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Abstract— Interference channels with confidential messages
are studied under strong secrecy constraints, based on the
framework of channel resolvability theory. It is shown that if the
random binning rate for securing a confidential message is above
the resolution of its corresponding wiretapped channel, strong
secrecy can be guaranteed. The information-spectrum method
introduced by Han and Verdú is generalized to an arbitrary
interference channel to obtain a direct channel resolvability result
as a first step. For stationary and memoryless channels with
discrete output alphabets, the results show that the achievable
rates under weak and strong secrecy constraints are the same.
This result is then generalized to channels with continuous
output alphabets by deriving a reverse direction of Pinsker’s
inequality to bound the secrecy measure from above by a
function of the variational distance of relevant distributions.
As an application, Gaussian interference channels are studied
in which the agreement between the best known weak and
strong secrecy rate regions also appear. Following the footsteps
of Csiszár, Hayashi and of Bloch and Laneman, these results
provide further evidence that channel resolvability is a powerful
and general framework for strong secrecy analysis in multiuser

networks.

Index Terms— Strong secrecy, interference channel, channel
resolvability, reverse Pinsker’s inequality, variational distance.

I. INTRODUCTION

THE notion of information theoretic secrecy was first

introduced by Wyner in the context of the degraded

wiretap channel [1], in which a confidential message is sent

from a transmitter to a legitimate receiver while keeping

it secret from a degraded eavesdropper. Soon this problem

was generalized to the non-degraded wiretap channel [2] and

Gaussian wiretap channel [3], which laid the foundations for
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much subsequent research on information theoretic secrecy.

Based on the original wiretap channel, in which the secrecy

measure is defined as the leakage of confidential information

at the eavesdropper normalized to the length of the code-

word, the problem of transmitting confidential messages has

been widely studied in multiuser networks, e.g., the discrete

memoryless interference channel and broadcast channel with

confidential messages [4], the fading broadcast channel [5],

the multiple access channel with confidential messages [6],

relay channels with confidential messages [7] and so on.

In order to guarantee confidentiality, a series of random

binning encoders has been applied to different networks,

in which a proper quantity of randomness is placed in the

codebook to protect the confidential messages. The common

essence of the coding mechanisms in these results is tied to

the capacity of the eavesdropper’s channel, where the rate

penalty for the random binning is slightly below the decod-

ing ability of the eavesdropper. However, the above secrecy

measure was pointed out by Maurer and Wolf [8] to be too

weak for cryptographic applications. Meanwhile, the capacity-

based secrecy coding encounters difficulty for general channel

models, e.g., non-stationary or/and non-memoryless channels.

In order to study communications under stronger constraints,

the total leakage of confidential information was introduced as

the strong secrecy measure in multiple works, e.g., [8]–[10].

Under such a strong secrecy constraint, there exist different

methods for coding, such as privacy amplification [8], [11],

the vanishing output variation approach [12], and channel

resolvability [10], [13]–[15]. Among these approaches, we fol-

low that of Hayashi [10] and Bloch and Laneman [13] to

study the strong secrecy problem in interference channels,

for which the secrecy problem is tied with the approximation

method for output distributions, namely, the channel resolv-

ability theory [16]. A recent review of the field of information

theoretic secrecy can be found in [17].

A. Channel Resolvability

The concept of channel resolvability was first introduced by

Wyner while investigating common randomness of two depen-

dent random variables [18]. Subsequently, the theory of chan-

nel resolvability was thoroughly studied by Han and Verdú to

determine the number of random bits required per channel

use in order to generate an input that achieves arbitrarily

accurate approximation of the output statistics for any given
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Fig. 1. Approximation for output statistics: The variational distance between
PY n and QY n vanishes as n tending to infinity, if the rate R is larger than
the sup-information rate, defined in (2) and Section II.

input process [16]. We adopt the notion of Han and Verdú

to describe the framework of channel resolvability in this

paper. To briefly interpret the notion of channel resolvability

and its relation to the strong secrecy problem, let us con-

sider the example shown in Fig. 1. Considering the channel

defined by a sequence of transition probabilities PY n |Xn ,

for any input process Xn drawn from the distribution PXn ,

the output distribution PY n is the marginal distribution of

PY n |Xn PXn as shown in the upper part of Fig. 1. In order

to approximate the output statistics PY n , in practice, a random

number generator is used to generate the sample path of the

input distribution, and the empirical estimates of the output

statistics are computed from the output sample path. Therefore,

a technical question to raise is, given the input statistics and

the transition probability, how many bits per input sample

are required to reproduce the target output statistics within

a certain accuracy. Although, at first glance, the problem

of approximating the output statistics would seem to have

no connection to any codes or information transmission,

Han and Verdú connected the approximation problem with

Shannon theory via a random code construction: Let us

generate a set of uniformly distributed messages with size 2nR ,

and assign each message w to a codeword xn(w) generated

according to the distribution PXn . Randomly choosing the

message w from the message set and sending the codeword

xn(w) to the channel, the induced output distribution is QY n

as shown in the lower part of Fig. 1. Regarding QY n as the

empirical approximation of PY n , the question becomes how

large R is required to be to achieve a certain accuracy. In order

to measure the accuracy of the approximation, the specific

measures used in [16] are variational distance and normal-

ized Kullback-Leibler divergence. These measures are defined

respectively in the following.

Definition 1 (Variational Distance): For two distributions

P and Q defined on the same measurable space (�,F),

the variational distance between P and Q is

d(P, Q) =
∑

ω∈�

|P(ω) − Q(ω)| = 2 sup
E∈F

|P(E) − Q(E)| .

Definition 2 (Kullback-Leibler Divergence): For two distri-

butions P and Q defined on the same measurable space

(�,F), where P is absolutely continuous with respect to Q,

the Kullback-Leibler divergence is

D(PkQ) =
∫

�

log
d P

d Q
d P,

where d P
d Q

is the Radon-Nikodym derivative of P with respect

to Q. In the later part of the paper, we sometimes refer to the

Kullback-Leibler divergence as divergence for brevity.

Based on these definitions, the required number of random

bits for approximation is not only related to the input sta-

tistics, but is also relevant to the degree of approximation

accuracy measured by the specific metric. It is shown in [16]

that, if

R > Ī(X; Y), (1)

where Ī(X; Y) represents the sup-information rate,

Ī(X; Y)= inf

{

α : lim
n→∞

P

[

1

n
log

PY n |Xn (Y n |Xn)

PY n (Y n)
>α

]

=0

}

,

(2)

there exists at least one sequence of codebooks such that the

variational distance between the two distributions PY n

and QY n tends to zero as n → ∞,

i.e., limn→∞ d(PY n , QY n ) = 0. Furthermore, if the channel

has finite input alphabet, i.e., |X | < ∞, it implies that

the normalized divergence 1
n

D(PY n kQY n ) tends to zero for

sufficiently large n given (1) and (2). In [16], Ī(X; Y) is

termed the channel resolution when the input distribution is

PXn .

B. Resolvability and Secrecy

In Fig. 1, the resolvability result tells us that when the

message rate is above the channel resolution, the statistics of

the original output PY n which is independent of the codebook,

and the codebook-induced output QY n are arbitrarily close

measured by variational distance or normalized divergence for

sufficiently large n. We regard these two distributions as being

statistically indistinguishable under the respective measure.

The statistical indistinguishability of this pair of distribu-

tions can be further exploited in the context of information-

theoretically secure communications. For example, let us con-

sider a scenario illustrated by Fig. 1 in which the confidential

message represented by a random variable W is transmitted

via the channel with transition probability which can be

marginalized as PY n |Xn . Let us further assume that Y n is the

channel output sequence at the eavesdropper, and the input

probability distribution PXn is known at the eavesdropper.

In order to hide the confidential message, as a first step,

a natural heuristic is to imitate the output distribution PY n by

the codebook-induced distribution QY n such that these two

output statistics are arbitrarily close given sufficiently large n.

Therefore, the confidential message should be encoded at a

rate above the channel resolution of the eavesdropper’s channel

and below the channel capacity of the intended channel.

To make this concept rigorous, following the conventional

definition of information-theoretic security, the desired statis-

tical indistinguishability is measured by the vanishing with
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increasing n of the normalized divergence 1
n

D(PW Y n kPW PY n )

for weak secrecy and divergence D(PW Y n kPW PY n ) for strong

secrecy.

Therefore, there is a fundamental connection between chan-

nel resolvability and secrecy. In fact, as already indicated

in [16], for many systems there is a direct implication that

the notions of indistinguishability measured by the normalized

divergence and variational distance render the same achievable

channel resolution for the same input process. Thus, resolv-

ability results have a strong connection with weak secrecy

problems. However, for strong secrecy problems, directly

applying channel resolvability results based on the variational

distance or normalized divergence is not sufficient. The reason

is that the total divergence measure (or the strong secrecy

measure) is the strongest measure among these three. That

being said, the vanishing of the total divergence when n tends

to infinity implies the vanishing of the variational distance and

obviously the normalized divergence, but not vice versa [13].

In this paper, we investigate the achievable rate with

strong secrecy based on the channel resolvability method.

In particular, we aim to construct a sequence of codebooks

such that limn→∞ d(PW Y n , PW PY n ) = 0 and furthermore

limn→∞ I (W ; Y n) = limn→∞ D(PW Y n kPW PY n ) = 0. It is

accomplished by exploiting the relationship of these two

measures. Let P and Q represent two different probability

distributions over the same sample space. It is well known that

Pinsker’s inequality [19] provides a lower bound on D(PkQ)

based on d(P, Q) such that the vanishing of D(PkQ) implies

the vanishing of d(P, Q), whereas the reverse direction does

not hold in general. Accordingly, in our study the reverse direc-

tion of Pinsker’s inequality is of particular interest. Bounding

the divergence of two distributions D(PkQ) from above based

on the variational distance d(P, Q) is the key step throughout

this paper.

The relation between channel resolvability and strong

secrecy was originally addressed by Csiszár [9] and then

Hayashi [10], and sequentially studied in [13], [14], and [15]

for different types of wiretap channels and broadcast chan-

nels with confidential messages. It is worth noting that the

information-spectrum toolbox presented by Han and Verdú

is useful for studying general channels, i.e., channels with

memory or/and non-stationary channels. For instance, in [13],

the arbitrary wiretap channel was investigated based on the

information-spectrum approach.

C. Summary of Contributions and Prior Work

We study the achievable secrecy rate region of interference

channels with confidential messages under strong secrecy con-

straints. In this paper, we start from considering interference

channels in a more general sense, for instance, channels are

not stationary or memoryless. The (direct) channel resolvabil-

ity theorem is first generalized to the two-user interference

channel with arbitrary channel transition probabilities. Then,

the stationary and memoryless interference channel with con-

fidential messages is studied based on different assumptions

on the transition probability. The contributions of the paper

are summarized as follows:

• Resolvability for arbitrary interference channels with

confidential messages: We first generalize the direct

channel resolvability theorem to the two-user interfer-

ence channel, for which there are no restrictions on

the channel transition probability. We consider the sce-

nario in which transmitter i (i = 1, 2) intends to

deliver a message Wi to receiver i , with a constraint

on the output distributions that the variational distance

limn→∞ d(PWi Y
n
j
, PWi PY n

j
) = 0 (i, j ∈ {1, 2} and i 6= j ).

The achievable rate region is presented in a supporting

lemma based on the information-spectrum method. This

lemma holds regardless of whether or not the channel

input/output alphabets are finite. We also show that the

direct resolvability result guarantees weak secrecy for

arbitrary interference channels.

• Achievable secrecy rate region for interference channels

with confidential messages: Consider the two-user inter-

ference channel, in which Wi is intended for receiver i

and to be kept secret from receiver j . The secrecy rate

region is derived for the stationary and memoryless inter-

ference channel with confidential messages. The main

difference between these results and channel resolvability

is that the desired statistical indistinguishability is based

on the strong secrecy measure I (Wi ; Y n
j ) instead of the

variational distance. Therefore, the relationship of those

measures plays an important role in the analysis. To con-

sider discrete output alphabets, we adopt the method

given by Csisźar [9] and Csisźar and Körner [20] directly

to bound the targeted mutual information or equivalently

the divergence from above as a function of the variational

distance. For continuous output alphabets with finite

support, we derive a new reverse Pinsker’s inequality in

order to provide an upper bound on the target strong

secrecy measure by the variational distance. The principal

step is to show that when the variational distance con-

verges to zero fast enough with n, which is obtained by

tailoring the supporting lemma, the mutual information

also converges to zero in the limit of n, following a

similar method in [13]. Our study directly implies that for

discrete memoryless interference channels the best known

achievable rate region with weak secrecy [4] guarantees

strong secrecy. An application of the proposed reverse

Pinsker’s inequality is that it further aids the investigation

of strong secrecy for Gaussian channels which have

infinite output alphabets. The generalization from finite

support to Gaussian channels follows from a careful

truncation of the output alphabets, such that for the

transmission based on a particular codebook, the desired

divergence and variational distance of considered distribu-

tions concentrate on the truncated set with finite support.

By this means, the derived reverse Pinsker’s inequality

can be applied to the truncated set with finite support.

Our results show that for Gaussian interference channels,

the known achievable rate region for weak secrecy is also

achievable with strong secrecy constraints.

• Prior work on the secrecy rate region of interference

channels: The problem of weak secrecy in interference

channels has been widely studied. In [4], the discrete
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memoryless interference channel with confidential mes-

sages has been studied, which provides the best known

achievable secrecy rate region. In [21], the secrecy prob-

lem is studied for deterministic interference channels.

Cognitive interference channels with secrecy constraints

are studied in [22]. Secure degrees of freedom for

Gaussian interference channels with confidential mes-

sages have been studied in [23], [24], and [25], where

the optimal sum secure degrees of freedom of K -user

Gaussian interference channel with confidential messages

is derived in the latter. In the strong secrecy setting, Li and

Matsumoto studied the strong secrecy rate region of dis-

crete memoryless interference channels based on secure

multiplex coding [26], where the privacy amplification

approach [27] was adopted. Our results offer the same

achievable rate region for discrete memoryless channels

and Gaussian channels as in [26] and [28]. In [28], strong

secrecy was guaranteed by a nested lattice codebook,

in which the representation theorem [29] of nested lattice

structures plays a critical rule for bounding the secrecy

measure. Here in our paper, the coding schemes are

still based on Shannon’s random selection approach. The

proof focuses on the relationship between the divergence

and variational distance between a pair of output distrib-

utions. It is also important to note that our resolvability

approach manages to show that the variational distance of

target distributions tends to zero within the derived rate

region for arbitrary channel transition probabilities. It is

therefore also meaningful for future studies on channels

with memory.

II. PRELIMINARY DEFINITIONS

In this section, we introduce the definitions of quantities

that will be used in the sequel. Let X and Y represent two

finite alphabet sets. For xn ∈ X n and yn ∈ Yn , PXn (xn)

and PY n (yn) represent the respective probability masses. For

continuous alphabets, we assume that probability density

functions exist, i.e., the corresponding probability measures

are absolutely continuous with respect to Lebesgue mea-

sure. In what follows, unless otherwise noted, the definitions

are provided based on discrete random variables. As the

information-spectrum method we adopt in this paper does not

impose any constraint on the alphabets, the results from the

discrete case can be directly generalized to continuous cases as

pointed out in [30], with restrictions and exceptions as we shall

point out particularly. Throughout the paper, we use R and

R
n to represent the set of real numbers and the n-dimensional

space of real numbers, respectively. R
n
+ represents the set of

n-tuples of non-negative real numbers. We use lower case

letters, e.g., x , to represent specific realizations of random

variables denoted by upper case letters, e.g., X . Let f and

g be two functions defined on some subset of real numbers.

The big O condition f (x) = O(g(x)) as x → ∞ holds if and

only if there is a positive number M and a real number x0 such

that | f (x)| ≤ M|g(x)|,∀x ≥ x0. Throughout the paper, log

represents the binary logarithm and ln represents the natural

logarithm.

Definition 3 (Information Density [16], [30]): Given a

joint distribution PXnY n (xn, yn) = PXn (xn) PY n |Xn (yn|xn),

the information density is the following function defined on

X n × Yn :

iXnY n (xn, yn) = log
PY n |Xn (yn, xn)

PY n (yn)
.

The distribution of the random variable ( 1
n
)iXnY n (Xn, Y n)

where Xn and Y n have joint distribution PXnY n will be

referred to as the information spectrum. The mutual informa-

tion I (Xn; Y n) is defined as the following expectation:

I (Xn; Y n) = E[iXnY n (Xn, Y n)]

=
∑

xn∈X n,yn∈Yn

PXn Y n (xn, yn)log
PY n |Xn (yn|xn)

PY n (yn)
.

For the information density defined above, we define the

following lim sup and lim inf in probability:

Ī(X; Y) = p- lim sup
n→∞

1

n
iXnY n (Xn , Y n)

= inf

{

α : lim
n→∞

P

[

1

n
iXnY n (Xn, Y n) > α

]

= 0

}

,

I(X; Y) = p- lim inf
n→∞

1

n
iXnY n (Xn, Y n)

= sup

{

β : lim
n→∞

P

[

1

n
iXnY n (Xn, Y n) < β

]

= 0

}

.

Ī(X; Y) and I(X; Y) are referred to as the sup-information rate

and inf-information rate, respectively.

III. CHANNEL MODEL

Definition 4 (Interference Channel With Confidential Mes-

sages): Let us consider the interference channel � = {�n :
X n

1 × X n
2 → Yn

1 × Yn
2 }n∈N which is a sequence of stochastic

mappings from input alphabets X n
1 × X n

2 to output alphabets

Yn
1 × Yn

2 . We use the transition probability to represent this

sequence of mappings:

� =
{

�n(yn
1 , yn

2 |xn
1 , xn

2 ) :

�n(yn
1 , yn

2 |xn
1 , xn

2 ) = PY n
1 Y n

2 |Xn
1 Xn

2
(yn

1 , yn
2 |xn

1 , xn
2 ),

with (xn
1 , xn

2 , yn
1 , yn

2 ) ∈ X n
1 × X n

2 × Yn
1 × Yn

2

}∞

n=1

.

We assume that {Xn
1 = (X

(n)
1,1, X

(n)
1,2, · · · , X

(n)
1,n)}n∈N and {Xn

2 =
(X

(n)
2,1, X

(n)
2,2, · · · , X

(n)
2,n)}n∈N are general sources such that the

consistency condition need not hold. For instance, the condi-

tion X
(n)
1,i = X

(m)
1,i for all m < n and 1 ≤ i ≤ m does not

necessarily hold. Based on the channel transition probability

�n(yn
1 , yn

2 |xn
1 , xn

2 ), we consider an interference channel with

two transmitters, each intending to send one confidential

message to its corresponding receiver, while keeping it secret

from the other receiver. This channel is referred to as the

interference channel with confidential messages.

A (2nR1, 2nR2 , n) code Cn for the considered channel is

defined to consist of, for i = 1, 2,

• a set of messages at transmitter i : Wi = [1 : 2nRi ],
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• a stochastic encoder f
(n)
i at transmitter i ,

f
(n)
i : Wi → X n

i ,

which maps the intended message wi ∈ Wi to a codeword

xn
i ∈ X n

i , where the message set Wi is uniformly

distributed, and

• a decoder g
(n)
i at receiver i ,

g
(n)
i : Yn

i → Wi ,

that maps the output yn
i to an estimated message ŵi ∈

Wi .

The strong secrecy rate pair (R1, R2) is achievable for the

considered channel if there exists a sequence of (2nR1, 2nR2 , n)

codes {Cn} such that

• the error probability satisfies

lim
n→∞

P(n)
e = 0,

where P
(n)
e = P[(Ŵ1, Ŵ2) 6= (W1, W2)], and

• the strong secrecy measure satisfies, for i 6= j ,

lim
n→∞

I (Wi ; Y n
j ) = 0.

In this paper, we will also discuss the achievable rate under

the weak secrecy constraint limn→∞ 1
n

I (Wi ; Y n
j ) = 0, as well

as the achievable rate with vanishing variational distance

limn→∞ d(PWi Y
n
j
, PWi PY n

j
) = 0. The definitions of codes

and achievable rates follow by replacing the corresponding

measures, respectively.

IV. A SUPPORTING LEMMA BASED

ON CHANNEL RESOLVABILITY

In this section, we present the direct resolvability lemma for

arbitrary interference channels. First, the direct resolvability

lemma is proved under the criterion of vanishing variational

distance of output statistics. Then, its relation to secrecy is

discussed. The importance of the direct resolvability result

is that it not only indicates the weak secrecy rate region

directly, but also serves as an intermediate step for strong

secrecy studies. Because in a large part of the paper we will

adopt variational distance between two distributions as one of

the key metrics for the strong secrecy analysis, the technical

motivation of this approach will be explained in this section.

A. Direct Resolvability Lemma in Variational Distance

Instead of studying the strong secrecy rate directly, we first

take a detour to provide a supporting lemma based on channel

resolvability. The proposed lemma sets the tone for the study

of strong secrecy in interference channels.

Let us replace the secrecy measure I (Wi ; Y n
j ) with the vari-

ational distance between the distributions PWi Y
n
j

and PWi PY n
j

for (i 6= j ), i.e., d(PWi Y
n
j
, PWi PY n

j
). A closer look at the above

variational distance tells us that when d(PWi Y
n
j
, PWi PY n

j
)

approaches zero, the confidential message Wi and the output

at the undesired user Y n
j are asymptotically independent.

Intuitively, when Wi and Y n
j are independent, information

about the confidential message Wi in the sequence Y n
j is zero.

Therefore, the product distribution PWi PY n
j

can be seen as our

target distribution, and our goal is to make the true distribution

PWi Y
n
j

arbitrarily close to it. Using the variational distance

to measure the distance between two distributions, in [16],

Han and Verdú introduced the concept of channel resolvability

for approximating the output statistics of the point-to-point

channel. The idea is generalized here for the interference

channel in Definition 4. The main result is summarized in

the following supporting lemma.

Lemma 1: For the interference channel as defined

in Definition 4 by arbitrary transition probability

PY n
1 Y n

2 |Xn
1 Xn

2
(yn

1 , yn
2 |xn

1 , xn
2 ), the following rate region D

is achieved:

D :=
{

(R1, R2) ∈ R
2
+ :

R1 < I(V1; Y1|U) − Ī(V1; Y2|V2, U),

R2 < I(V2; Y2|U) − Ī(V2; Y1|V1, U)

}

(3)

with

lim
n→∞

d(PWi Y
n
j
, PWi PY n

j
) = 0,∀i, j ∈ {1, 2}, i 6= j

for any distribution PU n V n
1 V n

2 Xn
1 Xn

2
that can be factored as

PU n PV n
1 |U n PV n

2 |U n PXn
1 |V n

1
PXn

2 |V n
1

.

Sketch of Proof: We are going to show first that the

following rates are achievable:

0 ≤ R1 < I(X1; Y1|U) − Ī(X1; Y2|X2, U) (4)

0 ≤ R2 < I(X2; Y2|U) − Ī(X2; Y1|X1, U). (5)

Then (3) follows by the channel prefixing method as

discussed in [2].

We start with creating a sequence of codebooks which are

generated randomly. Let R1, R0
1, R2, R0

2 > 0. Define W1 =
[1 : 2nR1 ], W2 = [1 : 2nR2 ], W 0

1 = [1 : 2nR0
1 ] and W 0

2 = [1 :
2nR0

2 ]. Let γ > 0 be an arbitrary positive number.

• Codebook generation: Randomly generate a sequence un

according to the distribution PU n (un), which is shared

among all transmitters and receivers as the time-sharing

indicator. For transmitter i , i ∈ {1, 2}, generate |WikW 0
i |

independent sequences xn
i ∈ X n

i according to the distri-

bution PXn
i |U n (xn

i |un). We label the sequences xn
i as

xn
i (wi , w

0
i ), wi ∈ W1, w0

i ∈ W 0
i .

• Encoding: In order to send a message pair (w1, w2) ∈
W1 ×W2, the transmitter i randomly chooses a value w0

i

according to the uniform distribution on the set W 0
i and

sends the codeword xn
i (wi , w

0
i ) over the channel.

• Decoding: Define the following sets for i = 1, 2:

T
(n)

γ ,i :=
{

(un, xn
i , yn

i ) ∈ Un × X n
i × Yn

i :

1

n
log

PY n
i |Xn

i U n (yn
i |xn

i , un)

PY n
i |U n (yn

i |un)

≥ 1

n
log|WikW 0

i | + γ

}

. (6)

Based on the received signal yn
i , the decoder i aims to

find the unique xn
i (ŵi , ŵ

0
i ) such that (un, xn

i , yn
i ) ∈ T n

γ,i ;

otherwise, a random ŵi is chosen.
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A detailed proof of reliability and the vanishing of the

variational distance is shown in Appendix B. For better

understanding of the proof, we provide an outline for proving

the vanishing of the variational distance between the targeted

distributions here. Let us first set the time sharing random

sequence Un = ∅ and consider the case i = 1 and j = 2.

Let {Cn}n∈N represent a sequence of codebooks generated

as above. We use over-lines to represent the channel input

and output variables induced by the chosen sequence of

codebooks. Based on Shannon’s random selection approach,

if we can show that the targeted variational distance vanishes

by averaging the selection of the codebooks, there must exist

at least one sequence of realizations for which the variational

distance also vanishes. Specifically, if we can show that

lim
n→∞

ECn

[

d(PWi Ȳ
n
j
, PWi PȲ n

j
)
]

= 0, i, j ∈ {1, 2} i 6= j,

(7)

then there exists at least one sequence of codes {Cn} such

that limn→∞ d(PWi Ȳ
n
j
, PWi PȲ n

j
) = 0. According to the triangle

inequality for the variational distance, as provided in Lemma 6

of Appendix A, we have

d
(

PW1Ȳ n
2
, PW1 PȲ n

2

)

≤ d(PW1Ȳ n
2 X̄n

2
PW1 PȲ n

2 X̄n
2
)

= EW1 X̄n
2

[

d(PȲ n
2 |W1 X̄n

2
, PȲ n

2 |X̄n
2
)
]

≤ EW1 X̄n
2

[

d(PȲ n
2 |W1 X̄n

2
, PY n

2 |Xn
2
) + d(PY n

2 |Xn
2
, PȲ n

2 |X̄n
2
)
]

= EW1 X̄n
2

[

d(PȲ n
2 |W1 X̄n

2
, PY n

2 |Xn
2
)
]

+ EX̄n
2

[

d(PY n
2 |Xn

2
, PȲ n

2 |X̄n
2
)
]

≤ EW1 X̄n
2

[

d(PȲ n
2 |W1 X̄n

2
, PY n

2 |Xn
2
)
]

+ EX̄n
2

[

d(PȲ n
2 W1|X̄n

2
, PW1 PY n

2 |Xn
2
)
]

= 2EW1 X̄n
2

[

d(PȲ n
2 |W1 X̄n

2
, PY n

2 |Xn
2
)
]

. (8)

Therefore, it is sufficient to show that

lim
n→∞

ECn

{

EW1 X̄n
2

[

d(PȲ n
2 |W1 X̄n

2
, PY n

2 |Xn
2
)
]}

= 0. (9)

We generalize the channel resolvability theorem [16] to multi-

ple users: In order to show (9), it is sufficient that the rate R0
1

was larger than the resolution of the corresponding channel,

i.e., Ī(X1; Y2|X2). The equivalent channel is shown in Fig. 2.

It is easy to see that the rate of the random message w0
1 serves

as a penalty term for the secrecy rate.

The case when i = 2 and j = 1 can be handled according

to a symmetrical argument. �

Remark 1: This supporting lemma does not impose any

restriction on the structure of the channel transition probability

(e.g., stationarity or memorylessness). Therefore the result

holds in a general sense. As we show in the sequel, if we

specify the channel transition probability, we can further study

the achievable rate of the considered network with strong

secrecy constraints based on the same theoretical framework.

Fig. 2. The coding scheme over the equivalent channel with constraints on
output statistics.

B. Direct Resolvability in Normalized Divergence

and Weak Secrecy

So far, we have shown the achievable rate region for

arbitrary interference channels under the vanishing varia-

tional distance limn→∞ d(PWi Y
n
j
, PWi PY n

j
) = 0. In fact,

the result in Lemma 1 is meaningful in the context of

secure communications. As discussed in [13], vanishing

variational distance implies vanishing normalized divergence
1
n

D(PWi Y n
j
kPWi PY n

j
). Therefore, weak secrecy for arbitrary

interference channels is guaranteed by the same achievable

rate region D as defined in (3). For the sake of presentation,

we summarize the result in the following proposition.

Proposition 1 (Weak Secrecy for Arbitrary Interference

Channels): For the interference channel in Definition 4 with

arbitrary transition probability PY n
1 Y n

2 |Xn
1 Xn

2
(yn

1 , yn
2 |xn

1 , xn
2 ),

the rate region D defined in (3) is achievable with

limn→∞ 1
n

D(PWi Y n
j
kPWi PY n

j
) = 0, ∀i, j ∈ {1, 2}, i 6= j

for any distribution PU n V n
1 V n

2 Xn
1 Xn

2
that can be factored as

PU n PV n
1 |U n PV n

2 |U n PXn
1 |V n

1
PXn

2 |V n
1

.

Proof: This result is proved via showing the conver-

gence of limn→∞ 1
n

D(PWi Y n
j
kPWi PY n

j
) = 0, provided that

limn→∞ d(PWi Y
n
j
, PWi PY n

j
) = 0. The relation has been origi-

nally discussed in [19] and [30], and later studied in [13] for

secrecy problems. We present the proof in Appendix C.

However, Lemma 1 cannot directly render that the strong

secrecy constraints are satisfied. A technical explaination is

that the vanishing variational distance constraint is generally

weaker than the constraint of vanishing divergence, which is

established by Pinsker’s inequality which says that D(PkQ) ≥
log e

2
d(P, Q) for two distributions P and Q defined on the

same sample space. That being said, in order to satisfy

the strong secrecy constraint the convergence of variational

distance to zero is not sufficient. It is interesting to observe

in the following section that for a specific class of transition

probabilities, the result of Lemma 1 stands as a premise for

strong secrecy. This is achieved by establishing the relationship

of the divergence and the variational distance measures on a

family of probability distributions.

V. STRONG SECRECY FOR INTERFERENCE CHANNELS

Lemma 1 states that d(PWi Y
n
j
, PWi PY n

j
) can be arbitrarily

close to zero if we carefully design the code within a certain
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rate region. In order to study strong secrecy of interference

channels based on Lemma 1, a natural approach would be

to provide an upper bound on the strong secrecy measure

D(PWi Y n
j
kPWi PY n

j
) as a function of d(PWi Y

n
j
, PWi PY n

j
), such

that when d(PWi Y
n
j
, PWi PY n

j
) → 0, D(PWi Y n

j
kPWi PY n

j
) also

tends to 0.

However, for the desired direction a reverse type of

Pinsker’s inequality does not exist in general. Specifically, for

any ε > 0, we can find P and Q such that D(PkQ) = ∞
while d(P, Q) = ε, where P and Q are two distributions.

Therefore, certain restrictions on the studied distributions are

required to obtain the inequality in the desired direction.

In what follows, we will consider multiple channel models

in which the reverse Pinsker’s inequality can be derived

accordingly and serves as a powerful approach to the analysis

of strong secrecy constraints.

A. Stationary and Memoryless Interference Channel With

Discrete Output Alphabets

In this section, we consider interference channels in which

the channel transition probability is stationary and memory-

less. Moreover, we restrict the output alphabet to be discrete

with finite cardinality.

To study strong secrecy for interference channels in this

case, we adopt the method given by Csiszár [9] by applying

the following inequality.

Lemma 2 (Csiszár-Körner [9], [20]): Let P and Q denote

two probability distributions on a discrete set X . Let H (P) and

H (Q) represent the entropies based on P and Q, respectively.

Then, if d(P, Q) ≤ 1
2

,

|H (P) − H (Q)| ≤ −d(P, Q) log
d(P, Q)

|X | , (10)

where |X | is the cardinality of X .

Remark 2: Based on this lemma, we have the following

line of thought for bounding the strong secrecy measure

I (Wi ; Y n
j ) = D(PWi Y n

j
kPWi PY n

j
) from above by the varia-

tional distance. Considering the strong secrecy measure, based

on Lemma 2, we have

D(PWi Y n
j
kPWi PY n

j
) = H (Y n

j ) − H (Y n
j |Wi )

≤ −d(PY n
j
, PY n

j |Wi
) log

d(PY n
j
, PY n

j |Wi
)

∣

∣

∣Yn
j

∣

∣

∣

.

Therefore, it suffices to show that there exists some α > 0,

so that d(PWi PY n
j
, PWi Y

n
j
) ≤ e−nα for sufficiently large n,

the proof of which depends on the stationary and memoryless

structure of the channel. We note that in [13], Bloch and Lane-

man adopted a similar approach to establish the achievable

secrecy rate for wiretap channels.

In order to handle channel coding problems in which the

cost of the codewords must be taken into account, e.g., a trans-

mission power constraint, following Han’s approach [30],

we introduce the following channel.

Definition 5 (Stationary Memoryless Channel With Additive

Cost Functions): Let us consider the stationary and mem-

oryless interference channel, where the channel transition

probability is denoted as

�n(yn
1 , yn

2 |xn
1 , xn

2 ) =
n
∏

i=1

�(y1,i , y2,i |x1,i , x2,i ),

where �(y1,i , y2,i |x1,i , x2,i ) = PY1Y2|X1 X2(y1,i , y2,i |x1,i , x2,i )

is the probability mass function. There are also cost constraints

based on the following additive cost functions:

1

n

n
∑

i=1

c(xi) ≤ P, with c : X1 ∪ X2 → R
+, (11)

where P is a positive given constant. Such a constraint is

referred to as the additive cost constraint P .

We are now in a position to present the following theorem.

Theorem 1: For the stationary memoryless interference

channel with additive cost constraint P (P > 0), the following

strong secrecy rate region D is achieved:

D :=
{

(R1, R2) ∈ R
2
+ :

R1 < I (V1; Y1|U) − I (V1; Y2|V2, U)

R2 < I (V2; Y2|U) − I (V2; Y1|V1, U)

}

(12)

for any distribution

PU PV1|U PV2|U PX1|V1 PX2|V2, and E[c(X i )]≤ P, ∀i ∈ {1, 2},
if the moment generating functions of iVi Y j |V j U and c(X i )

exist.

Sketch of Proof: There are two critical steps in the proof.

First, we modify the codebook generation as presented in

the proof of Lemma 1. The purpose is to make the induced

input process of the channel based on the generated codebooks

satisfy the additive cost constraint P almost surely. The details

of the modification of the codebook generation is given in

Appendix D. Let Cn represent the codebook generated based

on the described method for n ∈ N. The second step is

essentially the establishment of the following claim.

Claim 1: There exists at least one sequence of codebooks,

denoted as {Cn}, which satisfies the constraint P and reliabil-

ity, such that for sufficiently large n there exists some α > 0

such that,

d(PWi Ȳ
n
j
, PWi PȲ n

j
) ≤ e−αn,

where Ȳ n
j is the codebook induced output at receiver j .

Then following Lemma 2, the secrecy measure

D(PWi Y n
j
kPWi PY n

j
) is shown to approach 0 as n → ∞.

We note that the key is to apply the Chernoff inequality

(provided in Appendix A) to the proof of Lemma 1, based on

the stationary and memoryless channel transition probability.

Therefore, we need to make sure that the prerequisite of

the Chernoff bound holds, i.e., that the moment generating

functions for iVi Y j |V j U and c(X i ) exist. The detailed proof is

given in Appendix VI. �

Remark 3: If we carefully choose the additive cost function

and focus on the discrete memoryless interference channel,

we have the following observations based on Theorem 1:

• Let c(xi) = |xi |2 and choose a sufficiently large P . The

cost constraint is automatically satisfied for any finite

discrete distribution.
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• The moment generating functions for iVi Y j |V j U and c(X i )

exist for any discrete distribution.

Taking these two facts into account, we obtain that any distrib-

ution that achieves the boundary points of the derived secrecy

rate region also achieves the same points at the boundary

of the weak secrecy rate region presented in [4]. Therefore,

the derived strong secrecy rate region ties with the best known

weak secrecy rate region for the considered channel. In [26],

the same result has been derived based on a secure multiplex

coding scheme.

The result presented in Theorem 1 is not sufficient to be

generalized to Gaussian channels directly. The major problem

is that the inequality in Lemma 2 can only be applied to

discrete distributions. In the next section, we will generalize

the results to continuous alphabets and then focus on Gaussian

interference channels.

B. Stationary and Memoryless Interference Channel on

Continuous Output Alphabets

In order to generalize the result in Theorem 1 to continuous

alphabets, a similar line of thought can be adopted here.

Bounding the strong secrecy measure from above by the

variational distance is critical to this generalization. In this

section, we at first relax the discrete alphabet constraint to

allow continuous input and output alphabets, yet with finite

support for the output. The finite support of the output is finally

dropped in the sequel when we study Gaussian channels.

To start with, an analog of Lemma 2 on continuous sets

with finite support is presented.

Lemma 3: Let P and Q be two distributions on the set

X n ⊂ R
n whose Lebesgue measure satisfies λ(X n) < ∞.

Assuming P, Q � λ, let p = d P
dλ

and q = d Q
dλ

be the Radon-

Nikodym derivatives of P and Q, respectively, that is, their

densities with respect to Lebesgue measure. If p and q are

bounded from above by cn (1 ≤ c < ∞) almost everywhere

in X n , then

|h(P) − h(Q)| ≤ nd(P, Q)

(

log
λ(X n)

d(P, Q)
+ 2n log c+δ

)

,

(13)

where δ = 2 log e + 1, and h(P) and h(Q) are the differential

entropies of P and Q, respectively.

Proof: Define f (t) = −t log t , where t ≥ 0. Let τ =
|p − q|, ∀0 ≤ p, q ≤ cn , then

| f (p) − f (q)|

≤

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

max( f (τ ), f (1 − τ )) = |τ log τ |,
if 0 ≤ τ ≤ 1

2
, 0 ≤ p, q ≤ 1,

τ | f 0(cn)| = τ
∣

∣log cn + 1
ln 2

∣

∣ ,

otherwise.

Therefore, we have

|h(P) − h(Q)| =
∣

∣

∣

∣

∫

X n

p log p − q log q dλ

∣

∣

∣

∣

≤
∫

X n

|p log p − q log q| dλ

≤ −
∫

E1

|p − q| · log |p − q| dλ

+
∫

E2

|p − q| ·
∣

∣

∣

∣

log cn + 1

ln 2

∣

∣

∣

∣

dλ, (14)

where (14) follows by defining two disjoint sets:

E1 =
{

xn : τ ≤ 1

2
, 0 ≤ p(xn), q(xn) ≤ 1−τ and xn ∈ X n

}

,

E2 =
{

xn : xn /∈ E1 and xn ∈ X n
}

,

and applying the upper bound on | f (p)− f (q)| above. Define

θ =
∫

E1
|p − q| dλ. It is observed that θ ≤ 1

2
λ(E1). Based

on (14), we further have

−
∫

E1

|p − q| · log |p − q| dλ

= θ

(

−
∫

E1

|p − q|
θ

log
|p − q|

θ
dλ

)

− θ log θ

≤ θ log λ(E1) − θ log θ (15)

≤ θ log
[

β · λ(X n)
]

− θ log θ, for β ≥ 1. (16)

(15) follows from the fact that the uniform distribution pro-

vides maximum differential entropy for the bounded set E1,

and (16) follows from the monotonicity with respect to λ.

Define the function g(θ) = θ log
[

β · λ(X n)
]

− θ log θ for

0 ≤ θ ≤ d(P, Q). Setting β = 21+log ecn , we can write the

derivative of g(θ) as follows:

g0(θ) = log
βλ(X n)

θ
− log e = log

21+log ecnλ(X n)

θ
− log e

≥ log
d(P, Q)

θ
≥ 0, for θ ∈ [0, d(P, Q)],

where d(P, Q) ≤ 2cnλ(X n) is applied. Therefore, g(θ) is

monotonically increasing with θ in its domain. Therefore,

g(θ) ≤ g(d(P, Q)). Based on (16), we have

−
∫

E1

|p − q| · log |p − q| dλ

≤ d(P, Q)

(

log
λ(X n)

d(P, Q)
+ n log c + log e+1

)

, (17)

by substituting β = 21+log ecn to g(θ).

Furthermore,
∫

E2

|p − q| ·
∣

∣

∣

∣

log cn + 1

ln 2

∣

∣

∣

∣

dλ

≤
∣

∣

∣

∣

log cn + 1

ln 2

∣

∣

∣

∣

∫

X n

|p − q| dλ =
∣

∣

∣

∣

log cn + 1

ln 2

∣

∣

∣

∣

d(P, Q)

(18)

which follows from the definition of variational distance in the

current case

d(P, Q) =
∫

X n

|p − q| dλ.

Combining (17) and (18), we have

|h(P) − h(Q)|

≤ d(P, Q)

(

log
λ(X n)

d(P, Q)
+ 2n log c + 2 log e + 1

)

.

This concludes the proof.



5118 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 7, JULY 2018

Remark 4: It is observed that when λ(X n) ≥ e−1c−2n ,

the right-hand side of (13) is monotonically increasing with

d(P, Q). This can be shown by calculating the derivative with

respect to d(P, Q), and considering the fact that d(P, Q) ≤ 2.

Because p, q ≤ cn almost everywhere, we have cn
∫

X n dλ ≥
1, which implies λ(X n) ≥ c−n > e−1c−2n . Consequently,

the monotonicity with d(P, Q) is guaranteed. For example,

taking λ(X n) = en2
, d(P, Q) ≤ e−nα for some α = O(1),

it can be shown that |h(P) − h(Q)| ≤ O(n3e−nα) based on

Lemma 3, which tends to 0 as n → ∞.

Remark 5: A prerequisite condition in Lemma 3 is that the

considered probability densities p and q are bounded almost

everywhere in their sample space. For instance, Gaussian

distributions will be one candidate, while the chi-square

distribution with one degree of freedom does not qualify.

We note that the reverse Pinsker’s inequality has been studied

with different constraints [31]–[35]. Among those, [31]–[33]

studied the relationship of the entropy and variational distance

for discrete distributions, while the recent work of Verdú [34]

and of Sason [35] provides an interplay between relative

entropy and variational distance. Different from these previous

work, we use a different constraint on continuous distributions

and focus on the asymptotic behavior of differential entropy

and variational distance.

Based on Lemma 3, the proof of Theorem 1 can be imme-

diately generalized to the continuous case in which the output

alphabet has finite support, providing that output distributions

have densities bounded almost everywhere. However, this is

still not sufficient for the study of Gaussian channels, where

the output alphabet has infinite support by definition. Directly

applying Lemma 3 will not suffice for two distributions P

and Q because λ(X n) is infinite. Alternatively, if we can

find two truncated distributions P̂ and Q̂ on a finite support

T to approximate the original distributions with respect to

the divergence and variational distance, the strong secrecy

condition can then be proved via the properly truncated

distributions. This approach will be presented in detail when

we consider the following Gaussian interference channel.

Definition 6 (Gaussian Interference Channel With Confi-

dential Messages): The Gaussian interference channel has the

following channel input-output relation:

Y1 = X1 + ρ1 X2 + Z1,

Y2 = X2 + ρ2 X1 + Z2,

where ρ1, ρ2 ∈ [0, 1) are normalized channel coefficients and

are known to all parties. Z1 and Z2 are independent Gaussian

noises with zero means and unit variances. Here we consider

only the weak interference scenario, i.e., ρ1, ρ2 ∈ [0, 1),

because otherwise secure communication is not possible. The

transmitted signals X1 and X2 are subject to the average

power constraint (i.e., additive cost function), such that for

the transmitted sequences xn
1 and xn

2 ,

n
∑

i=1

x2
k,i

n
≤ P, for k = 1, 2.

The strong secrecy constraints remain consistent with

Definition 4.

Proposition 2: The following strong secrecy rate region is

achievable for the Gaussian interference channel:

0 ≤ R1 <
1

2
log

(

1 + (1 − λ1)β1 P

(λ1β1 + ρ2
1β2)P + 1

)

− 1

2
log

(

1 + ρ2
2 (1 − ρ1)β1 P

(λ2β2 + ρ2
2λ1β1)P + 1

)

0 ≤ R2 <
1

2
log

(

1 + (1 − λ2)β2 P

(λ2β2 + ρ2
2β1)P + 1

)

− 1

2
log

(

1 + ρ2
1 (1 − ρ2)β2 P

(λ1β1 + ρ2
1λ2β2)P + 1

)

for arbitrary λ1, λ2, β1, β2 ∈ [0, 1].
Proof: Let R1, R0

1, R2, R0
2 > 0, and W1 = [1 :

2nR1 ],W 0
1 = [1 : 2nR0

1],W2 = [1 : 2nR2 ] and W 0
2 = [1 :

2nR0
2 ]. Fix the distributions PVi and PAi on sets Vi and Ai ,

respectively, for i = 1, 2. Consider a sequence of codebooks

{Cn}, in which

Cn =
{

vn
1 (w1), an

1 (w0
1), v

n
2 (w2), an

2 (w0
2) :

w1 ∈ W1, w
0
1 ∈ W 0

1, w2 ∈ W2, w
0
2 ∈ W 0

2

}

,

and the sequences are generated as follows:

vn
1 ∼

n
∏

i=1

PV1(v1,i ), vn
2 ∼

n
∏

i=1

PV2(v2,i )

an
1 ∼

n
∏

i=1

PA1(a1,i ), an
2 ∼

n
∏

i=1

PA2 (a2,i ).

The transmitted sequences for the confidential message wi and

the associated random message w0
i are determined based on

Cn such that

xn
1 (w1, w

0
1) = vn

1 (w1) + an
1 (w0

1),

xn
2 (w2, w

0
2) = vn

2 (w2) + an
1 (w0

2),

which moreover satisfy the average power constraints:
∑n

i=1(ak,i + vk,i )
2 ≤ n P for k = 1, 2.

We present the proof as a continuation of the proof for

Theorem 1. Directly applying Theorem 1 and Claim 1, when

R1 + R0
1 < I (V1; Y1) (19)

R2 + R0
2 < I (V2; Y2) (20)

and

R0
1 > I (V1; Y2|V2) (21)

R0
2 > I (V2; Y1|V1) (22)

there exists at least one sequence of codebooks {Cn} such that

the reliability condition holds, and furthermore ∃α > 0, N > 0

such that ∀n > N the following inequality holds:

d(PWi PȲ n
j
, PWi Ȳ

n
j
) ≤ e−nα .

Note that we use an overline to represent the output based on

that particular codebook sequence {Cn}.
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1) Proof of Strong Secrecy: In the following, we will

show that based on that particular chosen codebook sequence,

the strong secrecy constraints are satisfied, e.g., considering

i = 2 and j = 1

lim
n→∞

I (W2, Ȳ n
1 ) = lim

n→∞

(

D(PȲ n
1

PW2kPȲ n
1 W2

)
)

= lim
n→∞

EW2

(

h(Ȳ n
1 ) − h(Ȳ n

1 |W2 = w2)
)

= 0.

It suffices to show that for any w2 ∈ W2, h(Ȳ n
1 )−h(Ȳ n

1 |W2 =
w2) decays exponentially fast with n.

Define the message set W = W1 × W 0
1 × W2 × W 0

2, and

W2 = W1 ×W 0
1 ×W 0

2. The probability distribution of Ȳ n
1 , for

any Borel measurable set Bn ⊂ R
n , is given by

PȲ n
1
(Bn) = 1

|W|
∑

(w1,w2,w
0
1,w

0
2)∈W

PY n
1 |Xn

1 Xn
2
(Bn|an

1 (w1) + vn
1 (w0

1), an
2 (w2)+vn

2 (w0
2)).

For Gaussian channels, the transition probability distribution

PY n
1 |Xn

1 Xn
2

is absolutely continuous with respect to Lebesgue

measure. Henceforth, PȲ n
1
(Bn) is also absolutely continuous

with respect to Lebesgue measure. Therefore, its density

function exists which is given by

pȲ n
1
(yn)

= 1

|W|
∑

(w1,w2,w0
1,w

0
2)∈W

pZn

(

yn −
(

an
1 (w1) + vn

1 (w0
1)
)

− ρ1

(

an
2 (w2) + vn

2 (w0
2)
)

)

= 1

|W|
∑

(w1,w2,w
0
1,w0

2)∈W
pZn

(

yn − xn
1 (w1, w

0
1)−ρ1 xn

2 (w2, w
0
2)
)

= 1

|W|
∑

(w1,w2,w0
1,w

0
2)∈W

n
∏

i=1

pZ(yi − x1,i − ρ1x2,i),

where pZ ∼ N (0, 1). Similarly, for the distribution of

PȲ n
1 |W2=w2

its probability density function can be written as

pȲ n
1 |W2=w2

(yn)= 1

|W2|
∑

(w1,w
0
1,w

0
2)∈W2

n
∏

i=1

pZ (yi −x1,i −ρ1x2,i).

The indices w1, w2, w
0
1 and w0

2 are omitted in x1,i and x2,i

without ambiguity.

In what follows, we will define a measurable set Tn ⊂ R
n ,

with λ(Tn) < ∞ for finite n. The motivation is to focus on

this measurable set such that the desired mutual information

I (W2, Ȳ n
1 ) and variation distance d(PW2 PȲ n

1
, PW2Ȳ n

1
) are con-

centrated on it.

For every i ∈ [1 : n], let

T i = max
W

{

|v1,i (w1) + a1,i(w
0
1)| + ρ1|v2,i (w2) + a2,i (w

0
2)|
}

= max
W

{

|x1,i | + ρ1|x2,i |
}

.

By the average power constraint, it is worth noting that

T i ≤
√

2n P . Because W2 ∪ w2 ⊆ W , we have T i ≥
max

W2

{

|x1,i | + ρi |x2,i |
}

given W2 = w2.

Let T i =
{

y : y ∈ (−T i −
√

2n, T i +
√

2n)
}

. Define

Tn =
{

yn : yi ∈ T i ,∀i ∈ [1 : n]
}

,

which is an n-dimensional Borel measurable set. Use T i and

Tn to represent the complement of T i and Tn , respectively.

The properties regarding the partition presented in Lemma 4

will be used in the later proof.

Lemma 4: Let εn = e−n . Then the following properties

hold:

1) Given x1,i , x2,i , and ρ1, define E =
{

y − x1,i − ρ1 x2,i : ∀y ∈ T i
}

. Then PZ (E) ≤ εn , where Z

is normally distributed.

2) PȲ n
1
(Tn) ≥ (1 − εn)n and PȲ n

1 |W2=w2
(Tn) ≥ (1 − εn)

n .

3) PȲ n
1
(Tn) ≤ 1 − (1 − εn)

n ≤ nεn , and PȲ n
1 |W2=w2

(Tn) ≤
1 − (1 − εn)n ≤ nεn .

4) For yn ∈ Tn , the probability density functions pȲ n
1
(yn) ≥

( 1√
2π

)ne−tn2
, and pȲ n

1 |W2=w2
(yn) ≥ ( 1√

2π
)ne−tn2

, where t =
(2

√
P +

√
2)2 and P represent the average power constraint.

5) For yn ∈ Tn , the probability density functions satisfy

pȲ n
1
(yn) ≤

(

1√
2π

)n

e−n

pȲ n
1 |W2=w2

(yn) ≤
(

1√
2π

)n

e−n .

Proof: The proof is found in Appendix E.

For clarity of presentation, we define the following notation.

For a continuous distribution P , and a Borel measurable set

B ⊂ R, let h(P, B) represent the part of the differential

entropy h(P) on B , if it exists; i.e.,

h(P, B) :=
∫

B

−p(x) log p(x)dx .

Let h B(P) represent the differential entropy for the distri-

bution obtained by truncating P on B; i.e.,

h B(P) :=
∫

B

− p(x)

P(B)
log

p(x)

P(B)
dx .

dB(P, Q) represents the variational distance between the

pair of distributions by truncating P and Q on B:

dB(P, Q) := 2 sup
E⊆B

∣

∣

∣

∣

P(E)

P(B)
− Q(E)

Q(B)

∣

∣

∣

∣

=
∫

B

∣

∣

∣

∣

p(x)

P(B)
− q(x)

Q(B)

∣

∣

∣

∣

dx,

in which the last equality holds if and only if the density

functions exist.

Based on the partition of Tn and Tn , we can divide R
n into

two disjoint parts. We have

h(Ȳ n
1 ) − h(Ȳ n

1 |W2 = w2)

=
∫

Tn

(

−pȲ n
1
(yn) log pȲ n

1
(yn)

+ pȲ n
1 |W2=w2

(yn) log pȲ n
1 |W2=w2

(yn)
)

dyn

+
∫

Tn

(

−pȲ n
1
(yn) log pȲ n

1
(yn)
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h(PȲ n
1
,Tn) − h(PȲ n

1 |W2=w2
,Tn)

= PȲ n
1
(Tn)

∫

Tn

−
pȲ n

1
(yn)

PȲ n
1
(Tn)

log
pȲ n

1
(yn)

PȲ n
1
(Tn)

dyn − PȲ n
1
(Tn) log PȲ n

1
(Tn)

− PȲ n
1 |W2=w2

(Tn)

∫

Tn

−
pȲ n

1 |W2=w2
(yn)

PȲ n
1 |W2=w2

(Tn)
log

pȲ n
1 |W2=w2

(yn)

PȲ n
1 |W2=w2

(Tn)
dyn + PȲ n

1 |W2=w2
(Tn) log PȲ n

1 |W2=w2
(Tn)

= PȲ n
1
(Tn)hTn

(PȲ n
1
) − PȲ n

1 |W2=w2
(Tn)hTn

(PȲ n
1
|W2 = w2)

− PȲ n
1
(Tn) log PȲ n

1
(Tn) + PȲ n

1 |W2=w2
(Tn) log PȲ n

1 |W2=w2
(Tn)

=
(

hTn
(PȲ n

1
) − hTn

(PȲ n
1 |W2=w2

)
)

PȲ n
1
(Tn) + hTn

(PȲ n
1 |W2=w2

)

∫

Tn

pȲ n
1
(yn) − pȲ n

1 |W2=w2
(yn) dyn

− PȲ n
1
(Tn) log PȲ n

1
(Tn) + PȲ n

1 |W2=w2
(Tn) log PȲ n

1 |W2=w2
(Tn)

≤
(

hTn
(PȲ n

1
) − hTn

(PȲ n
1 |W2=w2

)
)

PȲ n
1
(Tn) + hTn

(PȲ n
1 |W2=w2

)d(PȲ n
1
, PȲ n

1 |W2=w2
)

+ 2(1 − e−n)n log(1 − e−n)n (23)

≤ hTn
(PȲ n

1
) − hTn

(PȲ n
1 |W2=w2

) + e−nα|hTn
(PȲ n

1 |W2=w2
)| + 2(1 − e−n)n log(1 − e−n)n (24)

+ pȲ n
1 |W2=w2

(yn) log pȲ n
1 |W2=w2

(yn)
)

dyn

= h(PȲ n
1
,Tn) − h(PȲ n

1 |W2=w2
,Tn) + h(PȲ n

1
,Tn)

− h(PȲ n
1 |W2=w2

,Tn).

Taking the limit in n, we have

lim
n→∞

(

h(Ȳ n
1 ) − h(Ȳ n

1 |W2 = w2)
)

≤ lim sup
n→∞

(

h(PȲ n
1
,Tn) − h(PȲ n

1 |W2=w2
,Tn)

)

+ lim sup
n→∞

(

h(PȲ n
1
,Tn) − h(PȲ n

1 |W2=w2
,Tn)

)

. (25)

Based on the following lemma, it is sufficient to show that the

above limit goes to 0.

Lemma 5: For distributions PȲ n
1

and PȲ n
1 |W2=w2

, and sets

Tn and Tn as defined, we have

1) lim sup
n→∞

(

h(PȲ n
1
,Tn) − h(PȲ n

1 |W2=w2
,Tn)

)

≤ 0,

2) lim sup
n→∞

(

h(PȲ n
1
,Tn) − h(PȲ n

1 |W2=w2
,Tn)

)

≤ 0.

Proof of Lemma 5.1: We start the proof with the inequalities

shown at the top of the page, which follow from the definition

of differential entropy. (23), as shown at the top of this page

follows from the following facts. First,

∫

Tn

pȲ n
1
(yn) − pȲ n

1 |W2=w2
(yn)dyn

≤
∫

Tn

∣

∣

∣pȲ n
1
(yn) − pȲ n

1 |W2=w2
(yn)

∣

∣

∣ dyn

≤
∫

Rn

∣

∣

∣pȲ n
1
(yn) − pȲ n

1 |W2=w2
(yn)

∣

∣

∣ dyn

= d(PȲ n
1
, PȲ n

1 |W2=w2
).

Secondly, let f (p) := −p log p, which is a non-

negative monotonically decreasing function in p when

p → 1−. Because PȲ n
1
(Tn) ≥ (1 − e−n)n and

PȲ n
1 |W2=w2

(Tn) ≥ (1 − e−n)n , this leads to

−PȲ n
1
(Tn) log PȲ n

1
(Tn)

+ PȲ n
1 |W2=w2

(Tn) log PȲ n
1 |W2=w2

(Tn)

:= f (PȲ n
1
(Tn)) − f (PȲ n

1 |W2=w2
(Tn))

≤ 2(1 − e−n)n log(1 − e−n)n.

(24), as shown at the top of this page follows from the facts

that PȲ n
1
(Tn) ≤ 1, and d(PȲ n

1
, PȲ n

1 |W2=w2
) ≤ e−αn . In (24),

at first we have |hTn
(PȲ n

1 |W2=w2
)| bounded as follows:

hTn
(PȲ n

1 |W2=w2
) ≤ − min

yn
log

(

pȲ n
1 |W2=w2

(yn)

PȲ n
1 |W2=w2

(Tn)

)

≤ − log
( 1√

2π
)ne−tn2

PȲ n
1 |W2=w2

(Tn)

≤ −n log

(

1√
2π

e−tn

)

= O(n2).

On the other hand,

hTn
(PȲ n

1 |W2=w2
)

≥ PȲ n
1 |W2=w2

(Tn)
2

·
(

− max
yn

log(pȲ n
1 |W2=w2

(yn)) + log(PȲ n
1 |W2=w2

(Tn))

)

≥ PȲ n
1 |W2=w2

(Tn)
2

·
(

− log(
1√
2π

)n + log(PȲ n
1 |W2=w2

(Tn)))

)

= O(n),

which follows from the fact that maxyn log(pȲ n
1 |W2=w2

(yn)) ≤
log( 1√

2π
)n , where the maximum value is achieved when all

the Gaussian density peaks overlap.
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Therefore, |hTn
(PȲ n

1 |W2=w2
)| = O(n2). Substituting

into (24), and taking the lim sup of both sides, we have

lim sup
n→∞

(

h(PȲ n
1
,Tn) − h(PȲ n

1 |W2=w2
,Tn)

)

≤ lim sup
n→∞

(

hTn
(PȲ n

1
) − hTn

(PȲ n
1 |W2=w2

)
)

. (26)

The importance of the above steps is that we have bounded

the partial integral on the left hand side of (26) from

above by the difference of the differential entropy of the

pair of truncated distributions on the partition Tn . In what

follows, we focus on the differential entropy terms on the

partition Tn , which has finite measure for any n < ∞.

Up to this point, the following claim will directly lead to

Lemma 5.1.

Claim 2:

lim sup
n→∞

(

hTn
(PȲ n

1
) − hTn

(PȲ n
1 |W2=w2

)
)

≤ 0.

In order to show the above claim, the following property

of the variational distance of the same pair of truncated

distributions is used. The key observation is that it decays

to zero exponentially fast with n.

Claim 3: There exists an N > 0 and β > 0 such that for

all n > N , the following holds:

dTn
(PȲ n

1
, PȲ n

1 |W2=w2
) ≤ e−nβ .

Proof of Claim 3:

dTn
(PȲ n

1
, PȲ n

1 |W2=w2
)

=
∫

Tn

∣

∣

∣

∣

∣

pȲ n
1
(yn)

PȲ n
1
(Tn)

−
pȲ n

1 |W2=w2
(yn)

PȲ n
1 |W2=w2

(Tn)

∣

∣

∣

∣

∣

dyn

=
∫

Tn

1

PȲ n
1
(Tn)

∣

∣

∣

∣

∣

pȲ n
1
(yn) −

PȲ n
1
(Tn)pȲ n

1 |W2=w2
(yn)

PȲ n
1 |W2=w2

(Tn)

∣

∣

∣

∣

∣

dyn

≤ 1

PȲ n
1
(Tn)

∫

Tn

∣

∣

∣pȲ n
1
(yn) − pȲ n

1 |W2=w2
(yn)

∣

∣

∣ dyn

+
∣

∣

∣

∣

∣

1

PȲ n
1
(Tn)

(1 −
PȲ n

1
(Tn)

PȲ n
1 |W2=w2

(Tn)
)

∣

∣

∣

∣

∣

∫

Tn

pȲ n
1 |W2=w2

(yn)dyn

≤ 1

PȲ n
1
(Tn)

(

d(PȲ n
1
, PȲ n

1 |W2=w2
)

+
∣

∣

∣PȲ n
1 |W2=w2

(Tn) − PȲ n
1
(Tn)

∣

∣

∣

)

≤ 1

PȲ n
1
(Tn)

(e−nα + ne−n)

≤ e−nβ, for some β > 0. (27)

(27) follows from the fact that for some α > 0, there exist an

N such that for all n > N

d(PȲ n
1
, PȲ n

1 |W2=w2
) ≤ e−nα, (28)

based on resolvability. And

(1 − e−n)n ≤ PȲ n
1
(Tn) ≤ 1

(1 − e−n)n ≤ PȲ n
1 |W2=w2

(Tn) ≤ 1,

thus

|PȲ n
1
(Tn) − PȲ n

1 |W2=w2
(Tn)| ≤ 1 − (1 − e−n)n ≤ ne−n

by Lemma 4.3. The proof of Claim 3 is complete.

Proof of Claim 2: By the reverse Pinsker’s inequality in

Lemma 3, because PȲ n
1

and PȲ n
1 |W2=w2

are finite everywhere,

there exists some constant c > 0, such that

hTn
(PȲ n

1
) − hTn

(PȲ n
1 |W2=w2

)

≤ ndTn
(PȲ n

1
, PȲ n

1 |W2=w2
)

·
(

log
λ(Tn)

dTn
(PȲ n

1
, PȲ n

1 |W2=w2
)

+ n log c

)

≤ ne−nβ log(λ(Tn)) − ne−nβ log(e−nβ) + n2e−αn log c

= ne−nβ log(O(n
n
2 )) − ne−nβ log(e−nβ) + n2e−αn log c

= O(n2 log ne−nβ ).

Taking the lim sup of both sides, we have

lim supn→∞
(

hTn
(PȲ n

1
) − hTn

(PȲ n
1 |W2=w2

)
)

≤ 0. �

The proof of Lemma 5.1 is concluded after Claim 2. �

Proof of Lemma 5.2: In order to show that

lim sup
n→∞

(

h(PȲ n
1
,Tn) − h(PȲ n

1 |W2=w2
,Tn)

)

≤ 0, (29)

it suffices to show that lim supn→∞
∣

∣

∣h(PȲ n
1
,Tn)

∣

∣

∣ = 0 and

lim supn→∞

∣

∣

∣h(PȲ n
1 |W2=w2

,Tn)
∣

∣

∣ = 0.

For yn ∈ Tn , the probability density function can be

bounded as follows. Let µi = x1,i + ρ1 x2,i , and define the

set J := { j : y j ∈ T j }, then

pȲ n
1
(yn)

= 1

|W|
∑

W

(

n
∏

i=1

pZ (yi − µi )

)

= 1

|W|
∑

W

((

1√
2π

)n

· exp

(

−
∑

j∈J (y j − µ j )
2 +

∑

i /∈J (yi − µi )
2

2

))

,

≤ max
w∈W

((

1√
2π

)n

· exp

(

−
∑

j∈J (y j − µ j )
2 +

∑

i /∈J (yi − µi )
2

2

))

=
∏

j∈J
p j (y j )

∏

i /∈J
pi (yi ), for y j ∈ T j , and yi ∈ T i ,

(30)

in which (30) follows by choosing a combination of transmit-

ted sequences, i.e., µn , which is the closest to yn with respect

to the Euclidean distance among all possible combinations in

the codebook. The last equality follows from the definition

p j (y j ) := 1√
2π

exp

(

− (y j − µ j )
2

2

)

, for y j ∈ T j

pi(yi ) := 1√
2π

exp

(

− (yi − µi )
2

2

)

, for yi ∈ Ti .
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As f (p) := −p log p > 0 when p → 0+, then

h(PȲ n
1
,Tn) > 0 because pȲ n

1
(yn) ≤ ( 1√

2π
)ne−n as shown in

Lemma 4.5.

Since f (p) increases monotonically in p when p → 0+,

we have

h(PȲ n
1
,Tn) =

∫

Tn

−pȲ n
1
(yn) log pȲ n

1
(yn)dyn

≤
∫

Tn

−
∏

j∈J
p j (y j )

∏

i /∈J
pi (yi )

· log

⎛

⎝

∏

j∈J
p j (y j )

∏

i /∈J
pi(yi )

⎞

⎠ dyn

=
∏

i /∈J
Pi (T

i )
∑

j∈J

∏

k∈J ,k 6= j

Pk(T k)

·
∫

T j

−p j (y j ) log p j (y j )dy j

+
∏

j∈J
Pj (T j )

∑

i /∈ j

∏

k /∈J ,k 6=i

Pk(T
k)

·
∫

T i

−pi (yi ) log pi (yi )dyi

≤
∑

j∈J
h(Pj ,T j ) + (2e−n)|J |∑

i /∈J
h(Pi ,T

i )

≤ e−nε , for some ε > 0,

where the last inequality holds because

h(Pj ,T j ) > 0, as − p log p > 0 when p → 0+

h(Pj ,T j ) = O(ne−n),

h(Pj ,T
j ) = ln

√
2πe − h(Pj ,T j ) ≤ ln

√
2πe,

which follow from the properties shown in Lemma 4.

Therefore, we have |h(PȲ n
1
,Tn)| ≤ e−nε . Following a

similar proof, we can show that |h(PȲ n
1 |W2=w2

,Tn)| ≤ e−nγ

for some γ > 0.

Taking the limit,

lim sup
n→∞

(

h(PȲ n
1
,Tn) − h(PȲ n

1 |W2=w2
,Tn)

)

≤ lim sup
n→∞

∣

∣

∣h(PȲ n
1
,Tn)

∣

∣

∣+ lim sup
n→∞

∣

∣

∣h(PȲ n
1 |W2=w2

,Tn)
∣

∣

∣ = 0.

The proof of Lemma 5.2 is complete. �

To conclude, based on Lemma 5 and inequality (25), for

the chosen sequence of codebooks {Cn} the strong secrecy

constraint is satisfied.

2) Artificial Noise Transmission: What remains to prove

is that the actual rate region in Proposition 2 is achieved.

We present an artificial noise aided scheme to tie the same

achievable rate region with weak secrecy constraints [4]. The

strategy is to split the transmission power P into two parts,

one for transmitting the confidential message and one for

generating artificial noise. Let

P1,V = (1 − λ1)β1 P, and P1,A = λ1β1 P

P2,V = (1 − λ2)β2 P, and P2,A = λ2β2 P,

where λi , βi ∈ [0, 1] for i = 1, 2. Set U to

be an optimization operator which chooses λi and βi .

Setting PVi ∼ N (0, Pi,V ) and PAi ∼ N (0, Pi,A), and

calculating (19)-(22) the rate region in Proposition 2 is

established.

Remark 6: Proposition 2 is meaningful in the following

aspects:

• The generalization from discrete channels to Gaussian

channels is regardless of input distributions that gener-

ate the random codebooks. Therefore, the rate region

as shown in (12) holds for any input distributions as

factorized in Theorem 1 for Gaussian channels. The

results can be generalized to K -user (K > 2) stationary

and memoryless Gaussian interference channels directly

following a similar analysis, the achievable strong secrecy

rate region of which is given by

D :=
{

(R1, R2, . . . , RK ) ∈ R
K
+ ,∀k ∈ [1 : K ],

Rk < I (Vk ; Yk|U)− max
j∈[1:K ]\k

I (Vk ; Y j |V[1:K ]\k, U)

}

for any input distribution

PU

∏

k∈[1:K ]
PVk |U PXk |Vk ,

which satisfies the additive constraint E[c(Xk] ≤
P provided that the moment generating functions of

iVkYk |V[1:K ]\kU and c(Xk) exist. V[1:K ]\k represents the

collection of Vi ,∀i ∈ [1 : K ] \ k. Therefore, the strong

secrecy rate region coincides with the weak secrecy rate

region shown in [25] under mild conditions.

• The key steps of the proof of Proposition 2 essentially

investigate the relationships among divergence, differen-

tial entropy, and variational distance of a family of proba-

bility distributions. The principle is to find a proper subset

of the output alphabets such that the desired measures are

concentrated on it. Together with the proposed reverse

Pinsker’s inequality in Lemma 3, the generalization from

discrete alphabets to continuous alphabets is completely

different from the quantization method in [36].

VI. CONCLUSION

The problem of transmitting confidential messages in inter-

ference channels has been studied under strong secrecy con-

straints. Starting from generalizing the channel resolvability

theory to arbitrary interference channels, we have derived

the achievable secrecy rate region for the stationary and

memoryless interference channel with additive cost functions.

It is interesting to note that the derived secrecy rate region

for the discrete memoryless channel remains the same as the

best known region under weak secrecy constraints. However,

the optimality of it has not yet been proved. Note that

we have used the information-spectrum method to analyze

secrecy in the considered network, and strong secrecy has been

guaranteed by penalizing the confidential message a binning

rate above the resolution of its eavesdropper’s channel.

The presented theoretical framework of analyzing strong

secrecy for interference channels contains two major steps.

The first step is based on the resolvability theory that by
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sampling the input process with a rate higher than the channel

resolution the output statistics is well approximated in terms

of the variational distance or normalized divergence. A direct

application of the resolvability result is that it implies the

achievable rate region for weak secrecy of arbitrary interfer-

ence channels with confidential messages. The second step has

been focused on the generalization from the resolvability result

to strong secrecy via exploiting the relationship between vari-

ational distance and mutual information. A reverse direction

of Pinsker’s inequality has been proposed in order to bound

the mutual information, in other words, the divergence of two

probability distributions, from above as a function of the vari-

ational distance between them. The proposed reverse Pinsker’s

inequality together with a truncation method are leveraged in

the study of Gaussian interference channels. It is worth noting

that the achievable rate region for strong secrecy also ties

with the best known weak secrecy rate region for Gaussian

interference channels. Our study has provided further evidence

that the channel resolvability framework is a powerful tool for

strong secrecy analysis in multiuser networks.

APPENDIX A

PRELIMINARY LEMMAS

Lemma 6 (Triangle Inequality for Variational Distance):

Let X1, X2 and X3 be random variables defined on the same

alphabet set X , with different distributions respectively. The

following inequalities hold:

d(PX1, PX3) ≤ d(PX1, PX2) + d(PX2 , PX3),

d(PX1 , PX2) ≤ d(PX1 PX3 , PX2 X3) = EX3

[

d(PX1, PX2|X3)
]

.

Lemma 7 (Data-processing Inequality for Variational Dis-

tance): Let X1 and X2 be random variables defined on the

alphabet set X . And let Z1 and Z2 be two random variables

defined on the set Z , which are defined as follows: ∀(z, x) ∈
Z × X

PZi X i (z, x) = PZ |X (z|x)PX i (x), i = 1, 2.

Then, d(PZ1 , PZ2) ≤ d(PX1, PX2 ).

Lemma 8 (Han-Verdú [16]): Let P and Q be two distribu-

tions defined on the same sample space. Then for every µ > 0,

d(P, Q) ≤ 2

log e
µ + 2P

[

log
P(X)

Q(X)
> µ

]

,

where the random variable X is distributed according to P .

Lemma 9 (Markov Inequality): If X is any non-negative

integrable random variable and a > 0, then

P[X ≥ a] ≤ E[X]
a

.

Lemma 10 (Chernoff Inequality): Let X1, X2, . . . Xn be

independently and identically generated according to PX .

Assuming that the moment generating function E[et X ] exists,

then, ∀δ > 0, there exists an α(δ) > 0 such that

P

[

1

n

n
∑

i=1

X i > E(X) + δ

]

≤ e−α(δ)n.

Lemma 11 (Tail Bound for Normal Distribution): Let X ∼
N (0, 1). Then the following upper bound on the tail proba-

bility is satisfied:

P[X > a] ≤ exp(−a2/2)

a
√

2π
.

APPENDIX B

PROOF OF LEMMA 1

In this section, we will present a detailed proof of Lemma 1

given the codebook generation method presented therein. The

proof consists of two parts: reliability and vanishing variational

distance.

Reliability: Let |WikW 0
i | = 2n(I(Xi ;Yi |U)−2γ ). We have

T
(n)

γ ,i =
{

(un, xn
i , yn

i ) :
1

n
iXn

i Y n
i |U n (xn

i , yn
i |un) ≥ I(Xi ; Yi |U) − γ

}

,

based on the definition of T n
γ,i .

Define two types of error events as follows: based on the

sent messages pair (wi , w
0
i ),

E1 = {(un, xn
i (wi , w

0
i ), yn

i ) /∈ T
(n)
γ ,i }

E2 = {(un, xn
i (w̃i , w̃

0
i ), yn

i ) ∈ T
(n)
γ ,i , for (w̃i , w̃

0
i ) 6= (wi , w

0
i )}.

We have the error probability P
(n)
e ≤ P[E1] + P[E2] by the

union bound. By the definition of I(Xi ; Yi |U), it is clear that

limn→∞ P[E1] = 0. Because the message pair (wi , w
0
i ) is

chosen uniformly, it is sufficient to consider only the case

(wi , w
0
i ) = (1, 1). Let xn

i represent the sequence correspond-

ing to (w̃i , w̃
0
i ) 6= (1, 1). For the event E2, we have

P[E2]
≤ |WikW 0

i |P
[

(un, xn
i (w̃i , w̃

0
i ), yn

i ) ∈ T
(n)

γ ,i

]

= 2n(I(Xi ;Yi |U)−2γ )
∑

(un,xn
i ,yn

i )∈T (n)
γ,i

PXn
i Y n

i U n (xn
i , yn

i , un)

= 2n(I(Xi ;Yi |U)−2γ )

·
∑

(un,xn
i ,yn

i )∈T (n)
γ,i

PY n
i |U n (yn

i |un)PXn
i |U n (xn

i |un)PU n (un)

(31)

≤ 2n(I(Xi ;Yi |U)−2γ )

·
∑

(un,xn
i ,yn

i )∈T (n)
γ,i

PY n
i |Xn

i U n (yn
i |xn

i , un)2−n(I(Xi ;Yi |U)−γ )

· PXn
i |U n (xn

i |un)PU n (un) (32)

≤ 2−nγ ,

where (31) follows from the fact that yn
i is independent of xn

i

given un for the unsent codewords, and (32) follows from the

definition of T
(n)
γ ,i . Therefore, as n → ∞, P

(n)
e tends to zero.

We note that this result is a conditioned version of Feinstein’s

Lemma [37].

Consequently, we can conclude that Ri + R0
i =

I(Xi ; Yi |U) − 2γ is achieved for the reliability constraint.
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Variational Distance for Output Distributions: Let {Cn}n∈N

represent a sequence of codes randomly generated according

to the codebook generation method presented above:

Cn =
{

(un, cn
i (wi , w

0
i )) : ∀(wi , w

0
i ) ∈ Wi × W 0

i , i = 1, 2
}

,

where cn
i ∈ X n

i . In order to identify the channel input and

output when using a codeword from Cn , we represent the

corresponding channel input and output variables as X̄n
i and

Ȳ n
i , i = 1, 2, respectively, and the time sharing variables

as Ūn . Based on the codebook Cn , the joint probability

PȲ n
1 Ȳ n

2 X̄n
1 X̄n

2 Ū n W1W2
(on its support) can be factored as follows,

for (un, cn
1 , cn

2) ∈ Cn :

PȲ n
1 Ȳ n

2 X̄n
1 X̄n

2 Ū n W1W2
(yn

1 , yn
2 , cn

1 , cn
2 , un, w1, w2)

= �n(yn
1 , yn

2 |xn
1 , xn

2 )PX̄n
1 |Ū n W1

(cn
1 |un, w1)

PX̄n
2 |Ū W2

(cn
2 |un, w2)PŪ n (u

n)PW1W2(w1, w2)

= 1

|W 0
1kW 0

2|
∑

w0
1∈W 0

1

∑

w0
2∈W 0

2

PW1W2(w1, w2)

· �n(yn
1 , yn

2 |cn
1(w1, w

0
1), cn

2(w2, w
0
2)).

The last equality follows from the fact that given Cn ,

PŪ n (un) = 1 for un ∈ Cn , and PX̄n
i |Ū n Wi

(cn
i |un, wi ) =

1
|W 0

i |
∑

w0
i ∈W 0

i
PX̄n

i |Ū n Wi W 0
i
(cn

i |un, wi , w
0
i ), where

PX̄n
i |Ū n Wi W 0

i
(cn

i |un, wi , w
0
i ) = 1{cn

i = cn
i (wi , w

0
i )}, and

1{·} is the indicator function.

We aim to show that

lim
n→∞

ECn

[

d(PWi Ȳ
n
j
, PWi PȲ n

j
)
]

= 0, i, j ∈{1, 2} i 6= j. (33)

From (8), it suffices to show that (without loss of generality

setting i = 1, j = 2)

lim
n→∞

ECn

[

EW1 X̄n
2 Ū n

[

d(PȲ n
2 |W1 X̄n

2 Ū n , PY n
2 |Xn

2 U n )
]]

= 0. (34)

In (34), the components are presented as follows:

• the conditional output distribution based on the code Cn

is

PȲ n
2 |W1 X̄n

2 Ū n (yn
2 |w1, cn

2 , un)

=
∑

xn
1 ∈Cn

PȲ n
2 |X̄n

1 X̄n
2 Ū n W1

(yn
2 |xn

1 , cn
2 , un, w1)

PX̄n
1 |X̄n

2 Ū n W1
(xn

1 |cn
2 , un, w1)

=
∑

xn
1 ∈Cn

�n(yn
2 |xn

1 , cn
2)PX̄n

1 |Ū n W1
(xn

1 |un, w1)

= 1

|W 0
1|

|W 0
1|

∑

w0
1=1

�n(yn
2 |cn

1(w1, w
0
1), cn

2 )

= 1

|W 0
1|

|W 0
1|

∑

w0
1=1

PY n
2 |Xn

1 Xn
2 U n (yn

2 |cn
1(w1, w

0
1), cn

2 , un),

where the last inequality follows because of the Markov

chain condition: Un −(Xn
1 , Xn

2 )−Y n
2 . �n(yn

2 |xn
1 , xn

2 ) rep-

resents the marginal distribution defined by the channel

transition probability PY n
2 |Xn

1 ,Xn
2
(yn

2 |xn
1 , xn

2 ).

• the target distribution is

PY n
2 |Xn

2 U n (yn
2 |xn

2 , un)

=
∑

xn
1 ∈X n

1

�n(yn
2 |xn

1 , xn
2 )PXn

1 |Xn
2 U n (xn

1 |xn
2 , un)

=
∑

xn
1 ∈X n

1

�n(yn
2 |xn

1 , xn
2 )PXn

1 |U n (xn
1 |un).

According to Lemma 8, we have the following bound

(let µ > 0):

ECn

{

EW1 X̄n
2 Ū n

[

d(PȲ n
2 |W1 X̄n

2 Ū n , PY n
2 |Xn

2 U n )
]

}

≤ µ

loge
+ 2An,

where

An = ECn

{

EW1 X̄n
2 Ūn

[

P

[

log
PȲ n

2 |W1=w1,X̄2=cn
2 ,Ū n=un (Ȳ n

2 )

PY n
2 |Xn

2=cn
2 ,U n=un (Ȳ n

2 )
> µ

]]

}

,

and Ȳ n
2 is distributed according to PȲ n

2 |W1=w1,X̄n
2=cn

2 ,Ū n=un .

Considering the independence of codewords and the symmetry

of the codebook generation, we can choose w1 = 1 for

simplicity. Consequently, An is expanded as shown at the top

of the next page.

We can represent the identification function in the following

way:

1

{

log
PȲ n

2 |W1=1,X̄n
2=cn

2 ,Ū n=un (yn
2 )

PY n
2 |Xn

2=cn
2 ,U n=un (yn

2 )
> µ

}

= 1

⎧

⎨

⎩

log
1

|W 0
1|

|W 0
1|

∑

i=1

�n(yn
2 |cn

1(1, i), cn
2)

PY n
2 |Xn

2 U n (yn
2 |cn

2 , un)
> µ

⎫

⎬

⎭

= 1

⎧

⎨

⎩

log
1

|W 0
1|

|W 0
1|

∑

i=1

PY n
2 |Xn

1 Xn
2 U n (yn

2 |cn
1(1, i), cn

2 , un)

PY n
2 |Xn

2 U n (yn
2 |cn

2 , un)
> µ

⎫

⎬

⎭

= 1

{

1

|W 0
1|

exp
(

iXn
1 Y n

2 |Xn
2 U n (cn

1(1, 1), yn
2 |cn

2 , un)
)

+ 1

|W 0
1|

|W 0
1|

∑

i=2

exp
(

iXn
1 Y n

2 |Xn
2 U n (cn

1(1, i), yn
2 |cn

2 , un)
)

> 1 + 2τ

}

, (35)

where τ = 2µ−1
2

> 0.

By substituting the identification function (35) into An ,

we can bound An as follows:

An ≤ P

[

1

|W 0
1|

exp
(

iXn
1 Y n

2 |Xn
2 U n (Xn

1 , Y n
2 |Xn

2 , Un)
)

> τ

]

+ P

[

1

|W 0
1|

|W 0
1|

∑

i=2

exp
(

iXn
1 Y n

2 |Xn
2 U n (Xn

1 (1, i), Y n
2 |Xn

2 , Un)
)

> 1 + τ

]

,

where Xn
1 and Y n

2 are related through the channel �n , and

{Xn
1 (1, i), Y n

2 } (i ∈ {2, . . . , |W 0
1|}) are independent. By the
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An = ECn

[

PȲ n
2 |W1=1,X̄n

2=cn
2 ,Ū n=un

[

log
PȲ n

2 |W1=1,X̄n
2=cn

2 ,Ū n=un (Ȳ n
2 )

PY n
2 |Xn

2=cn
2 ,U n=un (Ȳ n

2 )
> µ

]]

=
∑

un∈Un

PU n (un)
∑

cn
2∈X n

2

PXn
2 |U n (cn

2 |un)

|W 0
1|

∏

w0
1=1

∑

cn
1 (1,w0

1)∈X n
1

PXn
1 |U n (cn

1(1, w0
1)|un)

·
∑

yn
2 ∈Yn

2

PȲ2|W1=1,X̄n
2=cn

2 ,Ū n=un (yn
2 )

· 1

{

log
PȲ n

2 |W1=1,X̄n
2=cn

2 ,Ū n=un (yn
2 )

PY n
2 |Xn

2=cn
2 ,U n=un (yn

2 )
> µ

}

= 1

|W 0
1|

|W 0
1|

∑

w0
1=1

∑

un∈Un

PU n (un)
∑

cn
2∈X n

2

PXn
2 |U n (cn

2 |un)
∑

cn
1 (1,1)∈X n

1

PXn
1 |U n (cn

1(1, 1)|un)

·
∑

cn
1 (1,2)∈X n

1

· · ·
∑

cn
1 (1,|W 0

1|)∈X n
1

PXn
1 |U n (cn

1(1, |W 0
1|)|un)

∑

yn
2 ∈Yn

2

�n(yn
2 |cn

1(1, w0
1), cn

2 )

· 1

{

log
PȲ n

2 |W1=1,X̄n
2=cn

2 ,Ū n=un (yn
2 )

PY n
2 |Xn

2=cn
2 ,U n=un (yn

2 )
> µ

}

=
∑

un∈Un

PU n (un)
∑

cn
2∈X n

2

PXn
2 |U n (cn

2 |un)
∑

cn
1 (1,2)∈X n

1

· · ·
∑

cn
1 (1,|W 0

1|)∈X n
1

PXn
1 |U n (cn

1(1, |W 0
1|)|un)

·
∑

cn
1 (1,1)∈X n

∑

yn
2 ∈Yn

2

PXn
1 Y n

2 |Xn
2 U n (cn

1(1, 1), yn
2 |cn

2 , un)

· 1

{

log
PȲ n

2 |W1=1,X̄n
2=cn

2 ,Ū n=un (yn
2 )

PY n
2 |Xn

2=cn
2 ,U n=un (yn

2 )
> µ

}

.

direct resolvability theorem in [16], the above two probabilities

approach zero if

|W 0
1| ≥ 2nĪ(X1;Y2|X2,U)+nγ

for arbitrary γ > 0, which implies that R0
1 ≥

Ī(X1; Y2|X2, U)+γ . Consequently, An tends to zero as n → 0

which guarantees that the sufficient condition (34) for the

vanishing variational distance holds.

By a similar method, we can show that R0
2 ≥

Ī(X2; Y1|X1, U) + γ to make the target variational distance

vanish as n → ∞. Combining the rate constraints for reliabil-

ity and output distribution, we conclude that (4) and (5) can

be achieved.

APPENDIX C

PROOF OF PROPOSITION 1

In this section, we provide the proof that if

limn→∞ d(PWi Y
n
j
, PWi PY n

j
) = 0, then limn→∞ 1

n

D(PWi Y n
j
kPWi PY n

j

) = 0.

Let P and Q be two distributions defined on the same

measurable space (A,F), with P absolutely continuous with

respect to Q, i.e., P << Q. Let ε > 0 be an arbitrary positive

number. Define a set E ,

E =
{

a ∈ A :
∣

∣

∣

∣

1 − (
d P

d Q
(a))−1

∣

∣

∣

∣

>
ε

1 + ε

}

.

According to the definition, we have

d(P, Q) =
∫

A

∣

∣

∣

∣

d P

d Q
− 1

∣

∣

∣

∣

d Q ≥
∫

E

∣

∣

∣

∣

d P

d Q
− 1

∣

∣

∣

∣

d Q

=
∫

E

∣

∣

∣

∣

d P

d Q
− 1

∣

∣

∣

∣

d P(
d P

d Q
)−1 =

∫

E

∣

∣

∣

∣

1 − (
d P

d Q
)−1

∣

∣

∣

∣

d P

≥ ε

1 + ε
P(E) ≥ ε

1 + ε
P(E∗) (36)

where the last inequality follows from the definition

E∗ =
{

a ∈ A : log(
d P

d Q
(a)) > ε

}

,

and the fact that E∗ ⊆ E . Let (Pn, Qn) represent the sequence

of a pair of distributions for n ∈ N. We therefore have the

relation that for any ε > 0, if limn→∞ d(Pn, Qn) = 0, then

limn→ Pn(E∗) = 0. Note that in the original proof of Pinsker,

the absolute continuity condition P << Q was dropped.

The idea is to split the sample space into two disjoint parts,

in one of which P << Q, and otherwise in the other. The

details of the proof are given in [19]. Overall, the relation

(36) holds in a general sense regardless of the continuity of

measures.

Let γ > 0 be an arbitrary positive number. Let us write the

weak secrecy constraint as follows by dropping the subscripts
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in Wi and Y n
j (i 6= j ):

1

n
I (W ; Y n)

= E

{

1

n
iW Y n (W, Y n)1[iW Y n(W, Y n) ≤ ε]

}

+ E

{

1

n
iW Y n(W, Y n)1[ε < iW Y n(W, Y n) ≤ n(R + γ )]

}

+ E

{

1

n
iW Y n(W, Y n)1[iW Y n(W, Y n) ≥ n(R + γ )]

}

≤ ε

n
+ (R + γ )P

[

iW Y n(W, Y n) > ε
]

+ E

{

1

n
iW Y n(W, Y n)1[iW Y n(W, Y n) ≥ n(R + γ )]

}

(37)

where R = 1
n

log |W| for the message set W . Because of

(36), we know that when d(PW Y n , PW PY n ) → 0 for suffi-

ciently large n, then P
[

iW Y n(W, Y n) > ε
]

→ 0. Therefore,

the second term of (37) tends to zero for sufficiently large n.

The vanishing of the third term follows by exploiting the fact

that iW Y n(w, yn) ≤ log 1
PW (w) = n R for any w ∈ W . The

desired relation of convergence is proved.

APPENDIX D

PROOF OF THEOREM 1

In this section, we present a detailed proof of Theorem 1,

which is based on the proof of Lemma 1. The key step is

to modify the codebook generation method in the proof of

Lemma 1 with the additional consideration of the additive cost

constraint. The purpose is to construct the input process such

that it satisfies additive cost constraint almost surely. Based on

the modified codebook generation, we further show that there

exists a sequence of codebooks {Cn} such that the variational

distance of the targeted distributions decays exponentially with

respect to n. Henceforth, the information divergence can be

bounded according to Lemma 2 as in Remark 2.

A. Modifications in the Codebook Generation

Let δ > 0. Fix a distribution PU on U . Fix the condi-

tional distributions PX i |U on Xi × U such that E[c(X i )] ≤
P − δ for i = 1, 2, respectively. Furthermore, fix the

product distributions PU n (un) =
∏n

i=1 PU (ui ), PXn
1 |U n =

∏n
i=1 PX1|U (x1,i |ui ), and PXn

2 |U n =
∏n

i=1 PX2|U (x2,i |ui ).

We construct new distributions such that the additive cost

constraint can be satisfied with probability 1. Let us define

the following sets:

P1,n =
{

xn ∈ X n
1 : 1

n

n
∑

i=1

c(xi) ≤ P

}

,

P2,n =
{

xn ∈ X n
2 : 1

n

n
∑

i=1

c(xi) ≤ P

}

.

Due to the law of large numbers, it is clear that P[Xn
1 ∈

P1,n] → 1 and P[Xn
2 ∈ P2,n] → 1, as n → ∞. By the

Chernoff bound in Lemma 10, there exist α1(δ) > 0 and

α2(δ) > 0, such that

P[Xn
1 ∈ P1,n] ≥ 1 − e−nα1(δ),

P[Xn
2 ∈ P2,n] ≥ 1 − e−nα2(δ).

Note that we here assume that the moment generating func-

tions for c(X1) and c(X2) exist. Define the following set:

Gn :=
{

un ∈ Un : PXn
1 |U n=un [xn

1 6∈ P1,n|un] < e−n
α1(δ)

2

and PXn
2 |U n=un [xn

2 6∈ P2,n|un] < e−n
α2(δ)

2

}

.

Then we have

P[Un 6∈ Gn] = PU n (Gc
n)

= PU n

({

PXn
1 |U n [xn

1 6∈ P1,n|un] ≥ e−n
α1(δ)

2

}

⋃
{

PXn
2 |U n [xn

2 6∈ P2,n|un] ≥ e−n
α2(δ)

2

})

≤ PU n

(

PXn
1 |U n [xn

1 6∈ P1,n|un] ≥ e−n
α1(δ)

2

)

+ PU n

(

PXn
2 |U n [xn

2 6∈ P2,n|un] ≥ e−n
α2(δ)

2

)

≤ en
α1(δ)

2 EU n

[

PXn
1 |U n [xn

1 6∈ P1,n|un]
]

+ en
α2(δ)

2 EU n

[

PXn
2 |U n [xn

2 6∈ P2,n |un]
]

= en
α1(δ)

2 P[Xn
1 6∈ P1,n] + en

α2(δ)
2 P[Xn

2 6∈ P2,n]
≤ e−n

α1(δ)
2 + e−n

α1(δ)
2 ≤ 2e−n

α(δ)
2 := 1 − εn,

where the second inequality follows from Markov’s inequality

as shown in Lemma 9, and α(δ) = min{α1(δ), α2(δ)}. There-

fore, we have εn → 1 as n → ∞.

Now let us define new random variables Ũn , X̃n
i and Ỹ n

i

(i = 1, 2) as follows. First, we construct Ũn: choose un ∈ Un

according to the distribution

PŨ n (u
n) =

{

1
P[U n∈Gn] PU n (un) for un ∈ Gn

0 for un 6∈ Gn .

Then, we construct X̃n
i as follows, for un ∈ Gn such that

PX̃n
i |Ũ n (xn

i |un) =
{

1
P[Xn

i ∈Pi,n |un] PXn
i |U n (xn

i |un), ∀xn
i ∈ Pi,n

0, ∀xn
i 6∈ Pi,n and xn

i ∈ X n
i .

Let us construct the input based on the process X̃n
i . We have

P

[

1
n

∑n
i=1 c(X̃ i ) ≤ P

]

= 1. Furthermore, the following

inequalities hold for all (xn
i , un) ∈ X n

i × Gn :

PŨ n (u
n) ≤

Pn
U (un)

εn

(38)

PX̃n
i |Ũ n (xn

i |un) ≤
PXn

i |U n (xn
i |un)

εn

. (39)

Consequently, the output distribution PỸ n
i

is constructed

according to the input. For all (yn
1 , yn

2 , xn
1 , xn

2 , un) ∈ Yn
1 ×

Yn
2 × X n

1 × X n
2 × Gn , we have

PŨ n X̃n
1 X̃n

2 Ỹ n
1 Ỹ n

2
(un, xn

1 , xn
2 , yn

1 , yn
2 )

= PŨ n (u
n)PX̃n

1 |Ũ n (xn
1 |un)PX̃n

2 |Ũ n (xn
2 |un)�n(yn

1 , yn
2 |xn

1 , xn
2 ).
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TABLE I

NOTATION USED IN THE PROOF OF THEOREM 1

Based on the newly constructed distributions, we repeat the

steps in the proof of Lemma 1. The rates are specified as

follows: for any γ > 0, i 6= j and i, j ∈ {1, 2},

Ri = I (X i ; Yi |U) − I (X i ; Y j |X j , U) − 3γ,

R0
i = I (X i ; Y j |X j , U) + γ.

Before going further, let us summarize the notation that will

be used to represent different distributions, using the variable

X as an example in Table I.

B. Reliability

Following the standard method in the proof of Lemma 1 (the

conditional version of Feinstein’s Lemma), the achievable rate

region Ri + R0
i ≤ I(Xi ; Yi |U) − 2γ guarantees the reliability

condition. Moreover, as shown in [30] the following relation

exists: I(Xi ; Yi |U) ≥ I (X i ; Yi |U). Therefore, the choice of

Ri + R0
i = I (X i ; Yi |U)−2γ satisfies the reliability constraints.

C. Strong Secrecy

Strong secrecy is shown by the establishment of Claim 1

which suffices if the following lemma holds.

Lemma 12 (Exponentially Decay): For any γ > 0,

∃N > 0 and α > 0 such that for all n ≥ N

ECn [d(PWi Ȳ
n
j
, PWi PȲ n

j
)] ≤ e−nα, i 6= j

if R0
i ≥ I (X i ; Y j |X j , U) + γ .

Based on the above lemma, we shall use the upper bound in

Lemma 2 to show that for sufficiently large n, ∃β > 0, such

that there exists at least a sequence of codebooks that satisfies

the additive constraint and induces

D(PWi Ȳ n
j
kPWi PȲ n

j
) ≤ e−nβ , if R0

i ≥ I (X i ; Y j |X j , U) + γ

for i, j ∈ {1, 2} and i 6= j . Strong secrecy constraints have

been shown to hold. Combining the reliability and strong

secrecy constraints, it is shown that the secrecy rate region

in (12) is achieved.

Proof of Lemma 12: Let us consider the case i = 1 and

j = 2. Let γ > 0, and recall that |W 0
1| = 2nI (X1;Y2|X2,U )+nγ .

The proof follows a similar method given in [13]. Note that

from (8), we have

ECn

[

d(PW1Ȳ n
2
, PW1 PȲ n

2
)
]

≤ 2ECn

[

d(PȲ n
2 |W1 X̄n

2 Ū n , PỸ n
2 |X̃n

2 Ũ n )
]

≤ 2ECn

[

d(PȲ n
2 |W1 X̄n

2 Ū n , PY n
2 |Xn

2 U n )

+ d(PY n
2 |Xn

2 U n , PỸ n
2 |X̃n

2 Ũ n )
]

:= T1 + T2,

where T1 := 2ECn

[

d(PȲ n
2 |W1 X̄n

2 Ū n , PY n
2 |Xn

2 U n )
]

, and T2 :=
2ECn

[

d(PY n
2 |Xn

2 U n , PỸ n
2 |X̃n

2 Ũ n )
]

.

For the first term T1, by Lemma 8 we have, for every µ > 0

ECn

[

d(PȲ n
2 |W1 X̄n

2 Ū n , PY n
2 |Xn

2 U n )
]

≤ 2µ

loge
+ 2An

where

An ≤ P

[

1

|W 0
1|

exp
(

i X̃n
1 Ỹ n

2 |X̃n
2 Ũ n (X̃n

1 , Ỹ n
2 |X̃n

2 , Ũn)
)

> τ

]

+ P

[

1

|W 0
1|

|W 0
1|

∑

i=2

exp
(

i X̃n
1 Ỹ n

2 |X̃n
2 Ũ n (X̃n

1 (1, i), Ỹ n
2 |X̃n

2 , Ũn)
)

> 1 + τ

]

,

for τ = 2µ−1
2

. Recalling that |W 0
1| = 2nI (X1;Y2|X2,U )+nγ ,

the first term in An is bounded as follows: ∃αγ > 0, such

that

P

[

1

|W 0
1|

exp
(

i
X̃n

1 Ỹ n
2 |X̃n

2 Ũ n (X̃n
1 , Ỹ n

2 |X̃n
2 , Ũn)

)

> τ

]

≤ 1

ε3
n

P

[

1

n
iXn

1 Y n
2 |Xn

2 U n (Xn
1 , Y n

2 |Xn
2 , Un)

> I (X1; Y2|X2, U) +
(

γ + logτ

n

)]

≤ 1

ε3
n

e−nαγ (40)

where the first inequality follows from factoring the distribu-

tion as follows:

PỸ n
2 X̃n

1 X̃n
2 Ũ n (yn

2 , xn
1 , xn

2 , un)

≤ PY n
2 |Xn

1 Xn
2
(yn

2 |xn
1 , xn

2 )

PXn
1 |U n (xn

1 |un)

εn

PXn
2 |U n (xn

2 |un)

εn

PU n (un)

εn

= 1

ε3
n

PY n
2 Xn

1 Xn
2 U n (yn

2 , xn
1 , xn

2 , un),

with the inequality following from the distributions’ con-

struction (38) and (39). Furthermore (40) follows from

the Chernoff inequality based on the assumption that the

moment generating function of iXn
1 Y n

2 |Xn
2 U n (xn

1 , yn
2 |xn

2 , un)

exists.

For the second term in An , we need to note that X̃n
1 (1, i) is

independent of Ỹ n
2 given X̃n

2 , Ũn . Specifically, the distribution
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can be factored as

P
Ũ n (u

n)P
X̃n

1 |Ũ n (xn
1 |un)P

X̃n
2 |Ũ n (xn

2 |un)P
Ỹ n

2 |X̃n
2 Ũ n (yn

2 |xn
2 , un)

≤ 1

ε3
n

PU n (un)PXn
1 |U n (xn

1 |un)PXn
2 |U n (xn

2 |un)

·
∑

xn
1 ∈X n

1

PỸ n
2 X̃n

1 |X̃n
2 Ũ n (yn

2 , xn
1 |xn

2 , un)

= 1

ε3
n

PU n (un)PXn
1 |U n (xn

1 |un)PXn
2 |U n (xn

2 |un)

·
∑

xn
1 ∈X n

1

PỸ n
2 |X̃n

1 X̃n
2
(yn

2 |xn
1 , xn

2 )PX̃n
1 |Ũ n (xn

1 |un)

≤ 1

ε4
n

PU n (un)PXn
1 |U n (xn

1 |un)PXn
2 |U n (xn

2 |un)

·
∑

xn
1 ∈X n

1

�n(yn
2 |xn

1 , xn
2 )PXn

1 |U n (xn
1 |un)

= 1

ε4
n

PU n (un)PXn
1 |U n (xn

1 |un)PXn
2 |U n (xn

2 |un)

· PY n
2 |Xn

2 U n (yn
2 |xn

2 , un)

:= 1

ε4
n

πY n
2 Xn

1 Xn
2 U n (yn

2 , xn
1 , xn

2 , un). (41)

Therefore, for the second term in An , we bound it in the

following way:

P

[

1

|W 0
1|

|W 0
1|

∑

i=2

exp
(

i X̃n
1 Ỹ n

2 |X̃n
2 Ũ n (X̃n

1 (1, i), Ỹ n
2 |X̃n

2 , Ũn)
)

>1+τ

]

≤ 1

ε4
n

∑

Yn
2 ,X n

1 ,X n
2 ,Un

πY n
2 Xn

1 Xn
2 U n (yn

2 , xn
1 , xn

2 , un)

· 1

{

1

|W 0
1|

|W 0
1|

∑

i=2

exp
(

iXn
1 Y n

2 |Xn
2 U n (xn

1 (1, i), yn
2 |xn

2 , un)
)

>1+τ

}

(42)

≤ 1

ε4
n

P

[

1

n
iXn

1 Y n
2 |Xn

2 U n (xn
1 , yn

2 |xn
2 , un)

> I (X1; Y2|X2, U) + γ

]

+ 1

τ 2ε4
n

P

[

1

n
iXn

1 Y n
2 |Xn

2 ,U n (xn
1 , yn

2 |xn
2 , un)

> I (X1; Y2|X2, U) + γ

2

]

+ e−n
γ
2

τ 2ε4
n

(43)

≤ 1

ε4
n

e−nαγ + 1

τ 2ε4
n

e−nαγ + 1

τ 2ε4
n

e−n
γ
2 . (44)

(42) comes from substituting (41) into the probability distri-

bution. (43) follows from the proof given by Han and Verdú

in the direct resolvability theorem [16], and (44) follows from

the Chernoff inequality.

Based on (40) and (44), we can show that there exists αn >

0 such that when n is sufficiently large

T1 = 2ECn

[

d(PȲ n
2 |W1 X̄n

2 Ū n , PY n
2 |Xn

2 U n )
]

≤ e−nαn . (45)

To bound T2, we have the following inequalities:

d(PY n
2 |Xn

2 =xn
2 ,U n=un , PỸ n

2 |X̃n
2=xn

2 ,Ũ n=un )

≤ d(PXn
2 Xn

1 U n |Xn
2=xn

2 ,U n=un , PX̃n
2 X̃n

1 Ũ n |X̃n
2=xn

2 ,Ũ n=un ) (46)

= d(PXn
1 |U n=un , P

X̃n
1 |Ũ n=un )

= sup
A⊆X n

1

∑

B∈{A,Ac}

∣

∣

∣PXn
1 |U n=un [B] − PX̃n

1 |Ũ n=un [B]
∣

∣

∣

= sup
A⊆X n

1

∑

B∈{A,Ac}

∣

∣

∣

∣

PXn
1 |U n=un [B ∩ P1,n]

+ PXn
1 |U n=un [B ∩ Pc

1,n] − PX̃n
1 |Ũ n=un [B ∩ P1,n]

∣

∣

∣

∣

≤ sup
A⊆X n

1

∑

B∈{A,Ac}

(

PXn
1 |U n=un [B ∩ P1,n]

(

1

εn

− 1

)

+ PXn
1 |U n=un [B ∩ Pc

1,n]
)

(47)

≤
(

1

εn
− 1

)

+ (1 − εn) ≤ e−nβn , (48)

for some βn > 0. (46) follows by the data processing

inequality in Lemma 7, and (47) follows by the distribution

construction (39).

Combining the bounds on T1 and T2, i.e., (45)

and (48), we conclude that ∃α > 0 such that for suffi-

ciently large n, ECn [d(PW1 PȲ n
2
, PW1Ȳ n

2
)] ≤ e−nα , if R0

1 ≥
I (X1; Y2|X2, U) + γ . �

APPENDIX E

PROOF OF LEMMA 4

In this section, we present the proof of the properties for

the partition Tn and Tn as shown in Lemma 4.

1) For y ∈ T i , where

T i =
{

y : y ∈ (−∞,−T i −
√

2n] ∪ [T i +
√

2n,∞)
}

,

∀xn
1 ∈ Cn, xn

2 ∈ Cn , we have

|y − x1,i − ρ1x2,i | ≥
√

2n,

because |x1,i + ρ1 x2,i | ≤ T i . For Z ∼ N(0, 1), by the tail

bound on the Gaussian distribution, we have

PZ

({

y − x1,i − ρ1 x2,i : y ∈ T i
})

= PZ ((−∞,−
√

2n] ∪ [
√

2n,∞)) ≤
√

2

π

e−n

n
≤ e−n.

2) Let fZ (y) = mini∈[1:n] pZ (y − x1,i − ρ1 x2,i ) for any

y ∈ T i . Then we have,

PȲ n
1
(Tn)

=
∫

Tn

1

|W|
∑

(w1,w2,w0
1,w

0
2)∈W

n
∏

i=1

pZ(yi − x1,i − ρ1 x2,i)dyn

= 1

|W|
∑

(w1,w2,w0
1,w

0
2)∈W

∫

Tn

n
∏

i=1

pZ(yi − x1,i − ρ1 x2,i)dyn
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≥ 1

|W|
∑

(w1,w2,w
0
1,w

0
2)∈W

∫

Tn

n
∏

i=1

fZ (yi )dyn

=
n
∏

i=1

∫

T i

fZ (yi )dyi

≥
(

1 − max
i∈[1:n]

PZ

({

y − x1,i − ρ1 x2,i : y ∈ T i
})

)n

≥ (1 − εn)
n .

The last inequality holds due to 1). A similar argument holds

for PȲ n
1 |W2=w2

(Tn).

3) From 2), it is clear that PȲ n
1
(Tn) ≤ 1 − (1 − εn)n .

The second inequality, known as Bernoulli’s inequality, can

be proved by induction.

4) This follows by the definition of Tn . For yi ∈ T i ,

|y − x1,i − ρ1x2,i | ≤ 2T i +
√

2n = (2
√

P +
√

2)n
1
2 .

Substituting this bound into pȲ n
1
(yn) and pȲ n

1 |W2=w2
(yn) for

yn ∈ Tn , we obtain the desired result:

pȲ n
1
(yn) ≥

(

1√
2π

)n

e−tn2

,

pȲ n
1 |W2=w2

(yn) ≥
(

1√
2π

)n

e−tn2

,

where t = (2
√

P +
√

2)2.

5) For any yn ∈ Tn , there exists at least one i such that

yi ∈ T̄ i , so that following the definition for any xn
1 and xn

2 ∈
Cn ,

|yi − x1,i − ρ1x2,i | ≥
√

2n,

because |x1,i + ρ1 x2,i | ≤ T i . Therefore, the density function

pZ (yi−x1,i−ρ1 x2,i ) ≤ 1√
2π

exp (−n) ,∀yi ∈ T̄ i . Substituting

this inequality to pȲ n
1
(yn), we have the claim directly

pȲ n
1
(yn) ≤

(

1√
2π

)n

e−n

pȲ n
1 |W2=w2

(yn) ≤
(

1√
2π

)n

e−n.
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