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Abstract— Considering a multi-user interference network with
an eavesdropper, this paper aims at the power allocation to
optimize the worst secrecy throughput among the network
links or the secure energy efficiency in terms of achieved
secrecy throughput per Joule under link security requirements.
Three scenarios for the access of channel state information are
considered: the perfect channel state information; partial channel
state information with channels from the transmitters to the
eavesdropper exponentially distributed; and not perfectly known
channels between the transmitters and the users with expo-
nentially distributed errors. The paper develops various path-
following procedures of low complexity and rapid convergence
for the optimal power allocation. Their effectiveness and viability
are illustrated through numerical examples. The power allocation
schemes are shown to achieve both high secrecy throughput and
energy efficiency.

Index Terms— Interference network, secure communication,
energy-efficient communication, power allocation, path-following
algorithms.

I. INTRODUCTION

T
HE broadcast nature of the wireless medium exhibits

different challenges in ensuring secure communications

in the presence of adversarial users [1], [2]. In particular, it is

difficult to protect the transmitted signals from unintended

recipients, who may improperly extract information from an

ongoing transmission without being detected [3], [4]. Physical

layer security [5], [6] has been proposed as a solution to

provide security in wireless networks and researchers with a

goal being to optimize the secure throughput of a wireless
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network in the presence of eavesdroppers (EVs), which is the

difference between the desired user throughput and eavesdrop-

pers’ throughput [2]. Beyond secure throughput, significant

interest has recently been put on optimizing the secure energy

efficiency (SEE), which is the ratio of the secure throughput

to the total network power consumption, measured in terms of

bits per Joule per Hertz [7], [8].

There has been considerable recent research on physi-

cal layer security in wireless communication systems. For

example, assuming the availability of full channel state

information (CSI), secrecy optimization has been stud-

ied for cooperative relaying networks in [9]–[11]. Energy

efficiency (EE) of wireless networks has also drawn attention.

For examples, resource allocation algorithms for the optimiza-

tion of spectral efficiency as well as EE have been established

in [12]. Keeping EE maximization as an objective, the authors

in [13] proposed a precoder design for multi-input-multi-

output (MIMO) two-way relay networks. EE maximization for

cooperative spectrum sensing in cognitive sensor networks is

studied in [14].

The critical topic of SEE has also been explored very

recently [7], [8], [15]–[20]. Specifically, power control algo-

rithms for SEE maximization in decode-and-forward (DF)

and amplify-and-forward (AF) relaying networks have been

considered in [15] and [7], respectively. In [16], the authors

developed a distributed power control algorithm for SEE

maximization in DF relaying. The same resource allocation

problem for SEE maximization assuming full-duplex relaying

is considered in [17]. Recently, the authors in [18] and [19]

also derived the trade-off between SEE and secure spectral

efficiency in cognitive radio networks, while the authors

in [21] considered similar problems for ultra-dense small cells

underlaid on macro cells. All these works have assumed the

perfect CSI knowledge at the transmitter end, which is not

always possible.

It is commonly known that time or frequency resources

are generally limited in wireless networks and thus have to

be shared among multiple users. This can result in inter-

ference among users in the network and thus one has to

opt for careful resource allocation or interference alignment

schemes [22]. Considering a multiuser MIMO interference

network, [20] used the costly interference alignment technique

to cancel both information leakage and interference and then

Dinkelbach’s method of fractional programming is adopted

to optimize EE. As shown in [8], both zero-forcing and

interference alignment are not efficient in optimizing the

network SEE.
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Fig. 1. System model.

In this paper, we propose novel and efficient resource

allocation algorithms for both worst-case secure throughput

and worst secure energy efficiency maximization of a highly

interference-limited multi-user wireless network. Unlike many

previous works, we do not assume perfect CSI knowledge at

the transmitters. In fact, our transmitters only carry channel

distribution knowledge for the eavesdropper and imperfect

CSI for the users. Particularly, we consider three optimization

scenarios to gradually build our algorithms. We start with the

“perfect CSI” scenario. Next, we consider a “partial CSI”

setup where the channel between the transmitters and the

eavesdropper is exponentially distributed and only that channel

distribution knowledge is available at the transmitters. Finally,

we solve for the hardest “robust optimization” scenario, where

in addition to the assumption of only channel distribution

knowledge about eavesdroppers, we also assume uncertain

channels between the transmitters and the users with expo-

nentially distributed errors. We develop various path-following

procedures of low complexity and rapid convergence for the

optimal power allocation. Our extensive simulation results

illustrate their effectiveness and viability.

The rest of the paper is organized as follows. Section II,

Sections III and IV are devoted to optimizing the links’ worst

secrecy throughput and the network secure energy efficiency

under the perfect CSI, partial CSI and imperfectly known

CSI, respectively. The simulation is provided in Section V

to show the efficiency of the theoretical developments in the

previous section. Appendices provide fundamental rate outage

inequalities and approximations, which are the mathematical

base of the theoretical sections II-IV.

II. INTERFERENCE NETWORKS UNDER PERFECT CSI

We consider a cooperative network consisting of M single-

antenna transmitters and M single-antenna users as depicted

in Figure 1, where each transmitter i intends to send the

information si to user i. The information si is normalized,

i.e. E(x2
i ) = 1. Let pi be the transmit power allocated to

transmitter i and p = (p1, . . . ,pM )T . Furthermore, denote by
√

hji the path gain from transmitter j to user i. The received

signal at user i is

yi =
√

hiipisi +

M
∑

j �=i

√

hjipjsj + ni,

where ni ∈ CN (0, σ2
i ) is additive noise.

Suppose that there is an eavesdropper, which is also

equipped with a single antenna. Denoting by
√

hie the path

gain from transmitter i to the EV, the received signal at the

EV is

ye =

M
∑

i=1

√

hiepisi + ne,

where ne ∈ CN (0, σ2
e) is additive noise.

Under the perfect CSI at the transmitters, the information

throughput at user i is

fi(p) � ln

(

1 +
hiipi

∑M
j �=i hjipj + σ2

i

)

. (1)

With the EV considered as part of the legitimate network,

the path gain
√

hie can also be assumed known [23]. The

wiretapped throughput for user i at the EV is

gi(p) � ln

(

1 +
hiepi

∑

j �=i hjepj + σ2
e

)

. (2)

The secrecy throughput in transmitting information si to

user i while keeping it confidential from the eavesdropper is

defined as

max{fi(p) − gi(p), 0}. (3)

We consider the following fundamental optimization prob-

lems in a such network: the maximin secrecy throughput

optimization

max
ppp

Φsp(p) � min
i=1,...,M

[fi(p) − gi(p)] (4a)

s.t. 0 < pi ≤ Pi, i = 1, · · · , M, (4b)

and the network SEE maximization under users’ secrecy

throughput quality-of-service (QoS) requirements

max
ppp

Φee(p) �

M
∑

i=1

[fi(p) − gi(p)]

ζ

M
∑

i=1

pppi + Pc

(5a)

s.t. (4b), fi(p) − gi(p) ≥ ci, i = 1, .., M, (5b)

or the maximin transmitter EE optimization under users’

secrecy throughput QoS requirements

max
ppp

min
i=1,...,M

fi(p) − gi(p)

ζpppi + P i
c

s.t. (4b), (5b). (6)

Here ζ is the reciprocal of the drain efficiency of the power

amplifier, P i
c is the circuit power at transmitter i and Pc =

∑M
i=1 P i

c . As the numerator in the objective function in (5)

is the sum secrecy throughput while the denominator is the

network power consumption, the objective function in (5)

expresses the network SEE in terms of nats/s/Joule. Similarly,
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each subfunction in (6) expresses the SEE in for transmitting

the information si. Moreover, the constraint (5b) for given

thresholds ci sets the QoS for the users in terms of the secrecy

throughput. This constraint is nonconvex, which is in contrast

to the throughput constraint

fi(p) ≥ c̃i, i = 1, . . . , M,

which is equivalent to the linear constraint

hiipi ≥ (ec̃i − 1)(
∑

j �=i

hjipj + σ2
i ), i = 1, . . . , M.

A popular now approach [24] is to treat fi−gi in (4) as a d.c.

(difference of two concave functions) function [25]: fi(p) −
gi(p) = f̃i(p) − g̃i(p) with f̃i(p) = ln(

∑M
j=1 hjipj + σ2

i ) +

ln(
∑M

j �=i hjepj + σ2
e) and g̃i(p) = ln(

∑M
j �=i hjipj + σ2

i ) +

ln(
∑M

j=1 hjepj + σ2
e) which are concave. Then at each iter-

ation, f̃i is linearized while g̃i is innerly approximated by

a concave quadratic function for a lower approximation of

f̃i − g̃i [26], [27]. As a result, each iteration invokes solu-

tion of a simple convex quadratic optimization problem with

the logarithmic function optimization of high computational

complexity avoided.

Our next subsections are devoted to efficient computational

approach to solving each of (4), (5) and (6) without d.c.

representation.

A. Max-Min Secrecy Throughput Optimization

At every p(κ) ∈ RM
+ � {(x1, . . . , xM )T : xk > 0, k =

1, . . . , M}, applying inequality (72) in the Appendix II for

x = 1/hiipi, y =
∑M

j �=i hjipj + σ2
i and x̄ = 1/hiip

(κ)
i , ȳ =

∑M
j �=i hjip

(κ)
j + σ2

i yields

fi(p) ≥ f
(κ)
i (ppp) (7)

for

f
(κ)
i (ppp) � ln(1 + x

(κ)
i ) +

x
(κ)
i

1 + x
(κ)
i

×
(

2 − p
(κ)
i

pi
−

∑

j �=i hjipj + σ2
i

∑M
j �=i hjip

(κ)
j + σ2

i

)

. (8)

On the other hand, applying inequality (75) in the Appendix II

for x = hiepi, y =
∑M

j �=i hjepj and x̄ = hiep
(κ)
i , ȳ =

∑M
j �=i hjep

(κ)
j yields

gi(p) ≤ g
(κ)
i (ppp), (9)

for

g
(κ)
i (ppp) = ln(1 + x

(κ)
e,i ) +

1

1 + x
(κ)
e,i

×
(

0.5hie(p
2
i/p

(κ)
i + p

(κ)
i )

∑M
j �=i hjepj + σ2

e

− x
(κ)
e,i

)

. (10)

Initialized by a feasible p(0) for the convex constraint (4b),

at the κ-th iteration we solve the convex optimization problem

max
ppp

Φ(κ)
sp

(p) � min
i=1,...,M

[f
(κ)
i (ppp) − g

(κ)
i (ppp)] s.t. (4b) (11)

to generate the next iterative point p(κ+1). As (11) involves M
decision variables and M linear constraints, its computational

complexity is O(M 2M 2.5 + M 3.5).

One can see that Φsp(p) ≥ F
(κ)
sp (p) ∀ p ∈ R

M
+

and Φsp(p
(κ)) = F

(κ)
sp (p(κ)). Furthermore, Φ

(κ)
sp (p(κ+1)) >

Φ
(κ)
sp (p(κ)) if p(κ+1) �= p(κ) because the former is the optimal

solution of (11) while the latter is its feasible point. Therefore,

Φsp(p
(κ+1)) ≥ Φ(κ)

sp
(p(κ+1)) > Φ(κ)

sp
(p(κ)) = Φsp(p

(κ)),

(12)

i.e. p(κ+1) is better than p(κ); as such {p(κ)} is a sequence

of improved points that converges at least to a locally optimal

solution of (4) satisfying the first order necessary optimality

condition [28, Proposition 1]. In summary, we propose in

Algorithm 1 a path-following computational procedure for the

maximin secrecy throughput optimization problem (4).

Algorithm 1 Path-Following Algorithm for Maximin Secrecy

Throughput Optimization

Initialization: Set κ = 0. Choose an initial feasible point

p(0) for the convex constraints (4b). Calculate R
(0)
min as the

value of the objective in (4) at p(0).

repeat

• Set κ = κ + 1.

• Solve the convex optimization problem (11) to obtain

the solution p(κ).

• Calculate R
(κ)
min as the value of the objective in (4) at

p(κ).

until
R

(κ)
min−R

(κ−1)
min )

R
(κ−1)
min

≤ εtol.

B. Secure Energy Efficient Maximization

Define

π(p) = ζ

M
∑

i=1

pi + Pc.

Applying the inequality (73) in Appendix II for x = 1/hiipi,

y =
∑M

j �=i hjipj + σ2
i , t = π(p), and x̄ = 1/hiip

(κ)
i , ȳ =

∑M
j �=i hjip

(κ)
j + σ2

i , t̄ = π(p(κ)) yields

fi(p)

π(p)
≥ F

(κ)
i (p) (13)

for

F
(κ)
i (p) �

2 ln(1 + x
(κ)
i )

π(p(κ))
+

x
(κ)
i

π(p(κ))(1 + x
(κ)
i )

×
(

2 − p
(κ)
i

pi
−

∑

j �=i hjipj + σ2
i

∑M
j �=i hjip

(κ)
j + σ2

i

)

− ln(1 + x
(κ)
i )

π2(p(κ))
π(p). (14)

On the other hand, applying inequality (75) in Appendix II for

α = 1 + ln(2), x = hiepi/(
∑

j �=i hjepj + σ2
e), t = π(p) and
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x̄ � hiep
(κ)
i /(

∑

j �=i hjep
(κ)
j + σ2

e), t̄ = π(p(κ)) yields

−gi(p)

π(p)
≥ 2

α − ln(1 + x
(κ)
e,i )

π(p(κ))
+

x
(κ)
e,i

(1 + x
(κ)
e,i )π(p(κ))

− 1

(1 + x
(κ)
e,i )π(p(κ))

hiepi
∑

j �=i hjepj + σ2
e

−
α − ln(1 + x

(κ)
e,i )

π2(p(κ))
π(p) − α

π(p)
, (15)

which together with (76) in Appendix II yield

fi(p) − gi(p)

π(p)
≥ G

(κ)
i (p) (16)

for the concave function

G
(κ)
i (p) � 2

α − ln(1 + x
(κ)
e,i )

π(p(κ))
+

x
(κ)
e,i

(1 + x
(κ)
e,i )π(p(κ))

− 1

(1 + x
(κ)
e,i )π(p(κ))

0.5hie(p
2
i/p

(κ)
i + p

(κ)
i )

∑

j �=i hjepj + σ2
e

−
α − ln(1 + x

(κ)
e,i )

π2(p(κ))
π(p) − α

π(p)
. (17)

Initialized by a feasible point p(0) for (5), we solve the

following convex optimization problem at the κ-th iteration

to generate the next iterative point p(κ+1):

max
ppp

Φ(κ)
ee

(p) �

M
∑

i=1

[F
(κ)
i (ppp) + G

(κ)
i (ppp)] (18a)

s.t. (4b), f
(κ)
i (ppp) − g

(κ)
i (ppp) ≥ ci, i = 1, . . . , M. (18b)

The computational complexity of (18) is O(M 2(2M)2.5 +
(2M)3.5).

Due to (7) and (9), the nonconvex constraint (5b) in (5)

is implied by the convex constraint (18b) in (18). Similarly

to (12), we can show that Φee(p
(κ+1)) > Φee(p

(κ)) whenever

p(κ+1) �= p(κ); as such the computational procedure that

invokes the convex program (18) to generate the next iterative

point, is path-following for (5), which at least converges to

its locally optimal solution satisfying the Karush-Kuh-Tucker

(KKT) conditions of optimality.

Recalling the definition (9) and (10) of functions f
(κ)
i

and g
(κ)
i , initialized by any feasible point p̃(0) for the convex

constraint (4b), we generate p̃(κ+1), κ = 0, . . . , as the optimal

solution of the convex optimization problem

max
p

min
i=1,...,M

f
(κ)
i (p) − g

(κ)
i (p)

ci
s.t. (4b) (19)

until p̃(κ+1) such that mini=1,...,M (fi(p
(κ+1)) −

gi(p
(κ+1)))/ci ≥ 1 is found and thus p(0) = p̃(κ+1) is

feasible for (5) that is needed for the initial step.

Analogously, to address the maximin secure energy efficient

optimization problem (6) define

πi(pi) = ζpi + P i
c .

Similarly to (13) and (16) the following inequalities can be

obtained:

fi(p)

πi(pppi)
≥ F̃

(κ)
i (pi) (20)

−gi(p)

πi(pi)
≥ G̃

(κ)
i (pi) (21)

for

F̃
(κ)
i (pi) �

2 ln(1 + x
(κ)
i )

πi(p
(κ)
i )

+
x

(κ)
i

πi(p
(κ)
i )(1 + x

(κ)
i )

×
(

2 − p
(κ)
i

pi
−

∑

j �=i hjipj + σ2
i

∑M
j �=i hjip

(κ)
j + σ2

i

)

− ln(1 + x
(κ)
i )

π2
i (p

(κ)
i )

πi(pi) (22)

G̃
(κ)
i (pi) � 2

α − ln(1 + x
(κ)
e,i )

πi(p
(κ)
i )

+
x

(κ)
e,i

(1 + x
(κ)
e,i )πi(p

(κ)
i )

− 1

(1 + x
(κ)
e,i )πi(p

(κ)
i )

0.5hie(p
2
i/p

(κ)
i + p

(κ)
i )

∑

j �=i hjepj + σ2
e

−
α − ln(1 + x

(κ)
e,i )

π2
i (p

(κ)
i )

πi(pi) −
α

πi(pi)
. (23)

Initialized a feasible point p(0) for (6), which is found by

using the generation (19), the following convex optimization

problem at the κ-th iteration is proposed to generate the next

iterative point p(κ+1):

max
ppp

min
i=1,...,M

[F̃
(κ)
i (ppp) + G̃

(κ)
i (ppp)]

s.t. (4b), f
(κ)
i (ppp) − g

(κ)
i (ppp) ≥ ci, i = 1, . . . , M. (24)

The computational complexity of (24) is similar to that of (18).

The computational procedure that invokes the convex pro-

gram (24) to generate the next iterative point, is path-following

for (6), which at least converges to its locally optimal solution

satisfying the first order necessary optimality condition.

III. INTERFERENCE NETWORKS UNDER

PARTIAL WIRETAP CSI

When the EV is not part of the legitimate network, it is

almost impossible to estimate channels hie from the transmit-

ters to it. It is common to assume that hie=h̄ieχie, where χie

is an exponential distribution with the unit mean and h̄ie is a

known deterministic quantity. Accordingly, instead of (2), the

wiretapped throughput for user i at the EV is defined via the

following throughput outage [29]–[33]:

gi,o(p) � max {ln(1 + ri) :

Prob

(

hiepi
∑

j �=i hjepj + σ2
e

< ri

)

≤ εEV } (25)

for εEV > 0. Using (63) in Appendix I, it follows that

gi,o(p) = ln(1 + ri)
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where

pih̄ie ln(1 − εEV ) + riσ
2
epi + h̄ie

M
∑

j �=i

ln

(

1+
rih̄jepj

h̄iepi

)

= 0,

i = 1, . . . , M. (26)

Therefore, the problem of maximin secrecy throughput opti-

mization can be formulated as

max
ppp,r

min
i=1,...,M

[fi(p) − ln(1 + ri)] (27a)

s.t (4b), (26), ri > 0, i = 1, . . . , M. (27b)

The following result unravels the computationally intractable

nonlinear equality constraints in (26).

Proposition 1: The problem (27) is equivalent to the fol-

lowing problem

max
ppp,r

min
i=1,...,M

[fi(p) − ln(1 + ri)] (28a)

s.t (4b), (27b), pih̄ie ln(1 − εEV ) + riσ
2
e + pih̄ie

×
M
∑

j �=i

ln

(

1 +
rih̄jepj

h̄iepi

)

≥ 0, i = 1, . . . , M. (28b)

Proof: Since the equality constraint (26) implies the

inequality constraint (28b), it is true that

the optimal value of (27) ≤ the optimal value of (28).

We now show that there is an optimal solution of (28) satisfies

the equality constraint (26) and thus

the optimal value of (28) ≤ the optimal value of (27),

showing the equivalence between (28) and (27). Indeed, sup-

pose that at the optimality,

pih̄ie ln(1 − εEV ) + riσ
2
e + pih̄ie

M
∑

j �=i

ln

(

1 +
rih̄jepj

h̄iepi

)

> 0

for some i = 1, . . . , M . Then there is 0 < γi < 1 such that

pih̄ie ln(1 − εEV ) + (γri)σ
2
e + pih̄ie

×
M
∑

j �=i

ln

(

1 +
γrih̄jepj

h̄iepi

)

= 0,

that yields

fi(p) − ln(1 + γri) > fi(p) − ln(1 + ri),

so γiri is also the optimal solution of (28), which satisfies the

equality constraint (26). �

To address problem (28), note that a lower bounding func-

tion for the first term in (28a) is f
(κ)
i (ppp) defined by (8), while

an upper bounding function for the second term in (28a) is

the following linear function

a
(κ)
i (ri) = ln(1 + r

(κ)
i ) − r

(κ)
i

r
(κ)
i + 1

+
ri

r
(κ)
i + 1

. (29)

The main difficulty now is to develop a lower bounding

approximation for the function in the left hand side (LHS)

of constraint (28b). Applying inequality (72) in Appendix II

for x = 1/rih̄jepj , y = h̄iepi and x̄ = 1/r
(κ)
i h̄jep

(κ)
j ,

ȳ = h̄iep
(κ)
i yields

ln

(

1 +
rih̄jepj

h̄iepi

)

≥ λ
(κ)
ij (ri, pppj , pppi) (30)

for

λ
(κ)
ij (ri, pppj, pppi) � ln(1 + x

(κ)
ij ) + y

(κ)
ij

×
(

2 −
r
(κ)
i p

(κ)
j

ripj
− pi

p
(κ)
i

)

(31)

with x
(κ)
ij � r

(κ)
i h̄jep

(κ)
j /h̄iep

(κ)
i and y

(κ)
ij � x

(κ)
ij /(x

(κ)
ij + 1).

Therefore, over the trust region

λ
(κ)
ij (ri, pppj , pppi) ≥ 0,

2.5 − ri

r
(κ)
i

− pj

p
(κ)
j

≥ 0 (32)

it is true that

pi ln(1 +
rih̄jepj

h̄iepi
)

≥ pi ln(1 + x
(κ)
ij ) + y

(κ)
ij

(

2pi −
r
(κ)
i p

(κ)
j pi

ripj
− p2

i

p
(κ)
i

)

=
(

ln(1 + x
(κ)
ij ) + 2y

(κ)
ij

)

pi

− 0.5y
(κ)
ij

⎡

⎣2
p2

i

p
(κ)
i

+ (

√
2pi

√

p
(κ)
i

+

√

p
(κ)
i r

(κ)
i p

(κ)
j√

2ripj

)2 − 2p2
i

p
(κ)
i

−
p
(κ)
i (r

(κ)
i p

(κ)
j )2

2r2
ip

2
j

⎤

⎦

≥ Λ
(κ)
i (ri,pj ,pi) (33)

for

Λ
(κ)
i (ri,pj ,pi) =

(

ln(1 + x
(κ)
ij ) + 2y

(κ)
ij

)

pi

− 0.5y
(κ)
i

⎛

⎝

√
2pi

√

p
(κ)
i

+

√

p
(κ)
i r

(κ)
i p

(κ)
j√

2ripj

⎞

⎠

2

− 0.5y
(κ)
i p

(κ)
i

(

ri

r
(κ)
i

+
pj

p
(κ)
j

− 2.5

)

.

Note that in obtaining (33) we also used the fact that func-

tion ν(ri,pj) � 1/r2
ip

2
j is convex in the domain {ri >

0,pj > 0} and accordingly [25] 1/r2
ip

2
j ≥ ν(r

(κ)
i , p

(κ)
j ) +

〈∇ν(r
(κ)
i , p

(κ)
j ), (ri,pj) − (r

(κ)
i , p

(κ)
j )〉 = [5 − 2(ri/r

(κ)
i +

pj/p
(κ)
j )]/(r

(κ)
i p

(κ)
j )2.

Initialized from a feasible point (p(0), r(0)) for (28) we

solve the following convex program at the κ-th iteration to
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generate (p(κ+1), r
(κ+1)
u ):

max
ppp,r

min
i=1,...,M

[f
(κ)
i (ppp) − a

(κ)
i (ri)] (34a)

s.t (4b), (27b), (32), pppih̄ie ln(1 − εEV ) + σ2
eri

+ h̄ie

M
∑

j �=i

Λ
(κ)
ij (ri, pppj , pppi) ≥ 0, i = 1, . . . , M. (34b)

The computational complexity of (34) is O((2M)2(5M)2.5 +
(5M)2.5) because it involves 2M decision variables and 5M
linear and quadratic constraints.

Then r
(κ+1)
i is found from solving

0 = ψi(ri) � p
(κ+1)
i h̄ie ln(1 − εEV ) + riσ

2
e

+ p
(κ+1)
i h̄ie

M
∑

j �=i

ln

(

1 +
rih̄jep

(κ+1)
j

h̄iep
(κ+1)
i

)

,

i = 1, . . . , M, (35)

by bisection on [0, r
(κ+1)
u,i ] such that

0 ≤ ψi(r
(κ+1)
i ) ≤ εb (tolerance). (36)

A bisection on [rl, ru] for solving ψi(ri) = 0 where ψi

increases in ri > 0 is implemented as follows:

• Define ri = (rl + ru)/2. Reset rl = ri if ψi(ri) < 0.

Otherwise reset ru = ri.

• Terminate until 0 ≤ ψi(ri) ≤ εb.

In summary, we propose in Algorithm 2 a path-following

computational procedure for the maximin secrecy throughput

optimization problem (28), which at least converges to its

locally optimal solution satisfying the first order necessary

optimality condition.

Algorithm 2 Path-Following Algorithm for Maximin Secrecy

Throughput Optimization

Initialization: Set κ = 0. Choose an initial feasible point

(p(0), r(0)) for (28) and calculate R
(0)
min as the value of the

objective function in (28) at (p(0), r(0)).
repeat

• Set κ = κ + 1.

• Solve the convex optimization problem (34) to obtain

the solution (p(κ), r
(κ)
u ).

• Solve the nonlinear equations (35) to obtain the roots

r
(κ)
i .

• Calculate R
(κ)
min as the value of the objective function in

(28) at (p(κ), r(κ)).

until
R

(κ)
min−R

(κ−1)
min )

R
(κ−1)
min

≤ εtol.

A feasible (p(0), r(0)) is found as follows: taking p(0)

feasible to the power constraint (4b) and finding r(0) from

solving

0 = ψi(ri) � p
(0)
i h̄ie ln(1 − εEV ) + riσ

2
e

+ h̄iep
(0)
i

M
∑

j �=i

ln

(

1 +
rih̄jep

(0)
j

h̄iep
(0)
i

)

i = 1, . . . , M,

by bisection on [0, r
(0)
u,i] with ψi(ru,i) > 0. Such r

(0)
u,i can be

easily found: from any ru,i > 0, if ψi(ru,i) ≥ 0 then we are

done. Otherwise reset ru,i ← 2ru,i and check ψi(ru,i). Stop

when ψ(ru,i) > 0. Intuitively, taking r
(0)
u,i = h̄iep

(0)
i /σ2

e will

work.

Furthermore, the problem of SEE maximization can be

formulated as

max
ppp,r

∑M
i=1 (fi(p) − ln(1 + ri))

π(p)
(37a)

s.t (4b), (27b), (28b) fi(p) − ln(1 + ri) ≥ ci,

i = 1, . . . , M. (37b)

Using the inequality (74) in Appendix II leads to

− ln(1 + ri)

π(p)
≥ ã

(κ)
i (ri,p)

for

ã
(κ)
i (ri,p) � 2

α − ln(1 + r
(κ)
i )

π(p(κ))
+

r
(κ)
i

π(p(κ))(1 + r
(κ)
i )

− ri

π(p(κ))(1 + r
(κ)
i )

− α − ln(1 + r
(κ)
i )

π2(p(κ))
π(p) − α

π(p)
. (38)

Initialized by a feasible (p(0), r(0)), the following convex pro-

gramm is solved to generate (p(κ+1), r(κ+1)) at the κiteration:

max
ppp,r

M
∑

i=1

[F
(κ)
i (ppp) + ã

(κ)
i (ri,p)] (39a)

s.t (4b), (27b), (32), (34b), (39b)

f
(κ)
i (ppp) − a

(κ)
i (ri) ≥ ci, i = 1, . . . , M. (39c)

The computational complexity of (34) is O((2M)2(6M)2.5 +
(6M)2.5).

It can be shown that the computational procedure that

invokes the convex program (39) to generate the next iterative

point, is path-following for (37), which at least converges to

its locally optimal solution satisfying the KKT conditions.

A point (p(0), r(0)) is feasible for (37) if and only if

mini=1,...,M [fi(p
(0)) − ln(1 + r

(0)
i )]/ci ≥ 1 and thus can be

easily located by adapting Algorithm 2.

Similarly, a path-following procedure for the following

maximin SEE optimization problem can be proposed

max
ppp,r

min
i=1,...,M

fi(p) − ln(1 + ri)

πi(p)
(40a)

s.t (4b), (27b), (28b), (37b). (40b)

IV. ROBUST OPTIMIZATION

Beside assuming that hie=h̄ieχie with an exponential dis-

tribution χie with the unit mean and deterministic h̄ie, we

also assume that CSI of hji is not known perfectly in the

form hji = h̄ji(1 + δχji) with deterministic h̄ji and δ, and

random χji, which is an independent exponential distribution
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of the unit mean. Instead of (1), the throughput at user i is

defined via the following outage probability

fi,o(p) � max{ln(1 + Ri) :

Prob

(

hiipi
∑M

j �=i hjipj + σ2
i

< Ri

)

≤ εc} (41)

for 0 < εc � 1.

Using (67) in Appendix II, it follows that

fi,o(p) = ln(1 + Ri), i = 1, . . . , M, (42)

where

pppih̄ii[δ ln(1 − εc) − 1] + Ri(σ
2
i +

∑

j �=i

h̄jipj)

+ δh̄iipppi

M
∑

j �=i

ln

(

1 +
h̄jiRipppj

h̄iipppi

)

= 0, i = 1, . . . , M.

(43)

Therefore, the problem of maximin secrecy throughput robust

optimization is defined by

max
ppp,R,r

min
i=1,...,M

[ln(1 + Ri) − ln(1 + ri)] (44a)

s.t (4b), (27b), (28b), (43), (44b)

Ri > 0, i = 1, . . . , M. (44c)

The following result unravels the computationally intractable

nonlinear equality constraints in (43):

Proposition 2: Problem (44) is equivalent to the following

problem

max
ppp,R,r

min
i=1,...,M

[ln(1 + Ri) − ln(1 + ri)] (45a)

s.t (4b), (28b), (27b), (44c) (45b)

pppih̄ii[δ ln(1 − εc) − 1] + Ri(σ
2
i +

∑

j �=i

h̄jipj)

+ δh̄iipppi

M
∑

j �=i

ln

(

1 +
h̄jiRipppj

h̄iipppi

)

≤ 0,

i = 1, . . . , M. (45c)

Proof: Again, it is obvious that the optimal value of (44)

is not more than the optimal value of (45). Furthermore, at an

optimal solution of (45), if

pppih̄ii[δ ln(1 − εc) − 1] + Ri(σ
2
i +

∑

j �=i

h̄jipj)

+ δh̄iipppi

M
∑

j �=i

ln

(

1 +
h̄jiRipppj

h̄iipppi

)

< 0,

for some i then there is γ > 1 such that

pppih̄ii[δ ln(1 − εc) − 1] + (γRi)(σ
2
i +

∑

j �=i

h̄jipj)

+ δh̄iipppi

M
∑

j �=i

ln

(

1 +
h̄ji(γRi)pppj

h̄iipppi

)

= 0,

which results in ln(1 + γRi) > ln(1 + Ri), implying that

γRi is also an optimal solution of (45). We thus have proved

that there is always an optimal solution of (45) to satisfy the

equality constraints in (43), so the optimal value of (45) is not

more than the optimal value of (44), completing the proof of

Proposition 2. �

To address problem (45), firstly we provide a lower bound-

ing approximation for the first term in the objective function

in (45b) as follows

ln(1 + Ri) ≥ A
(κ)
i (Ri)

� ln(1 + R
(κ)
i ) +

R
(κ)
i

R
(κ)
i + 1

− (R
(κ)
i )2

R
(κ)
i + 1

1

Ri
.

Next, to obtain an upper bounding approximation for the

function in the left hand side of (45c) and thus to provide an

inner approximation for constraint (45c), we use the following

inequality

Ripppj = 0.5(Ri + pppj)
2 − 0.5R2

i − 0.5ppp2
j

≤ Υ
(κ)
ij (Ri, pppj)

� 0.5(Ri + pppj)
2 − R

(κ)
i Ri + 0.5(R

(κ)
i )2

− p
(κ)
j pj + 0.5(p

(κ)
j )2, (46)

over the trust region

2Ri ≥ R
(κ)
i , 2pj ≥ p

(κ)
j . (47)

Then

pi ln

(

1 +
h̄jiRipj

h̄iipi

)

≤ pi

⎡

⎢

⎣
ln

(

1 +
h̄jiR

(κ)
i p

(κ)
j

h̄iip
(κ)
i

)

+
1

h̄ii

h̄ji
+

R
(κ)
i

p
(κ)
j

p
(κ)
i

(
Ripj

pppi
−

R
(κ)
i p

(κ)
j

p
(κ)
i

)

⎤

⎥

⎦

≤ Φ
(κ)
ij (Ri, pppj , pppi)

� pi ln

(

1 +
h̄jiR

(κ)
i p

(κ)
j

h̄iip
(κ)
i

)

+
1

h̄ii

h̄ji
+

R
(κ)
i

p
(κ)
j

p
(κ)
i

(

Υ
(κ)
ij (Ri, pppj) −

R
(κ)
i p

(κ)
j

p
(κ)
i

pi

)

. (48)

Initialized from a feasible (p(0), R(0), r(0)) for (45) we solve

the following convex program at the κ-th iteration to generate

the next iterative point (p(κ+1), R
(κ+1)
l , r

(κ+1)
u ):

max
www,r

min
i=1,...,M

[A
(κ)
i (Ri) − a

(κ)
i (ri)] (49a)

s.t (4b), (27b), (32), (34b), (44c), (47) (49b)

pih̄ii [δ ln(1 − εc) − 1] + σ2
i Ri +

∑

j �=i

h̄jiΥ
(κ)
ij (Ri,pj)

+ δh̄ii

M
∑

j �=i

Φ
(κ)
ij (Ri, pppj , pppi) ≤ 0, i = 1, . . . , M. (49c)
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The computational complexity of (49) is O((3M)2(9M)2.5 +
(9M)2.5).

At the same κ-th iteration, r
(κ+1)
i is found from solving (35)

by bisection on [0, r
(κ+1)
u,i ] such that (36), while R

(κ+1)
i is

found from solving

ζi(Ri) = 0, i = 1, . . . , M, (50)

for the increasing function

ζi(Ri) � δ ln(1 − εc) − 1 +
Ri(σ

2
i +

∑

j �=i h̄jip
(κ+1)
j )

h̄iip
(κ+1)
i

+ δ

M
∑

j �=i

ln

(

1 +
h̄jiRip

(κ+1)
j

h̄iip
(κ+1)
i

)

,

by bisection on [R
(κ+1)
l,i , Ru,i] with ζi(Ru,i) > 0 such that

−εb ≤ gi(R
(κ+1)
i ) ≤ 0. (51)

Ru,i can be easily located: initialized by Ri = 2R
(κ+1)
l,i and

check ζi(Ri). If ζi(Ri) > 0 then we are done. Otherwise

reset Ri ← 2Ri until ζi(Ri) > 0. Intuitively, taking Ru,i =

2h̄iip
(κ+1)
i /(σ2

i +
∑

j �=i h̄jip
(κ+1)
j ) will work.

In summary, we propose in Algorithm 3 a path-following

computational procedure for the maximin secrecy throughput

optimization problem (45), which at least converges to its

locally optimal solution satisfying the first order necessary

optimality condition.

Algorithm 3 Path-Following Algorithm for Maximin Secrecy

Throughput Optimization

Initialization: Set κ = 0. Choose an initial feasible point

(p(0), R(0), r(0)) for (45) and calculate R
(0)
min as the value of

the objective function in (45) at (p(0), R(0), r(0)).
repeat

• Set κ = κ + 1.

• Solve the convex optimization problem (49) to obtain

the solution (p(κ), R
(κ)
l , r

(κ)
u ).

• Solve the nonlinear equations (35) to obtain the roots

r
(κ)
i .

• Solve the nonlinear equations (50) to obtain the roots

R
(κ)
i .

• Calculate R
(κ)
min as the value of the objective function in

(45) at (p(κ), R(κ), r(κ)).

until
R

(κ)
min−R

(κ−1)
min )

R
(κ−1)
min

≤ εtol.

An initial feasible (p(0), R(0), r(0)) can be easily found as

follows: taking any p(0) feasible to the power constraint (4b)

to find R(0) and r(0) from solving

ζi(Ri) � δ ln(1 − εc) − 1 +
Ri(σ

2
i +

∑

j �=i h̄jip
(0)
j )

h̄iip
(0)
i

+ δ

M
∑

j �=i

ln

(

1 +
h̄jiRip

(0)
j

h̄iip
(0)
i

)

= 0, i = 1, . . . , M,

by bisection on [0, 2h̄iip
(0)
i /(σ2

i +
∑

j �=i h̄jip
(0)
j )], and r(0) is

found from solving

ln(1 − εc) +
riσ

2
e

h̄iep
(0)
i

+

M
∑

j �=i

ln

(

1 +
rih̄jep

(0)
j

h̄iep
(0)
i

)

= 0,

i = 1, . . . , M,

by bisection on [0, h̄iep
(0)
i /σ2

e].
Lastly, the network secure energy efficiency problem is now

formulated by

max
ppp,R,r

∑M
i=1(ln(1 + Ri) − ln(1 + ri))

π(p)
(52a)

s.t (4b), (27b), (28b), (43), (44c), (52b)

ln(1 + Ri) − ln(1 + ri) ≥ ci, (52c)

i = 1, . . . , M.

To this end, we use inequality (73) in Appendix II to obtain

ln(1 + Ri)

π(p)
≥ Ã

(κ)
i (Ri,p)

�
2 ln(1 + R

(κ)
i )

π(p(κ))
+

R
(κ)
i

π(p(κ))(1 + R
(κ)
i )

×
(

1 − R
(κ)
i

Ri

)

− ln(1 + R
(κ)
i )

π2(p(κ))
π(p). (53)

Initialized by a feasible point (R(0), r(0), p(0)), at the

κ-th iteration, the following convex programm is solved to

generated (R(κ+1), r(κ+1), p(κ+1))

max
www,r

M
∑

i=1

[

Ã
(κ)
i (Ri,p) + ã

(κ)
i (ri,p)

]

(54a)

s.t (4b), (27b), (32), (34b), (44c), (47), (49c), (54b)

A
(κ)
i (Ri) − a

(κ)
i (ri) ≥ ci, i = 1, . . . , M. (54c)

The computational complexity of (49) is O((3M)2(10M)2.5+
(10M)2.5).

It can be shown that the computational procedure that

invokes the convex program (54) to generate the next iterative

point, is path-following for (52), which at least converges to

its locally optimal solution satisfying the KKT conditions.

A point (p(0), R(0), r(0)) is feasible for (52) if and only if

mini=1,...,M [fi(R
(0)
i ) − ln(1 + r

(0)
i )]/ci ≥ 1 and thus can be

easily located by adapting Algorithm 3.

Similarly, a path-following procedure for the following

maximin SEE optimization problem can be proposed

max
ppp,r

min
i=1,...,M

fi(Ri) − ln(1 + ri)

πi(p)

s.t. (4b), (27b), (28b), (43), (44c), (52c). (55)

V. SIMULATION

This section evaluates the performance of the proposed

algorithms through extensive simulation. Considered in all

simulation studies is a wireless network with M = 10

transmitter-user communication pairs and noise variance σ2
i =

σ2
e = 1 mW [34]. All channels among each pair are i.i.d.

complex normal random variable with zero mean and unit
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Fig. 2. Min secrecy throughput among users versus the transmit power
budget.

variance. The drain efficiency of power amplifier 1/ζ is set

to be 40% and the circuit power of each transmitter is P i
c =

5 mW. Besides, we set εc = 0.1 and εEV ∈ {0.1, 0.6}
and δ = 0.1. The computation tolerance for terminating all

proposed Algorithms is εtol = 10−4. We divide the obtained

information throughput results by ln(2) to arrive at the unit of

bps/Hz (in throughput) and bits/J/Hz (in energy efficiency).

A. Maximin Secrecy Throughput Optimization

This subsection analyzes the secrecy throughput in the pres-

ence of eavesdropper. In what follows, we consider five cases,

including “Perfect CSI”, “Partial CSI (εEV = 0.1)”, “Partial

CSI (εEV = 0.6)”, “Robust Opt. (εEV = 0.1 εc = 0.1)” and

“Robust Opt. (εEV = 0.6 εc = 0.1)”. The terms “Perfect CSI”,

“Partial CSI” and “Robust Opt.” correspond to the scenarios

discussed in Sections III, IV and V, respectively. Fig. 2 plots

the minimum secrecy throughput versus the transmit power

budget Pi varying from 10 to 50 mW. As expected, it is seen

that the secrecy throughput increase with the transmitted power

budget Pi. It is also observed that the secrecy throughput

of “Partial CSI” with εEV = 0.1 is always better than

the secrecy throughputs of others. For εEV = 0.1, “Partial

CSI” and “Robust Opt.” clearly and significantly outperform

“Perfect CSI”. However, the secrecy throughput of “Perfect

CSI” is superior to the secrecy throughputs of “Partial CSI”

and “Robust Opt.” with εEV = 0.6. This is not a surprise

because according to the wiretapped throughput defined by (2)

and the throughput outage defined by (25)-(26), the former is

seen higher than the later for small εEV .

Table I provides the average number of iterations required to

solve maximin secrecy throughput optimization for the above

three cases. As can be observed, our proposed algorithm con-

verges in less than 14 iterations, on average, for all considered

cases.

B. Energy Efficiency Maximization

In this subsection, we first examine the performance of EE

maximization algorithm versus the QoS constraint. The trans-

mitted power Pi is fixed at 20 mW and QoS constraint ci varies

from 0.1 to 0.5 bps/Hz. It can be observed from Fig. 3 that the

TABLE I

AVERAGE NUMBER OF ITERATIONS FOR MAXIMIN SECRECY

THROUGHPUT OPTIMIZATION

Fig. 3. Energy efficiency versus QoS constraint.

Fig. 4. Sum throughput versus QoS constraint.

EE performance degrades as the QoS constraint ci increases.

Moreover, “Partial CSI” with εEV = 0.1 outperforms others

in terms of EE performance. To find out the impact on the sum

throughput and total power consumption in EE maximization

algorithm, the achieved sum throughput and the total power

consumed are illustrated in Fig. 4 and 5, respectively. It can

be seen that the total power consumption increases faster

than the sum throughput, which explains why EE degrades

as ci increases in Fig. 3. Although the sum throughput of

“Robust Opt.” is slightly better than “Partial CSI”, “Partial

CSI” consumes less power than “Robust Opt.”. Table II shows

that our proposed EE maximization algorithm converges in

less than 35 iterations, on average, in all considered cases.

Next, we further investigate the performance of EE versus

the transmit power budget. The QoS constraint ci is fixed at
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Fig. 5. Total power consumption versus QoS constraint.

TABLE II

AVERAGE NUMBER OF ITERATIONS FOR ENERGY

EFFICIENCY MAXIMIZATION

Fig. 6. Energy efficiency versus the transmit power budget.

0.4 bps/Hz and Pi varies from 10 to 50 mW. As shown

in Fig. 6, we observe that the EE performance of “Partial

CSI” with εEV = 0.1 clearly and significantly outperforms the

optimized EE of other cases. Furthermore, it can be seen that

the EE performances saturate when the transmit power budget

exceeds the threshold. That is because for small transmit power

budget, the denominator of EE is dominated by the circuit

power and the EE is maximized by maximization of the sum

throughput in the numerator. However, for larger transmit

power budget, the denominator of EE is dominated by the

actual transmit power. When the total power consumption

saturates in Fig. 8, both the EE and the sum throughput

accordingly saturate in Figs. 6 and 7.

Fig. 7. Sum throughput versus the transmit power budget.

Fig. 8. Total power consumption versus the transmit power budget.

Fig. 9. Minimum energy efficiency versus the QoS constraint.

C. Maxmin Energy Efficiency Optimization

In this subsection, we aim to maximize the minimum EE

performance. Firstly, Fig. 9 plots the maximized minimum EE

versus QoS constraint. The transmitted power Pi is fixed at

20 mW and QoS constraint ci varies from 0.1 to 0.5 bps/Hz.

It can be seen that the optimized minimum EE decreases

with increasing ci and the EE performance of “Partial CSI”
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Fig. 10. Throughput versus the QoS constraint.

Fig. 11. Power consumption versus the QoS constraint.

TABLE III

AVERAGE NUMBER OF ITERATIONS FOR MAXIMIN ENERGY

EFFICIENCY OPTIMIZATION

with εEV = 0.1 is always better than the optimized EE of

other cases. Furthermore, it is also observed that for εEV =
0.1 “Partial CSI” and “Robust Opt.” outperform “Perfect

CSI” in terms of EE performance, while “Perfect CSI” is

superior to “Partial CSI” and “Robust Opt.” for εEV = 0.6.

The corresponding throughput and power consumption are

plotted in Fig. 10 and 11, respectively. Table III shows that

maximin EE optimization converges in less than 33 iterations,

on average, in all considered cases.

Next, we investigate the maximin EE performance versus

the transmit power budget. The QoS constraint ci is fixed at

0.4 bps/Hz and Pi varies from 10 to 50 mW. The minimum

EE performance versus the transmit power budget is illustrated

in Fig. 12. Again, we observe that the optimized minimum

EE saturates when the transmit power is larger than some

threshold. This is due to the fact that under small transmit

Fig. 12. Minimum energy efficiency versus the transmit power budget.

Fig. 13. Throughput versus the transmit power budget.

Fig. 14. Power consumption versus the transmit power budget.

power regime, the EE is maximized by maximizing the

throughput in the numerator. When the transmit power is large

enough to obtain the optimized EE, both throughput and power

consumption accordingly saturate in Figs. 13 and 14.

VI. CONCLUSION

We have considered the problem of power allocation to

maximize the worst links’s secrecy throughput or the net-

work’s secure energy efficiency under various scenarios of
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available channel state information. We have further proposed

path-following algorithms tailored for each of the considered

scenarios. Finally, we have provided simulations to show

the efficiency of the proposed algorithms. Extensions to

beamforming in multi-input single-output (MISO) interfer-

ence networks with multiple eavesdroppers are under current

investigation.

APPENDIX I

OUTAGE PROBABILITY FUNDAMENTAL

Recall a probability distribution χ is called an exponential

distribution if its probability density function (pdf) is in

form λe−λx with λ > 0. It is immediate to check that

Prob(χ ≥ t) = e−λt and E[χ] = 1/λ. Recall the following

result [29, (15)].

Theorem 1: Suppose z1, · · · , zn are independent exponen-

tially distributed random variables with E(zi) = 1/λi. Then

for deterministic pi > 0, i = 1, · · · , n:

Prob(p1z1 ≤
n

∑

i=2

pizi) = 1 −
n

∏

i=2

1

1 + (λ1/p1)/(λi/pi)
.

(56)

It follows from (56) that

Prob(p1z1 > c +

n
∑

i=2

pizi)

= e−λ1c/p1

n
∏

i=2

1

1 + (λ1/p1)/(λi/pi)
(57)

and

Prob(
p1z1

n
∑

i=2

pizi + σ

> γ)

= Prob(p1z1 >
n

∑

i=2

γpizi + γσ)

= e−λ1γσ/p1

n
∏

i=2

1

1 + γ(λ1/p1)/(λi/pi)
. (58)

Sometimes, it is also more convenient to write (56), (57)

and (58) in terms of means λ̄i = 1/λi of zi as

Prob(p1z1 ≤
n

∑

i=2

pizi) = 1 −
n

∏

i=2

p1λ̄1

p1λ̄1 + piλi
, (59)

Prob(p1z1 > c +

n
∑

i=2

pizi)

= e−c/p1λ̄1

n
∏

i=2

p1λ̄1

p1λ̄1 + piλ̄i
, (60)

Prob(
p1z1

∑n
i=2 pizi + σ

> γ)

= e−γσ/p1λ̄1

n
∏

i=2

p1λ̄1

p1λ̄1 + γpiλ̄i
(61)

Theorem 2: For given ε > 0, define

rmax � max{r : Prob(
p1z1

∑n
i=2 pizi + σ2

) < r) ≤ ε} (62)

Then rmax is the unique positive root of the nonlinear equation

ln(1 − ε) +
rσ2

p1λ̄1

+

n
∑

i=2

ln(1 +
rpiλ̄i

p1λ̄1

) = 0. (63)

Proof: Applying (60) yields

Prob(
p1z1

∑n
i=2 pizi + σ2

< r)

= Prob(p1z1 < r(
n

∑

i=2

pizi + σ2))

= 1 − e−rσ2/p1λ̄1

n
∏

i=2

p1λ̄1

p1λ̄1 + rpiλ̄i
. (64)

Therefore,

Prob(
p1z1

∑n
i=2 pizi + σ2

) < r) ≤ ε

⇔ 1 − e−rσ2/p1λ̄1

n
∏

i=2

p1λ̄1

p1λ̄1 + rpiλ̄i
≤ ε

⇔ ln(1 − ε) +
rσ2

p1λ̄1

+

n
∑

i=2

ln(1 +
rpiλ̄i

p1λ̄1

) ≤ 0. (65)

By noticing that the function in the LHS of (65) is increasing

in r, we arrive at (63). �

Theorem 3: Suppose z̄i > 0, pi > 0, δ > 0 and σ > 0

are deterministic values, while z̃i are independent exponential

distributions. For ε > 0, define

rp � max {r : Prob(
p1z̄1(1 + δz̃1)

∑n
i=2 piz̄i(1 + δz̃i) + σ2

< r) ≤ ε}.

(66)

Then rp is the unique positive root of the nonlinear equation

δ ln(1 − ε) +
r(σ2 +

∑n
i=2 piz̄i) − p1z̄1

z̄1p1

+ δ

n
∑

i=2

ln(1 +
rz̄ipi

z̄1p1

) = 0. (67)

Proof: Using (65) yields

Prob(
p1z̄1(1 + δz̃1)

∑n
i=2 piz̄i(1 + δz̃i) + σ2

< r) ≤ ε

⇔ ln(1 − ε) +
r(σ2 +

∑n
i=2 piz̄i) − p1z̄1

z̄1p1δ

+

n
∑

i=2

ln(1 +
rz̄ipi

z̄1p1

) ≤ 0 (68)

⇔ δ ln(1 − ε) +
r(σ2 +

∑n
i=2 piz̄i) − p1z̄1

z̄1p1

+ δ

n
∑

i=2

ln(1 +
rz̄ipi

z̄1p1

) ≤ 0. (69)

Again, by noticing that the function in the LHS of (69) is

increasing in r we arrive at (67). �
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One can see that for δ → 0 (less uncertainty), (69) becomes

r(σ2 +
∑n

i=2 piz̄i) − p1z̄1

z̄1p1

≤ 0

⇔ r(σ2 +

n
∑

i=2

piz̄i) − p1z̄1 ≤ 0

⇔ r ≤ p1z̄1

σ2 +
∑n

i=2 piz̄i
,

so rp is the standard ratio

p1z̄1

σ2 +
∑n

i=2 piz̄i
.

APPENDIX II

FUNDAMENTAL INEQUALITIES

Lemma 1: It is true that

ln(1 + 1/t) ≥ 1/(t + 1) ∀ t > 0 (70)

Proof: One can easily check (t+1) ln(1+1/t) ≥ 1 ∀ t >
0 by plotting the graph of function (t + 1) ln(1 + 1/t) over

(0, +∞). �

Theorem 4: The function f(x, y, t) � ln(1 + 1/xy)1/t is

convex in the domain {x > 0, y > 0, t > 0}.

Proof: Writing f(x, y, t) = (1/t)(ln(xy+1)−ln x−ln y),
it is ease to see that the Hessian ∇2 f(x, y, t) is

∇2 f(x, y, t)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

2xy + 1

x2(xy + 1)2t

1

(xy + 1)2t

1

t2(xy + 1)x
1

(xy + 1)2t

2xy + 1

y2(xy + 1)2t

1

t2(xy + 1)y
1

t2(xy + 1)x

1

t2(xy + 1)y

2 ln(1 + 1/xy)

t3

⎤

⎥

⎥

⎥

⎥

⎥

⎦

� (x2y2(xy + 1)2t3)−1

·

⎡

⎣

(xy + 1)y2t2 x2y2t2 t(xy + 1)xy2

x2y2t2 (xy + 1)x2t2 t(xy + 1)x2y
t(xy + 1)xy2 t(xy + 1)x2y 2(xy + 1)x2y2

⎤

⎦,

(71)

where the inequality (70) has been applied to the (3, 3)-th entry

of ∇2 f(x, y, t) to arrive the matrix inequality in (71). Here

and after, A � B for matrices A and B means that A−B is a

positive definite matrix. Then, calculating the subdeterminants

of matrix in the right hand side (RHS) of (71) yields (xy +
1)y2t2 > 0,

∣

∣

∣

∣

∣

∣

∣

1

x2(xy + 1)t

1

(xy + 1)2t
1

(xy + 1)2t

1

y2(xy + 1)t

∣

∣

∣

∣

∣

∣

∣

= x2y2t4(2xy + 1) > 0

and
∣

∣

∣

∣

∣

∣

(xy + 1)y2t2 x2y2t2 t(xy + 1)xy2

x2y2t2 (xy + 1)x2t2 t(xy + 1)x2y
t(xy + 1)xy2 t(xy + 1)x2y 2(xy + 1)x2y2

∣

∣

∣

∣

∣

∣

= x4y4t4(xy + 1)[(xy + 1)3 − 1] > 0.

Therefore the matrix in the RHS of (71) is positive definite,

implying that the Hessian ∇2 f(x, y, t) is positive definite,

which is the necessary and sufficient condition for the con-

vexity of f [25]. �

As the function f(x, y) � ln(1 + 1/xy) is convex in the

domain {x > 0, y > 0} it follows that [25] for every x > 0,

y > 0, x̄ > 0 and ȳ > 0,

ln(1 + 1/xy) = f(x, y)

≥ f(x̄, ȳ) + 〈∇f(x̄, ȳ), (x, y) − (x̄, ȳ)〉
= ln(1 + 1/x̄ȳ)

+
1/x̄ȳ

1 + 1/x̄ȳ
(2 − x/x̄ − y/ȳ). (72)

Similarly, for the convex function f(x, y, t) � ln(1+1/xy)1/t,

one has the following inequality for every x > 0, y > 0, t > 0,

x̄ > 0, ȳ > 0 and t̄ > 0,

ln(1 + 1/xy)

t
= f(x, y, t)

≥ f(x̄, ȳ, t̄) + 〈∇f(x̄, ȳ, t̄), (x, y, t)

− (x̄, ȳ, t̄)〉

=
2 ln(1 + 1/x̄ȳ)

t̄
+

1/x̄ȳ

t̄(1 + 1/x̄ȳ)
(2

− x/x̄ − y/ȳ) − ln(1 + 1/x̄ȳ)

t̄2
t (73)

Analogously, the inequality

− ln(1 + x)

t
≥ 2

α − ln(1 + x̄)

t̄
+

x̄

t̄(1 + x̄)

− x

t̄(1 + x̄)
− α − ln(1 + x̄)

t̄2
t − α

t

∀0 ≤ x ≤ M, α ≥ ln(1 + M) + 0.5 (74)

follows from the convexity of function
α − ln(1 + x)

t
over

the trust region 0 ≤ x ≤ M .

Lastly, the inequality

ln(1 + x/y) ≤ ln(1 + x̄/ȳ) +
1

1 + x̄/ȳ

× (0.5(x2/x̄ + x̄)/y − x̄/ȳ) (75)

follows from the concavity of function ln(1 + z) and then the

inequality

x = 0.5(x2/x̄ + x̄) − 0.5(x − x̄)2/x̄

≤ 0.5(x2/x̄ + x̄) ∀x > 0, x̄ > 0. (76)
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