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Abstract—Modern medical devices aim at providing invasive

e-health care services to patients with long-term conditions.

Typically, these services are implemented as embedded software

applications that remotely and automatically control the opera-

tions of the devices according to the patient’s condition as mon-

itored by the underlying sensors. Such applications are neither

safe nor secure mainly because of unreliable sensors, which may

provide incorrect input data either due to its malfunctioning or

due to some accidental (by privileged user) or intentional (by

adversary) interference. Hence, the incorrect sensor data may

lead to identification of inaccurate patient condition, which may

threaten the patient’s life. To ensure safety and security of e-

health applications, current approaches employ data analysis

techniques to monitor sensor data and alarm when some

unusual value is detected and employ access control strategies to

ensure that controller decisions are consistent with sensor input

data. However, such approaches fail to detect stealthy attacks,

e.g. bad data (false data injection) and bad computations

because they do not understand what the application or device

is trying to do. To this end, we evaluate our existing approach

(i.e., ARMET) to assure safety and security of an emerging

and critically real-time application domain of e-health. The

approach is based on the specification of the application and

device, which has a design and a run-time component. Given an

application specification, the design component employs logical

verification methods to assure that the application design is

resilient to some bad data, i.e., there are no sensor input

data values with meaningful threshold which are admissible

to the specification but are not true. Given the specification,

the runtime component monitors application’s execution and

assures that the execution is consistent with the specification

and alarms whenever it detects a violation, i.e., there is a

bad computation. We evaluate the methodology through its

application to an example medical e-health application that

controls and monitors blood glucose through an insulin pump.

Index Terms—Safety, Security, CPS, Medical Devices, Data

Integrity Attacks, False Data Injection, Computational Attacks

I. INTRODUCTION

Modern embedded medical devices are (health-care) cyber
physical systems (HCPS). HCPS are "engineered systems
that are built from, and depend upon, the seamless integration
of computational algorithms and physical components" [1].
The operations of the health-care CPS (HCPS) are monitored
and controlled by embedded software (aka e-health-care con-
trol application) which typically runs on embedded proces-
sors, wireless sensors and remote computing infrastructure.
HCPS aims to support personalized health-care diagnosis,

monitoring, and treatment pervasively. The safety and secu-
rity of HCPS is critically important, considering the effects of
HCPS compromise or failure, which can threaten the patient’s
life in addition to public expenditures for treatment [2].

HCPS employ e-health control applications to support
various health-care services that automatically and remotely
control the operations of the medical devices according to the
patient’s condition. For instance, automatic glucose control
systems are widely used (as approx. 430 million people are
affected by diabetes globally [3]) to (i) measure the patient’s
glycaemia perpetually and (ii) to control glycaemia by in-
jecting an appropriate amount of insulin, if the glycaemia
level is low or high. Modern automatic glucose monitoring
and insulin delivery system (whose work-flow is shown by
Sommerville [4] in Fig. 3 consists of

1) A blood glucose monitor that measures blood glucose
levels continuously based on a special glucose sensor,
i.e. every few minutes.

2) An insulin pump (a medical device) that automatically
controls insulin through subcutaneous infusion. The
pump delivers insulin doses (i.e. bolus and basal)
whose rate, time and amount can be programmed.

3) A remote controller device that is used to control
the insulin pump with the help of an e-health control
application.

The e-health control applications are neither safe not secure
because the communication among various components (i.e.
glucose monitor, insulin pump and remote control) of the
control system is based on wireless sensors, which are
vulnerable to several safety and security attacks [2]. Using
such applications without proper safety and security measures
may threaten the patient’s life, by injecting improper insulin
accidentally or intentionally.

For our safety and security analysis of the glucose moni-
toring system, we view this system as a typical cyber physical
system (CPS) that receives sensor input data, performs
computations and issues commands to control the glucose.
For e-health control applications, it is extremely desirable
to efficiently (i.e., multitude of seconds) detect arbitrary
bad computations and bad input data (i.e., data respecting
the threshold that has negligible damage) to such systems,
achieving highly assure safety and security of the patients
health. Current approaches either employ data analysis tech-



niques to detect bad sensor input data [5] or employ access
control mechanism to ensure that computations are legal
and only allowed commands are issued by the privileged
user [6]. However, recent attacks (e.g., Ukrainian Grid [7],
Stuxnet [8]) on industrial CPS implies that HCPS may
also be vulnerable to these attacks.Former attacks result in
modification of the application’s execution by a privileged
user, while other attacks result in the compromise of input
values, which are legal (i.e., satisfy specification) but are not
real. Furthermore, it has been demonstrated that erroneous
blood glucose measurements (aka bad data) may inject fatal
insulin doses. Also, computing errors in the insulin control
program (aka bad computations) may cause hyperglycemia
(high blood glucose) or hypoglycemia (low blood glucose)
and can threaten the patient’s life. We are not aware of any
effort that is able to detect arbitrary bad computation and bad
data of e-health control runtime applications in general and
insulin pump control applications in particular. Therefore,
this work is an effort to apply a design and monitoring
method (i.e. ARMET) to assure the safety of the patient’s
health and life by efficiently (i.e. few seconds) detecting
arbitrary bad computations and some bad data in e-health
applications at runtime.

In detail, in this work, we evaluate the ability of an
existing design and monitoring methodology ARMET [9] to
assure the safety and security of HCPS at run-time using
the knowledge of physical process (i.e., blood glucose). We
characterize the behavior as a set of functional and non-
functional (e.g. safety, security, efficiency) characteristics of
both the computational/cyber and physical resources of the
process. The cyber and physical resources exhibit discrete
and continuous behavior that operate at different granularity
levels, making the behavioral description complex. To handle
the complexity, ARMET allows one to describe the behavior
of a HCPS process with an abstract executable specification.
Importantly, we treat computational and data behaviors of
HCPS separately, since they are susceptible to attacks with
different characteristics and thus require different analysis
and defenses. From the specified behavior, we generate a
monitor that assures the run-time safety and security of
HCPS control applications by detecting deviations of the
HCPS implementation’s behavior from that sanctioned by the
specification’s behavior. The approach detects both computa-
tional attacks (aka bad computations in which the adversary
may change code or data of the HCPS control application-
execution) and some input-data integrity (FDI) attacks (aka
bad data in which the adversary may change the values such
that the application works correctly but with wrong (legal
but not real) input values). The run-time monitor guarantees
detection of any functional deviation (computational attack)
but may not detect data-integrity attacks. Therefore, for data-
integrity attacks, we perform verification based vulnerability
analysis on the HCPS specification to identify potential FDI
vulnerabilities i.e., values with reasonably larger threshold.
As a result, we obtain the values of the identified integrity
attacks. Considering these values as attack-vectors, we either
monitor input-data to detect attack-vectors or refine the

design specification, by adding constraints, to eliminate such
attacks [9].

The rest of the paper is organized as follows. Section II
presents evaluation of runtime monitor ARMET to provide
defense against computational attacks and assures safety and
security of HCPS applications. Section III evaluates the non-
linear vulnerability analysis [9] to identify false data injection
attacks in e-health control applications. Section IV sketches
the prior art to our approach and Section V concludes the
paper.

II. RUNTIME SAFETY AND SECURITY MONITOR

The goal of the ARMET [9] is to assure that the operations
of an application are safe and secure against the known
and a class of unknown threats at run-time. However, in
this work, we evaluate the ability of ARMET to model and
monitor safety of critical e-health control application and its
operations, in addition to the application’s security. We call it
runtime safety and security monitor (RSSM). As depicted in
Fig. 1, the RSSM requires both the specification (AppSpec)
and implementation (AppImpl) of a health-care control ap-
plication [10]. However, as the specification and implemen-
tation of the application are described at different levels of
abstraction, the “Wrapper” wraps the implementation so as
to share the input data of interest with the RSSM such that
application implementation execution becomes comparable to
the application specification execution. While monitoring, the
RSSM checks if run-time behavior (observations generated
by the “Wrapper”) of the application is consistent with the
predicted behavior (predictions generated by the “AppSpec”)
of the application. An alarm is raised by the RSSM, if an
inconsistency is detected. To support the real-time perfor-
mance of health-care application, the alarm can be used by
AWDRAT [11], which may first suspend the execution and
later resume it in a safe-mode, after diagnosis. Furthermore,
the RSSM assures to detect any arising inconsistency (i.e.,
any known or unknown safety and security threat) iff the
"AppSpec" executes in a safe environment, as proved in [10].

Algorithm 1 Monitoring safety and security of e-health
applications
Input: AppImpl, AppSpec

Initialization :
1: RUN AppImpl and AppSpec

Monitoring (health-care) application execution :
2: while AppImpl is executing do

3: for each executing module m in AppImpl do

4: LET obs = runtime observations/behavior of m IN

5: LET pred = specified predictions/behavior of m
IN

6: if obs 6= pred then

7: ENABLE safe-mode execution for m
8: RAISE alarm
9: end if

10: end for

11: end while



Fig. 1. Run-time Safety and Security Monitor (RSSM)

In detail, the specification (“AppSpec”) supports to model
behavior of cyber (e.g., controller) and physical (e.g., insulin
pump) resources of medical device (resp. application) as first
class models through description of

• the normal behavior (aka "good behavior") of the re-
sources by

– decomposing their behavior into several sub-
modules and

– by integrating pre- and post-conditions and invari-
ant to form the decomposed sub-module,

• the flow and control model of values as data-flow and
control-flow links connecting the sub-modules and

• the exceptional behavior of the resources, known safety
and security threats, and suspected attack plans to rigor-
ously characterize the misbehavior (aka "bad behavior")
of a (sub-)module.

The RSSM rigorously assures the safety and security of
the (health-care) device operations by alarming whenever
behavior of the application operations and resources deviates
from the desired one. Based on the aforementioned model of
the control application the RSSM makes the application self-
aware, i.e. the application knows what it is exactly trying to
do. Thus, the RSSM makes the application highly robust and
automatic by determining the application context rigorously.
In fact, the RSSM supports detection of both known and
unknown (aka hypothetical) safety and security threats by
maintaining trace of what has exactly gone wrong.

As sketched in Algorithm 1, based on the above model
(AppSpec) of the application implementation (AppImpl), the
RSSM runs both the implementation and the specification
in parallel and checks their behavioral consistency by com-
paring predictions (generated from the model execution, i.e.
"AppSpec") and run-time observations (produced by execut-
ing the implementation, i.e. "AppImpl"). Whenever behavior
of the application execution deviates from the desired ones,
the RSSM alarms and enables safe-mode of the application
execution, after diagnosis. The level of granularity (i.e.,
behavioral specification of a module) at which the monitoring
application operates determines the performance-diagnosis
trade-off. Coarse-grained monitoring lessens the execution
overhead, but limits the resulting diagnostic information.
On the other hand, fine-grained monitoring incurs higher

computational overhead, but is able to produce quick and
thorough diagnoses.

Application Specification ! ::= ... ⇣ ⌘ ✏...
Decomposition ⇣ ::= ↵ | (↵) ⇣
Behavioral Model ⌘ ::= � | (�) ⌘
Attack Plan ✏ ::= � ⇢ | (� ⇢) ✏

Fig. 2. Top Level Syntactic Domains

The novelty of the safety and security monitor arises from
the specification language (its elements, e.g. attack plans,
formalism and encoding cyber and physical resources of
control systems as first class models based on their both
functional and non-functional properties) of the application
it monitors, whose high level domains are shown in Fig. 2.
In principle, the specification language allows to model (i)
discrete behavior of cyber and physical resources and (ii)
continuous behavior of physical resources side by side as
first class specifications. Monadic second order logic and
event calculus based rich formalism of the specification
language, enables to describe system behavior at various but
practical levels of abstraction, with higher degree of modu-
larity. Semantically, such logical formalism based executable
specification language can be directly compiled into machine
code, and is thus, inherently efficient for run-time behavioral
comparison to meet real-time performance constraints of the
health-care applications.

A. Example

In order to evaluate and demonstrate the extended mon-
itor, RSSM, based on ARMET specification language, we
have described the behavior of a simple health-care medical
device (i.e., insulin pump) controller (see Listing 1) that is
responsible of managing the level of glucose in human blood
through an insulin pump. We are implementing a working
prototype for our runtime monitor and are evaluating it to
monitor the insulin pump and glucose controller. As a starting
point, we have modeled the cyber resources (i.e., insulin
controller) and physical resources (i.e., insulin in blood and
its characteristics) of a typical health-care control application.
In detail, the application specification ("AppSpec") includes
a cyber-model that specifies the computations performed by
the controller, and a physical-model that specifies physical
characteristics and dynamics of the insulin as shown in
Fig. 3 (as shown in [4]). The latter is employed to detect
computational and false data injection attacks, by observing
the systematic deviation of the sensor’s behavior from the
state of the physical condition of the patient, as predicted
by the model. Moreover, based on "AppSpec", bugs in the
implementation (AppImpl) can also be detected.

The focus of our current prototype development of RSSM
is to detect “computational” attacks, where an attacker suc-
cessfully alters the operation or parameter values of the
insulin controller implementation (AppImpl). For demonstra-
tion, we consider a health-care control application, which has
a sensor that monitors glucose, and an insulin (control) pump
that receives and issues commands for the management of



Fig. 3. Workflow of an Insulin Controller [4]

(define-component-type insulin-controller-step
:entry-events (insulin-controller-step)
:exit-events (insulin-controller-step)
:allowable-events (update-state)
:inputs (controller observation obs)
:outputs (command error)
:behavior-modes (normal)
:components (

(estimate-error
:type estimate-error
:models (normal))

(compute-glucose-rate
:type compute-glucose-rate
:models (normal))

(compute-insulin-dose
:type compute-insulin-dose
:models (normal)))

:dataflows (
(observation

insulin-controller-step observation estimate-error
)
(the-error

estimate-error the-error compute-glucose-rate)
(level

compute-glucose-rate level compute-insulin-dose)
(rate

compute-glucose-rate rate compute-rate-term)
(dose

compute-insulin-dose dose insulin-controller-step)
(the-error

estimate-error error insulin-controller-step) )
... )

Listing 1. Example Specification of insulin-controller-step

glucose level in blood and an insulin pump. The main task
of the insulin pump is to inject an appropriate amount of
insulin automatically by performing the following steps (see
:components in Listing 1)::

1) Read the new glucose level (lt at time t) through sensor
2) Compute the rate of glucose (rt) based on

a) new glucose level (lt) and
b) some (say k) previous levels

(L = {lt�k, lt�k�1, . . . , lt�1})
3) Compute the new insulin dose (dt) based on

a) computed glucose rate (rt),
b) current glucose level (lt) and
c) some (say k) previously injected insulin doses

(D = {dt�k, dt�k�1, . . . , dt�1})

(define-component-type compute-insulin-rate-term
:primitive t
:entry-events (compute-insulin-rate-term)
:exit-events (compute-insulin-rate-term)
:inputs (rate low-rate high-rate)
:outputs (weighted-rate)
:behavior-modes (normal)
)

(defbehavior-model (compute-insulin-rate-term normal)
:inputs (rate low-rate high-rate)
:outputs (weighted-rate)
:prerequisites ([data-type-of ?rate number])
:post-conditions

(and ([data-type-of ?weighted-rate number
])

[(and (> weighted-rate low-rate)
(< weighted-rate high-rate)]))

Listing 2. Example Specification of compute-insulin-rate-term

4) Inject the computed dose (dt)

Each step of the algorithm has a corresponding module in
the control application (AppImpl), which are individually
specified as pre and post-conditions and invariant (AppSpec).
The actual implementation of each of these steps is wrapped,
and their input and output are presented to the RSSM for their
consistency checking.

In principle, analogous to our previous case study of water
tank controller [10], the RSSM aims to quickly detect arbi-
trary modifications (i.e., artificial attack) in e-health controller
application, because of the low abstraction gap between
the RSSM model (AppSpec) and the actual computation
(AppImpl).

Though, the RSSM enables detection of computational
attacks at run-time, yet it is critical to understand what attacks
it is capable of detecting and what remaining vulnerabilities
remain. Particularly, in the case of false data injection attacks
it has been shown that it is possible to construct a "stealthy"
attack [12] that evades detection by the monitor. To this end,
we have developed methods to identify types of attacks that
can evade the monitor.



III. FALSE DATA INJECTION ATTACKS

False data injection (FDI) attacks against critical control
systems perform attacks just by compromising the input data
to the control systems either by injecting noise into the signal
monitored by the sensor or by corrupting the sensor output
in it traverses the system’s communications network. In fact,
an FDI attack manipulates input data without compromising
the systems themselves and leads the control system to make
wrong decisions and take wrong actions: Importantly, in such
attacks, systems operate correctly, but on the wrong input
data. A simple example, referring to our insulin controller
case, would be when the attacker makes it seem that the
glucose level is high, causing the controller to inject large
amounts of insulin, resulting in a precipitous drop in blood
insulin levels, and thus threatening the patient’s health and
life.

We are not aware of any work that handles FDI attacks in
e-health and medical control applications [2]. However, some
approaches [13], [14] have been developed that either apply
statistical analysis to detect any sensor data inconsistencies
or encrypt sensor data to ensure integrity of the exchanged
data. Traditionally, encryption has been difficult to apply
in embedded applications due to the lack of computational
power in the embedded processor. However, in some cases,
the availability of newer encryption schemes for embedded
applications and the increase of processor power has made
the use of encryption feasible. As a general architectural rule,
all data in flight should be encrypted, if feasible.

We evaluate the devised method [9] to defend against
FDI attacks in medical control applications. The method
employs a verification based vulnerability analysis to identify
FDI vulnerabilities of a system at the design phase [15].
Based on the identified vulnerabilities, we refine the system
design by adding those constraints that reduces the identified
FDI attacks. The refinement is repeated until either FDI
vulnerabilities cannot be identified any more, or the expected
FDI attacks have been considered for monitoring at run-time.
Given the sensor accuracy, the approach can detect only those
false data injection attacks that cause physically unreasonable
large jumps (i.e., meaningful threshold) in sensor input
values. Furthermore, we assume that below the (meaningful)
threshold there is no safety problem, i.e. the attack is like a
“natural deviation” and has limited effect that does not make
much of a difference to the monitored critical process.

In detail, the method requires a description of the sys-
tem design as a state function, which is then analyzed to
identify those input combinations that constitute FDI attacks.
Typically every control system implements a control loop,
as depicted in Fig. 4, for some control process P , whose
specification and implementation are explain in the following:
Specification says that at every time instant t, the state of

the system process P is described by a function P (xt),
where xt is the set of input variables to the process at
time t.

Implementation requires the set of variables xt that are
measured with sensors, as input parameters. In fact,
these variables are input to the controller and are

(set-logic QF_NRA)
(declare-fun gt () Int)
(declare-fun gt1 () Int)
(declare-fun cg () Real)
(declare-fun rin () Real)
(assert (and (and (= gt 3) (= gt1 5)) (= rin 2.0)))
(assert (= cg rin)
(assert (and (<= 3 gt) (<= gt 9)))
(assert (and (<= 1 rin) (<= rin 2)))
(assert (= gt1 (+ gt cg))
(check-sat)
(exit)

Listing 3. Example Insulin Pump Controller Specification

1) used to estimate the state of the system and
2) the necessary actions that are denoted by at.

These measurements are denoted by zt, which represent
the measurements of variables x at time t. Furthermore,
implementation of a control system typically has an
evaluation function eval(x, z), which at time t, gets
measurements zt as an input and evaluates them for
acceptance due to potential sensor failures.

During safe and error-and-fault-free operation, eval(x, z)
accepts all measurements z and estimate the state P (x, z)
of the system based on the measurements. However, during
a successful launch of a FDI attack, eval(x, z0) accepts
measurements z0, which are compromised values of z, s.t.
z0 6= z. To detect such values, we require to positively answer
the question: does there exist z0 for the system design P (x, z)
while evaluating eval(x, z)?.

As part of our approach we rely on the work of our former
colleague Sicun Gao, whose work formalizes state of the
system with a real function f() and expresses the above
question as an input to an SMT solver for real functions,
namely dReal [15]. If the expression that represents the FDI
existential question is satisfiable, then the system is vulner-
able to FDI attacks; importantly, the SMT solver provides
with a set z0 of values that constitutes such attack.

Once FDI attacks are identified, a method to defend against
them is to refine the system design by adding constraints on
the values of the measured parameters, so that the set of
undesired values that satisfy the state function is reduced.
By refining the system design, the space of solutions to the
state function becomes much smaller and thus, reduces –if it
does not eliminate- the possible FDI attacks. The new refined
design can be subsequently analyzed for new FDI attacks. If
FDI vulnerabilities are identified again, the system can be
further constrained and refined and so on. The process can
be repeated until the realistic FDI attacks are eliminated or
reduced to meet the required system specification.

A. Example

We evaluate our vulnerability analysis by its application to
a variation of the running example of an insulin controller,
as shown in Fig. 3. In this variation, the insulin controller
has a pump which has one sensor measuring its insulin rate
(rin for incoming flow) and one actuator, opening it to a
specified flow rate. Furthermore, the controller has one sensor
measuring the glucose level. For convenience, we consider
that the rate rin is a real number in the range {1, 2}.



Fig. 4. Typical Control Loop for Control Systems

For the sake of example, we consider that the pump oper-
ates in discrete time and at the beginning of every time unit
the state of the pump may change. Therefore, the estimated
state of system, which is evaluated by eval(x, z), is expressed
with the function: G(t + 1) = G(t) + CG(rin(t + 1)) that
represents the glucose level G() in the blood at the end
of the time unit t + 1. Please note that CG computes the
concentration of glucose for the given rate rin of insulin at
time t+1. For simplicity, we consider that the concentration
CG equals the rate, i.e. CG(rin(t+ 1)) = rin(t+ 1).

Consider the following scenario, where at time t, G(t) =
3.0, and at time (t+1) the insulin control system is configured
with rin(t+ 1) = 1.0, which gives CG(rin(t+ 1)) = 1.0.
If the system sensors provide the correct values of rin(t +
1) = 1.0 and G(t + 1) = 4.0 to the monitor, the monitor
will accept the state of the system, based on G(t) = 3.0.
However, an attacker could compromise the sensor values of
rin(t+1) and G(t+1) and provide fake values to the monitor.
The monitor will accept them, if the values are consistent
with the function for G(t + 1), and will reject them, i.e.
detect the attack, if the (fake) values are not consistent with
the function G(t+1). For instance, if the attacker can provide

1) either input values rin(t + 1) = 0.5 and G(t + 1) =
3.8, then the monitor will be able to detect an incon-
sistency because G(t+1) 6= G(t)+CG(rin(t+1)) ,
3.8 6= 3.0 + 0.5

2) or provides the values rin(t+1) = 2.0 and G(t+1) =
4.0, the monitor will accept them because they satisfy
G(t+1) = G(t) +CG(rin(t+1)) , 4.0 = 3.0+ 2.0
although the values are not the real values, which
demonstrates that the system is vulnerable to FDI at-
tack when (sensors) values rin and G are compromised.

To identify such FDI attacks, we use the SMT solver,
providing the monitoring function G() as an input and asking
if there is a solution to this equation with parameter values
rin and G in the defined ranges, which is different from
the real action. Listing 3 shows the input to dReal for our
described example scenario as well as the result, which is
a successful FDI attack to the system as depicted by results
in Listing 4. Considering all the combinations of values that
satisfy G(), it clear that the space of FDI attacks is large as

gt : [ ENTIRE ] = [3, 3]
gt1 : [ ENTIRE ] = [5, 5]
rin : [ ENTIRE ] = [2, 2]
cg : [ ENTIRE ] = [2, 2]
delta-sat with delta = 0.00100000000000000

Listing 4. Example FDI Detection

the values are different from the specific real values of the
example.

To remove such a vulnerability or to build a defense
against such an attack, a designer can introduce constraints
on the vulnerable parameters (rin and G), such that the attack
surface reduces, e.g.

• one can decide that rin should be integer, i.e. 1 or 2,
rather than a real number, reducing the attack surface
significantly

• a similar constraint on the value of G will make the
potential attacks quite few and

• finally adding multiple sensors to monitor glucose level
further reduces the chances of attacks and eventually
will lead to a new design that is significantly more
robust.

Importantly, we recognize that FDI attack detection is a
particularly difficult problem, because the only knowledge
the controller has of the system under control is through it’s
sensors. A typical way to handle FDI attacks is to monitor
physical laws of the system under control, for example,
monitoring (by Kalman filter) whether successive sensor
reports indicate a physically un-realizable jump.A compli-
cating factor in detecting FDI is that even a good sensor
introduces some noise; such noise is normally Gaussian.
The tests tease out whether the difference between expected
sensor readings and actual ones (residual) fails to match
this Gaussian assumption; i.e. they test whether the residuals
exhibit a systematic distortion.

IV. RELATED WORK

In this section, we review state of the art for each compo-
nent of our existing design methodology, i.e. run-time safety
and security monitoring of medical control applications and
vulnerability analysis for false data injection attacks, respec-
tively.



A. Run-time Safety and Security Monitor
Run-time safety and security monitoring of medical control

systems is a challenging task, as it involves monitoring of
physical processes (i.e., glucose and insulin) to handle critical
health conditions of the patient. In order to address these
challenges, we have developed a run-time safety and security
monitor that advances the existing techniques in at-least one
of the following ways: (i) handling safety and security threats
and (ii) performance efficiency.
Handling Safety and Security Threats. Most of the existing
approaches consider insulin control system as a system of
connected devices and handle only those safety and security
threats that either originate from connectivity, e.g. protocol,
access control or originate from failures of devices, e.g.
sensor, insulin pump. For instance, in [16], authors have
developed a network of connected devices and have analyzed
access control of the network, i.e. confidentiality, integrity
and availability. In another effort [5], a supervised learning
based scheme has been developed that learns safe insulin
dose ranges for a patient and can detect attacks that result
in overdose of insulin or acute dose. In [14], [6], authors
have developed a system that can detect failure of sensor and
pump by comparing the sensor values to Kalmen estimated
values. However, since these approaches employ statistical
techniques to handle threats, they fail to detect any stealthy
attacks (i.e., input values are legal but not real), computa-
tional attacks (i.e. a person with right privileges executes
legal commands with harmful values) or advanced persistent
threats (i.e. in which values are observed for a long period of
time and then attacks are launched). Therefore, the goal of
our monitor is to detect not only known safety and security
threats but also detects unknown threats and errors. Since, our
monitor maintains the current and legal state (as described
in the specification) of the system, we are able to detect
accidental or intentional malicious activity by comparing
the runtime behavioral state with expected behavioral state
(i.e. specified behavior). Our approach is similar to the one
developed in [17][18]; However, these efforts could only
assure six temporal properties of the closed loop and failed
to detect any prolonged bad computations.
Efficiency. Developing efficient run-time safety and security
monitors that meet real-time constraints of medical control
applications is a trade-off between safety and security, and
efficiency of the application. Thus, in order to meet the strict
real-time constraints of the application, we have developed
a tunable safety and security monitor. This implies that we
monitor adequate behavior (i.e. all pre-, post conditions and
invariant) at the time of high threat, and monitor partial
(i.e. any combination of pre-, post conditions and invariant)
behavior otherwise. There are no fixed performance metrics
for run-time safety and security monitoring of medical con-
trol applications [19]. However, there are general guidelines
available that help to characterize a critical situation of
patient which requires an immediate action. For instance, the
very low level or very high level of glucose is considered
a critical condition, which requires immediate treatment.
Our specification language allows to model such conditions,

which can be detected within desired time helping patient to
recover from her critical condition. Our monitor can raise the
alarm in such situations calling for a doctor and (if possible,
i.e. modeled) can provide a quick treatment to sustain the
patient for a while until doctor arrives. In fact, the real-
time constraints of such applications are periodic, i.e. the
response of a certain component or a certain decision is
expected to be completed within a certain time period, say
T . Therefore, we ensure that the longest execution of our
monitor’s implementation completes in time T , thus respect-
ing the real-time constraints of the associated component of
the monitored application. In a different but complex case
study of water management system, our monitor executed in
less than 1ms, well below the real-time constraints of control
application belonging to various application domains. For
example, insulin controllers have a desired response/decision
delay of a few ms.

B. False Data Injection Attacks
False data injection (FDI) attack modifies the (sensors)

measurement values that are exchanged among various com-
ponents of control systems. Such values eventually mislead
the controller application to conclude undesired results [20].
Such attacks have been variously studied in large scaled
critical application domains, e.g. power grids. Most of the
existing approaches have attempted to model linear state
estimates of power grids [21], [22], [23]. In fact, analy-
sis of realistic nonlinear state estimation models is much
harder [24], [25]. Many of the existing nonlinear models
bypass solving complete nonlinear constraints involved in
state estimation, for instance, flow equations in power grid.
Thus such solutions only offer analysis of system topology
or data based on statistical techniques.

More recently, a cryptographic protocol [13] has been de-
veloped to build defense against attacks that involve forging
incorrect sensor readings of glucose and involve tracking
user performing malicious activity for insulin monitoring.
However, such protocols are not practical because sensors
are resource limited and encryption of data requires more
computing and battery power on one hand and being low
powered may hinder performance of insulin injection on the
other hand.

In contrast to aforementioned approaches, our evaluated
approach focused on developing those models that are free of
some FDI by design. Based on recent results in delta-decision
procedures [26], the evaluated approach allows to encode
control system models in dReal [15], then the tool searches
for input values to the variables for which monitor does not
alarm by reasoning about nonlinear logical constraints over
real numbers. The detection of arbitrary FDI attacks is a very
challenging task as current approaches fail to differentiate
between a noisy data and sensor compromise [27]. We have
also recognised the same difficulty as mentioned earlier in
Section III-A.

V. CONCLUSION

We have evaluated our design and monitoring method
(based on ARMET) to develop safe and secure e-health con-



trol systems based on the behavioral characteristics of the cy-
ber and physical components of the systems. The evaluation
shows that the method is practically feasible and suffers from
no scalability and performance issues because the monitor
is based on the executable specification of the application.
The methodology makes the medical control system resistant
not only to computational attacks but also to detect false
data injection attacks, by employing a vulnerability analysis
technique that leads to application designs that are free of
some false data injection attacks. Furthermore, the evaluation
demonstrates the effectiveness and usability of the method
for e-health control applications through its application to
an automatic glucose control and insulin delivery system.
The e-health applications are more challenging because the
need to understand the real-time and physical situation of the
patient, which depends of several factors. For instance, blood
glucose depends on the food eaten by the patient, the amount
of injected insulin and the rate of glucose.
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