model of values as data-flow and
control-flow links connecting the submodules;

« the exceptional behavior of the resources, known
attacks, and suspected attack plans to rigorously
characterize the misbehavior (“bad behavior”) of a

module/submodule.
Applmpl RSM
Wrapper Synthesizer AppSpec

Fig. 4. Runtime security monitor (RSM).

Khan et al.: ARMET: Behavior-Based Secure and Resilient Industrial Control Systems

Application Specification w 1= ...{ 7 €...
Decomposition (= al(@) !
Behavioral Model n:= Bl (Bn
Attack Plan €= o0pl|l@pe

Fig. 5. Top level syntactic domains.

Based on the model (AppSpec) of the application
implementation (AppImpl), the RSM runs the AppSpec
and AppImpl in parallel and checks their consistency by
comparing predictions (generated from the model, i.e.,
“AppSpec”) and runtime observations (produced by the
implementation, i.e., “AppImpl”). The level of granularity
at which the monitoring application operates determines
the performance-diagnosis tradeoff. Coarse-grained moni-
toring lessens the execution overhead, but limits the result-
ing diagnostic information. On the other hand, fine-grained
monitoring incurs higher computational overhead, but is
able to produce quick and thorough diagnoses.

The novelty of the RSM arises from the specification
language (its elements, e.g., attack plans, formalism, and
encoding cyber and physical resources as first class models
based on their both functional and nonfunctional proper-
ties) of the application it monitors, whose high level domains
are shown in Fig. 5. In principle, our specification language
allows to describe 1) discrete behavior of cyber—physical
ICS resources; and 2) continuous behavior of physical ICS
resources side by side as first class specifications. Monadic
second-order logic and event-calculus-based rich formalism
of the specification language enables us to describe system
behavior at various levels of abstraction, with higher degree
of modularity. Semantically, such logical formalism-based
executable specification language can be directly compiled
into a machine code, and is thus, inherently efficient for
our runtime behavioral comparison. In detail, the formal-
ism of our specification translates into a finite automaton
that recognizes only the words that satisfy the specification
[19]. “AppSpec” is an active model of normal behavior [18]
and consists of a decomposition into submodules as well as
in precondition and postconditions and invariant(s) for each
submodule. Furthermore, data-flow and control-flow links
connect the submodules, specifying the intended control
and flow of values. The preconditions and postconditions
and invariant(s) are first-order statements about the set of
data values (that flow into and out of the submodules) and
arbitrary constraints, respectively. Optionally, the model
can also specify suspected/known undesired behavior of
a resource and associated potential attack plans, allowing
diagnostic reasoning to characterize the component’s mis-
behavior. In principle, attack plans are hypothetical attacks
based on rules that describe different ways of compromising
a component by specifying “bad” behavior of the systems.
The monitor exploits the attack plans at runtime to detect
any such misbehavior, thus making the monitor more robust.
For an example attack plan for our controller, see Listing 3.

1| (define—-attack-model code-attack
:attack-types
((hacked-code-file-attack .3))
:vulnerability-mapping

((load-code hacked-code-file-attack)))

(defrule bad-code-file-takeover (:f

8 if [and [res “e—name ?resource]
9 [resource-type-of ?resource controller-file]

10 [resource-might-have-been-attacked ?resource
11 hacked-code-file-attack]]

12 then [and [attack-implies-compromised-mode

13 hacked-code-file-attack ?resource hacked .9

14 [attack-implies-compromised-mode

15 hacked-code-file-attack ?resource normal .1]]

Listing 3. Example specification of code-attack.

Based on the assumption that the specification runs
safely, our security monitor is sound and complete, i.e., there
are no false alarms or undetected computational attacks by
the monitor. Specifically, we have proved the soundness and
completeness of our monitor for some specific constructs,
as shown in [17] and [20] to show that our proof method
works, in principle.

A. Example

In order to demonstrate our approach, we have defined
a specification language that allows to describe the behavior
of a simple PID controller (see Listing 4) that manages the
level of a water tank through a pump. We have also imple-
mented a working prototype for our security monitor and
have applied it to monitor the PID controller. As a start-
ing point, we have modeled the cyber resources (i.e., PID
controller) and physical resources (i.e., feed-water subsys-
tem) of a typical ICS. In detail, the application specifica-
tion (“AppSpec”) includes a cyber model that specifies the

1| (define-component-type controller-step
rentry nts (controller-step)
exit- (controller-step)
allo —events (update-state accumulate-error)

:inpu
6 toutputs

:behavior-modes

(controller observation dt)
(command error)
(normal)

(estimate-error
:type estimate-error
(normal))
(compute-derivative
:type compute-derivative
4 :models (normal))
(compute-integral
:type compute-integral
els (normal)))
18 :dataf (
19 (observation
20 controller-step observation estimate-error)
21 (the-error
estimate-error the-error compute-derivative)
(derivative
24 compute-derivative derivative
5 compute-derivative-term)
26 (weighted-proportional
27 compute-proportional-term
28 proportional compute-correction)
29 (the-error
30 estimate-error error controller-step))

8 :components (
9
)

1 :models

Listing 4. Example specification of controller-step.

Khan et al.: ARMET: Behavior-Based Secure and Resilient Industrial Control Systems

computations performed by the PID controller, and a physi-
cal model that specifies physical characteristics and dynam-
ics of the water tank subsystem as shown in Fig. 2. The lat-
ter is employed to detect computational and FDI attacks, by
observing the systematic deviation of the sensor’s behavior
from the state of the physical plant, as predicted by the
model. Moreover, based on “AppSpec,” bugs in the imple-
mentation (AppImpl) can also be detected.

The focus of our prototype development of RSM is to
detect “computational” attacks, where an attacker success-
fully alters the operation or parameter values of the PID
controller implementation (AppImpl). For demonstration,
we have modeled the PID controller with four parameters:
the set point, and three weighting factors Kp, K; and Ky. It
performs the following steps (see :components in Listing 4).

1) Use the sensor values to estimate the state of the
system.

2) Compute the difference between the estimated system
state and the set point of the controller (error term).

3) Compute the local derivative of the error.

4) Integrate the error.

5) Compute the corresponding correction:
a) multiply the error by KP (see Listing 5);
b) multiply the integral of the error by Ki;
¢) multiply the derivative of the error by K.

6) Compute and output the sum of the above three
terms as the correction term.

Each component of the PID controller implementation
(AppImpl) corresponds to each of the above six algorithmic
steps. Similarly, each component has an AppSpec model
including preconditions and postconditions. The actual
implementation of each of these steps is wrapped, and their
input and output are presented to the RSM for their consist-
ency checking.

We have implemented our prototype monitor in Allegro
Common Lisp on a MacBook Pro with a 2.8-GHz Intel Core
i7 processor. In a real operational environment, the PID
algorithm will run as the application in a programmable
logic controller (PLC), while our RSM will run as part of the
PLC’s middleware. Thus, the PID application will be devel-
oped through any application development environment,

1| (define-component-type compute-proportional-term
2 (compute-proportional-term)
:exit-events (compute-proportional-term)
:inputs (error)

:outputs (weighted-proportional)

(normal))

tentry—-events

6 :behavior-modes

8| (defbehavior-model
error)
(weighted-proportional)

11 tprerequisites

12 d e-of ?error number])

(compute-proportional-term normal)
9 :inputs

10 toutputs

1 st
1 ([data-type-of weighted-proportional number]
1 [Quotient weighted-proportional Kp error]))

Listing 5. Example specification of the compute-proportional-term.

e.g., using ladder logic, while the RSM will be part of the
operating system, considering the current trend of PLC
environments where real-time operating systems (RTOSs)
are continuously adopted, or the middleware that runs on
the PLC, if it is not an operating system. We assume that the
PLC runs a control cycle on the water tank subsystem every
0.1 s, which is a very low rate of control cycles for such an
ICS. Our experiment simulates the subsystem for 100 s, i.e.,
1000 control cycles, and we observe that, when we enable
fine-grained monitoring, the RSM consumes 8.93 X 107%s
of CPU time and 9.07 X 10™*s of real time for each cycle of
the PID algorithm, which is very small (less than 2%) com-
pared to the length of the control cycle (0.1 s).

In the evaluation of our prototype implementation,
the RSM quickly detects arbitrary modifications (i.e., arti-
ficial attack), because of the low abstraction gap between
the RSM model (AppSpec) and the actual computation
(AppIlmpl). For instance, if the parameter K; is altered,
then the aforementioned step 5(c) produces a different out-
put that is instantaneously detected as being inconsistent
with the predicted value.

Our fine-grained modeling allows us to classify the nature
of the attack immediately through fine-grained diagnostic
resolution. For instance, in the above case, we can easily
deduce that either K; or the implementation of step 5(c) was
altered. However, fine-grained behavioral monitoring suffers
from a computational overhead. Therefore, to achieve high
performance, we can simply monitor the input and output
of the algorithm and ignore its intermediate steps. Clearly,
this reduction in communication overhead would result in a
higher diagnostic resolution overhead, because the only infor-
mation we have is that the algorithm is somehow corrupted.
Nevertheless, we can bypass other intermediate monitoring
checks, such as the procedure execution order, and instead
monitor the correctness of the data and control flows. All the
aforementioned variations are evaluated as shown in Fig. 6.

A security monitor is necessary to detect cyber com-
putational attacks at runtime. However, it is important to
understand what attacks it is capable of detecting and what
remaining vulnerabilities remain. Particularly, in the case of
FDI attacks it has been shown that it is possible to construct
a “stealthy” attack [21] that evades detection by the runtime
monitor. Thus, we also have constructed methods to analyze

Per1 x 10 Cycle CPU Real-time
Full RSM 9.06 x 10 9.07 x 10*
No Data Flow Checks 2.24 x 10°® 3.19x 10
End to End (Only) 2.98 x 10 3.01x 10*
End to End 1.04 10° 1.06 x 10°

(No Data Flow Checks)

Fig. 6. Application execution performance.

Khan et al.: ARMET: Behavior-Based Secure and Resilient Industrial Control Systems

the behavior of the runtime monitor thereby either proving
that the monitor provides complete coverage or identifying
types of attacks that can evade the monitor.

V. VULNERABILITY ANALYSIS FOR FDI
ATTACKS

FDI attacks against CPSs are becoming increasingly popu-
lar among attackers, because they avoid attacking comput-
ing systems and their networks and just compromise the
input data to control systems. The goal of an FDI attack is
to lead the control system to make wrong decisions and take
wrong actions based on manipulated input data, rather than
compromising the systems themselves; in these attacks, sys-
tems operate correctly, but on the wrong input data. A sim-
ple example, referring to our water tank case, would be to
input to the controller a sensor value for the water level that
is close to zero, leading the controller to open the pump,
introduce more water in the tank (to reach the targeted
water level) and thus, overflow the tank. In industrial envi-
ronments, cars, medical systems, and similar application
domains, such actions can be catastrophic, even fatal.

Recently, FDI attacks have drawn research attention,
focusing mostly on power systems [8], [22]-[25]. In these
efforts, power systems have been analyzed to identify condi-
tions under which FDI attacks remain undetected and to pro-
pose defenses. Most efforts have been following traditional
approaches to attack and failure detection, based on network
topology characteristics and statistical analysis of data.

We follow a different approach to defend against FDI
attacks. We have developed a method for vulnerability
analysis that identifies FDI vulnerabilities of a system at the
design phase [8]. Based on the identified vulnerabilities, we
redesign the system, introducing constraints that lead to
elimination of identified FDI attacks. This redesign process
is repeated until either FDI vulnerabilities cannot be identi-
fied, or the expected FDI attacks have been considered.

The basic concept of our method is to describe the sys-
tem through a state function, which is analyzed for input

Control Center

Computation and
Analyses
Remote / Local Data
Control Acquisition
Control Machine / |Measurement
Actuators . Sensors
ui(t) Device yilt)

Fig. 7. IcS control loop.

combinations that constitute FDI attacks. We consider that
a CPS implements a control loop, as shown in Fig. 7, for
a process P. At every instant t, the state of the system is
described with a function P(x;), where x; is the set of input
variables to the process at time t. In the implementation of
the system, the variables x are measured with sensors, input
to the controller, and used to calculate the state of the sys-
tem as well as the necessary actions, denoted with a,. We
denote with z, the measurements of variables x;, i.e., the
measurements of variables x at time t. We also consider that,
as in typical control systems, the system is monitored by a
monitor mon(x,z), which, at time t, inputs the measure-
ments z; and evaluates them for acceptance due to potential
sensor failures.

Considering a fault-free operation, mon(x, z) accepts all
measurements z and calculates the state P(x, z) of the system
using them. A successful FDI can be launched against the
system using a set of measurements z’, if 1) mon(x,z") accepts
z’; and 2) z’ are compromised values of z, i.e., 2 # z. Thus,
we can identify the existence of one or more FDI attacks, if
we can answer positively the question: Does there exist a z’
for the system P(x,z) and mon(x, z)?

Our approach identifies the existence of FDI attacks
by answering the above question. To achieve this, we rep-
resent the state of the system with a real function f()) and
we express the above question as an input to an SMT solver
for real functions, namely dReal [26]. If the expression that
represents the FDI existential question is satisfiable, then
our system is vulnerable to FDI attacks; importantly, the
SMT solver provides us with one set z’ that constitutes such
an attack.

When FDI attacks are identified, a method to defend
against them is to place constraints on the values of the
measured parameters, so that the set of values that satisfy
the state function is reduced. As we introduce more con-
straints, the space of solutions to the state function becomes
smaller and thus, reduces—if it does not eliminate—the
potential FDI attacks. Based on this, when we identify an
FDI vulnerability, we can redesign the system introducing
constraints and thus, reducing the attack surface. The new
design can be subsequently analyzed for new FDI attacks
with the new constraints. If FDI vulnerabilities are identi-
fied again, the system can be further constrained and rede-
signed and so on. The process can be repeated until the real-
istic FDI attacks are eliminated or reduced to meet the set
system specifications.

A. Example

In order to demonstrate our approach, we provide an
example using a variation of the water tank that we have
analyzed through the paper, as shown in Fig. 2. In this vari-
ation, the water tank has two pumps, one with incoming
water and one with outgoing water, each pump with one
sensor measuring its water rate (r;, and roy, for the incoming

Khan et al.: ARMET: Behavior-Based Secure and Resilient Industrial Control Systems

and outgoing flow, respectively) and one actuator, opening
it to a specified flow rate. Furthermore, we assume that the
system has one sensor measuring the water level. With this
model, we analyze a system with three sensors rather than
the trivial case of two sensors, as the gravity-draining water
tank. For convenience, we consider that the rates r;, and
Tout are real numbers in the range {0, 1} and the horizontal
cross-section area of the tank is 1. These normalized values
lead to the property that the volume of water in the tank has
the same value as the height of the water in it, making the
state function expression clearer.

For the example water tank, we consider that it operates
in discrete time and at the beginning of every time unit the
state of the pumps may change. The state of system, which
is monitored by the monitor mon(x,z), is expressed with
the function H(t + 1) = H(t) + rj, (t + 1) — 1oy (¢t + 1) that
represents the height H() of the water at the end of the time
unit t + 1.

Let us consider the following scenario: at time t,
(t) = 5, and at time (t + 1) the system is configured with
rin(t+1) = 0.5and ryy (t + 1) =0. Clearly, H(t + 1) = 5.5.
If the sensors of the system provide to the monitor the correct
valuesry, (t+1) =0.5, 15 (t +1) = 0,and H(t + 1) = 5.5,
the monitor will accept the state of the system, based on
H(t) = 5. However, an attacker could compromise the
values for ry, (t + 1), oy (t + 1), and H(t + 1) and provide
fake values to the monitor. The monitor will accept them,
if they are consistent with the function for H(t 4+ 1), and
reject them, i.e., detect the attack, if the fake values are
not consistent with the function H(t+ 1). For example,
if an attacker provides as input the values rj, (t+1) = 1,
rout(t+1)= 0, and H(t+1)= 8, then the monitor
will detect an inconsistency since H(t+1) # H(t) +
Tin—Tout © 8 # 54+1—0. However, if the attacker
provides the values 1y, (t+1) =1, ry, (t+1) =0, and
H(t+1) = 6, the monitor will accept them because they
satisfy H(t+1) = H{t)+rpy—Tow © 6 =54+1-0
although they are not the real values; this demonstrates
that the system is vulnerable to an FDI attack when (sen-
sors) values ry,, oy, and H are compromised. We can iden-
tify such an FDI attack with our method through the use of
the SMT solver, providing the monitoring function H() as
an input and asking if there is a solution to this equation
with parameter values ryy, 1oy, and H in the defined ranges,
which is different from the real action. Listing 6 shows the
input to dReal for our described example scenario as well as
the result, which is a successful FDI attack to the system as
depicted by results in Listing 7. Analyzing the system, one
can easily realize that the space of existent FDI attacks is
large, considering all the combinations of values that sat-
isfy H() and are different from the specific real values of
the example.

Based on the above and considering the large space of
potential attacks, a designer can introduce constraints on the
vulnerable parameters (ry,, 1oy and H), in order to reduce the

2 are—fun ht () Int)

3 are—fun htl () Int)

4 are-fun a () Int)

5 are—-fun rin () Real)

6 are—-fun rout () Real)

7 (and (and (= ht 5) (= htl 6)) (= a 1))
8 and (<= 0 rin) (<= rin 1)))

(<= 0 rout)
htl (+ ht (-

(<= rout 1)))

(/ rin (* a 2)) (/ rout ("~ a 2)))))

Listing 6. Example water tank specification.

attack surface. For example, one can decide that ry, should be
an integer, i.e., O or 1, rather than a real number, reducing
the attack surface significantly. A similar constraint on the
value of ., will make the potential attacks quite few, lead-
ing to a new design and a significantly more robust system. It
should be noted that the gravity-draining water tank that we
have analyzed in this paper is a constrained system (r,, is not
a parameter), which provides a smaller attack surface than
the two-pump tank we analyze here; this is the reason why it
constitutes a trivial example for this analysis.

Clearly, this methodology can be applied to any system
with a monitoring function that can be input to an SMT solver
like dReal. We have applied our method to more complex
systems, specifically alternating current (ac) state estimators
for smartgrids [27], with successful results. We have ana-
lyzed benchmark power distribution networks, based on the
IEEE 14-Bus, 30-Bus, 157-Bus, and 300-Bus benchmark suite,
demonstrating not only the effectiveness of the approach,
but also its feasibility for realistic and practical systems. As
we have demonstrated in our power state analysis, FDI vul-
nerabilities are identified successfully with analyses that are
efficient, independently of the size of realistic networks. Fig.
2in [27] shows that the time required to analyze benchmark
power networks for FDI on state estimation is in the order
of seconds or minutes, depending on the exact network con-
figuration and the constraints on node branches and buses.
However, for a design cycle of a practical power distribution
network, this performance of the analysis makes the approach
an indispensable tool for the development of networks that
are robust against FDI attacks.

VI. RELATED WORK

This section includes state of the art for each component of
our design methodology, i.e., secure-by-design ICS applica-
tions, runtime security monitoring, and vulnerability analy-
sis for FDI attacks, respectively.

1la : [ENTIRE] = [1, 1]

2[ht : [ENTIRE] = [5, 5]

3lhtl : [ENTIRE] = [6, 6]

4l rin : [ENTIRE] = [1, 1]

5| rout : [ENTIRE] = [0, 0]

6| delta-sat with delta = 0.00100000000000000

Listing 7. Example FDI detection.

Khan et al.: ARMET: Behavior-Based Secure and Resilient Industrial Control Systems

A. Reliable-and-Secure-by-Design ICS Applications

Based on the principle of correct-by-construction
approach [28], we have devised an approach to develop
secure-by-design ICS applications. Here, the challenge
is to model behavior of both cyber and physical as first
class models, though they possess fundamentally different
semantics (i.e., discrete and continuous) and characteristics
(ie., linear and nonlinear). Yet another challenge here is to
adequately model uncertain physical environmental varia-
tions that may influence behavior of physical resources of
an ICS on one hand, and operate on variable levels of infor-
mation abstraction about physical environment on the other
hand. Based on Fiat [15], secure-by-design approach allows
to derive correct and secure implementation from specifica-
tion through stepwise refinements using Coq. Thus, allow-
ing to construct reliable and secure ICS applications by
design, the approach has advanced existing approaches in
at least one of the following ways: 1) reliability and security
by design; 2) ADT-based CPS modeling; and 3) deductive
synthesis of security properties.

1) Reliability and Security by Design: For the last decade,
there have been various efforts to develop approaches that
allow reliable and secure implementations by design. For
instance, Ur/Web [29] is a language for developing reliable
and secure web applications by construction/design. For
reliability, the language assures that the application will
1) not crash during generating web pages; 2) not return inva-
lid HTML; and 3) not produce dead intra-application links,
to name a a few. Furthermore, Ur/Web assures that the
application 1) does not suffer from code-injection attacks;
and 2) does not attempt invalid SQL queries, to name a few.
The language supports a rich-type system based on depend-
ent types that guarantees that the developed application
respects the aforementioned features. However, the goal
of Ur/Web was to provide a unified web model, where a
programmer develops web application in a single program-
ming language that can be compiled to other web standards
supporting encapsulation of state and concurrency of mul-
tithreaded applications. In [10], Yang et al. have developed
a language Jeeves whose runtime enforces security policies
and guarantees that the programs respects security prop-
erties by construction. However, the goal of Jeeves was to
enforce security policies at runtime. Recently, there has
been some efforts that focused on applying the aforemen-
tioned alike approaches in ICS domain. For instance, the
ROSCoq framework [30] has been developed in Coq to
model cyber and physical resources of robots. The frame-
work has extended logic of events to model the resources of
CPS involving CoRN theory of constructive real analysis and
then to assure various properties of the model. In [31] and
[32], the authors have developed a Coq library “VeriDrone”
as a reasoning framework to ensure security of CPS mod-
els at different but independent levels, i.e., from high level
models to CPS implementation in C.

In contrast to the aforementioned approaches, our
approach derives correct and secure implementation from
a specification that treats models of cyber and physical
resources as first class models with complex behavioral
characteristics. The derivation is based on stepwise refine-
ments of the hybrid model using Coq. We encode such com-
plex models (including security and reliability properties)
and characteristics (including discrete and continuous) as
abstract data types (ADTs) in Coq and then derive imple-
mentations through deductive synthesis of ADTs using Coq
that is secure and correct by construction with a formal
proof. As far as we are aware, no other design methodology
allows the derivation of secure, correct, and efficient imple-
mentations of ICSs from a specification treating cyber and
physical models as first class models.

2) ADT-Based CPS Modeling: There have not been more
results in the modeling of cyber—physical resources using
ADTs. Recently, in [33], based on VDM, the authors have
developed a design methodology that allows comodeling of
cyber and physical resources using operations defined over
ADTs. The methodology allows to interpret the model as
a bond graph, which is a directed graph that compares the
comodel at the end.

3) Deductive Synthesis of Security Properties: As far as we
are aware, deriving correct and secure implementations
from a given ADT-based CPS model through deductive syn-
thesis has not been addressed so far. However, there have
been efforts to derive correct implementations for simple
domains from a given specification through a deductive
synthesis. For instance, Paige and Henglein [34] show the
derivation of initial implementations of the ADT-based
specification employing fix-point iterations, and later opti-
mizing the implementation using finite differencing. Lately,
in [35], Hawkins et al. have applied the deductive synthe-
sis to derive ADT-based implementations based on abstract
relational descriptions for various database operations, e.g.,
query and update.

Our approach extends the above works by allowing to
encode the specification in a general purpose theorem
prover, Coq, which enables us to perform sound synthesis
by checking the proof for consistency. However, our goal
is to apply the same method to the CPS domain, by algo-
rithmically generating secure-and-reliable implementations
from ADT-based specifications through a deductive synthe-
sis using Coq.

B. Runtime Security Monitoring

Runtime security monitoring of ICSs is a complex and
challenging task, as it involves physical processes and criti-
cal infrastructures. In order to address these challenges, we
have developed a runtime security monitor that advances
the existing techniques in at least one of the following ways:
1) formalism of our specification language; 2) modeling

Khan et al.: ARMET: Behavior-Based Secure and Resilient Industrial Control Systems

security properties; 3) monitoring based on executable
specification; 4) modular and abstract specification; and
5) performance efficiency.

1) Formalism: Formalism of our specification language
consists of monadic second-order logic (MSL) [36] and
event calculus [37] operating over algebraic data structures.
This formalism is the most appropriate to model cyber and
physical resources of ICSs and their security properties, with
strict real-time requirements. Based on equivalence results
of finite automaton and MSL [38]-[41], any MSL formula
can be efficiently translated into a machine code [19], ena-
bling our monitor to perform efficient comparison of pre-
dictions and observations respecting real-time constraints
of ICSs. In order to handle potential unknown attacks, our
language allows to specify various attack plans that are later
exploited by the monitor for timely detection of such attacks
and threats including advanced persistent threats and zero-
day attacks. Crash Hoare-logic [42] is similar to our formal-
ism, as it also allows to specify the unsafe behavior of a file
system. In order to specify fundamentally different charac-
teristics (e.g., hybrid systems with a mix of discrete and con-
tinuous behaviors) and semantics of physical and cyber mod-
els, our formalism allows composition and construction of
high-level system behavior (i.e., discrete) from semantically
different low-level behavior(s) (i.e., continuous) by employ-
ing a method analogous to classical set builder together with
closure property of MSL formulas under function composi-
tion [43], [44]. The formalism of most of the existing ICS
security monitors is based on temporal logic [45], [46], rule
systems [47], regular expressions and grammars [48], to
name a few. However, the expressive power of these formal-
isms does not comprehend ICS requirements for modeling
physical processes and security properties as first class spec-
ifications, integral with functional specification.

2) Modeling Security Properties: Adequate modeling of an
ICS application is a complex task, as it involves modeling of
both cyber and physical resources that have different char-
acteristics and real-time constraints [49]. Therefore, as a
prerequisite of a security model of an ICS application, our
language allows to describe physical processes/resources
as first class models along with cyber resources. However,
with cyber and physical models as first class models, mod-
eling and monitoring security properties become challeng-
ing because security properties need to combine the discrete
and continuous behaviors of cyber and physical processes.
Therefore, we model a security property as a relationship
between a set of discrete behavior of cyber processes and a
set of continuous behavior of physical processes based on
event calculus. In fact, in a typical CPS, cyber processes
are realized as discrete controllers that are responsible for
making decisions, while the physical processes are realized
as continuous controllers that determine physical dynam-
ics and execute the decisions of the discrete controllers.
Recently, there has been some effort to model security

properties of ICSs. For instance, a language ASLan++ [45]
allows to model security properties of ICSs for a watar treat-
ment plant in discrete time. Here, our approach is similar
to APEX [50] which employs recent results in reachability
analysis [51] to verify hybrid systems. In detail, APEX allows
to model discrete and continuous system constraints and
then checks whether the system reaches unsafe regions. The
tool suffers from scalability issues due to the state explosion
problem in model checking. However, the goal of our work
is to check the consistency between hybrid system con-
straints and a “run” of the system at runtime. In fact, we
deal with a single instance of execution at a time and thus
avoid scalability concerns.

3) Monitoring Based on Executable Specifications: Building
runtime security monitors from executable specifications
for monitoring real-time systems has recently started get-
ting attention [52]. However, executable specifications are
powerful in detecting any violation of real-time constraints
while executing the specification in parallel to the applica-
tion are more suitable for the runtime security monitoring
of ICSs. In [53], an executable specification ASML for runt-
ime monitoring has been developed at Microsoft. ASML is
developed based on state transition systems whose states
are first-order algebras [54]. An executable specification
language for runtime monitoring of timed systems has been
proposed by Chupilko and Kamkin [55] who use extended
time interval as a pair of a time event and a time interval to
model properties, which is used by the monitor to check the
conformance of an implementation word and the specifica-
tion trace. Also in [56], Ghezzi et al. developed executable
specification specification and environment (TRIO/TRIO+)
based on events and their relationship, interpreted in first-
order temporal logic. However, the language is not suitable
for modeling real-time systems, as it does not support mod-
eling hierarchical and modular specifications [57]. Recently,
the authors have developed a method for attack detection
in ICSs (a water treatment plant) by deriving physical pro-
cess invariants for each stage of the CPS from its design and
then monitoring the invariants at runtime. Like [58], we
also specify physical process invariants to detect any secu-
rity threat to ICSs. Additionally, we also specify other func-
tional and nonfunctional constraints, e.g., performance. In
contrast to aforementioned executable specification lan-
guages, the set theoretic formalism of our specification lan-
guage directly supports classification of observed behaviors
that belong to different sets of specification. Furthermore,
our language enables modeling hierarchical and modular
specifications.

4) Modular and Abstract Specification: The ICS physical
processes are dynamic, as they depend on physical environ-
mental conditions, and thus, are abstract in nature, subject
to evolution. For instance, the filtering membrane of a water
desalination plant may start filtering at a different rate with
respect to the amount of humidity in the environment.

Khan et al.: ARMET: Behavior-Based Secure and Resilient Industrial Control Systems

Thus, in order to support modeling of such systems and
their evolving constraints, we have introduced model-based
abstract [59] and modular specification, whose syntax (i.e.,
constructs) and operational semantics (i.e., execution) are
not directly dependent on the structure of the ICS applica-
tion implementation. In contrast to our language, classical-
model-based specification languages, for instance [60],
allow only a contract-based model, whose execution flow
operation (i.e., structure and semantics) representation
is dependent on the syntactic structure of the application
implementation. Such models 1) do not support the mod-
eling of information that is independent of the applica-
tion implementation, e.g., nonfunctional constraints; and
2) supports limited modularity, only in the case when the
application implementation is modular. Furthermore, our
language is highly modular and abstract, e.g., in our case,
application specification (AppSpec) is independent of the
application’s implementation (AppImpl). Hence, our lan-
guages allow modeling those behavioral details that operate
on top of the implementation, for instance, component spe-
cific workflow execution under additional (dynamic) con-
straints or (evolving) security policies/requirements. The
syntax of our language is similar to that of the executable
specification language OBJ [61]. Since our language is devel-
oped in Lisp, the efficiency and the strength of the abstrac-
tion and modularity of our language lie in Lisp’s underlying
expert system Joshua [62]; Joshua provides deductive facili-
ties to our language, based on forward and backward chain-
ing rules that are realized as generic functions to support
arbitrary abstraction. Furthermore, Joshua has builtin sup-
port for modularity that is identifiable and reusable. Joshua
enables the selection of arbitrary data structures to achieve
the desired efficiency.

5) Efficiency: Developing runtime security monitors to
meet real-time ICS constraints is a tradeoff between secu-
rity and efficiency of the ICS application. Thus, in order to
meet the strict real-time ICS constraints, we have devel-
oped a tunable runtime security monitor that monitors
adequate behavior (i.e., all preconditions, postconditions,
and invariant) at the time of high threat, and monitors par-
tial (i.e., any combination of preconditions, postconditions,
and invariant) behavior otherwise. There are no fixed per-
formance metrics for runtime security monitoring of ICS
applications [63]. However, an evaluation of such moni-
tors is required against the real-time constraints of ICSs.
In principle, the real-time constraints are periodic, i.e.,
the response of a certain component or a certain decision
is expected to be completed within a certain time period,
say T. Therefore, we ensure that the longest execution of
our monitor’s implementation completes in time T, thus
respecting the real-time constraints of the associated com-
ponent of the monitored application. Furthermore, our
results (see Section IV-A) show that, even in highly threat-
ened scenarios, our monitor executes in less than 1 ms, well

below the real-time constraints of ICSs for various applica-
tion domains. For example, water or power management
systems have a desired response delay of a few milliseconds.

Additionally, we will develop a mechanized proof show-
ing that the monitor only alarms if there is an attack, and
vice versa, using some proof assistant, e.g., Coq. We have
already shown in [17] and [20] that our proof method works
in principle.

C. Vulnerability Analysis for FDI Attacks

FDI attack modifies the measurement values that are
exchanged among various ICS subsystems. Such values
eventually mislead the controller application to conclude
undesired results [8]. Most of the existing approaches have
attempted to model linear state estimates of power grids
[23], [64]-[67]. In fact, analysis of realistic nonlinear state
estimation models is much harder [22], [24], [66]. Many of
the existing nonlinear models bypass solving complete non-
linear constraints involved in state estimation, for instance,
flow equations in power grid. Thus, such solutions only
offer analysis of system topology or data based on statistical
techniques.

In contrast to the aforementioned approaches, we aim to
develop FDI free models by design based on recent results
in delta-decision procedures [68]. Our approach allows to
specify nonlinear ICS models in dReal [26], which then
searches those input values of the variables for which the
monitor does not alarm by reasoning about nonlinear logical
constraints over real numbers.

VII. CONCLUSION AND FUTURE WORK

We have introduced a complete behavior-based approach to
the design of secure ICSs. Our method targets to produce
an industrial control application implementation that satis-
fies desired security properties (secure-by-design) as well as
a runtime security monitor that identifies runtime attacks
by comparing the expected application behavior with the
behavior of the executed code. The method is feasible and
practical because it originates from an executable specifica-
tion of the application. Importantly, our approach includes
a method to develop systems that are resistant not only to
computational attacks but also FDI attacks, through the use
of a vulnerability analysis technique that leads to secure
application designs or identification of FDI attack values
that can be monitored at runtime. We have demonstrated
the effectiveness and practicality of our method through
detailed descriptions of the development of a secure appli-
cation for a simple water tank management ICS.

Our approach leads to a proposed design methodology
that is composed of three components: secure-by-design
application development, production of a security runtime
monitor, and production of an FDI attack monitor through
vulnerability analysis. In our experiments, up to date, we

Khan et al.: ARMET: Behavior-Based Secure and Resilient Industrial Control Systems

have been using Coq and dReal for the secure-by-design com-
ponent and the vulnerability analysis component, while we
have developed the security runtime monitor, ARMET.

In future work, we will be working on the automation of
all required procedures to develop a unified design method-
ology, envisioning the ability to produce reliable and secure
application code, runtime security monitors, and runtime
FDI attack value monitors automatically from a single exe-
cutable specification of the ICS application.

Furthermore, with the recent great developments in for-
mal verification of software applications and operating sys-
tems [69], [70], our monitoring component will run without
any performance and scalability issues in real-time ICSs. Such

REFERENCES

[1] W. A. Conklin, “IT vs. OT security: A time
to consider a change in CIA to include
resilienc,” in Proc. 49th Hawaii Int. Conf. Syst.
Sci. (HICSS), Jan. 2016, pp. 2642-2647.

[2] M. Zeller, “Myth or reality—Does the aurora
vulnerability pose a risk to my generator?” in
Proc. 64th Annu. Conf. Protective Relay Eng.,
Apr. 2011, pp. 130-136.

[3] R.Langner, “Stuxnet: Dissecting a
cyberwarfare weapon,” IEEE Security Privacy,
vol. 9, no. 3, pp. 49-51, May 2011.

[4] B.Kang, K. McLaughlin, and S. Sezer,
“Towards a stateful analysis framework for
smart grid network intrusion detection,” in
Proc. 4th Int. Symp. ICS SCADA Cyber Secur.
Res., 2016, pp. 1-8.

[5] U. Lindqvist and P. G. Neumann, “The
future of the Internet of Things,” Commun.

Jul. 2007.

Feb. 2014.

[6] R.Mitchell and I.-R. Chen, “A survey of
intrusion detection techniques for cyber-
physical systems,” ACM Comput. Surv., vol.
46, no. 4, pp. 55-1-55-29, Mar. 2014.

[7] S. Cheung, B. Dutertre, M. Fong,
U. Lindqvist, K. Skinner, and A. Valdes,
“Using model-based intrusion detection for
scada networks,” in Proc. SCADA Secur. Sci.
Symp., Jan. 2007, pp. 1-12.

[8] Y. Liu, P. Ning, and M. K. Reiter, “False data
injection attacks against state estimation in

electric power grids,” ACM Trans. Inf. Syst.
Secur., vol. 14, no. 1, pp. 13-1-13-33, Jun.

pp- 100-105.

[9] A.A.Cérdenas, S. Amin, Z.-S. Lin, Y.-
L. Huang, C.-Y. Huang, and S. Sastry,
“Attacks against process control systems:
Risk assessment, detection, and response,” in
Proc. 6th ACM Symp. Inf., Comput. Commun.

[10

J. Yang, K. Yessenov, and A. Solar-Lezama, “A
language for automatically enforcing privacy
policies,” in Proc. 39th Annu. ACM SIGPLAN-

SIGACT Symp. Principles Programm. Lang., [22
New York, NY, USA, 2012, pp. 85-96.

[11] M. Zhang, Y. Duan, Q. Feng, and H. Yin,
“Towards automatic generation of security-
centric descriptions for android apps,” in

Commun. Secur., New York, NY, USA, 2015,
pp- 518-529.

[12] F.Martinelli and I. Matteucci, “An approach
for the specification, verification and

synthesis of secure systems,” Electron. Notes pp- 5991-5998.

Theor. Comput. Sci., vol. 168, pp. 29-43, [24] M. A. Rahman and H. Mohsenian-Rad,
“False data injection attacks with incomplete

Feb. 2007.

[13] I. Matteucci, “Automated synthesis of
enforcing mechanisms for security
properties in a timed setting,” Electron. Notes
Theor. Comput. Sci., vol. 186, pp. 101-120, [25

[14] R. Soulat, “Synthesis of correct-by-design
schedulers for hybrid systems,” Ph.D.
dissertation, Ecole Normale Supérieure
Paris-Saclay—ENS Cachan, Cachan, France,

[15] B. Delaware, C. Pit-Claudel, J. Gross, and
A. Chlipala, “Fiat: Deductive synthesis of
abstract data types in a proof assistant,” in
Proc. 42nd Annu. ACM SIGPLAN-SIGACT [27] S. Gao, L. Xie, A. Solar-Lezama,
Symp. Principles Programm. Lang. (POPL),
Mumbai, India, Jan. 2015, pp. 689-700.

[16] C.A.R. Hoare, “Proof of correctness of data

representations,” Acta Inf., vol. 1, no. 4,

pp. 271-281,1972.

_ [17] M. T. Khan, D. Serpanos, and H. Shrobe, “A

ACM, vol. 60, no. 2, PP 26-30, Jan. 2017. rigorous and efficient run-time security [28] E. W. Dijkstra, “A constructive approach to
monitor for real-time critical embedded
system applications,” in Proc. IEEE 3rd World
Forum Internet Things (WF-IoT), Dec. 2016, [29

[18] H. Shrobe, “AWDRAT: A cognitive
middleware system for information [30
survivability,” in Proc. 18th Conf. Innovative
Appl. Artif. Intell., vol. 2. 2006, pp. 1836-1843.

[19] B. Courcelle and J. Engelfriet, Graph [31
Structure and Monadic Second-Order Logic: A
Language-Theoretic Approach. Cambridge,

MA, USA: Cambridge Univ. Press, 2012.

2011. [20] M. T.Khan, D. Serpanos, and H. Shrobe,
“Sound and complete runtime security [32] M. Chan, D. Ricketts, S. Lerner, and
monitor for application software,” Dept.

Comput. Sci. Artif. Intell. Lab., MIT,

Cambridge, MA, USA, Tech. Rep. MIT-
CSAIL-TR-2016-017, Dec. 2016. 33

Secur., 2011, pp. 355-366. [21] C.Kwon, W. Liu, and I. Hwang, “Analysis
and design of stealthy cyber attacks on
unmanned aerial systems,” J. Aerosp. Inf.
Syst., vol. 11, no. 8, pp. 525-539, 2014.

G. Hug and J. A. Giampapa, “Vulnerability
assessment of ac state estimation with [34
respect to false data injection cyber-attacks,”

IEEE Trans. Smart Grid, vol. 3, no. 3,

pp- 1362-1370, Sep. 2012.

Proc. 22nd ACM SIGSAC Conf. Comput. [23] A. Teixeira, S. Amin, H. Sandberg,
K. H. Johansson, and S. S. Sastry, “Cyber [35] P. Hawkins, M. Rinard, A. Aiken, M. Sagiv,
security analysis of state estimators in
electric power systems,” in Proc. 49th IEEE
Conf. Decision Control (CDC), Dec. 2010,

developments will allow our RSM and other associated com-
ponents (e.g., control application, operating system) to run at
the same level of abstraction (i.e., specification language), thus
ensuring computation overhead to be negligible on one hand,
and no scalability issues on the other hand. Furthermore, to
achieve even higher performance, our RSM allows to monitor
desired ICS behavior on demand, e.g., to monitor, any or all,
among preconditions, postconditions, and invariant. []

Acknowledgment

The authors would like to thank Prof. A. Chlipala, Prof. A.
Solar-Lezama, and Dr. S. Gao for their indispensable col-
laboration and support of this project.

information against smart power grids,” in
Proc. IEEE Global Commun. Conf.
(GLOBECOM), Dec. 2012, pp. 3153-3158.

M. A. Rahman, E. Al-Shaer, and M. A.
Rahman, “A formal model for verifying
stealthy attacks on state estimation in power
grids,” in Proc. IEEE 4th Int. Conf. Smart Grid
Commun. (SmartGridComm), Vancouver, BC,
Canada, Oct. 2013, pp. 414-419.

[26] S. Gao, S. Kong, and E. M. Clarke, “dReal:
An SMT solver for nonlinear theories over
the reals,” in Proc. 24th Int. Conf. Autom.
Deduction, 2013, pp. 208-214.

D. N. Serpanos, and H. E. Shrobe,
“Automated vulnerability analysis of AC
state estimation under constrained false
data injection in electric power systems,” in
Proc. 54th IEEE Conf. Decision Control (CDC),
Dec. 2015, pp. 2613-2620.

the problem of program correctness,”
Circulated Privately, Tech. Rep., Aug. 1967.

A. Chlipala, “Ur/Web: A simple model for
programming the Web,” Commun. ACM,
vol. 59, no. 8, pp. 153-165, Aug. 2016.

A. Anand and R. Knepper, ROSCoq: Robots
Powered by Constructive Reals. Berlin,
Germany: Springer-Verlag, 2015, pp. 34-50.
G. Malecha, D. Ricketts, M. M. Alvarez, and
S. Lerner, “Towards foundational
verification of cyber-physical systems,” in
Proc. Sci. Secur. Cyber-Phys. Syst. Workshop
(SOSCYPS), Apr. 2016, pp. 1-5.

G. Malecha, “Formal verification of stability
properties of cyber-physical systems,” in
Proc. CogPL, Jan. 2016.

J. Fitzgerald, K. Pierce, and C. Gamble,

“A rigorous approach to the design of
resilient cyber-physical systems through
co-simulation,” in Proc. IEEE/IFIP 42nd Int.
Conf. Depend. Syst. Netw. Workshops (DSN-W),
Jun. 2012, pp. 1-6.

R. Paige and F. Henglein, “Mechanical
translation of set theoretic problem
specifications into efficient RAM code—A
case study,” J. Symbolic Comput., vol. 4, no. 2,
pp. 207-232, Aug. 1987.

and K. Fisher, “An introduction to data
representation synthesis,” Commun. ACM ,
vol. 55, no. 12, pp. 91-99, Dec. 2012.

[36] J. Henriksen, “Mona: Monadic second-order
logic in practice,” in Tools and Algorithms for
the Construction and Analysis of Systems

Khan et al.: ARMET: Behavior-Based Secure and Resilient Industrial Control Systems

(Lecture Notes in Computer Science), [48] F.Chen and G. Rosu, “MOP: An efficient [59] J. M. Wing, “A specifier’s introduction to
vol. 1019. 1995, pp. 89-110. and generic runtime verification formal methods,” Computer, vol. 23, no. 9,
[37] G.C.Borchardt, “Event calculus,” in Proc. framework,” ACM Sigplan Notices, vol. 42, pp- 8-23, Sep. 1990.
9th Int. Joint Conf. Artif. Intell., vol. 1. 1985, no. 10, pp. 569-588, 2007. [60] T.Gary Leavens and Y. Cheon (2006). Design
pp. 524-527. [49] I. Ruchkin, S. Selva, S. Bradley, R. Amanda, by Contract With JML. A Tutorial. [Online].
[38] R.]. Biichi, “Weak second-order arithmetic and G. David, “Challenges in physical Available: ftp://ftp.cs.iastate.edu/pub/
and finite automata,” Zeitschrift Mathe. modeling for adaptation of cyber-physical leavens/JML/jmldbc.pdf
Logik Grundlagen Math., vol. 6, nos. 1-6, systems,” iI} Proc. IEEE World Forum [61] J. A. Goguen, T. Winkler, J. Meseguer,
pp. 66-92, 1960. Internet Things MARTCPS, Dec. 2016, K. Futatsugi, and J.-P. Jouannaud, Introducing
[39] J. R. Buechi, “On a decision method in pp- 210-215. OBJ. Boston, MA, USA: Springer-Verlag,
restricted second-order arithmetic,” in Proc. [50] M. O’Kelly, H. Abbas, S. Gao, S. Shiraishi, 2000, pp. 3-167.
Int. Congr. Logic, Methodol. Philos. Sci., 1962, S. Kato, and R. Mangharam, i‘APEX: [62] S. Rowley, H. Shrobe, R. Cassels, and
pp. 1-11. Autono.mo’l’l's vehicle plan verification and W. Hamscher, “Joshua: Uniform access to
[40] M. O. Rabin, “Decidability of second-order execution,” in Proc. SAE World Congr. vol. 1. heterogeneous knowledge structures or why
theories and automata on infinite trees,” Apr. 2016, pp- 1-13. joshing is better than conniving or
Trans. Amer. Math. Soc., vol. 141, nos. 1-35, [51] S.Kong, S. Gao, W. Chen, and E. Clarke, planning,” in Proc. AAAL Seattle, WA, USA,
p. 4, 1969. dReach: &Reachability Analysis for Hybrid 1987, pp. 48-52.
[41] C. C. Elgot, “Decision problems of finite Systems. Berlin, Germany: Springer-Verlag, [63] A.Kane, “Runtime monitoring for safety-
automata design and related arithmetics,” 2015, pp- 200-205. critical embedded systems,” Ph.D.
Trans. Amer. Math. Soc., vol. 98, no. 1, [52] M. Blum and H. Wasserman, “Software dissertation, Dept. Electr. Comput. Eng,,
pp. 21-51, 1961. reliability via run-time result-checking,” Carnegie Mellon Univ., Pittsburgh, PA,
[42] H. Chen, D. Ziegler, T. Chajed, A. Chlipala, J. ACM, vol. 44, pp. 826-849,1994. USA, 2015.)
M. F. Kaashoek, and N. Zeldovich, “Using [53] M. Barnett and W. Schulte, “Runtime [64] G.Dan and'H. Sandberg, “Stealth at‘tacks
crash hoare logic for certifying the FSCQ file verification of NET contracts,” J. Syst. Softw., ?nd protection Sd’l,e'mes for state estimators
system,” in Proc. 25th Symp. Oper. Syst. vol. 65, no. 3, pp. 199-208, 2003. in power.systems, in Proc. lst'IEEE Int. Conf.
Principles, 2015, pp. 18-37. [54] E.Borger and R. F. Stark, Abstract State ?g{gt G”dzf:”g;lgn' (SmartGridComm), Oct.
[43] R. Alur, A. Durand-Gasselin, and A. Trivedi, Machines: A Method for High-Level System » PP . ’
“From monadic second-order definable Design and Analysis. New York, N'Y, USA: [65] O. Kosut, L. Jia, R. J. Thomas, and L. Tong,
string transformations to transducers,” Springer-Verlag, 2003. “Malicious data attacks on the smart grid,”
in Proc. 28th Annu. ACM/IEEE Symp. [55] M. M. Chupilko and A. S. Kamkin, “Runtime IEEIéIran; Sm]()lrt G;l(;il,lvol. 2, no. 4,
Logic Comput. Sci. (LICS), Mar. 2013, verification based on executable models: pp- 645-658, Dec.)
pp. 458-467. On-the-fly matching of timed traces,” in [66] A. Teixeira, I. Shames, H. Sandberg, and
[44] B. Courcelle, “Monadic second-order Proc. 8th WOVkShOp Model-Based Test., 2013, K H. Johansson, “Ij(?veahng Stealthy attacks
definable graph transductions: A survey,” pp. 67-81. in control systems,” in Proc. 50th Annu.
Theor. Comput. Sci., vol. 126, no. 1, [56] C. Ghezzi, D. Mandrioli, and A. Morzenti, A/ilﬁrton Cogf. Cozrg;nzun., CLl)gtOrgl, fgolngput.
pp- 53-75,1994. “Trio: A logic language for executable (e.rton), ct. ’ P‘P') 7 o
[45] M. Rocchetto and N. O. Tippenhauer, specifications of real-time systems,” [67] L.Xie, Y. Mo, and B. Sinopoli, “Integrity

[46]

[47]

“Towards formal security analysis of
industrial control systems,” in Proc. ACM
Asia Conﬁ Comput. Commun. Secur., 2017,
pp- 114-126.

A. Bauer, M. Leucker, and C. Schallhart,
“Runtime verification for LTL and TLTL,”
ACM Trans. Softw. Eng. Methodol., vol. 20,
no. 4, pp. 1-68, 2011.

H. Barringer, D. E. Rydeheard, and K.
Havelund, “Rule systems for run-time

monitoring: From eagle to ruler,” J. Logic
Comput., vol. 20, no. 3, pp. 675-706, 2010.

ABOUT THE AUTHORS

(57]

(58]

J. Syst. Softw., vol. 12, no. 2, pp. 107-123,
May 1990.

S. Gérard, H. Espinoza, F. Terrier, and

B. Selic, “Modeling languages for real-time
and embedded systems: Requirements and
standards-based solutions,” in Proc. Int.
Dagstuhl Conf. Model-Based Eng. Embedded
Real-Time Syst., 2010, pp. 129-154.

S. Adepu and A. Mathur, Using Process
Invariants to Detect Cyber Attacks on a Water

Treatment System. Cham, Switzerland:
Springer-Verlag, 2016, pp. 91-104.

(68]

(69]

[70]

data attacks in power market operations,”
IEEE Trans. Smart Grid, vol. 2, no. 4,

pp. 659-666, Dec. 2011.

S. Gao, J. Avigad, and E. M. Clarke, “6-Complete
decision procedures for satisfiability over the
reals,” in Proc. 6th Int. Joint Conf. Autom.
Reasoning-(IJCAR), Manchester, UK., Jun.
2012, pp. 286-300.

Deepspec. [Online]. Available: https://
deepspec.org/page/Research/

Certikos. [Online]. Available: http://flint.
cs.yale.edu/certikos/

Muhammad Taimoor Khan graduated in com-
puter science from the Islamia University Baha-
walpur, Bahawalpur, Punjab, Pakistan, in 2001,
and received the M.S. degree in advanced dis-
tributed systems from the University of Leicester,
Leicester, U.K., in 2008 and the Ph.D. degree from
the Research Institute for Symbolic Computa-
tion (RISC), Johannes Kepler University, Austria,
in 2014.

He is a Postdoctoral Researcher with the Institute of Informatics,
Alpen-Adria University, Klagenfurt, Austria. In the last decade, he has
been applying formal methods as a powerful tool to assure reliability
and security of various software systems, for instance, industrial control
systems, computer mathematics-based systems, to name a few. He has
extensive experience in both software industry and research institutes. He
has been working as a scientist at various premier international research
institutes, including INRIA, France and MIT CSAIL, Cambridge, MA, USA; he
is jointly working with these institutes now.

Dr. Khan has won various research and academic awards including
best paper award(s).

1 Dimitrios Serpanos (Senior Member, IEEE) received
a Diploma in computer engineering and informat-
ics from the University of Patras, Patras, Greece, in
1985 and the Ph.D. degree in computer science from
Princeton University, Princeton, NJ, USA, in 1990.

He is the Director of the Industrial Systems

" Institute/ATHENA RC and a Professor at the

Department of Electrical and Computer Engi-

neering, University of Patras. Before joining the

University of Patras, he was a Research Staff Member at IBM, T.J. Wat-

son Research Center, Yorktown Heights, NY, USA (1990-1996) and faculty

member at the Department of Computer Science, University of Crete,

Crete, Greece (1996-2000), where he also worked at the Institute of

Computer Science of the Foundation for Research and Technology-Hel-

las (ICS-FORTH). He has been Principal Scientist at the Qatar Computing

Research Institute (2013-2016). He has served as President of the Univer-

sity of Western Greece (2010-2013) and another term as Director of the

Industrial Systems Institute/ATHENA RC (2008-2013), where he has been

conducting research since 2000. His research interests include embedded

systems, security systems, industrial systems, and computer architecture.

https://deepspec.org/page/Research/
https://deepspec.org/page/Research/
http://flint.cs.yale.edu/certikos/
http://flint.cs.yale.edu/certikos/

Khan et al.: ARMET: Behavior-Based Secure and Resilient Industrial Control Systems

Prof. Serpanos is currently a member of the Board of Governors of the
IEEE Computer Society (2017). He is a member of the New York Academy
of Sciences, the Association for Computing Machinery (ACM), the Ameri-
can Association for the Advancement of Science (AAAS), and the Technical
Chamber of Greece.

Howard Shrobe received the M.S. and Ph.D.
degrees from the MIT’s Artificial Intelligence
Laboratory, Cambridge, MA, USA, in 1975 and
1978, respectively.

He is a Principal Research Scientist at MIT
Computer Science and Artificial Intelligence Lab-
oratory (MIT CSAIL), Cambridge, MA, USA. He is
a former Associate Director of CSAIL and is the
current Director of CSAIL’s CyberSecurity@CSAIL

initiative. He has served twice as a program manager at DARPA. From
1994 to 1997, he served as Chief Scientist of the Information Technology
Office and led the Information Security Initiative; from 2010 to 2013, he
served as a Program Manager in TCTO and then 120, leading the CRASH
and MRC programs. While at DARPA, he initiated and led the Evolutionary
Design of Complex Software program as well as the Information Surviv-
ability program. While at MIT, he has participated in several Cyber Security
research projects such as DARPA’s Intrusion Tolerant Systems program,
the OASIS program, the Self-Regenerative Systems and IARPA’s NICECAP
program.

Dr. Shrobe was selected Fellow of the American Association for the
Advancement of Science (AAAS) in November 2016.

