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Abstract—The envisioned Internet of Things (IoT) will involve
a massive deployment of objects connected through wireless
cells. While commercial solutions are already available, the
fundamental limits of such networks in terms of node density,
achievable rates or reliability are not known.

To address this question, this paper uses a large scale Multiple
Access Channel (MAC) to model IoT nodes randomly distributed
over the coverage area of a unique base station. The traffic is
represented by an information rate spatial density ρ(x). This
model, referred to as the Spatial Continuum Multiple Access
Channel, is defined as the asymptotic limit of a sequence of
discrete MACs. The access capacity region of this channel is
defined as the set of achievable information rate spatial densities
achievable with vanishing transmission errors and under a sum-
power constraint. Simulation results validate the model and show
that this fundamental limit theoretically achievable when all
nodes transmit simultaneously over an infinite time, may be
reached even with a relatively small number of simultaneous
transmitters (typically around 20 nodes) which gives credibility
to the model. The results also highlight the potential interest of
non-orthogonal transmissions for IoT uplink transmissions when
compared to an ideal time sharing strategy.

I. INTRODUCTION

The Internet of Things (IoT) is now widely recognized

as the next step of disruptive digital innovation. The IoT

paradigm relies on the deployment of billions of physical

things connected seamlessly to the Internet. The objective of

an IoT radio access network is to provide things with an

efficient worldwide real-time connection. From a technical

perspective, optimizing such an architecture is challenging.

As analyzed in [1] and [2], several dedicated technologies

have been recently proposed, either standardized (the LoraTM

consortium) or proprietary (e.g. SigfoxTM). However, this kind

of network is not a simple extension of cellular networks,

due to the specific nature of the information flows. Indeed, a

typical IoT cell is made of a huge number of nodes randomly

transmitting small information quantities. The fundamental

limits of this kind of network in terms of capacity, energy

efficiency or latency have not been established yet.

The basic scenario considered in this paper includes a

unique base station (BS) covering a region containing a high

density of IoT nodes. For this paper, we do not consider

any latency constraints and we are interested in deriving the

maximal node spatial density, or more precisely, the set of

information rate spatial densities ρ(x), achievable under some

power constraint. The objective is to determine an outer bound

of the achievable rate region.

In [3], we proposed a new formalism to study dense cells.

The downlink mode, usually modeled as a k−user Broad-

cast Channel (BC), led to the Spatial Continuum Broadcast

Channel (SCBC) obtained as the limit of a sequence of BCs

when k → ∞. Its access capacity region, defined as the

set of information rate spatial densities achievable under a

given power, was established. This result was straightforwardly

extended to the uplink by invoking the multiple access channel

(MAC)-BC duality.

In the following work, we provide a formal definition of the

Spatial Continuum Multiple Access Channel (SCMAC) and

we derive its access capacity region when individual powers

are transferable. This result relies directly on the capacity

region of the k−user MAC.

This capacity region is known [4] and has been extensively

used for cellular networks (e.g. [5], [6]) and more recently

for IoT networks [7]. However, in these papers, the perfor-

mance analysis is done in two steps: first, a set of nodes is

randomly drawn in the cell area, and a joint transmission

scheme modeled as a K−user MAC is optimized. Then,

general performance results are obtained with Monte-Carlo

simulations where the former results are averaged over a large

number of random draws according to some probability law

and eventually relying on the scheduler properties. Despite its

interest, this approach does not lead to a fundamental limit

in Shannon’s sense since the achievable rates thus obtained

depend on the selected scheduling protocol and the sampling

time. Additionally no converse is established.

The SCMAC model herein proposed establishes a funda-

mental limit, independently of any scheduling protocol or time

sampling.

In the following, Section II derives the SCMAC model and

its properties. In Section III, the access capacity region is

defined and characterized analytically. Section IV describes a

simple reference scenario and presents system level simulation

results validating the model.

II. THE SCMAC MODEL

A. General assumption and definitions

An isolated cell C comprises a unique BS with its service

area Ω ⊂ R
2 and is mathematically defined by (Ω,A,m) with
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as a function of the individual messages Mk, and where the

unique decoder observes a noisy version of the weighted sum

of these symbols and decodes and estimates simultaneously the

K messages (m̂1, . . . , m̂K), with an error probability lower

than ε.
This paper focuses on the asymptotic regime, when n → ∞

and ε → 0.

Definition 2.6 (Physically feasible transmitter): A PF trans-

mitter associated with a subset Bk ∈ B performs two succes-

sive operations to transmit a message Mk:

Mk
C

−→ cn(k)
S

−→ Φn
Bk

(x) = cn(k) · δ(xk). (6)

After a classical encoding, a physical point xk ∈ Bk is selected

to transmit a symbol. Therefore, the input field Φ on Bk is

equal to a delta function centered on xk and the global input

field is

Φn(x) =
∑

k

cn(k) · δ(xk).

To derive the capacity region bound, two specific selectors S
are defined. The best selector, denoted by S+, selects the point

with the best (i.e., least) pathloss, while the worst selector,

denoted by S−, selects the point with the worst (i.e, highest)

pathloss (see Fig. 1). For a given partition B, the best and the

worst PFNs are denoted by N+(B) and N−(B) respectively.

In the following, for consistency, the subscript ± will refer to

either the worst or the best PFN.

Definition 2.7 (Relative achievability): An uplink rate den-

sity ρ(x) is said to be achievable with respect to (w.r.t.)

N±(B), if the rate tuple (R(B1) . . . R(BK)) belongs to

C(N±(B)), the capacity region of N±(B).
We now have all the tools to derive the main theoretical

results.

Theorem 2.1 (Relative achievability with worst selectors

implies asymptotic achievability): Consider a sequence of

worst PFNs denoted by
{

N
(i)
−

}

. If ρ(x) is achievable w.r.t.

N
(i)
− for some i ≥ 0, then ρ(x) is also achievable w.r.t. N

(j)
− ,

∀j ≥ i. Thus, the capacity regions satisfy

C
(

N
(i)
−

)

⊂ C
(

N
(j)
−

)

; ∀j ≥ i.

Therefore, if ρ(x) is achievable w.r.t. the worst PFN associated

with any partition B, then ρ(x) is asymptotically (when i →
∞) achievable.

Proof: The proof relies on time-sharing. Consider a subset

B
(i)
k and its worst node v−,k. When the subset is split into two

subsets B
(i+1)
m and B

(i+1)
n , the former keeps the same node

v−,n = v−,k while the latter selects its worst node that has a

better channel than v−,k. Since v−,k is able to transmit at rate

R(Bk) = R(Bn) + R(Bm), a simple time sharing between

v−,n and v−,m achieves the desired rates.

Theorem 2.2 (Converse: relative non-achievability with best

selectors implies asymptotic non-achievability): Consider a

sequence of best PFNs denoted by
(

N
(i)
+

)

. If ρ(x) is not

achievable w.r.t. N
(i)
+ for some i ≥ 0, then ρ(x) is also not

achievable w.r.t. N
(j)
+ , ∀j ≥ i:

C
(

N
(i)
+

)

⊃ C
(

N
(j)
+

)

; ∀j ≥ i,

Therefore, if ρ(x) is not achievable w.r.t. the best PFN

associated with any partition B, then ρ(x) is asymptotically

not achievable.

Proof: Consider a subset B
(i)
k with its own best transmit-

ter v+,k. When the subset is split into two subsets B
(i+1)
n and

B
(i+1)
m , one subset keeps the same transmitter v+,n = v+,k

while the other subset selects another transmitter v+,m with

a worse channel. Let us assume that a transmission scheme

exists with the partition (i + 1) such that the desired rates

R(Bn) and R(Bm) are achievable. Then, v+,k is obviously

able to transmit at the sum-rate R(Bk) = R(Bn) + R(Bm).

III. GSCMAC ACCESS CAPACITY REGION

The access capacity region2 is defined as the set of all rate

spatial densities ρ(x) that are asymptotically achievable with

a given sum-power Pm. To characterize this set, we use a

specific PFN sequence that lets the capacity regions of the

worst and best PFNs converge to the same limit. This limit

is called the doubly asymptotic access capacity region of the

GSCMAC S. The term doubly asymptotic refers to the fact

that this capacity is defined for n, i → ∞.

The access capacity region derives straightforwardly from

the asymptotic achievability stated in Theorems 2.1 and 2.2.

Definition 3.1 (Access capacity region): The access capacity

region noted DS is the set of asymptotically achievable spatial

densities ρ(x).
Theorems 2.1 and 2.2 provide upper and lower bounds of

the asymptotic capacity region. Clearly, the capacity regions

associated with a sequence of partitions satisfy

C
(

N
(0)
−

)

⊂ C
(

N
(1)
−

)

⊂ · · · ⊂ C
(

N
(∞)
−

)

C
(

N
(0)
+

)

⊃ C
(

N
(1)
+

)

⊃ · · · ⊃ C
(

N
(∞)
+

)

.

The key point is to chose a splitting process such that

lim
i→∞

C
(

N
(∞)
+

)

= lim
i→∞

C
(

N
(∞)
−

)

. (7)

If it exists, this limit is unique and is equal to DΩ. Basi-

cally, the worst PFN sequence provides successive achievable

regions while the best PFN sequence provides successive

converse regions.

Let us decompose ρ(x) as ρ(x) = ηs ·fρ(x) where fρ(x) is

a normalized rate distribution (
∫

Ω
fρ(x)·m(dx) = 1). Then the

access capacity region is alternatively characterized: for any

distribution fρ(x) (integrable, positive definite), the capacity

region bound is reached by choosing the maximal value of

ηs such that ρ(x) ∈ DΩ. Then, the access capacity region is

computed under its dual form:

Definition 3.2 (Dual): Consider a rate distribution ρ(x),
with a sum-rate ηS . The minimal power P̃m required to ensure

the asymptotic achievability is given by

P̃m = min
P∈R+

P =

∫

Ω

dP (x) s.t. ηS · fρ(.) ∈ DS(P ), (8)

2We use the term access capacity region to avoid confusion with the
classical MAC capacity that is expressed as a set of joint rates, while here the
access capacity region is defined as a set of information rate spatial densities.
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Figure 3. Comparison of the theoretical achievable limits versus simulated
EE-SE performance using superposition coding for K = 10 and K = 20.

randomly selected are transmitting simultaneously with an

optimal power allocation.

C. Simulation parameters

The parameters of the system level simulator are given in

Table I.

Cell layout One circular cell model

Cell diameter 500m

Node distribution Uniform

Minimum node distance 35m

Number of bits 100

Antenna type Omni-directional

Transmission mode Uplink single-input-single-output

Pathloss model −36.5 log10(r) dB

Noise density power −166 dBm/Hz

Scheduling SC: Simultaneous transmission
TDMA: Time division slots

Table I
SIMULATION PARAMETERS

For the sake of compatibility with our theoretical analysis,

we do not assume any fading. A large set of nodes is initially

uniformly distributed in the cell. Let us denote a subset of

nodes {u1, u2, · · · , uk} with channel gains g1 < g2 < · · · <
gk, randomly drawn. Therefore, for a maximum sum-power

efficiency, the power is distributed such that uK is decoded

first while u1 is decoded last, which means that the kth node

transmits with a power Pk given by

Pk =
N0 +

∑k−1
i=1 giPi

gk

(

22ηs(k) − 1
)

, (15)

where ηs(k) is the targeted spectral efficiency for user k. Since

a uniform rate distribution is assumed, we have ηs(k) = ηs/K.

A classical SIC receiver is employed at the BS.

D. Results

Monte-Carlo simulations are run for 105 independent sce-

narios with different power levels. During one scenario, each

node transmits 100 bits of data. When TDMA is considered,

the power transmission level is kept constant for all users,

but the time-slot length is adapted as a function of the

pathloss coefficient, such that each node may transmit all of its

information without error. This scheme is slightly sub-optimal

since the power levels are not adapted as a function of the

channel gain but the efficiency loss is limited [10].

0 5 10 15 20 25 30 35 40
1

1.4

1.8

2.2

2.6

3

3.4

3.8

4.2

Number of users

P
o

w
e

r 
R

a
ti
o

 

 

SE = 1 b/s/Hz

SE = 2 b/s/Hz

SE = 3 b/s/Hz

Figure 4. Convergence of the simulated optimal power allocation to the
theoretical limits, with respect to the number of nodes in the cell.

Using SC, all nodes transmit over all time slots simultane-

ously, while individual powers are calculated based on (15) to

obtain perfect reception with the SIC receiver. Fig. 3 compares

the fundamental limit (EE-SE) of three scenarios: a reference

orthogonal resource sharing (TDMA), and two SC strategies

with K = 10 and K = 20.

This figure shows that for this scenario, K = 20 is enough

to reach the fundamental limit while SC with K = 10 induces

EE loss of about 10% in the low SE regime. Both SC schemes

outperform TDMA. This figure shows an excellent agreement

between the fundamental limit and the simulated results even

with finite sets of nodes.

To evaluate the impact of the number of simultaneous

transmitting nodes, the ratio between simulated average power

and the theoretical limit (10), given by E[Pt]/P̃m, is shown in

Fig. 4 w.r.t. the number of simultaneous transmitting nodes K.

To provide a significant gain, SC requires enough simultaneous

transmissions (greater than 5). The convergence w.r.t. K is

faster for smaller ηS .

In addition, Fig. 5 illustrates the power distribution as a

function of the BS-node distance in a 20-node scenario and for

a target η = 2bpcu. Note that the SC curve is mathematically

modeled by (23). Interestingly, with SC, the maximal power is

not obtained at the cell edge. This is due to the SC algorithm

which favors edge users.
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Figure 5. The power distribution as a function of the distance between the
nodes and the BS using TDMA and SC for K = 20 and ηS = 2.

V. CONCLUSION

In this paper, we have extended the spatial continuum

approach proposed in [3] to the SCMAC. We have derived
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the analytical expression for the access capacity region. We

have applied the model in a simple scenario and the simulation

results show that the fundamental limit can be almost reach

with an SC strategy, even with a limited number of nodes

transmitting simultaneously (≈ 20).

This model provides interesting insights for future IoT

network optimization. We have observed for instance how SC

allows a reduction in the transmission power of edge nodes

which may bring strong benefits to the network performance:

e.g. by increasing the network life time by preserving the

power of edge nodes, or by reducing inter-cell interference.

APPENDIX: PROOF OF THEOREM 3.1

The proof exploits Theorems 2.1 and 2.2 with a specific

PFN sequence N
(i). We first apply these theorems to B

(0)
0 =

Ω. The sum-rate ηS is bounded by the point-to-point capacity

with either the best or the worst transmitters:

log

(

1 +
P̃m

ν−

)

≤ a · ηS ≤ log

(

1 +
P̃m

ν+

)

. (16)

Given B
(i)
k with ν(x) ∈

[

ν
(i)
m,k, ν

(i)
M,k

)

; ∀x ∈ B
(i)
k . Then, B

(i)
k

is split such that

B
(i+1)
2k =

{

x ∈ B
(i)
k ; ν(x) < ν̄

(i)
k

}

B
(i+1)
2k+1 =

{

x ∈ B
(i)
k ; ν(x) ≥ ν̄

(i)
k

}

,

where ν̄
(i)
k = (ν

(i)
m,k + ν

(i)
M,k)/2.

The rate associated with B
(i)
k is

R
(i)
k = ηS ·

∫ ν
(i)
M,k

ν
(i)
m,k

fν(ν) · dν. (17)

According to Theorems 2.1 and 2.2, the access capacity

region DΩ is outer and inner bounded by the access capacity

region of the PF networks: C(N−) ≤ DΩ ≤ C(N+). The

capacity of a K-user MAC with transferable power is known

and is achieved with SIC decoding.

Thanks to the splitting process defined above, the min/max

equivalent noise values associated with each subset are ordered

and satisfy

ν
(i)
m,0 < ν

(i)
m,1 < · · · < ν

(i)
m,2i−1 with ν

(i)
M,k = ν

(i)
m,k+1.

Therefore, P̃m is upper (resp. lower) bounded by the minimal

power required to serve the worst (resp. the best) PFN. The

minimal transmission power required for each PF node vk is

known for an SC/SIC transmission and follows:

g
(i)
±,k ·P

(i)
±,k =

(

eaR
(i)
k − 1

)

·



N0 +
∑

q>k

g
(i)
±,q · P

(i)
±,q



 . (18)

Let the power received at the BS be denoted by Q
(i)
±,k =

g
(i)
±,k · P

(i)
±,k. Then (18) becomes

Q
(i)
±,k =

(

eaR
(i)
k − 1

)

·



N0 +
∑

q>k

Q
(i)
±,q



 . (19)

The cumulative received sum-power (for nodes l > k) is

denoted by Π
(i)
±,k and is given by the recursive sum of (19):

Π
(i)
±,l =

∑

k≥l

(

22R
(i)
k − 1

)

·
(

N0 +Π
(i)
±,k−1

)

. (20)

When i → ∞, ν
(i)
M,k − ν

(i)
m,k → 0; thus Π

(i)
+,k −Π

(i)
−,k → 0, ∀k.

Furthermore, when i → ∞, the sum-rate of each subset

tends to 0. It follows that
(

eaR
(i)
k − 1

)

→ a · R
(i)
k . Using

these limits in (20), Π(ν) becomes asymptotically the solution

of the following Riemann integral:

Π(ν) = aηs ·

∫ νM

ν

fν(x) · (N0 +Π(x)) · dx. (21)

Straightforward computations lead to

Π(ν) = N0 · (e
aηS ·Gν(ν) − 1). (22)

The transmission power density as a function of ν is obtained

by deriving (22) and using Qr(ν) = g(x) · Pt(x):

Pt(ν) = ν · aηsfν(ν) · e
aηs·Gν(ν(x)). (23)

Its integration w.r.t ν leads to (10).
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