
IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 65, NO. 11, NOVEMBER 2017 4857

Secure Massive MIMO Relaying Systems in a

Poisson Field of Eavesdroppers
Tiep M. Hoang, Student Member, IEEE, Trung Q. Duong, Senior Member, IEEE,

Hoang Duong Tuan, and H. Vincent Poor, Fellow, IEEE

Abstract— A cooperative relay network operating in the pres-
ence of eavesdroppers, whose locations are distributed according
to a homogeneous Poisson point process, is considered. The
relay is equipped with a very large antenna array and can
exploit maximal ratio combing in the uplink and maximal ratio
transmission in the downlink. A realistic model in which the
channel state information of every eavesdropper is not known is
considered, as eavesdroppers tend to hide themselves in practice.
The destination is thus in a much weaker position than all the
eavesdroppers because it only receives the retransmitted signal
from the relay. Under this setting, the security performance
is investigated for two relaying protocols: amplify-and-forward
and decode-and-forward. The secrecy outage probability, the
connection outage probability, and the tradeoff between them,
which is controlled by the source power allocation, are examined.
Finally, suitable solutions for the source power (such that once
the transmission occurs with high reliability, the secure risk is
below a given threshold) are proposed for a tradeoff between
security and reliability.

Index Terms— Security, massive MIMO, Poisson point process,
maximal-ratio combining, maximal-ratio transmission, amplify-
and-forward, decode-and-forward.

I. INTRODUCTION

P
HYSICAL layer security (PLS) has attracted consid-

erable attention from both academia and industry in

recent years [1]. With the recent emergence of large antenna

arrays [2], PLS is a promising approach for massive multiple-

input multiple-output (MIMO) systems as countermeasures

against eavesdropping attacks. Noticeably, the desired char-

acteristics of massive MIMO systems are not present in

conventional systems with small antenna arrays, e.g. an inner
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product of two random vectors can converge in distribution.

Indeed, massive MIMO systems have been demonstrated

to improve secure performance in several studies [3]–[12].

Having said that, the role of massive MIMO systems in

preventing eavesdroppers is not yet completely under-

stood, mainly because PLS contains relatively many distinct

aspects such as artificial noise (AN) techniques, antenna/

relay/jammer/user selection techniques, and strategies to deal

with the leakage of information. Moreover, different combi-

nations of secure and relaying techniques also make security

scenarios more diverse. Thus, the issue of security in massive

MIMO relaying systems is still largely open.

Additionally, it is should be mentioned that the assump-

tions made about of eavesdroppers are of crucial importance.

Notably, since the locations of eavesdroppers is typically not

known, many authors have taken into account the spatial dis-

tribution of eavesdroppers by adopting a spatial point process

model. For example, in order to model the spatial location

of eavesdroppers, Wang and Wang [13], Wang et al. [14],

and Chae et al. [15] used a homogeneous Poisson point

process (PPP) model because of its mathematical tractability.

It should also be noted that in the context of stochastic

geometry, the PPP is the most widely used and impor-

tant point process to describe spatially distributed discrete

nodes [16]–[18]. Thus, the PPP will be adopted to model the

spatial location of eavesdroppers in this paper.

Among recent works on security for massive MIMO relay-

ing systems [3]–[8], Chen et al. [3], [4] considered cooperative

relay systems and compared the security improvement for

both amplify-and-forward (AF) and decode-and-forward (DF)

relaying, while only the AF scheme (or the DF scheme)

was considered in [5] and [6] (or in [7] and [8]). These

works, however, did not consider any direct link between

source and eavesdropper. Note that in general, eavesdroppers

may possibly receive two versions of transmitted messages

from the source and relay in cooperative relay networks.

Thus, the lack of consideration of direct links in [3]–[8]

could lead to an incomplete understanding of the ways in

which eavesdroppers can benefit from the configuration of

cooperative relay networks. On the other hand, the impact

of a direct eavesdropping link on the secure performance

of relay networks was presented in [19], but there was

no discussion of large antenna arrays. Finally, other recent

papers on secure massive MIMO networks (not necessarily

relay-aided networks) can be also found in the literature

(e.g. [9]–[12]) in the context of the impact of the

so-called pilot contamination scheme in which an eaves-
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dropper can send a pilot sequence to attack massive MIMO

systems, but this issue is beyond the scope of our paper.1 Note

that none of the above studies (i.e. [3]–[12]) have considered

the spatial locations of eavesdroppers as a whole and the

impact of direct eavesdropping links in particular.

On the contrary, the works in [13]–[15] considered the

same assumption of the eavesdroppers’ spatial distribution

as in this work, but the topic of large antenna arrays was

not discussed. For example, [13] analyzed the secure perfor-

mance for millimeter wave systems instead of massive MIMO

systems. While Wang et al. [14] and Chae et al. [15] used

artificial noise instead of large antenna arrays to deal with

eavesdropping attacks. Given that the artificial noise technique

is also a signal generation process, the additional complexity

it adds may not be necessary for large-scale antenna systems,

because such systems themselves can provide considerable

benefits in terms of security [4]. Aiming to investigate the

joint impact of massive MIMO systems and eavesdroppers’

geometric locations on the secure performance, [20] analyzed

the secrecy outage probability (SOP) with emphasis on the

potential locations of eavesdroppers. However, eavesdroppers

in [20] are assumed to be uniformly distributed with a fixed

number of eavesdroppers. Such an assumption may be unrea-

sonable for wireless systems which typically do not have the

knowledge of the number of eavesdroppers. It is clear that the

assumption of PPP-distributed eavesdroppers has not yet been

adopted for secure massive MIMO systems as a whole, and

secure massive MIMO relaying systems in particular.

In short, the works on security (mentioned in the above

paragraphs) have analyzed either massive MIMO systems

without using a PPP model for eavesdropper locations, or con-

ventional MIMO systems with the use of such a PPP model.

Thus, our work fills this gap by adopting the more realistic

assumption of PPP-distributed eavesdroppers for cooperative

wireless systems with large antenna arrays. In this paper,

we consider a secure wireless network with the aid of a

large antenna array at an intermediate relay. As for the

relaying protocol, we consider conventional relaying schemes

like AF and DF for comparison purposes, instead of delving

into more recently-developed relaying schemes (e.g. [21]).

Around the relay, there exist many potential eavesdroppers

whose locations are assumed to follow a PPP; thus, we

must take the direct links between source and eavesdroppers

into account. On the hand, the direct link between source

and destination is assumed to be impaired and neglected. Intu-

itively, all potential eavesdroppers can take advantage of the

fact that they receive two versions of confidential signals. To

quantify how harmful the eavesdroppers can be, we evaluate

the secure performance by using the SOP. Then we use an

ON-OFF scheme for the transmission in which the source

transmits its messages only when the legitimate channels are

strong enough (i.e. reliable enough). To elucidate how reliable

the secure transmission can be, we evaluate the performance

by using the connection outage probability (COP). Finally,

based on the SOP and the COP, we examine the state in which

1The context of pilot contamination can be ignored when considering a
single cell, and especially when the pilot training only accounts for a very
small portion of each coherence interval.

Fig. 1. System model.

our system is the most secure, and show that this state can

be achieved when the source power is just slightly larger than

a certain threshold (as long as the COP reaches 0). We also

derive asymptotic expressions for the SOP and the COP for

each relaying strategy. We observe that if the ratio of the

average transmit power at the source to the average noise

power at the destination is high, the security of the proposed

system seems to depend on only the eavesdroppers’ working

range as well as the intensity of their presence. We also

observe that when the source power increases, the SOP reaches

its largest limit, while the COP equals 0. Moreover, for both

relaying protocols, the reliability of the system is demonstrated

to gain from increasing the number of antennas. Finally, our

numerical results show the agreement between analysis and

simulation.

The remainder of this paper is organized as follows:

Section II describes the network configuration and restricts

the case study to the worst case. In Section III, we pro-

vide the approximate characterization of the received signal-

to-noise ratios (SNRs) assuming a large antenna array.

Sections IV and V derive exact and asymptotic expressions for

the SOP and the COP, respectively. In Section VI, optimization

problems are suggested for the AF and DF cases in order

to improve the secure performance. Numerical results are

shown in Section VII and finally, conclusions are provided

in Section VIII.

Notation: [·]T , [·]∗, and [·]† denote the transpose opera-

tor, conjugate operator, and Hermitian operator, respectively.

Vectors and matrices are represented with lowercase boldface

and uppercase boldface, respectively. In is the n × n iden-

tity matrix. ‖ · ‖ denotes the Euclidean norm. E {·} denotes

expectation. z ∼ CNn (�) denotes a complex Gaussian vector

z ∈ Cn×1 with zero-mean and covariance matrix � ∈ Cn×n .

Exp (r) denotes the exponential distribution with rate r .

II. SYSTEM MODEL

As shown in Fig. 1, we consider a cooperative relay network

in which there is a single source (S), a trusted relay (R),

a destination (D), and multiple passive eavesdroppers (Ei with

i = 1, 2, . . .).2 The distance between S and D is very large

so that R is invoked to help convey messages from S to D.

2We consider a practical scenario in which each eavesdropper hides itself,
and thus all eavesdroppers are passive.
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As such, it is reasonable to assume that there is no direct link

between S and D. However, the direct link between S and Ei

is taken into account since Ei is likely to be present around S

and/or R to overhear some confidential messages. We assume

that R is equipped with a very large receive antenna array

to decode its received signal in the uplink and a very large

transmit antenna array to forward its decoded signal in the

downlink; meanwhile, each of the remaining nodes (i.e. S, D

and Ei ) has only one antenna. It should be noted that both

the number of transmit antennas and the number of receive

antennas at R are equal to N � 2. The eavesdroppers are

assumed to be spatially distributed according to a homoge-

neous PPP � with intensity λ > 0, and yet they are only

present within a circle B(R� R0), which is centered at the

origin R with the radius R� R0.3 By keeping silent to avoid

being detected, eavesdroppers do not get involved in actions

like attacking pilot sequences.

Regarding the propagation model, we consider both small-

scale and large-scale fading factors. The small-scale fading is

characterized by hXY ∈ Cn×1
(
or hT

XY ∈ Cn×1
)

with its mag-

nitude being Rayleigh distributed. We assume that the column

vector hXY

(
or hT

XY

)
is distributed according to CNn (In). The

large-scale fading is characterized by l
−α/2
XY with α > 2 being

the path-loss exponent and lXY R0 being the length of the X−Y

link. In path loss models [22]–[24], lXY is understood as the

ratio of the real distance to R0. For example, R0 is often taken

to be 100 m for microcells [24], in which case lXY = 2 means

that the real distance between X and Y is 2R0 = 200 m.

To facilitate the analysis, we use polar coordinates with

R being the origin (as aforementioned) and φ being the

angle ŜREi . Then we have lSE =
√

L2
SR + l2 − 2LSRl cos φ

with LSR ≡ lSR, LRD ≡ lRD and l ≡ lRE. Obviously, lSE is

a function of l and φ due to the random spatial distribution

of Ei .

Regarding transmission, we use two equal time slots. In the

first time slot, S transmits the source signal s ∈ C to R. In the

second time slot, S keeps silent while R forwards the relaying

signal r ∈ CN×1 to D. In these two phases, both the signal

transmitted from S (i.e. s) and the signal retransmitted from

R (i.e. r) are overheard by Ei .

• We normalize s such that E
{
|s|2

}
= 1, and then the

signals received at R and Ei in the first time slot are,

respectively, written as

yR = √
γSL

−α/2
SR hSRs + nR, (1)

yE,1 = √
γSl

−α/2
SE hSEs + nE,1 (2)

where nR ∼ CNN (IN ) and nE,1 ∼ CN1 (1) are additive

white Gaussian noises (AWGNs) at R and Ei , respec-

tively; and L
−α/2
SR hSR ∈ CN×1 and l

−α/2
SE hSE ∈ C are the

complex channel coefficients for the S-R and S-Ei links.

3It is important to note that if λ is measured by the average number of

eavesdroppers over the area of R2
0 , then the average number of eavesdrop-

pers within the circle B(R� R0) is calculated as λ
∫ R�

0

∫ 2π
0 ldldφ but not

λ
∫ R� R0

0

∫ 2π
0 ldldφ. Herein, R0 is referred to as a reference distance, while

R� is the ratio of the real radius to R0. For example, if we have R0 = 1 km
and R� = 2, the radius of the considered circle will be 2 km.

γS is the average received SNR per antenna at R as well

as the average received SNR at Ei . Note that the average

noise power is assumed to be the same at every receive

antenna.

• We normalize r such that E
{
rr†
}

= IN , and then the

signals received at D and Ei in the second time slot are,

respectively, written as

yD =
√

γR/N L
−α/2
RD hT

RDr + nD, (3)

yE,2 =
√

γR/Nl−α/2hT
REr + nE,2 (4)

where nD ∼ CN1 (1) and nE,2 ∼ CN1 (1) are AWGNs

at D and Ei , respectively; and L
−α/2
RD hRD ∈ C1×N and

l−α/2hRE ∈ C1×N are the complex channel coefficients

the R-D and R-Ei links. γR is the average received SNR

at D as well as at Ei .

We note that for the sake of simplicity, the average noise power

is assumed to be the same at every receive antenna. This leads

to the fact that both (1) and (2) contain the same γS, while both

(3) and (4) contain the same γR. With the noise normalization,

γS is both the average received SNR per antenna at R and the

average received SNR at Ei , while γR is the average received

SNR at D as well as Ei . It should also be noted that the

subscript [·]E is implicitly related to Ei with i ∈ �; however,

the index i is dropped for notational convenience.

A. MRC/MRT at the Relay

After being received at R, the signal yR is then multiplied

by a weighting vector w† ∈ C1×N to combine the N received

signals in (1) using maximal-ratio combing (MRC). Moreover,

in the uplink, w is designed only based on hSR because the

instantaneous hSE is not known (i.e. there is no channel state

information (CSI) for the eavesdroppers).4 Hence, according

to the MRC principle, we have w = hSR/‖hSR‖. The obtained

signal after this process can be written as

r0 = w†yR = √
γSL

−α/2
SR ‖hSR‖s +

h
†
SR

‖hSR‖
nR. (5)

The MRC output signal r0 is then processed by R according
to the chosen relaying protocol (i.e., AF or DF). Then, the

obtained signal r̂0 is multiplied by another weighting vector

v ∈ CN×1 to form the retransmitted signal r. In the same way

as the design of w, the weighting vector v is designed only

based on hRD. As such, applying maximal-ratio transmission

(MRT) to the downlink, we have v = h∗
RD/‖hRD‖. Hence, the

relation between the decoded signal r̂0 and the retransmitted

signal r is given by

r = v̂r0 =
h∗

RD

‖hRD‖
r̂0. (6)

In the following, the expressions for r̂0 will be discussed for
the two different relaying operations, namely, AF and DF.

1) AF at R: In this case, the signal r̂0 is simply a scaled

version of the signal r0, i.e.

r̂0 = cAF r0 (7)

4Since the design of w does not take hSE into account due to the lack of
the CSI of Ei , the design of w according to the MRC principle is not the
optimal solution in terms of security.
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where cAF is a constant subject to the following transmit

power constraint:

tr
(
E

{
rr†
})

= tr (IN ) = N. (8)

Using (5)–(8) yields

cAF =
√

N

γSL−α
SR ‖hSR‖2 + 1

. (9)

Substituting (5) and (9) into (6)–(7), we obtain a new expres-

sion for r and then again substituting this new expression

into (3)–(4), we can rewrite (3)–(4) as

y AF
D =

√
γSγRL−α

SR L−α
RD‖hSR‖2

γSL−α
SR ‖hSR‖2 + 1

‖hRD‖s + n AF
D , (10)

y AF
E,2 =

√
γSγRL−α

SR l−α‖hSR‖2

γSL−α
SR ‖hSR‖2 + 1

hT
REh∗

RD

‖hRD‖
s + n AF

E,2 (11)

where

n AF
D �

√
γRL−α

RD‖hRD‖2

γSL−α
SR ‖hSR‖2 + 1

h
†
SR

‖hSR‖
nR + nD, (12)

n AF
E,2 �

√
γRl−α

γSL−α
SR ‖hSR‖2 + 1

hT
REh∗

RDh
†
SR

‖hRD‖‖hSR‖
nR + nE,2. (13)

2) DF at R: In this case, we consider the case in which

both the source and the relay use the same codeword for their

transmission [25]. The signal r̂0 is successfully decoded from

the signal r0, and thus we have the following relation:

r̂0 = cDFs, (14)

where cDF is a constant subject to the constraint (8). From (6),

(8) and (14), we have cDF =
√

N whereby (6) can be written

as

r =
h∗

RD

‖hRD‖
√

Ns. (15)

Substituting the above expression into (3)–(4), we can

rewrite (3)–(4) as

y DF
D = √

γRL
−α/2
RD ‖hRD‖s + nD, (16)

y DF
E,2 = √

γRl−α/2 hT
REh∗

RD

‖hRD‖
s + nE,2. (17)

B. Signal-to-Noise Ratios in the Worst Case

We assume that each Ei is capable of exploiting the best

possible decoding strategy to maximize its received signals.

Herein, we suppose that Ei is able to use MRC to combine one

signal from S and N signals from R. Obviously, the strategy

for the eavesdroppers will differ depending on whether the

relay is using AF or DF.

1) AF at R: From (2) and (11), the overall received signals

at Ei can be written as

yAF
E =

⎡
⎣

√
γSl

−α/2
SE hSE√

γSγR L−α
SR l−α‖hSR‖2

γS L−α
SR ‖hSR‖2+1

hT
REh∗

RD
‖hRD‖

⎤
⎦

︸ ︷︷ ︸
�gAF

s +
[

nE,1

n AF
E,2

]

︸ ︷︷ ︸
�ñAF

. (18)

Then using MRC receiver with the weighting vector f AF ,

we can write the combined output at Ei as

z AF
E =

(
f AF

)†
gAF s +

(
f AF

)†
ñAF . (19)

From (19), the instantaneous SNR at Ei can be generally

written as [26]5

ŜNRE(f AF ) =

(
f AF

)† (
gAF

(
gAF

)†)
f AF

(
f AF

)†
R̃AF f AF

≤
(

gAF
)† (

R̃AF
)−1

gAF (20)

where R̃AF is the covariance matrix of ñAF . The equality

in (20) holds for

f AF = τ
(

R̃AF
)−1

gAF � f AF
opt (21)

with τ being an arbitrary constant. It is apparent that in

practice, a wise Ei is likely to design f AF = f AF
opt to maximize

its received SNR. Taking this into account, we assume that the

received SNR at Ei is

ŜNRE ≡ ŜNRE(f AF
opt ) =

(
gAF

)† (
R̃AF

)−1
gAF . (22)

As such, we will only discuss this practical scenario through-

out the rest of this paper.

The covariance matrix of ñAF in (18) can be expressed as

R̃AF = E

{
ñAF

(
ñAF

)†
}

=

⎡
⎣

1 0

0
γRl−α|hT

RDh∗
RE|2(

γSL−α
SR ‖hSR‖2 + 1

)
‖hRD‖2

+ 1

⎤
⎦ . (23)

Substituting gAF in (18) and R̃AF in (23) into (22), we can

write the instantaneous SNR at Ei in the case of AF as

ŜNR
AF

E =
γSL−α

SR γRl−α‖hSR‖2|hT
RDh∗

RE|2(
γSL−α

SR ‖hSR‖2 + 1
)
‖hRD‖2 + γRl−α|hT

RDh∗
RE|2

+ γSl−α
SE |hSE|2. (24)

From (10), the instantaneous SNR at D can be written as

ŜNR
AF

D =
γSL−α

SR γRL−α
RD‖hSR‖2‖hRD‖2

γSL−α
SR ‖hSR‖2 + γRL−α

RD‖hRD‖2 + 1
. (25)

5Since the term R̃ AF in (20) is positive definite, we can factorize it into

U†U by using Cholesky decomposition. The left hand side of (20) can be

rewritten as ŜNRE(f0) =
[
f
†
0

(
g0g

†
0

)
f0

]/(
f
†
0

f0

)
where f0 � Uf AF ∈

C2×1 and g0 �
(

U†
)−1

gAF ∈ C2×1. Obviously, the new expression for

the instantaneous SNR at Ei with respect to f0 is now a Rayleigh quoti-

ent [27]– [28]; therefore we have maxf0
ŜNRE(f0) = λmax

(
g0g

†
0

)
= ‖g0‖2

where λmax is the maximum eigenvalue of g0g
†
0
, and the last equality follows

from the fact that g0g
†
0 has rank one. Then the right hand side of (20) is

obtained by substituting g0 =
(

U†
)−1

gAF and U†U = R̃ AF .



HOANG et al.: SECURE MASSIVE MIMO RELAYING SYSTEMS IN A POISSON FIELD OF EAVESDROPPERS 4861

2) DF at R: Expressions for the SNRs for the DF scheme

are formulated differently from those for the AF scheme.

When only considering the indirect transmission from S to

D through R, we can infer the instantaneous SNR at Ei from

(1) and (17) as follows [29]:

ŜNR
DF

E, indirect = min

{
γSL−α

SR ‖hSR‖2, γRl−α |hT
RDh∗

RE|2

‖hRD‖2

}
.

(26)

Similarly, when only considering the direct S-Ei link, we can

infer the instantaneous SNR at Ei from (2), i.e.

ŜNR
DF

E, direct = γSl−α
SE |hSE|2. (27)

Finally, with the assumption that Ei uses MRC to combine

signals from direct and indirect links, the instantaneous SNR

at Ei is given by [26]

ŜNR
DF

E = ŜNR
DF

E, indirect + ŜNR
DF

E, direct

= min

{
γSL−α

SR ‖hSR‖2, γRl−α |hT
RDh∗

RE|2

‖hRD‖2

}

+ γSl−α
SE |hSE|2. (28)

From (1) and (16), the instantaneous SNR at D can be

written as [29]

ŜNR
DF

D = min
{
γSL−α

SR ‖hSR‖2, γRL−α
RD‖hRD‖2

}
. (29)

Observation: From (24)–(25) we can see that both ŜNR
AF

E

and ŜNR
AF

D are increasing functions of γS. Thus, there will

be a need to determine a suitable value of γS in making the

trade-off between these SNRs. In contrast, the same does not

hold for ŜNR
DF

E and ŜNR
DF

D . In both relaying operations,

γR will not enter into our trade-off problem. With the large

number of antennas configured at R, it is reasonable to keep

the average total relay power (i.e. γR) constant such that the

consumed power-per-antenna at R is reduced.

III. SNR APPROXIMATION FOR LARGE

ANTENNA ARRAYS

In this section, we will evaluate the secure performance of

the proposed system under the assumption that the number of

transmit and receive antennas at R is very large. Recall the

following well-known properties6:

• Property (P1): Let p ∈ CN×1 and q ∈ CN×1 be

complex-valued column vectors whose elements are inde-

pendent and identically distributed (i.i.d.) random vari-

ables with zero means and variances of σ 2
p and σ 2

q .

Then (1/
√

N )pT q
dist→ CN

(
0, σ 2

pσ 2
q

)
where

dist→ denotes

convergence in distribution as N → ∞.

• Property (P2): With p and q as in (P1), we have
1
N

‖p‖2 N→∞−−−−→ σ 2
p and 1

N
‖q‖2 N→∞−−−−→ σ 2

q where
N→∞−−−−→

denotes almost-sure convergence as N → ∞.

6These properties are derived from the Lindeberg-Levy theorem and law of
large numbers (see [2], [30], [31] and references therein).

To proceed, we first rewrite (24)–(25) as

ŜNR
AF

D = N
γSL−α

SR γRL−α
RD

‖hSR‖2

N
‖hRD‖2

N

γSL−α
SR

‖hSR‖2

N
+ γRL−α

RD
‖hRD‖2

N
+ 1

N

, (30)

ŜNR
AF

E = γSl−α
SE |hSE|2

+ N
γSL−α

SR γRl−α ‖hSR‖2

N

|hT
RDh∗

RE|2
N

N
(
γSL−α

SR
‖hSR‖2

N
+ 1

N

)
‖hRD‖2

N
+ γRl−α |hT

RDh∗
RE|2

N

(31)

and (28)–(29) as

ŜNR
DF

D = N min

{
γSL−α

SR

‖hSR‖2

N
, γRL−α

RD

‖hRD‖2

N

}
, (32)

ŜNR
DF

E = γSl−α
SE |hSE|2

+ N min

{
γSL−α

SR

‖hSR‖2

N
, γRl−α |hT

RDh∗
RE|2

N

1
N

‖hRD‖2

N

}
. (33)

Then, respectively applying Property (P1) to the term
hT

RDh∗
RE√

N

and applying Property (P2) to the terms
‖hSR‖2

N
and

‖hRD‖2

N
, we

can arrive at the following approximate expressions:

ŜNR
AF

D ≈
γSL−α

SR γRL−α
RD N2

γSL−α
SR N + γRL−α

RD N + 1
� snrAF

D , (34)

ŜNR
AF

E ≈
γSL−α

SR γRl−α N
(
γSL−α

SR N + 1
)
+ γRl−α


+ γSl−α
SE |hSE|2

� snrAF
E , (35)

ŜNR
DF

D ≈ min
{
γSL−α

SR N, γR L−α
RD N

}
� snrDF

D , (36)

ŜNR
DF

E ≈ min
{
γSL−α

SR N, γRl−α

}

+ γSl−α
SE |hSE|2

� snrDF
E (37)

where 
 � 1
N

∣∣∣hRDh
†
RE

∣∣∣
2
. Note that we have

1√
N

hR Dh
†
RE

dist→ CN (0, 1) by using Property (P1) and

thus, 
 ∼ Exp (1).7 In (34)–(37), snrAF
D , snrAF

E , snrDF
D and

snrDF
E are functions of N .

Let Emax denote the strongest eavesdropper, i.e., that

which receives with the largest instantaneous SNR among

all eavesdroppers Ei ∈ � . Then the instantaneous SNRs at

Emax in the AF scheme (ŜNR
AF

Emax ) and in the DF scheme

(ŜNR
DF

Emax ) are approximated as

ŜNR
AF

Emax ≡ max
Ei∈�

ŜNR
AF

E ≈ max
Ei∈�

snrAF
E , (38)

ŜNR
DF

Emax ≡ max
Ei∈�

ŜNR
DF

E ≈ max
Ei∈�

snrDF
E . (39)

To facilitate a general analysis that can be applied to

both schemes, we use the following notation: ŜNRD ={
ŜNR

AF

D , ŜNR
DF

D

}
, ŜNRE =

{
ŜNR

AF

E , ŜNR
DF

E

}
, snrD ={

snrAF
D , snrDF

D

}
, snrE =

{
snrAF

E , snrDF
E

}
, and maxEi∈� snrE ={

maxEi∈� snrAF
E , maxEi∈� snrDF

E

}
.

7Exp (r) denotes the exponential distribution with rate r . If z ∼
CN

(
0, σ 2

)
, then |z|2 ∼ Exp

(
1/σ 2

)
.
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Proposition 1: The cumulative distribution function (CDF)

of snrAF
E is given by

FsnrAF
E

(µ) = 1 − Tµm (l)1(µm < γSL−α
SR N)

−
γS L−α

SR N(1 + γSL−α
SR N)

γRl−α
Jµm (l, lSE) (40)

where

µm � min{µ, γSL−α
SR N},

1(C) =
{

1, if C is true

0, otherwise,
(41)

Tµm (l) � exp

{
(1 + γS L−α

SR N)µm

γRl−α(µm − γSL−α
SR N)

}
(42)

and

Jµm (l, lSE) � e
− µ

γSl−α
SE

∫ µm

0

e

x

γSl−α
SE

+ (1+γS L
−α
SR

N)x

γRl−α(x−γS L−α
SR

N)

(x − γSL−α
SR N)2

dx . (43)

Proof: See Appendix A. �

Proposition 2: The CDF of snrDF
E is given by

FsnrDF
E

(µ) = 1 − e
− µm

γRl−α +
γSl−α

SE

γRl−α − γSl−α
SE

e
− µ

γSl−α
SE

×

⎡
⎣1 − e

µm

(
1

γSl−α
SE

− 1

γRl−α

)⎤
⎦

+ e
−

γSL−α
SR

N

γRl−α

[
1 − e

− (µ−µm )

γSl
−α
SE

]
1(µ > γS L−α

SR N).

(44)

Proof: See Appendix B. �

IV. SECRECY OUTAGE PROBABILITY (SOP)

In this section, we evaluate the secure performance of

the proposed system through the SOP. We first suppose that

Ei succeeds in partially decoding the received signal if its

instantaneous SNR is larger than or equal to a certain threshold

µ. When eavesdroppers are non-colluding, we can define an

outage event as the event in which “there is at least one Ei

that can partially decode its received signal.” Based on this

definition, the SOP is referred to as the probability of the

occurrence of the outage event, i.e.

ŜOPµ � P {outage event}

= P

{
∃ Ei ∈ �

∣∣∣ŜNRE ≥ µ
}

= P

{
max
Ei∈�

ŜNRE ≥ µ

}
(45)

in which maxEi∈� ŜNRE ≥ µ implies that among existing

eavesdroppers, the eavesdropper with the maximum received

SNR can decode signals.8

A. Analysis With Large N

Under the assumption of (very) large N , we can use (45),

(38) and (39) to arrive at the following approximation:

ŜOPµ ≈ SOPµ

= P

{
max
Ei∈�

snrE ≥ µ

}

= 1 − E�

{ ∏

Ei∈�

P
{
snrE < µ

∣∣�
}
}

(a)= 1 − exp

{
−λ

∫ 2π

0

∫ R�

0

(
1 − FsnrE(µ)

)
ldldφ

}
(46)

where the equality (a) follows from the application of the

probability generating function (PGF) [16]. Herein, P{snrE <

µ
∣∣�} = FsnrE(µ) is the probability that a given Ei cannot

decode the received signal. In the following, we evaluate the

SOP for the two relaying protocols of interest. Denote SOPµ ≡
SOPAF

µ and SOPµ ≡ SOPDF
µ for the two different relaying

cases.

1) AF Scheme: The SOP in the AF case is given by

SOPAF
µ = 1 − exp

⎧
⎪⎪⎨
⎪⎪⎩

−λ

∫ 2π

0

∫ R�

0

(
1 − FsnrAF

E
(µ)

)

︸ ︷︷ ︸
a function of l and φ

ldldφ

⎫
⎪⎪⎬
⎪⎪⎭

.

(47)

8For the colluding eavesdroppers scenario, the outage event should be

defined as the event of the occurrence
∑

Ei∈� ŜNRE ≥ µ. This interesting
scenario might not be mathematically tractable and is a topic for future
consideration.

SOPAF
µ = 1 − exp

{
−λ

∫ 2π

0

∫ R�

0

[
exp

{
(1 + γSL−α

SR N)µm

γRl−α(µm − γSL−α
SR N)

}
1(µm < γSL−α

SR N)

+
γSL−α

SR N(1 + γSL−α
SR N)

γRl−α
exp

{
−µ

γS(L2
SR + l2 − 2LSRl cos φ)−α/2

}

×
∫ µm

0

exp

{
x

γS(L2
SR+l2−2LSRl cos φ)−α/2

+ (1+γS L−α
SR N)x

γRl−α(x−γS L−α
SR N)

}

(x − γSL−α
SR N)2

dx

]
ldldφ

}
(49)



HOANG et al.: SECURE MASSIVE MIMO RELAYING SYSTEMS IN A POISSON FIELD OF EAVESDROPPERS 4863

SOPDF
µ = 1 − exp

{
−λ

∫ 2π

0

∫ R�

0

[
e
− µm

γRl−α − e
−

γS L−α
SR

N

γRl−α

(
1 − e

µm−µ

γS(L2
SR

+l2−2LSRl cos φ)
−α/2

)
1(µ > γSL−α

SR N)

−
γS

(
L2

SR + l2 − 2LSRl cos φ
)−α/2

γRl−α − γS

(
L2

SR + l2 − 2LSRl cos φ
)−α/2

exp

{
−

µ

γS

(
L2

SR + l2 − 2LSRl cos φ
)−α/2

}

×
(

1 − exp

{
µm

(
1

γS

(
L2

SR + l2 − 2LSRl cos φ
)−α/2

−
1

γRl−α

)})]
ldldφ

}
(55)

By substituting (40) into (47), we have

SOPAF
µ = 1 − exp

{
−λ

∫ 2π

0

∫ R�

0

[
Tµm (l)1(µm < γSL−α

SR N)

+
γSL−α

SR N(1 + γSL−α
SR N)

γRl−α
Jµm (l, lSE)

]
ldldφ

}

(48)

which can also be explicitly written as in (49) at the bottom

of the previous page.

2) DF Scheme: The SOP in the DF case is given by

SOPDF
µ = 1 − exp

⎧
⎪⎪⎨
⎪⎪⎩

−λ

∫ 2π

0

∫ R�

0

(
1 − FsnrDF

E
(µ)

)

︸ ︷︷ ︸
a function of l and φ

ldldφ

⎫
⎪⎪⎬
⎪⎪⎭

(50)

by repeating the same steps as in the derivation of (47).

Substituting (44) into the above equation, we arrive at an exact

expression for (50) as shown in (55) at the top of this page.

B. Analysis With Large N and High γS

With very large N , we proceed to consider the performance

at high γS (i.e. γS → ∞). With finite µ and large enough

N , we have µm = min{µ, γSL−α
SR N} = µ. Herein, we do not

consider the case of high γR because the instantaneous increase

in N and γR is obviously costly and impractical. Once N is

large, γR had better be low to reduce the power consumption

per antenna at R.

1) AF Scheme: We consider the following terms:

T(l) � lim
γS→∞

Tµm (l)1
(
µm < γSL−α

SR N
)

= lim
γS→∞

exp

{
(1 + γSL−α

SR N)µ

γRl−α(µ − γSL−α
SR N)

}

= exp
{
−µ/(γRl−α)

}
(51)

and

J(l) � lim
γS→∞

γSL−α
SR N(1 + γSL−α

SR N)

γRl−α
Jµm (l, lSE)

=
(γSL−α

SR N)2

γRl−α

∫ µ

0

e

γS L
−α
SR

Nx

γRl−α(−γS L
−α
SR

N)

(γSL−α
SR N)2

dx

= 1 − exp
{
−µ/(γRl−α)

}
. (52)

Taking the limit of (40) at γS → ∞, we have

lim
γS→∞

FsnrAF
E

(µ) = 1 − T(l) − J(l) = 0. (53)

Then using the two above-calculated limits, we obtain the limit

of P
{
�AF

E

}
in (48) at γS → ∞ as follows:

SOPAF
µ,asym = lim

γS→∞
SOPAF

µ

= 1 − exp

{
−λ

∫ 2π

0

∫ R�

0

(1 − 0) ldldφ

}

= 1 − exp
{
−πλR2

�

}
. (54)

2) DF Scheme: Taking the limit of (44) at γS → ∞, we

have

lim
γS→∞

FsnrDF
E

(µ) = 1 − e
− µm

γRl−α +
γSl−α

SE(
−γSl−α

SE

)
(

1 − e
− µm

γRl−α

)

= 0. (56)

Then, the limit of (50) is given by

SOPDF
µ,asym = lim

γS→∞
SOPDF

µ

= 1 − exp

{
−λ

∫ 2π

0

∫ R�

0

(1 − 0) ldldφ

}

= 1 − exp
{
−πλR2

�

}
. (57)

Remark 1: We observe from (54) and (57) that when γS

increases, the role of the considered relaying operations comes

to be indistinguishable since both AF and DF give the same

value at high γS. Indeed, this observation can also be realized

in a more intuitive manner: First, we take the limit of (35),

i.e,

lim
γS→∞

snrAF
E

= lim
γS→∞

{
γS L−α

SR γRl−α N


γS L−α
SR N

}
+ γSl−α

SE |hSE|2

= γRl−α
 + γSl−α
SE |hSE|2,

lim
γS→∞

snrDF
E

= lim
γS→∞

{
min

{
γSL−α

SR N, γRl−α

}

+ γSl−α
SE |hSE|2

}

= γRl−α
 + γSl−α
SE |hSE|2. (58)

Then taking the limit of SOPAF
µ in (49) and SOPDF

µ in (55),

we arrive at the same conclusion, i.e. limγS→∞ SOPAF
µ =

limγS→∞ SOPDF
µ .
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Proposition 3: For given µ, both SOPAF
µ and SOPDF

µ

increase with γS. Furthermore, they are upper bounded by the

limit 1−exp{−πλR2
�}, which increases with λ as well as R� .

In this respect, we can conclude that when the eavesdroppers’

density λ increases or their working range R� becomes wider,

the upper limit of the SOP in the two relaying cases will

increase accordingly.

Proof: Please see Appendix C. �

V. CONNECTION OUTAGE PROBABILITY (COP)

To restrict information leakage to a certain extent, we

consider an on-off transmission strategy (see, e.g., [32]). As

for this strategy, a threshold η is compared to the instanta-

neous SNR at D before the transmission is performed. More

precisely, if ŜNRD ≤ η, then S keeps silent (OFF-state);

otherwise, S will transmit confidential signals (ON-state). As

such, the transmission will be in the OFF-state with probability

P

{
ŜNRD ≤ η

}
which is termed the COP, i.e.

ĈOPη ≡ P {OFF-state} � P

{
ŜNRD ≤ η

}
. (59)

A. Analysis With Large N

Under the assumption of (very) large N , we can use (59),

(34) and (36) to arrive at the following approximation:

ĈOPη ≈ COPη = P {snrD ≤ η} . (60)

In the following, we analyze the COP for the AF and DF

protocols.

1) AF Scheme: We replace snrD with snrAF
D in the above

expression to obtain the COP for the AF case, i.e.

COPAF
η = P

{
snrAF

D ≤ η
}

= P

{
γSL−α

SR γRL−α
RD N2

γSL−α
SR N + γRL−α

RD N + 1
≤ η

}

= P
{
γSL−α

SR N
(
γRL−α

RD N − η
)

≤ η
(
γRL−α

RD N + 1
)}

=

⎧
⎪⎨
⎪⎩

1, if γR ≤ 
η

P

{
γS ≤

η
(
γRL−α

RD N + 1
)

L−α
SR N

(
γRL−α

RD N − η
)
}

, if γR > 
η

=

⎧
⎪⎨
⎪⎩

1, if γR ≤ 
η

1, if γR > 
η and γS ≤ ϒη

0, if γR > 
η and γS > ϒη

(61)

where


η � η/
(
N L−α

RD

)
, (62)

ϒη �
η
(
γRL−α

RD N + 1
)

L−α
SR L−α

RD N2
(
γR − 
η

) . (63)

There is no surprise that the COP takes only two values,

either 1 or 0, due to the fact that all parameters γS, γR,

N , α, LSR, LRD, and η are predetermined. From the design

perspective, we want COPη = 0 because it implies that the

confidential transmission can occur (in the ON-state). As such,

considering the on-off transmission strategy, we must make

sure that the two following conditions hold true:
{

γR > 
η

γS > ϒη.
(64)

2) DF Scheme: With snrDF
D substituted for snrD in (60), the

COP for the DF case can be calculated as

COPDF
η = P

{
snrDF

D ≤ η
}

= P
{
min

{
γSL−α

SR N, γR L−α
RD N

}
≤ η

}

=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1, if γS ≤ ωη and γS ≤ γR (LRD/LSR)−α

0, if γS > ωη and γS ≤ γR (LRD/LSR)−α

1, if γR ≤ 
η and γS > γR (LRD/LSR)−α

0, if γR > 
η and γS > γR (LRD/LSR)−α

(65)

where

ωη � η/
(
N L−α

SR

)
. (66)

Similarly to the AF case, we wish to have COPη = 0, and so
{

either 
η < γR < γS (LSR/LRD)−α

or ωη < γS ≤ γR (LRD/LSR)−α ,
(67)

needs to be satisfied.

B. Analysis With Large N and High γS

As analyzed in the last subsection, we need to set the

values of γS, γR and N such that the COP is equal to 0 for

each relaying strategy at R. With high γS (i.e. γS → ∞)

the second condition in (64) is almost surely true, because

limγS→∞ P
{
γS > ϒη

}
= 1; thus, the COP in the AF case

will approach 0 (i.e. the OFF-state does not occur) at high γS

given that the first condition in (64) is satisfied. Meanwhile,

the second condition in (67) does not seem to be achievable

at high γS; thus, the COP can reach 0 as long as the first

condition in (67) is satisfied. In short, the OFF-state occurs at

high γS when 
η < γR for the AF scheme and 
η < γR <

γS (LSR/LRD)−α for the DF scheme.

VI. SECURITY-RELIABILITY TRADEOFF

In this section, we evaluate the interactions of the key

secure metrics including the SOP, the COP and the end-to-

end (e2e) secrecy rate (SR). In this analysis, the SOP and the

COP will be jointly evaluated in another probabilistic metric,

i.e. the probability of achieving the most secure transmission

state. On letting Â denote the most secure transmission state

and A denote the replacement for Â in the case of (very)

large N , we have P{Â} ≈ P {A}. Similarly, with large

N , the e2e SR (in nats/s/Hz) can be expressed as Cs =
1
2

max
{

ln
(

1+snrD
1+snrEmax

)
, 0
}

where the factor of 1/2 is due to the

fact that the transmission is divided into two equal time slots.

All metrics Cs , SOPµ and COPη involve the same parameter

γS; thus, we respectively rewrite Cs , SOPµ and COPη as

Cs(γS), SOPµ(γS) and COPη(γS) to emphasize the role of

γS in our analysis.
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Fig. 2. Possible insecure/secure states of the proposed system versus
corresponding ranges of (snrD, snrEmax ).

Now, let us look at Fig. 2 which is provided for illustration.

In the figure, there are two regions for the e2e SR: the

region y0z corresponds to Cs(γS) = 0 (i.e. snrD ≤ snrEmax ),

while the region x0z corresponds to Cs(γS) > 0 (i.e. snrD >

snrEmax ). Further in Fig. 2, we consider two scenarios for η

as follows:

• With η > µ, the transmission only occurs in the

ON-state (COPη(γS) = 0) if a pair of (snrD, snrEmax) lies

in the region u A1x . In this case, there are three subcases

corresponding to three regions:

– u A3z has Cs(γS) = 0 and snrEmax ≥ µ

– z A3 A2v has Cs(γS) > 0 and snrEmax ≥ µ

– v A2 A1x has Cs(γS) > 0 and snrEmax < µ

• With η ≤ µ, the transmission only occurs (in the

ON-state) if the considered pair of instantaneous SNRs

lies in the region u A4x . In this case, there are four

subcases:

– u A6 A7z has Cs(γS) = 0 and snrEmax ≥ µ

– z A7v has Cs(γS) > 0 and snrEmax ≥ µ

– A5 A6 A7 has Cs(γS) = 0 and snrEmax < µ

– v A7 A5 A4x has Cs(γS) > 0 and snrEmax < µ

Obviously, if we have (snrD, snrEmax) ∈ v A2 A1x in the case

of η > µ and/or (snrD, snrEmax) ∈ v A7 A5 A4x in the case of

η ≤ µ, the proposed system will attain the most secure state

with Cs(γS) > 0, COPµ(γS) = 0 and snrEmax < µ. We focus

only on the case of η > µ in this paper and evaluate the

probability of the event A = {(snrD, snrEmax) ∈ v A2 A1x}.
The probability of the occurrence of the event A is given by

P {A} = P {(snrD, snrEmax) ∈ v A2 A1x |η > µ }
= P {η < snrD, snrEmax < µ}

= P

{
max
Ei∈�

snrE < µ

}
P {η < snrD}

=
[
1 − SOPµ(γS)

] [
1 − COPη(γS)

]
. (68)

We will denote P {A} as P {A}AF and P {A}DF for the AF case

and DF case, respectively.

A. AF Case

In order to maximize the probability P {A}AF , we aim to

solve the following optimization problem:

(PAF ) minimize
γS

SOPAF
µ (γS)

subject to COPAF
η (γS) = 0.

Using (64), the constraints are γR > 
η and

γS > ϒη. Once the constraint γR > 
η is satisfied,

(PAF ) has the optimal solution

γS,opt → ϒ+
η (69)

because SOPAF
µ (γS) > SOPAF

µ (ϒη) for all γS > ϒη (accord-

ing to Proposition 3). In contrast, if the constraint γR > 
η

is not satisfied, the event A does not occur regardless of any

value of γS. As such, we have

max
γS

P {A}AF =

{
1 − SOPAF

µ (ϒ+
η ), if γR > 
η

0, if γR ≤ 
η.
(70)

B. DF Case

Analogously to the AF case, we suggest the optimization

problem for the DF case as follows:

(PDF ) minimize
γS

SOPDF
µ (γS)

subject to COPDF
η (γS) = 0.

Using (67), the constraint becomes 
η < γR <

γS (LSR/LRD)−α or ωη < γS ≤ γR (LRD/LSR)−α . Moreover,

SOPµ(γS) increases with γS, and so the problem (PDF ) has

two optimal solutions:

γS,opt

=
{

γ +
R (LRD/LSR)−α , if γR > 
η

ω+
η , if γR ≥ ω+

η (LSR/LRD)−α � �.

(71)

Finally, the maximal value of P {A}DF can be readily deduced

from (71) as follows:

max
γS

P {A}DF

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
{
P {A}DF

opt,1 ,P {A}DF
opt,1

}
, if 
η < � ≤ γR

or γR > 
η ≥ �,

P {A}DF
opt,1 , if 
η < γR < �,

P {A}DF
opt,2 , if 
η ≥ γR ≥ �,

0, if γR ≤ 
η < �

or 
η ≥ � > γR

(72)

where P {A}DF
opt,1 � 1 − SOPDF

µ (γS)
∣∣∣
γS=ω+

η

and P {A}DF
opt,2 �

1 − SOPDF
µ (γS)

∣∣∣
γS=γ +

R (LRD/LSR)−α
.

Remark 2: Both cases require cooperation between S and R

such that γS and γR meet the requirement for quality of service
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Fig. 3. SOPAF
µ in (49) and SOPDF

µ in (55) versus γS. For each relaying
scheme, two subcases are considered: LSR = 1 and LSR = 4. Other
parameters: N = 50, λ = 0.25, R� = 1, α = 2.5, γR = 10 dB,
µ = 16.02 dB.

(i.e. P {A} is maximized). When the parameter γR is chosen

beforehand, we only need to set the parameter γS to reach the

goal. Hence, we choose γR > 
η in the AF case, while, γR

should satisfy either 
η < � ≤ γR or γR > 
η ≥ � in the

DF case.

VII. NUMERICAL RESULTS

This section provides several numerical examples to verify

the correctness of our analysis and show secure characteristics

of the proposed system. Relating to distance parameters, the

distance reference R0 is traditionally selected from 100 m to

1 km for large cellular systems [22]–[24]. With the selection of

R0 within [100m, 1000m], the measurement unit of λ will be

implicitly understood as the average number of eavesdroppers

over R0 × R0 m2. Note that the selected value of R0 does not

change our numerical results, which depend on the distance

ratios LSR, LRD and R� . Furthermore, a suitable value of the

path loss exponent α should be from 2 to 3. Thus, we choose

to set α = 2.5 for all numerical examples. Finally, we note that

all simulation results have been performed for ŜOPµ, ĈOPη

and P{Â}; whereas, all analytical results have been performed

for SOPµ, COPη and P {A}.
In Figs. 3–5, we present the SOPs versus γS for the

AF and DF schemes. The analytical expressions for the SOP

are verified through simulation, i.e. ŜOPµ ≈ SOPµ and

ŜOPµ ≈ SOPµ,asym are confirmed. As seen from the figures,

the simulated values of ŜOPµ and the analytical values of

SOPµ match each other at large N (i.e. N = 50) through

the range [0, 40] dB of γS. Moreover, these values increase

with γS and converges to SOPµ,asym at high γS (for example,

at 40 dB).

In Fig. 3, two subcases of LSR are considered, i.e. LSR =
{1, 4}. We can see that the security performance in the AF case

is better than in the DF case for each considered value of LSR.

However, when γS exceeds 15 dB for the case of LSR = 1, the

security performance of both schemes is the same and thereby,

the role of the relaying protocol becomes indistinguishable.

Fig. 4. SOPAF
µ in (49) versus γS. For each relaying scheme, two subcases

are considered: (case 1) R� = 2; (case 2) R� = 1; and (case 3) R� = 0.5.
Other parameters: N = 50, λ = 0.25, LSR = 2, α = 2.5, γR = 10 dB,
µ = 16.02 dB.

Fig. 5. SOPDF
µ in (55) versus γS. For each relaying scheme, two subcases

are considered: (case 1) R� = 2; (case 2) R� = 0.5. Other parameters:
N = 50, λ = 0.25, LSR = 2, α = 2.5, γR = 10 dB, µ = 16.02 dB.

Interestingly, the decrease in LSR (i.e. S comes closer to R)

does not ensure that the secure performance will be improved.

Regarding Figs. 4–5, we fix the distance ratio LSR and

change the radius ratio R� . We observe that the secure

performance inversely decreases with the increase in R� .

This observation is consistent with the phenomenon that as

the working range increases, the eavesdroppers will become

more dangerous. In Fig. 6, we depict the SOPs versus λ.

Again, the results confirm that the AF scheme gives better

secure performance. Moreover, the difference in performance

between the two schemes decreases with increasing γS. Fur-

thermore, an increasing density of eavesdroppers also causes

a worse situation for the proposed system (as can be observed

intuitively).

In Fig. 7, we depict the COPs versus γS in the AF case

and verify ĈOP
AF

µ ≈ COPAF
µ . These results show that

when N increases, our analysis becomes smaller because

the gap between the simulation curve (i.e. ĈOP
AF

η ) and

the analytical curve (i.e. COPAF
η ) is narrowed. In the case
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Fig. 6. SOPAF
µ in (49) and SOPDF

µ in (55) versus λ. Parameters: N = 50,
R� = 2, LSR = 2, α = 2.5, γS = 10 dB, γR = 10 dB, µ = 16.02 dB.

Fig. 7. COPAF
η versus γS. Parameters: N = {40, 70}, LSR = 2, LRD = 1.5,

α = 2.5, γR = 10 dB, η = 20 dB.

of N = 40, the first constraint γR > 
η is satisfied,

i.e. γR = 10 dB > 8.38 dB, and so the COP theoretically

reaches 0 at any γR > ϒη ≈ 16.6 dB. Likewise, in the case

of N = 70, the constraint γR ≈ 13.01 dB > 5.95 dB, and so

the COP is expected to be 0 at any γR > ϒη ≈ 11.26 dB.

In comparison between the two cases, we can see that an

increase in N helps to enhance the reliability. For example,

if the secure transmission occurs at γS = 15 dB, then N = 70

will be selected because the theoretical COP equals 0; in

contrast, N = 40 will lead to an unsecured transmission as

the theoretical SOP is 1.

In Fig. 8, we depict the COPs versus γS in the DF case.

Similar to the AF case, the gap between the analysis and

simulation becomes smaller when N increases. Moreover,

if one of the two conditions in (67) is satisfied, the COP

reaches 0. For example, in the case of N = 40, the condition


η ≈ 108.38/10 < γR = 1010/10 dB < γS (2/1.5)−2.5 can be

attained if γS > 13.12 dB. In the case N = 70, the condition

ωη ≈ 109.07/10 < γS ≤ 1010/10 (1.5/2)−2.5 ⇔ 9.07 dB <

γS ≤ 13.12 dB will lead to COPDF
η = 0.

In Fig. 9, the probability of the most secure state P {A}AF

is shown with respect to γS. The results show that excellent

agreement between the analytical curves and the simulation

Fig. 8. COPDF
η versus γS. Parameters: N = {40, 70}, LSR = 2, LRD = 1.5,

α = 2.5, γR = 10 dB, η = 20 dB.

Fig. 9. P {A}AF versus γS. Parameters: N = {50, 70}, λ = 0.25, R� = 1,
LSR = 4, LRD = 1.5, α = 2.5, µ = 16.02 dB, η = 20 dB, γR = 10 dB.

Fig. 10. P {A}DF versus γS. Parameters: N = {50, 70}, λ = 0.25, R� = 1,
LSR = 4, LRD = 1.5, α = 2.5, µ = 16.02 dB, η = 20 dB, γR = 10 dB.

curves is attained as N increases. We can see that with

N = 50, we have P {A}AF > 0 at any γS > 21 dB. In contrast,

to have P {A}AF > 0 in the case of N = 70, we have to

set γS > 19 dB. As such, an increase in N helps ensure

P {A}AF > 0 when γS decreases. As analyzed in Section VI,
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P {A}AF reaches its maximum when γS → ϒ+
η . For example,

with N = 70 we have maxγS P {A}AF = P {A}AF
∣∣
γS=ϒη+ε ≈

0.811 where ε is a very small positive number. Likewise, in

Fig. 10, the probability of the most secure state P {A}DF is

also illustrated vs. γS. The behavior of P {A}DF is similar to

that of P {A}AF .

VIII. CONCLUSIONS

In this paper, we have considered a relay-aided wireless

system in which the relay is equipped with a large antenna

array in the presence of many potential eavesdroppers, whose

positions follow a homogeneous PPP. Furthermore, compared

to the destination, the eavesdroppers have the advantage

of direct links between them and the source. Under these

assumptions, we have employed an ON-OFF strategy and

evaluated the security as well as the reliability of the system

through probabilistic metrics. Analytical and simulation results

show that an increase in the gain γS reduces the secure

performance in both AF and DF case. Such an increase in γS,

however, helps enhance the reliability in both AF and DF

cases. Finally, optimization problems have been proposed for

each relaying scheme such that the probability of achieving the

most secure state in each transmission is maximized. Among

other conclusions, we have seen that a large value of the array

size N makes the COP reach 0, which means that secure

transmission can occur for sufficiently large arrays.

APPENDIX

A. The CDF of snrAF
E

Let us define X = γS L−α
SR γRl−α N
(

γS L−α
SR N+1

)
+γRl−α


. The CDF and

probability density function (PDF) of X can be, respectively,

written as

FX (x) = P
{
(γSL−α

SR N − x)γRl−α
 ≤ (γSL−α
SR N + 1)x

}

= 1 − exp

{
(1 + γSL−α

SR N)x

γRl−α(x − γSL−α
SR N)

}
1(x < γSL−α

SR N)

(73)

and

fX (x) = exp

{
(1 + γSL−α

SR N)x

γRl−α(x − γSL−α
SR N)

}

×
γSL−α

SR N(1 + γSL−α
SR N)

γRl−α(x − γSL−α
SR N)2

1(x < γSL−α
SR N). (74)

As such, snrAF
E in (35) can be rewritten as snrAF

E =
γSl−α

SE |hSE|2 + X . The CDF of snrAF
E is given by

FsnrAF
E

(µ) =
∫ µm

0

F|hSE|2

(
µ − x

γSl−α
SE

)
fX (x)dx (75)

where µm � min{µ, γSL−α
SR N}. After some manipula-

tions, (75) can be expressed in the form of (40).

B. The CDF of snrDF
E

Let us define Y = min
{
γSL−α

SR N, γRl−α

}
. The CDF and

PDF of Y can be, respectively, written as

FY (y) = 1 − exp

{
−

y

γRl−α

}
1(y < γSL−α

SR N). (76)

and

fY (y) =
1

γRl−α
exp

{
−

y

γRl−α

}

+ exp

{
−

γSL−α
SR N

γRl−α

}
δ
(
y − γSL−α

SR N
)

(77)

for y ≤ γSL−α
SR N , where δ

(
y − γSL−α

SR N
)

is a Dirac delta

function.

Now we can rewrite snrDF
E in (37) as snrAF

E =
γSl−α

SE |hSE|2 + Y . The CDF of snrDF
E is given by

FsnrDF
E

(µ) =
∫ µm

0

F|hSE|2

(
µ − y

γSl−α
SE

)
fY (y)dy. (78)

After some manipulations, (78) can be expressed in the form

of (44).

C. Proof of Proposition 3

First, we note that both snrE and SOPµ are functions of γS.

To emphasize this, we rewrite snrE and SOPµ as snrE(γS)

and SOPµ(γS), respectively. It is straightforward to show

snrE(p2) − snrE(p1) ≥ 0 for p2 > p1, and thus snrE(γS)

is an increasing function of γS. For p2 > p1, we have

P {snrE(p2) < µ|�}
< P {snrE(p1) < µ|�}

⇒ 1 − E�

{∏

Ei∈�

P {snrE(p2) < µ|�}
}

︸ ︷︷ ︸
SOPµ(p2)

> 1 − E�

{ ∏

Ei∈�

P {snrE(p1) < z|�}
}

︸ ︷︷ ︸
SOPµ(p1)

(79)

which demonstrates that SOPµ(γS) increases with γS. More-

over, limγS→∞ SOPµ = 1−exp{−πλR2
�} as calculated in (54)

and (57) for each considered case; thus this limit value is also

an upper bound on SOPµ at high γS.
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