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Strong Secrecy for Interference Channels Based
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Abstract— Interference channels with confidential messages
are studied under strong secrecy constraints, based on the
framework of channel resolvability theory. It is shown that if the
random binning rate for securing a confidential message is above
the resolution of its corresponding wiretapped channel, strong
secrecy can be guaranteed. The information-spectrum method
introduced by Han and Verdu is generalized to an arbitrary
interference channel to obtain a direct channel resolvability result
as a first step. For stationary and memoryless channels with
discrete output alphabets, the results show that the achievable
rates under weak and strong secrecy constraints are the same.
This result is then generalized to channels with continuous
output alphabets by deriving a reverse direction of Pinsker’s
inequality to bound the secrecy measure from above by a
function of the variational distance of relevant distributions.
As an application, Gaussian interference channels are studied
in which the agreement between the best known weak and
strong secrecy rate regions also appear. Following the footsteps
of Csiszar, Hayashi and of Bloch and Laneman, these results
provide further evidence that channel resolvability is a powerful
and general framework for strong secrecy analysis in multiuser
networks.

Index Terms—Strong secrecy, interference channel, channel
resolvability, reverse Pinsker’s inequality, variational distance.

I. INTRODUCTION

HE notion of information theoretic secrecy was first

introduced by Wyner in the context of the degraded
wiretap channel [1], in which a confidential message is sent
from a transmitter to a legitimate receiver while keeping
it secret from a degraded eavesdropper. Soon this problem
was generalized to the non-degraded wiretap channel [2] and
Gaussian wiretap channel [3], which laid the foundations for
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much subsequent research on information theoretic secrecy.
Based on the original wiretap channel, in which the secrecy
measure is defined as the leakage of confidential information
at the eavesdropper normalized to the length of the code-
word, the problem of transmitting confidential messages has
been widely studied in multiuser networks, e.g., the discrete
memoryless interference channel and broadcast channel with
confidential messages [4], the fading broadcast channel [5],
the multiple access channel with confidential messages [6],
relay channels with confidential messages [7] and so on.
In order to guarantee confidentiality, a series of random
binning encoders has been applied to different networks,
in which a proper quantity of randomness is placed in the
codebook to protect the confidential messages. The common
essence of the coding mechanisms in these results is tied to
the capacity of the eavesdropper’s channel, where the rate
penalty for the random binning is slightly below the decod-
ing ability of the eavesdropper. However, the above secrecy
measure was pointed out by Maurer and Wolf [8] to be too
weak for cryptographic applications. Meanwhile, the capacity-
based secrecy coding encounters difficulty for general channel
models, e.g., non-stationary or/and non-memoryless channels.
In order to study communications under stronger constraints,
the total leakage of confidential information was introduced as
the strong secrecy measure in multiple works, e.g., [8]-[10].
Under such a strong secrecy constraint, there exist different
methods for coding, such as privacy amplification [8], [11],
the vanishing output variation approach [12], and channel
resolvability [10], [13]-[15]. Among these approaches, we fol-
low that of Hayashi [10] and Bloch and Laneman [13] to
study the strong secrecy problem in interference channels,
for which the secrecy problem is tied with the approximation
method for output distributions, namely, the channel resolv-
ability theory [16]. A recent review of the field of information
theoretic secrecy can be found in [17].

A. Channel Resolvability

The concept of channel resolvability was first introduced by
Wyner while investigating common randomness of two depen-
dent random variables [18]. Subsequently, the theory of chan-
nel resolvability was thoroughly studied by Han and Verdu to
determine the number of random bits required per channel
use in order to generate an input that achieves arbitrarily
accurate approximation of the output statistics for any given
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Fig. 1. Approximation for output statistics: The variational distance between
Pyn and Qyn vanishes as n tending to infinity, if the rate R is larger than
the sup-information rate, defined in (2) and Section II.

input process [16]. We adopt the notion of Han and Verdu
to describe the framework of channel resolvability in this
paper. To briefly interpret the notion of channel resolvability
and its relation to the strong secrecy problem, let us con-
sider the example shown in Fig. 1. Considering the channel
defined by a sequence of transition probabilities Pynxn,
for any input process X" drawn from the distribution Pyn,
the output distribution Py~ is the marginal distribution of
Pyn xn Pxn as shown in the upper part of Fig. 1. In order
to approximate the output statistics Py», in practice, a random
number generator is used to generate the sample path of the
input distribution, and the empirical estimates of the output
statistics are computed from the output sample path. Therefore,
a technical question to raise is, given the input statistics and
the transition probability, how many bits per input sample
are required to reproduce the target output statistics within
a certain accuracy. Although, at first glance, the problem
of approximating the output statistics would seem to have
no connection to any codes or information transmission,
Han and Verdd connected the approximation problem with
Shannon theory via a random code construction: Let us
generate a set of uniformly distributed messages with size 2"¥,
and assign each message w to a codeword x"(w) generated
according to the distribution Px». Randomly choosing the
message w from the message set and sending the codeword
x™"(w) to the channel, the induced output distribution is Qyn»
as shown in the lower part of Fig. 1. Regarding Qy» as the
empirical approximation of Py, the question becomes how
large R is required to be to achieve a certain accuracy. In order
to measure the accuracy of the approximation, the specific
measures used in [16] are variational distance and normal-
ized Kullback-Leibler divergence. These measures are defined
respectively in the following.

Definition 1 (Variational Distance): For two distributions
P and Q defined on the same measurable space (Q,F),
the variational distance between P and Q is

d(P, Q)= > |P(®) — Q)| =2 sup |P(E) — Q(E)|.
el EeF

Definition 2 (Kullback-Leibler Divergence): For two distri-
butions P and Q defined on the same measurable space
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(Q, F), where P is absolutely continuous with respect to Q,
the Kullback-Leibler divergence is

D(P| Q) /1 deP
= 0g — 5

o do
where g—g is the Radon-Nikodym derivative of P with respect
to Q. In the later part of the paper, we sometimes refer to the
Kullback-Leibler divergence as divergence for brevity.

Based on these definitions, the required number of random
bits for approximation is not only related to the input sta-
tistics, but is also relevant to the degree of approximation
accuracy measured by the specific metric. It is shown in [16]
that, if

R>IX;Y), (1)

where I(X; Y) represents the sup-information rate,

1. Pynxn(Y"X"
lim P —logM o|=0¢t,
n—o0 n Pyn(Yn)
2

there exists at least one sequence of codebooks such that the
variational distance between the two distributions Pyn
and Qyn tends to zero as n — 00,
i.e., lim,_ o d(Pyn, Qyn) = 0. Furthermore, if the channel
has finite input alphabet, i.e., |X| < oo, it implies that
the normalized divergence %D(Pyn |Qy») tends to zero for
sufficiently large n given (1) and (2). In [16], I(X;Y) is
termed the channel resolution when the input distribution is
Pxn.

i(X; Y)=inf [a :

B. Resolvability and Secrecy

In Fig. 1, the resolvability result tells us that when the
message rate is above the channel resolution, the statistics of
the original output Py» which is independent of the codebook,
and the codebook-induced output Qy» are arbitrarily close
measured by variational distance or normalized divergence for
sufficiently large n. We regard these two distributions as being
statistically indistinguishable under the respective measure.
The statistical indistinguishability of this pair of distribu-
tions can be further exploited in the context of information-
theoretically secure communications. For example, let us con-
sider a scenario illustrated by Fig. 1 in which the confidential
message represented by a random variable W is transmitted
via the channel with transition probability which can be
marginalized as Pyn x». Let us further assume that Y" is the
channel output sequence at the eavesdropper, and the input
probability distribution Px» is known at the eavesdropper.
In order to hide the confidential message, as a first step,
a natural heuristic is to imitate the output distribution Py~ by
the codebook-induced distribution Qy» such that these two
output statistics are arbitrarily close given sufficiently large n.
Therefore, the confidential message should be encoded at a
rate above the channel resolution of the eavesdropper’s channel
and below the channel capacity of the intended channel.
To make this concept rigorous, following the conventional
definition of information-theoretic security, the desired statis-
tical indistinguishability is measured by the vanishing with
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increasing n of the normalized divergence %D(PW yn || Pw Pyn)
for weak secrecy and divergence D(Pyy» || Pw Py») for strong
secrecy.

Therefore, there is a fundamental connection between chan-
nel resolvability and secrecy. In fact, as already indicated
in [16], for many systems there is a direct implication that
the notions of indistinguishability measured by the normalized
divergence and variational distance render the same achievable
channel resolution for the same input process. Thus, resolv-
ability results have a strong connection with weak secrecy
problems. However, for strong secrecy problems, directly
applying channel resolvability results based on the variational
distance or normalized divergence is not sufficient. The reason
is that the total divergence measure (or the strong secrecy
measure) is the strongest measure among these three. That
being said, the vanishing of the total divergence when n tends
to infinity implies the vanishing of the variational distance and
obviously the normalized divergence, but not vice versa [13].

In this paper, we investigate the achievable rate with
strong secrecy based on the channel resolvability method.
In particular, we aim to construct a sequence of codebooks
such that lim, o d(Pwyn, Pw Pyn) = 0 and furthermore
lim, 00 I(W; Y") = lim,_ oo D(Pwyn| PwPyr) = 0. It is
accomplished by exploiting the relationship of these two
measures. Let P and Q represent two different probability
distributions over the same sample space. It is well known that
Pinsker’s inequality [19] provides a lower bound on D(P| Q)
based on d(P, Q) such that the vanishing of D(P| Q) implies
the vanishing of d(P, Q), whereas the reverse direction does
not hold in general. Accordingly, in our study the reverse direc-
tion of Pinsker’s inequality is of particular interest. Bounding
the divergence of two distributions D(P|| Q) from above based
on the variational distance d (P, Q) is the key step throughout
this paper.

The relation between channel resolvability and strong
secrecy was originally addressed by Csiszar [9] and then
Hayashi [10], and sequentially studied in [13], [14], and [15]
for different types of wiretap channels and broadcast chan-
nels with confidential messages. It is worth noting that the
information-spectrum toolbox presented by Han and Verdu
is useful for studying general channels, i.e., channels with
memory or/and non-stationary channels. For instance, in [13],
the arbitrary wiretap channel was investigated based on the
information-spectrum approach.

C. Summary of Contributions and Prior Work

We study the achievable secrecy rate region of interference
channels with confidential messages under strong secrecy con-
straints. In this paper, we start from considering interference
channels in a more general sense, for instance, channels are
not stationary or memoryless. The (direct) channel resolvabil-
ity theorem is first generalized to the two-user interference
channel with arbitrary channel transition probabilities. Then,
the stationary and memoryless interference channel with con-
fidential messages is studied based on different assumptions
on the transition probability. The contributions of the paper
are summarized as follows:
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o Resolvability for arbitrary interference channels with
confidential messages: We first generalize the direct
channel resolvability theorem to the two-user interfer-
ence channel, for which there are no restrictions on
the channel transition probability. We consider the sce-
nario in which transmitter i (i = 1,2) intends to
deliver a message W; to receiver i, with a constraint
on the output distributions that the variational distance
limy oo d(Pw,yr, Pw; Pyr) =0 (i, j € {1,2} and i # )).
The achievable Tate regi(j)n is presented in a supporting
lemma based on the information-spectrum method. This
lemma holds regardless of whether or not the channel
input/output alphabets are finite. We also show that the
direct resolvability result guarantees weak secrecy for
arbitrary interference channels.

o Achievable secrecy rate region for interference channels
with confidential messages: Consider the two-user inter-
ference channel, in which W; is intended for receiver i
and to be kept secret from receiver j. The secrecy rate
region is derived for the stationary and memoryless inter-
ference channel with confidential messages. The main
difference between these results and channel resolvability
is that the desired statistical indistinguishability is based
on the strong secrecy measure I(W;; Y") instead of the
variational distance. Therefore, the relationship of those
measures plays an important role in the analysis. To con-
sider discrete output alphabets, we adopt the method
given by Csiszar [9] and Csiszar and Korner [20] directly
to bound the targeted mutual information or equivalently
the divergence from above as a function of the variational
distance. For continuous output alphabets with finite
support, we derive a new reverse Pinsker’s inequality in
order to provide an upper bound on the target strong
secrecy measure by the variational distance. The principal
step is to show that when the variational distance con-
verges to zero fast enough with n, which is obtained by
tailoring the supporting lemma, the mutual information
also converges to zero in the limit of n, following a
similar method in [13]. Our study directly implies that for
discrete memoryless interference channels the best known
achievable rate region with weak secrecy [4] guarantees
strong secrecy. An application of the proposed reverse
Pinsker’s inequality is that it further aids the investigation
of strong secrecy for Gaussian channels which have
infinite output alphabets. The generalization from finite
support to Gaussian channels follows from a careful
truncation of the output alphabets, such that for the
transmission based on a particular codebook, the desired
divergence and variational distance of considered distribu-
tions concentrate on the truncated set with finite support.
By this means, the derived reverse Pinsker’s inequality
can be applied to the truncated set with finite support.
Our results show that for Gaussian interference channels,
the known achievable rate region for weak secrecy is also
achievable with strong secrecy constraints.

o Prior work on the secrecy rate region of interference
channels: The problem of weak secrecy in interference
channels has been widely studied. In [4], the discrete
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memoryless interference channel with confidential mes-
sages has been studied, which provides the best known
achievable secrecy rate region. In [21], the secrecy prob-
lem is studied for deterministic interference channels.
Cognitive interference channels with secrecy constraints
are studied in [22]. Secure degrees of freedom for
Gaussian interference channels with confidential mes-
sages have been studied in [23], [24], and [25], where
the optimal sum secure degrees of freedom of K-user
Gaussian interference channel with confidential messages
is derived in the latter. In the strong secrecy setting, Li and
Matsumoto studied the strong secrecy rate region of dis-
crete memoryless interference channels based on secure
multiplex coding [26], where the privacy amplification
approach [27] was adopted. Our results offer the same
achievable rate region for discrete memoryless channels
and Gaussian channels as in [26] and [28]. In [28], strong
secrecy was guaranteed by a nested lattice codebook,
in which the representation theorem [29] of nested lattice
structures plays a critical rule for bounding the secrecy
measure. Here in our paper, the coding schemes are
still based on Shannon’s random selection approach. The
proof focuses on the relationship between the divergence
and variational distance between a pair of output distrib-
utions. It is also important to note that our resolvability
approach manages to show that the variational distance of
target distributions tends to zero within the derived rate
region for arbitrary channel transition probabilities. It is
therefore also meaningful for future studies on channels
with memory.

II. PRELIMINARY DEFINITIONS

In this section, we introduce the definitions of quantities
that will be used in the sequel. Let X and ) represent two
finite alphabet sets. For x" € X" and y" € )", Px»(x")
and Py»(y™) represent the respective probability masses. For
continuous alphabets, we assume that probability density
functions exist, i.e., the corresponding probability measures
are absolutely continuous with respect to Lebesgue mea-
sure. In what follows, unless otherwise noted, the definitions
are provided based on discrete random variables. As the
information-spectrum method we adopt in this paper does not
impose any constraint on the alphabets, the results from the
discrete case can be directly generalized to continuous cases as
pointed out in [30], with restrictions and exceptions as we shall
point out particularly. Throughout the paper, we use R and
R” to represent the set of real numbers and the n-dimensional
space of real numbers, respectively. R’} represents the set of
n-tuples of non-negative real numbers. We use lower case
letters, e.g., x, to represent specific realizations of random
variables denoted by upper case letters, e.g., X. Let f and
g be two functions defined on some subset of real numbers.
The big O condition f(x) = O(g(x)) as x — oo holds if and
only if there is a positive number M and a real number x( such
that | f(x)| < M|g(x)|,Vx > xo. Throughout the paper, log
represents the binary logarithm and In represents the natural
logarithm.
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Definition 3 (Information Density [16], [30]): Given a
joint distribution Pynyn(x", y") = Pxn(x™) Pyn|xn O"x™,
the information density is the following function defined on
X" x Y
Pynixn(y", x")

Pyn(y™)

The distribution of the random variable (%)i xnyn (X", Y"™)
where X" and Y" have joint distribution Pxny» will be
referred to as the information spectrum. The mutual informa-
tion 7(X"; Y") is defined as the following expectation:

ixnyn(x", y") = log

I(X";Y") = Elixnyn (X", Y")]

- >

xteXn yneyn

Pynjxn (y"|x")

Pxnyn(x", y")log
Pyn(y™)

For the information density defined above, we define the
following lim sup and lim inf in probability:

1
p-limsup —ixny» (X", Y")

n—oo N

1
illf {O{ N hm P I:—ixnyll(Xn, Yn) > Oﬂ} = O] N
n—oo n

IX;Y)

1
IX;Y) = p-liminf —ixny= (X", Y")
n—oo n

1

I(X; Y) and I(X; Y) are referred to as the sup-information rate
and inf-information rate, respectively.

III. CHANNEL MODEL

Definition 4 (Interference Channel With Confidential Mes-
sages): Let us consider the interference channel ¥ = {¥” :
XI” X Xf — y{’ X yg}neN which is a sequence of stochastic
mappings from input alphabets X} x X7 to output alphabets
Vi x V3. We use the transition probability to represent this
sequence of mappings:

v = [T"(y?,y3|x?,x;):

n n n n n n n n n
PrON, ya XY, xy) = Pynyn xnxn OF, 2 Ixi, x3),
o
with (x7, x5, ¥, v§) € &' x &Y x Y} x yg]

n=1

X)) ey and (X2 =

We assume that { X} = (XY,’%, XYB, .. bt
(Xé',’i, Xé’g, cee, Xg,lr);)}neN are general sources such that the
consistency condition need not hold. For instance, the condi-
tion Xg"l) = X%) forall m < nand 1 < i < m does not
necessarily hold. Based on the channel transition probability
WY (Y, y5lx{, x5), we consider an interference channel with
two transmitters, each intending to send one confidential
message to its corresponding receiver, while keeping it secret
from the other receiver. This channel is referred to as the
interference channel with confidential messages.

A (2"Ri 2R p)y code C, for the considered channel is

defined to consist of, fori =1, 2,
o a set of messages at transmitter i: W; = [1 : 2"Ri],
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o a stochastic encoder fi(") at transmitter i,
fi(n) : Wi N ‘)(in,

which maps the intended message w; € W; to a codeword
x! € X', where the message set VV; is uniformly

distributed, and
o a decoder gl.(”) at receiver i,

(n) yl’l_>Wl’

that maps the output y” to an estimated message w; €
Wi.
The strong secrecy rate pair (Rj, R») is achievable for the
considered channel if there exists a sequence of (2nRi pnRa n)
codes {C,} such that

« the error probability satisfies

lim P =0,
n—o0
where P = P[(W1, W2) # (W1, W))], and
« the strong secrecy measure satisfies, for i # j,

lim I(W;; Yj'-’) =0.
n—oo

In this paper, we will also discuss the achievable rate under
the weak secrecy constraint lim,,_, %1 (Wi Y ;’) =0, as well
as the achievable rate with vanishing variational distance
lim, o d(Py,yn, Py; Pyn) = 0. The definitions of codes
and achievable jrates folfow by replacing the corresponding
measures, respectively.

IV. A SUPPORTING LEMMA BASED
ON CHANNEL RESOLVABILITY

In this section, we present the direct resolvability lemma for
arbitrary interference channels. First, the direct resolvability
lemma is proved under the criterion of vanishing variational
distance of output statistics. Then, its relation to secrecy is
discussed. The importance of the direct resolvability result
is that it not only indicates the weak secrecy rate region
directly, but also serves as an intermediate step for strong
secrecy studies. Because in a large part of the paper we will
adopt variational distance between two distributions as one of
the key metrics for the strong secrecy analysis, the technical
motivation of this approach will be explained in this section.

A. Direct Resolvability Lemma in Variational Distance

Instead of studying the strong secrecy rate directly, we first
take a detour to provide a supporting lemma based on channel
resolvability. The proposed lemma sets the tone for the study
of strong secrecy in interference channels.

Let us replace the secrecy measure 1 (W;; Y”') with the vari-
ational distance between the distributions Py, v and Py, Pyn
for (i # j),ie., d(Py, v Py, Pyn) A closer look at the abovle
variational distance tells us that when d (Pw,yn, Pw, Pyn)
approaches zero, the confidential message W; and/ the output
at the undesired user Y” are asymptotically independent.
Intuitively, when W; and Y? are independent, information
about the confidential message W; in the sequence Y ]” is zero.
Therefore, the product distribution Py, Pyj’_l can be seen as our
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target distribution, and our goal is to make the true distribution
Py, v arbitrarily close to it. Using the variational distance
to measure the distance between two distributions, in [16],
Han and Verdu introduced the concept of channel resolvability
for approximating the output statistics of the point-to-point
channel. The idea is generalized here for the interference
channel in Definition 4. The main result is summarized in
the following supporting lemma.

Lemma 1: For the interference channel as defined
in Definition 4 by arbitrary transition probability
Pynyn xnxn(v], y3lx{, x3), the following rate region D
is achieved:

(R1, Ry) e R% :

Ry <I(Vi; Y1U) — I(Vi; Y2| V2, U),

- 3
Ry <I(V2: YalU) —I(V2: Yy v, U) | &

with

lim d(PW,Y"aPW,PY"):()aVl’]6{1’2}’ 17&]
n—oQ J J
for any distribution Pynynynxnxn that can be factored as
Pyn Pymyn Pypjgn Pxnjyn Pxnyn.

Sketch of Proof: We are going to show first that the
following rates are achievable:

0 < R <IX1; Y1IU) — I(Xy; Y2[Xo, U) )
0 < Ry < IX2; Y2|U) — I(X2; Y1IXy, U). 5

Then (3) follows by the channel prefixing method as
discussed in [2].

We start with creating a sequence of codebooks which are
generated randomly. Let Ry, R}, R2, R > 0. Define W) =
[1: 2R, Wy = [1: 2R, Wy = [1:2"Ri) and W) = [1
2"R§]. Let y > 0 be an arbitrary positive number.

o Codebook generation: Randomly generate a sequence u”
according to the distribution Py»(u"), which is shared
among all transmitters and receivers as the time-sharing
indicator. For transmitter i, i € {1, 2}, generate |W; [|[W/]
independent sequences x' € A" according to the distri-
bution Pyz (x'|u"). We label the sequences x;' as

/ / /
x!(w;, w;), wi €W, w; e W;.

o Encoding: In order to send a message pair (w1, w2) €
Wi x W, the transmitter i randomly chooses a value w]
according to the uniform distribution on the set W, and
sends the codeword x!"(w;, w!) over the channel.

e Decoding: Define the following sets for i = 1, 2:

( .
Ty’; : [(u Ly el x X x Y

1. Pyoxogn O] 1x)', u)

g
n Pynyn (v} |u™)

1 /
> ;logIWiIIWiI +V]- (6)

Based on the received signal yl.", the decoder i aims to
find the unique x7 (i;, ;) such that (u", x]', y') € ’T” ;
otherwise, a random w; is chosen.
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A detailed proof of reliability and the vanishing of the
variational distance is shown in Appendix B. For better
understanding of the proof, we provide an outline for proving
the vanishing of the variational distance between the targeted
distributions here. Let us first set the time sharing random
sequence U" = ¢ and consider the case i = 1 and j = 2.
Let {Cy},en represent a sequence of codebooks generated
as above. We use over-lines to represent the channel input
and output variables induced by the chosen sequence of
codebooks. Based on Shannon’s random selection approach,
if we can show that the targeted variational distance vanishes
by averaging the selection of the codebooks, there must exist
at least one sequence of realizations for which the variational
distance also vanishes. Specifically, if we can show that

lim Ec, [d(Py, g, Pw Py)| =0, i, j € 1,20 #
n—00 L J
%)

then there exists at least one sequence of codes {C,} such
that lim,, o d (PW yn» Pw; Pyn) = 0. According to the triangle
inequality for the variational d1stance as provided in Lemma 6
of Appendix A, we have

@ (Pusg: P )
< d(PWlifz")_(’zlPWl Pi;)‘(g)

|d(Pygyw, x> Pryixa) |
-d(Pi"\wl)?g’ Pynxz) +d(Pypxn, PY;"??)]
d(P WX Pyz|x2)
d(pyzlxn Py nlxn)]
_d(P-zn‘Wl;(g, Py;|xg):
:d(P}-,Z,LW”gzZL, Py, PYZ”\X’ZL):I

= 2By, 54 [d(Pyzn‘Wl %10 Pyl X;)] . (8)

= Ey, X4 —
< EWI)}n
= By, X4

—HE;(,L

<E

VV])?%

Therefore, it is sufficient to show that

nli)m Ec, {I[‘EW1 X1 [d(PYZ"\WI X1 Pyz’l‘x’zl)jl} = 0. 9)
We generalize the channel resolvability theorem [16] to multi-
ple users: In order to show (9), it is sufficient that the rate R]
was larger than the resolution of the corresponding channel,
i.e., i(Xl; Y>|X>). The equivalent channel is shown in Fig. 2.
It is easy to see that the rate of the random message w] serves
as a penalty term for the secrecy rate.

The case when i =2 and j = 1 can be handled according
to a symmetrical argument. |

Remark 1: This supporting lemma does not impose any
restriction on the structure of the channel transition probability
(e.g., stationarity or memorylessness). Therefore the result
holds in a general sense. As we show in the sequel, if we
specify the channel transition probability, we can further study
the achievable rate of the considered network with strong
secrecy constraints based on the same theoretical framework.
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X —>
n
Pypixpxy Yy
X5 —>
wy € [1:27F] 2y (w1, wy)
wy € [1:27] Prpixpxy > Y3
X3

Ew, xp [d(Pypixpw,. Pryixg)] = 0, as n— oo, if Ry > I(X1;Y5[Xo)

Fig. 2. The coding scheme over the equivalent channel with constraints on
output statistics.

B. Direct Resolvability in Normalized Divergence
and Weak Secrecy

So far, we have shown the achievable rate region for
arbitrary interference channels under the vanishing varia-
tional distance lim, .o d(Py, vrs Py, Pyn) = 0. In fact,
the result in Lemma 1 is meamngful in the context of
secure communications. As discussed in [13], vanishing
variational distance implies vanishing normalized divergence
—D(PWl yn||PW Pyn) Therefore, weak secrecy for arbitrary
interference channels is guaranteed by the same achievable
rate region D as defined in (3). For the sake of presentation,
we summarize the result in the following proposition.

Proposition 1 (Weak Secrecy for Arbitrary Interference
Channels): For the interference channel in Definition 4 with
arbitrary transition probability Pynyn xnxn O, Y51xt, x5),
the rate region D defined in (3) is achievable with
7w DPw,yrllPw, Pyr) = 0, Vi, j € {1,2},i # j
for any d1str1but10n Pyn v" vaxnxn that can be factored as
PU"Pva"Pv;\U"Px’;|vl”Px';|vl”

Proof: This result is proved via showing the conver-
gence of lim,_ %D(PWZ‘Y;’”PW,' Pyj(l) = 0, provided that
lim;, 00 d(Py,yn, Pw, Pyrn) = 0. The relation has been origi-
nally discussed {n [19] aﬁd [30], and later studied in [13] for
secrecy problems. We present the proof in Appendix C. H

However, Lemma 1 cannot directly render that the strong
secrecy constraints are satisfied. A technical explaination is
that the vanishing variational distance constraint is generally
weaker than the constraint of vanishing divergence, which is
established by Pinsker’s inequality which says that D(P|| Q) >
10%d(P, Q) for two distributions P and Q defined on the
same sample space. That being said, in order to satisfy
the strong secrecy constraint the convergence of variational
distance to zero is not sufficient. It is interesting to observe
in the following section that for a specific class of transition
probabilities, the result of Lemma 1 stands as a premise for
strong secrecy. This is achieved by establishing the relationship
of the divergence and the variational distance measures on a
family of probability distributions.

limnaoo

V. STRONG SECRECY FOR INTERFERENCE CHANNELS

Lemma 1 states that d(Py,yn, Py, Pyn) can be arbitrarily
. j. j o .
close to zero if we carefully design the code within a certain



5116

rate region. In order to study strong secrecy of interference
channels based on Lemma 1, a natural approach would be
to provide an upper bound on the strong secrecy measure
D(Py, v | Pw, Pyj’_l) as a function of d (PWl,er_z, Py, Pyj’_l), such
that when d(PW[y/(l, PWle/n) — O, D(PW,Y7||PW1PY7) also
tends to 0. ' ' ' '

However, for the desired direction a reverse type of
Pinsker’s inequality does not exist in general. Specifically, for
any € > 0, we can find P and Q such that D(P|Q) = oo
while d(P, Q) = €, where P and Q are two distributions.
Therefore, certain restrictions on the studied distributions are
required to obtain the inequality in the desired direction.
In what follows, we will consider multiple channel models
in which the reverse Pinsker’s inequality can be derived
accordingly and serves as a powerful approach to the analysis
of strong secrecy constraints.

A. Stationary and Memoryless Interference Channel With
Discrete Output Alphabets

In this section, we consider interference channels in which
the channel transition probability is stationary and memory-
less. Moreover, we restrict the output alphabet to be discrete
with finite cardinality.

To study strong secrecy for interference channels in this
case, we adopt the method given by Csiszar [9] by applying
the following inequality.

Lemma 2 (Csiszar-Korner [9], [20]): Let P and Q denote
two probability distributions on a discrete set X'. Let H (P) and
H (Q) represent the entropies based on P and Q, respectively.
Then, if d(P, Q) < 1,

d(P, Q)

|H(P)— H(Q)| = —d(P, Q)logw, (10)

where |X| is the cardinality of X

Remark 2: Based on this lemma, we have the following
line of thought for bounding the strong secrecy measure
I (W, Yj’.l) = D(Py, v | Pw; Py;l) from above by the varia-
tional distance. Considering the strong secrecy measure, based
on Lemma 2, we have

D(Py,yr || Pw, Pyr) = H(Y}) — H(Y}|Wi)
d(PY;?, PYJ’.‘\W,-)

1

Therefore, it suffices to show that there exists some o > 0,
so that d(Pw;, Py/fl, Py,yn) < e™"* for sufficiently large n,
the proof of which depends on the stationary and memoryless
structure of the channel. We note that in [13], Bloch and Lane-
man adopted a similar approach to establish the achievable
secrecy rate for wiretap channels.

In order to handle channel coding problems in which the
cost of the codewords must be taken into account, e.g., a trans-
mission power constraint, following Han’s approach [30],
we introduce the following channel.

Definition 5 (Stationary Memoryless Channel With Additive
Cost Functions): Let us consider the stationary and mem-
oryless interference channel, where the channel transition

IA

_d(PYJ’.l9 PY;‘W,') log
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probability is denoted as

n
PO, yalxf, xg) = H‘P(yl,i, V2,ilxt,i, X2,0),
i=1
where W (y1,i, y2,i[x1,i, X2,i) = Pyyvy1x, % (V1,05 Y2,i %105 X2,1)
is the probability mass function. There are also cost constraints
based on the following additive cost functions:
l n
—Zc(x,-) <P, withc: X UX, > RT, (1)
"
where P is a positive given constant. Such a constraint is
referred to as the additive cost constraint P.
We are now in a position to present the following theorem.
Theorem 1: For the stationary memoryless interference
channel with additive cost constraint P (P > 0), the following
strong secrecy rate region D is achieved:

D = [(Rl,Rz) eRi:

Ry < I(Vy; 1]1U) — I(Vy; Y| V2, U)

12
Rz<I(Vz;Yle)—I(Vz;Y1|v1,U)] 12)

for any distribution

PUPV1\UPV2\UPX1\V1PX2|V2, and E[c(X;)]<P, Vi € {1,2},

if the moment generating functions of i ViY;|ViU and c(X;)
exist.

Sketch of Proof: There are two critical steps in the proof.
First, we modify the codebook generation as presented in
the proof of Lemma 1. The purpose is to make the induced
input process of the channel based on the generated codebooks
satisfy the additive cost constraint P almost surely. The details
of the modification of the codebook generation is given in
Appendix D. Let C, represent the codebook generated based
on the described method for n € N. The second step is
essentially the establishment of the following claim.

Claim 1: There exists at least one sequence of codebooks,
denoted as {C,}, which satisfies the constraint P and reliabil-
ity, such that for sufficiently large n there exists some a > 0
such that,

d(PW’Y;"a PW,P_;") = e*al’l,

where I_’j’.’ is the codebook induced output at receiver ;.
Then following Lemma 2, the secrecy measure
D(Py,y» || Pw; Pyn) is shown to approach 0 as n — oo.
We note that the key is to apply the Chernoff inequality
(provided in Appendix A) to the proof of Lemma 1, based on
the stationary and memoryless channel transition probability.
Therefore, we need to make sure that the prerequisite of
the Chernoff bound holds, i.e., that the moment generating
functions for iy, Y;IV;jU and c(X;) exist. The detailed proof is
given in Appendix VI. |
Remark 3: 1f we carefully choose the additive cost function
and focus on the discrete memoryless interference channel,
we have the following observations based on Theorem 1:
o Let c(x;) = |x;|* and choose a sufficiently large P. The
cost constraint is automatically satisfied for any finite
discrete distribution.
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o The moment generating functions for iv,y;v;v and c(X;)
exist for any discrete distribution.

Taking these two facts into account, we obtain that any distrib-
ution that achieves the boundary points of the derived secrecy
rate region also achieves the same points at the boundary
of the weak secrecy rate region presented in [4]. Therefore,
the derived strong secrecy rate region ties with the best known
weak secrecy rate region for the considered channel. In [26],
the same result has been derived based on a secure multiplex
coding scheme.

The result presented in Theorem 1 is not sufficient to be
generalized to Gaussian channels directly. The major problem
is that the inequality in Lemma 2 can only be applied to
discrete distributions. In the next section, we will generalize
the results to continuous alphabets and then focus on Gaussian
interference channels.

B. Stationary and Memoryless Interference Channel on
Continuous Output Alphabets

In order to generalize the result in Theorem 1 to continuous
alphabets, a similar line of thought can be adopted here.
Bounding the strong secrecy measure from above by the
variational distance is critical to this generalization. In this
section, we at first relax the discrete alphabet constraint to
allow continuous input and output alphabets, yet with finite
support for the output. The finite support of the output is finally
dropped in the sequel when we study Gaussian channels.

To start with, an analog of Lemma 2 on continuous sets
with finite support is presented.

Lemma 3: Let P and Q be two distributions on the set
X" C R" whose Lebesgue measure satisfies A(X") < oo.
Assuming P, Q < 4, let p = 4F and g = d% be the Radon-
Nikodym derivatives of P and Q respectively, that is, their
densities with respect to Lebesgue measure. If p and g are
bounded from above by ¢” (1 < ¢ < 0o0) almost everywhere
in X", then

A(X™M)
d(P, Q)

|h(P) —h(Q)| < nd(P, Q) (log +2n logc+5),

13)

where 06 = 2loge+ 1, and i(P) and h(Q) are the differential
entropies of P and Q, respectively.

Proof: Define f(t) = —tlogt, where t > 0. Let 1 =
lp—ql, YO < p,q <", then

[ f(p)— f(g)

max(f(7), f(1 —1))=|rlogz],
if0<r<4,0<pg=l,

| fi(e =1

otherwise.

Therefore, we have
|h(P) —h(Q)| = ’/X plogp —qlogq di

< /X Iplogp —qlogq| di
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<—/ p—ql-loglp — q| di

/Ip ql-

where (14) follows by defining two disjoint sets:

logc”—}—— di, (14)

1
& = [x” 1T < 5,05 p(x"),q(x™) <1—7 and x" € X"] ,
& = {x” :x" ¢ & and x" EX"},

and applying the upper bound on | f (p) — f(q)| above. Define
0 = [ |p—ql dA. It is observed that 6 < %1(51). Based
on (14), we further have

—/ p—ql-loglp —ql di
&

[p—ql lp—ql
—0(- 1
( ,/gl o 2T g

< Olog A(&1) — O logh
< Olog[B-A(X")] —6Ologh, for p > 1.

dxl) —6@logh

5)
(16)

(15) follows from the fact that the uniform distribution pro-
vides maximum differential entropy for the bounded set &,
and (16) follows from the monotonicity with respect to A.

Define the function g(#) = 6 log Lﬁ - M(X™)] — 0logb for
0 <6 <d(P, Q). Setting f = pltloge n e can write the
derivative of g(@) as follows:

A" 21+10ge nyxn
g0 = logﬁ (0 ) _ loge = log$ —loge
d(P
210g M0 o0 oroc0,acr, 011,

where d(P, Q) < 2c¢"A(X") is applied. Therefore, g(0) is
monotonically increasing with € in its domain. Therefore,
g(@) < g(d(P, Q)). Based on (16), we have

—/ lp—ql-loglp —q| di
&

<d(pP, Q) (log A7) +nlogc + log —l—l) a7
= ) nlogc e ,
d(P, Q)
by substituting g = 2!*1°2¢c to g(0).
Furthermore,

/ lp—ql-
&

< |logc" +—’/ lp—qldi=

1
logc" + —‘ da

log ¢" +—’ d(P, Q)
(18)

which follows from the definition of variational distance in the
current case

AP0 = [ Ip—aldz.

Combining (17) and (18), we have

|h(P) — h(Q)|
<d(P, Q) (1 w6 +2n1l +21 +1)
< , 0 nlogc oge .
faep o) TTTEOTTTE
This concludes the proof. [ ]
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Remark 4: 1t is observed that when A(X") > e e,
the right-hand side of (13) is monotonically increasing with
d(P, Q). This can be shown by calculating the derivative with
respect to d(P, Q), and considering the fact that d(P, Q) < 2.
Because p, g < ¢" almost everywhere, we have c” f xn d; >
1, which implies A(X") > ¢™" > e~ le=2n, Consequently,
the monotonicity with d(P, Q) is guaranteed. For example,
taking A(X") = e”z, d(P, Q) < e for some o = O(1),
it can be shown that |h(P) — h(Q)| < O(n3e™"%*) based on
Lemma 3, which tends to 0 as n — oo.

Remark 5: A prerequisite condition in Lemma 3 is that the
considered probability densities p and g are bounded almost
everywhere in their sample space. For instance, Gaussian
distributions will be one candidate, while the chi-square
distribution with one degree of freedom does not qualify.
We note that the reverse Pinsker’s inequality has been studied
with different constraints [31]-[35]. Among those, [31]-[33]
studied the relationship of the entropy and variational distance
for discrete distributions, while the recent work of Verdu [34]
and of Sason [35] provides an interplay between relative
entropy and variational distance. Different from these previous
work, we use a different constraint on continuous distributions
and focus on the asymptotic behavior of differential entropy
and variational distance.

Based on Lemma 3, the proof of Theorem 1 can be imme-
diately generalized to the continuous case in which the output
alphabet has finite support, providing that output distributions
have densities bounded almost everywhere. However, this is
still not sufficient for the study of Gaussian channels, where
the output alphabet has infinite support by definition. Directly
applying Lemma 3 will not suffice for two distributions P
and Q because A(X™) is infinite. Alternatively, if we can
find two truncated distributions P and Q on a finite support
T to approximate the original distributions with respect to
the divergence and variational distance, the strong secrecy
condition can then be proved via the properly truncated
distributions. This approach will be presented in detail when
we consider the following Gaussian interference channel.

Definition 6 (Gaussian Interference Channel With Confi-
dential Messages): The Gaussian interference channel has the
following channel input-output relation:

i =X1+p X2+ 2,
Yo =Xo4+pmX1+ 2o,

where p1, p» € [0, 1) are normalized channel coefficients and
are known to all parties. Z; and Z, are independent Gaussian
noises with zero means and unit variances. Here we consider
only the weak interference scenario, i.e., pi,p2 € [0, 1),
because otherwise secure communication is not possible. The
transmitted signals X; and X, are subject to the average
power constraint (i.e., additive cost function), such that for
the transmitted sequences x| and xj,

n 2
> L
n

i=1

<P, fork=1,2.

The strong secrecy constraints remain consistent with
Definition 4.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 7, JULY 2018

Proposition 2: The following strong secrecy rate region is
achievable for the Gaussian interference channel:

(1— B P
(1p1+ piBa)P + 1
2

1 py (1= p)p1 P
f%c+wm+£MMP+J

1 1—-2 P
0< Ry <=log{!l+ ( 22)ﬁ2
2 (L2f2+ p3 )P + 1

LI pi(l = p2)B2 P
2 (111 + pilafo)P + 1
for arbitrary A1, 42, f1, p2 € [0, 1].
Proof: Let Ri,R|,R2,R, > 0, and W; = [I
PRLW =1 2R, = (1 2R and W = (1
Z"Ré]. Fix the distributions Py, and Py4; on sets V; and 4,

respectively, for i = 1,2. Consider a sequence of codebooks
{C,}, in which

Cn = {o] (w1), af (w)), V5 (w2), a3 (w5) :
w| € W],w/l € Wi,wz € Wz, w/z S Wé},

1
0 <Ry <§log(1+

and the sequences are generated as follows:
n

vy ~ [ ] Pr02.0)
i=1

n
ay ~ || Pa,(@2.).

i=1

n
of ~ ] Pv@10).
i=1

n
ai ~ [ Pa(ar.
i=1

The transmitted sequences for the confidential message w; and
the associated random message w; are determined based on
C, such that

xi (w1, wh) = of (w1) + af (0}),

x5 (w2, wy) = v5(w2) + af (w)),
which moreover satisfy the average power constraints:
S (aki +vki)* <nP fork=1,2.

We present the proof as a continuation of the proof for
Theorem 1. Directly applying Theorem 1 and Claim 1, when

Ri+ R} < I(Vi; Y1) (19)
Ry + R < 1(Va; Y2) (20)
and
R} > I(Vi; Y2|V2) 2D
R, > 1(Va; Y1|V1) (22)

there exists at least one sequence of codebooks {C,} such that
the reliability condition holds, and furthermore 3 > 0, N > 0
such that Vn > N the following inequality holds:

d(PWiPI_”f” PWYn) < eina.
J R

Note that we use an overline to represent the output based on
that particular codebook sequence {Cp}.
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1) Proof of Strong Secrecy: In the following, we will
show that based on that particular chosen codebook sequence,
the strong secrecy constraints are satisfied, e.g., considering
i=2and j=1

Tim. (D(Pyln Py, | Py w))

= lim Ey, (h(l?l") — h(YﬁWz = wz)) =0.
n—oo

lim 1(Wa, Y] =
n—0o0

It suffices to show that for any wy € Wh, h(?ln) — h(?{lle =
wy) decays exponentially fast with n.

Define the message set W = W; x W| x W, x W, and
Wi = Wi x W, x Wj. The probability distribution of ¥}, for
any Borel measurable set B, C R", is given by

>

(w1,wz,w},whH)eWVW

7r (Bn) = |W|

Pynxnxs (Bulaj (w1) + v (w)), a3 (w2) +05 (w))).

For Gaussian channels, the transition probability distribution
Pyn xnxn is absolutely continuous with respect to Lebesgue
measure. Henceforth, Pj n(B,,) is also absolutely continuous
with respect to Lebesgue measure. Therefore, its density
function exists which is given by

Py (")

ZI—VIVIZ

(w1, w2,w},w)eW

por (" = (a0 -+ 0 wh) = o (@) + 5 i) )

:ﬁz

(w1, w2, w0}, W))W

1 n
=W > []rz0i —x1i = prx2).

(w1, w2,w],wh)eWW i=1

pzn(yn— xf (wi, w)—p1 x5 (wa, w/z))

where pz ~ N(0,1). Similarly, for the distribution of
PYI”\W2=w2 its probability density function can be written as

n
> JlpzGi—xii—pixi).

(w1, w],w))eWH i=l1

Pyn "=
Y Wa=w> |W |

The indices w1, wy, w] and w) are omitted in x;; and xp;
without ambiguity.

In what follows, we will define a measurable set 7, C R”",
with A1(7,) < oo for finite n. The motivation is to focus on
this measurable set such that the desired mutual information
1 (W, Y") and variation distance d (P, Pyn, Py, Yn) are con-
centrated on it.

For every i € [1: n], let

T = my%x {|Dl,i(w1) +ay,i ()| + pilva,i(w2) + az’i(wé)l}
= my%x {|x1,,‘| + p1 |X2,i|} .

By the average power constraint, it is worth noting that
T' < /2nP. Because Wy U wy < W, we have T' >
maxyy;, {|x1,,-| ~+ pi |xz,,-|} given W = ws.

5119

Let 7% = {y cye (=T —2n, T +«/2n)}. Define
T, = {y":yi eTi Viell :n]},

which is an n-dimensional Borel measurable set. Use 77 and
7, to represent the complement of 7° and 7,, respectively.
The properties regarding the partition presented in Lemma 4
will be used in the later proof.

Lemma 4: Let €, = e ". Then the following properties
hold:

1) Given xj;,x2;, and pi, define FE =
{y — X1, —p1 x2,i 1 Vy € ’Ti}. Then Pz (E) < €,, where Z

is normally distributed.
2) Py n(T) > (1 —¢,)" and Py " Wy= w, (Tn) = (1 — &)™
3) Py n(T) <1—(1—¢)" < ney, and Py " Wy= 102(771)
1—(1—en) < ne,.
4) For y" € 7,, the probability density functions Pyn ™" =

—tn? 2
(J%—”)”e " and py{z‘wzzwz(y”) > (J%—”)”e M where t =
VP + V2)? and P represent the average power constraint.

5) For y" € T, the probability density functions satisfy

1 n
(v < e

Py = (m)

1 n
B n —n
pYI”|W2=u)2(y ) S ( /—27[) e .

Proof: The proof is found in Appendix E. [ |
For clarity of presentation, we define the following notation.
For a continuous distribution P, and a Borel measurable set
B C R, let h(P, B) represent the part of the differential
entropy 2(P) on B, if it exists; i.e.,

h(P, B) :=/B—p(x) log p(x)dx.

Let hp(P) represent the differential entropy for the distri-
bution obtained by truncating P on B; i.e.,

hs(P) :/ _p@ P
g P(B) ~P (B)
dp(P, Q) represents the variational distance between the
pair of distributions by truncating P and Q on B:
PE) Q)

AP, Q) =2 8P | 5y ~ 58

_ / px)  gqx) d
= — X,
B P(B) Q(B)
in which the last equality holds if and only if the density
functions exist.

Based on the partition of 7, and 7,,, we can divide R” into
two disjoint parts. We have

(YT — h(Y]'|Wa = w))
= [ (~prOM0eps 07

n

+p)_’|”|W2=wz(yn) 10gp}-,1n|W2:w2(y”)) dy"

+ /7 (—P)‘/{l ") log pyn (V")
T,
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h(PY’laq;l) h(P 1 Wo=ws> n)

s (T)/ PO e D o e (T tog Py (T
o Pyn(T) Pyn(T) 1 in) 108 Fyplin

_ P?"IW _ (T pY] \W2=wz(y ) o p}_']"\W2=wz(y )
' Wa=w, 1wy=wy (Tn) " Pynjyy—i, (T)
= Ppn(T)ht,(Pyn) = Pynjw,—, (T, (Pyn | W2 = w2)
— Pyu(Ty) log Pyn(Ty) + Py (T log Py,

T Psn dy +P n|W2 IUZ(T)IOgP ”\W2 11)2(771)

[Wa=w> [Wa=w> (7n)

= (h'];l (P)_/{‘l) — h’];l (P)‘/{llwz:wz)) Pyn (T) +h’]’ (PY”\WQ wZ)/ pyl (y ) pY”‘WQ w (yn) dy

- P}‘/l'l (7,) log P}7" (7,) + P}71n|W2=w2 (7,) log PY1”|W2=w2 (7n)
< (h1,(Pr) = h7, (Prpyuamann) ) Prp () + 17, (P )P Pipicasy)
+2(1 —e ™" log(l —e™™)" (23)
<hg, (P_ln) hz (Py " Wy= wz) + e " |hT (P " Wy= wy)l +2(1 = e ™M"log(l —e™ )" (24)
+ Py wa=w, (y™) log Pymwy=u, (y")) dy" P}71”|W2=w2 (7)) = (1 —e™™)", this leads to
= h(P'In,'E) - h(}:{’\wz=wz’771) +h(P—,”’771) —P-ln(T)log P-n(T)
= Py wy=uy» Tn)- + Py, (T 108 Py, oy, (T0)
Taking the limit in n, we have = f(Py l”(T ) — f(P_l”IWz:wz (7))
_ - < 2(1 —e™"log(l —e™™)".
lim (h(Y]) — h(Y]'|W2 = w2)) =X ) log( )
n—o00
(24), as shown at the top of this page follows from the facts
< lim sup (1 CPrp ) = b Py T) that Py, (Z,) < 1, and d(Pyy. Py y,_,,,) < ¢ In (24),
+ lim sup (h(P VT — h(P_”|W2:u)2’ 7n)) 25) at first we have |h, (PYn|W2 wz)l ounded as follows:
n—00 1
— n
Based on the following lemma, it is sufficient to show that the hr (Pyn ) < —minlo M
. LAY Way=wy) = mlog P- T
above limit goes to 0. y Y Wa= wz( n)
Lemma 5: For distributions P)‘/ln and P)-,ln‘Wsz, and sets ( Ye —tn?
7, and 7, as defined, we have < —log L
Po oy (T)
_ T
2) limsup (h(Pyn, Tn) — h(Pyn yy— i, ’Z;,)) <0. — 0>
n—00 1 2 2 - (n )

Proof of Lemma 5.1: We start the proof with the inequalities  On the other hand,
shown at the top of the page, which follow from the definition
of differential entropy. (23), as shown at the top of this page  hz (P; " Wy= wy)
follows from the following facts. First, 2
> Piiyey (1)

_ ny __ - n n
~/Z, le”(y ) pYIHIWz:wz(y )dy -(— n;anlxlog(p}‘,lnlwz_wz(y”))+1Og(P}71nWz_wz('];,)))

2
= /T ’p)_/'” 0" - p}_/1n|W2=w2 O] dy" = Pl?]”\szwz (Tn)
n 1 )
= /Rn ‘p?{l(yn) — PEpWamn (M| dy" . (— log(—m) + log(P " Wy=ws (7;,))))

- d(P)_/;l, PYF|W2=U)2)' = O(I’l),

Secondly, let f(p) := —plogp, which is a non- which follows from the fact that max » log(p)-,nm,2 w0, (V") =

negative monotonically decreasing function in p when log( )", where the maximum value is achieved when all
p — 17. Because P-In(’Z;) > (1 — ™" and the(i ussian density peaks overlap.
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Therefore, |7, (Pyny,—,,)| = O(n?). Substituting
into (24), and taking the lim sup of both sides, we have

lim sup (h(PYn, 7)) — h(PYI”\Wsz”];l))

n— o0

< lim sup (hT (Pyn) hT, (Pyln‘Wsz)) . (26)

n—o0

The importance of the above steps is that we have bounded
the partial integral on the left hand side of (26) from
above by the difference of the differential entropy of the
pair of truncated distributions on the partition 7,. In what
follows, we focus on the differential entropy terms on the
partition 7,, which has finite measure for any n < oo.
Up to this point, the following claim will directly lead to
Lemma 5.1.

Claim 2:

lim sup (hT (Pyn) hT, (Pyln‘Wsz)) <0.

n—o0o

In order to show the above claim, the following property
of the variational distance of the same pair of truncated
distributions is used. The key observation is that it decays
to zero exponentially fast with n.

Claim 3: There exists an N > 0 and f > 0 such that for
all n > N, the following holds:

d’]'(PYn,P)L )Seinﬂ.

[Wa=w>

Proof of Claim 3:

d7, (Pgn Pynjy,—u,)
Py (") _ Pryiwa= w, )

- /T P‘;L(Tn) Pir iy (Tn)
1 Pyn (Z)Py;l\wzzwz ")

/T” m Py, =, (Tn)

% /7;’ ’P}_’l"(yn) - p?{lle:wz(yn)’ dy"

1 Py ()

(1- )
PY_'1”|Wz:u)z (7;’)

P_fl(q;’)
(aCPry Py sz

)

n

Py (V") =

n

dy

IA

+

- n n
. Py wy=w, (V)Y

= =
Py (Tn)

P)?]’l‘wzzwz (7;!) -
1
Py (Tn)

<e

+

yn
1

=

(e—na + ne—n)

, for some f > 0. 27

(27) follows from the fact that for some a > 0, there exist an
N such that for all n > N
d(Pyn, Pynyy,—y,) < e ", (28)

based on resolvability. And

IA

(1—e™)" < Pp(T) < 1
(1= e™)" < Ppupyyeyy(T) < 1

A
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thus
| Py (Ty) —

—n)n S ne—}’l

Pil'l\wzzwz(’];m <1-(-e

by Lemma 4.3. The proof of Claim 3 is complete.

Proof of Claim 2: By the reverse Pinsker’s inequality in
Lemma 3, because Pyn and PY{’IWz w, are finite everywhere,
there exists some constant ¢ > 0, such that

h’]’;l (P)_/{‘l) —_ h’]’;l (P)‘/{llwzzwz)
< ndz,(Pyn, Pynjy,—y,)

M7,
-{ log (7) +nlogc
dT (Pyn, P nle U)Z)

< ne " 1og(A(Ty)) — ne P log(e ™) + ne=*" log ¢
= ne " 1og(0(n?)) — ne "’ log(e ™) + n*e " logc
= 0(n’logne™"").
Taking the limsup of both sides, we have

lim sup, _ o, (hT (Pgy) = h, (Pyy wz)) <o0. o
The proof of Lemma 5.1 is concluded after Claim 2. W
Proof of Lemma 5.2: In order to show that

lim sup (h(P 0 ) = h Py ,,)) (29)
n—o0
it suffices to show that limsup,_, . h(PYn,Z,) = 0 and

=0.

lim sup,,_, ’h(P " Wy= wz,'];)

For y" € 7,, the probability density function can be
bounded as follows. Let u; = x1,; + p1 x2,;, and define the
set J :={j :y; € T/}, then
Py (")

1 n
=W Z(H pz(yi — ﬂi))
w \i=l1
-miz((G)
W] W 2
( zjej(y] ﬂj)2+zi¢j(Yi _,Ui)z))
exp ,
2
1 n
< max
=m((75)

Hj)2 + Zigj()h' — i) ))
2

for y; eﬁ, and y; € T',

P

=[] rion ] Pivo).
jeJ i¢J
(30)
in which (30) follows by choosing a combination of transmit-
ted sequences, i.e., 1", which is the closest to y” with respect
to the Euclidean distance among all possible combinations in
the codebook. The last equality follows from the definition

1 (vj — 1j)* =
pi(y;) ::mexp(— ! 5 ), for y; e 7/

1 ()’i_ﬂi)2)
i(yi) == exp | — , fory; 7.
pi(yi) Nir p( > y
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As f(p) = —plogp > 0 when p — 0%, then
J . B -
h(P,-,In,’];) > 0 because pyln(y”) < (E)"e " as shown in
Lemma 4.5.
Since f(p) increases monotonically in p when p — 0%,
we have

h(Py, Ty) = /T_I’Yl" (") log pyn (Y")dy"

< /_— [Trion]] P

Tn jeJ i¢J

og [ [T pion) [T pio) | ay”

ied i¢J
=[]1r@H Y. I AT
i¢J JjeT keJ k#j

. /F —pj(yj)logp;(y;)dy;

+[Tran> 1 kT

jed i¢] k¢ J k#i
. /T piGi) og pi (i)

< Z h(Pj, T7)+ (2¢~")! z h(P;, T"
jeJ i¢J
< e ™, for some € > 0,

where the last inequality holds because
h(Pj,ﬁ) >0, as —plogp >0 when p — 0"
h(P;, TJ) = O(ne™),
h(P;, T’y = In+2me — h(P;, T7) < In+2ze,

which follow from the properties shown in Lemma 4.
Therefore, we have Ih(Pyln, T.)| < e ". Following a

similar proof, we can show that Ih(P-lnlwz:wz,TnN < e
for some y > 0.

Taking the limit,
lim sup (h(PY_'IIL, Tn) - h(P_lnlwz:wza Tn))

n—o0
< limsup‘h(PI-,n,Tn) +limsup’h(P-n|W T =o.
n—00 ! n—00 1=
The proof of Lemma 5.2 is complete. |

To conclude, based on Lemma 5 and inequality (25), for
the chosen sequence of codebooks {C,} the strong secrecy
constraint is satisfied.

2) Artificial Noise Transmission: What remains to prove
is that the actual rate region in Proposition 2 is achieved.
We present an artificial noise aided scheme to tie the same
achievable rate region with weak secrecy constraints [4]. The
strategy is to split the transmission power P into two parts,
one for transmitting the confidential message and one for
generating artificial noise. Let

Py =0 -=1)AP,
Py =1 —A)pP, and Pr o = 2P,

where A;, 4 € [0,1] for 1,2. Set U to
be an optimization operator which chooses 4; and p;.

and Py o = 11 P

i =
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Setting Py, ~ N(0, P.y) and Ps, ~ N(O, Pi4), and
calculating (19)-(22) the rate region in Proposition 2 is
established. [ ]

Remark 6: Proposition 2 is meaningful in the following
aspects:

o The generalization from discrete channels to Gaussian
channels is regardless of input distributions that gener-
ate the random codebooks. Therefore, the rate region
as shown in (12) holds for any input distributions as
factorized in Theorem 1 for Gaussian channels. The
results can be generalized to K-user (K > 2) stationary
and memoryless Gaussian interference channels directly
following a similar analysis, the achievable strong secrecy
rate region of which is given by

D= [(Rl,Rz,...,RK)eRf,Vke [1:K],

Ry <I(Vi; YilU)— max I(Vi; Yi|Vir: , U
<1 (Vi YilU) A Vi Y IVik )]

for any input distribution

Py H Py u Px, vy,
ke[1:K]

which satisfies the additive constraint E[c(X;] <
P provided that the moment generating functions of
iv, YelVitk iU and c(Xy) exist. V[i.gp« represents the
collection of V;,Vi € [1 : K]\ k. Therefore, the strong
secrecy rate region coincides with the weak secrecy rate
region shown in [25] under mild conditions.

o The key steps of the proof of Proposition 2 essentially
investigate the relationships among divergence, differen-
tial entropy, and variational distance of a family of proba-
bility distributions. The principle is to find a proper subset
of the output alphabets such that the desired measures are
concentrated on it. Together with the proposed reverse
Pinsker’s inequality in Lemma 3, the generalization from
discrete alphabets to continuous alphabets is completely
different from the quantization method in [36].

VI. CONCLUSION

The problem of transmitting confidential messages in inter-
ference channels has been studied under strong secrecy con-
straints. Starting from generalizing the channel resolvability
theory to arbitrary interference channels, we have derived
the achievable secrecy rate region for the stationary and
memoryless interference channel with additive cost functions.
It is interesting to note that the derived secrecy rate region
for the discrete memoryless channel remains the same as the
best known region under weak secrecy constraints. However,
the optimality of it has not yet been proved. Note that
we have used the information-spectrum method to analyze
secrecy in the considered network, and strong secrecy has been
guaranteed by penalizing the confidential message a binning
rate above the resolution of its eavesdropper’s channel.

The presented theoretical framework of analyzing strong
secrecy for interference channels contains two major steps.
The first step is based on the resolvability theory that by
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sampling the input process with a rate higher than the channel
resolution the output statistics is well approximated in terms
of the variational distance or normalized divergence. A direct
application of the resolvability result is that it implies the
achievable rate region for weak secrecy of arbitrary interfer-
ence channels with confidential messages. The second step has
been focused on the generalization from the resolvability result
to strong secrecy via exploiting the relationship between vari-
ational distance and mutual information. A reverse direction
of Pinsker’s inequality has been proposed in order to bound
the mutual information, in other words, the divergence of two
probability distributions, from above as a function of the vari-
ational distance between them. The proposed reverse Pinsker’s
inequality together with a truncation method are leveraged in
the study of Gaussian interference channels. It is worth noting
that the achievable rate region for strong secrecy also ties
with the best known weak secrecy rate region for Gaussian
interference channels. Our study has provided further evidence
that the channel resolvability framework is a powerful tool for
strong secrecy analysis in multiuser networks.

APPENDIX A
PRELIMINARY LEMMAS

Lemma 6 (Triangle Inequality for Variational Distance):
Let X, X» and X3 be random variables defined on the same
alphabet set X', with different distributions respectively. The
following inequalities hold:

d(Px,, Px,) < d(Px,, Px,) +d(Px,, Px,),
d(Px,, Px,) < d(Px, Px;, Px,x;) = Ex; [d(Px,, Px,ix;)] .

Lemma 7 (Data-processing Inequality for Variational Dis-
tance): Let X1 and X, be random variables defined on the
alphabet set X'. And let Z; and Z, be two random variables
defined on the set Z, which are defined as follows: V(z, x) €
Zx X

Pz x:(z,x) = Pzix(zlx) Px;(x), i =1,2.

Then, d(Pz,, Pz,) < d(Px,, Px,).
Lemma 8 (Han-Verdii [16]): Let P and Q be two distribu-
tions defined on the same sample space. Then for every u > 0,

/,l >
0(X) }
where the random variable X is distributed according to P.
Lemma 9 (Markov Inequality): If X is any non-negative
integrable random variable and a > 0, then
E[X]
pat
Lemma 10 (Chernoff Inequality): Let Xi, X2,...X, be
independently and identically generated according to Py.

Assuming that the moment generating function E[e’X] exists,
then, Vo > 0, there exists an «(J) > 0 such that

1 n
P [; > X > E(X) +5} < e ®Om

i=1

2
d(P, Q) < ——u +2P [log
loge

P[X >a] <
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Lemma 11 (Tail Bound for Normal Distribution): Let X ~
N(0, 1). Then the following upper bound on the tail proba-
bility is satisfied:

exp(—a*/2)

P[X
[X > a] < s

APPENDIX B
PROOF OF LEMMA 1

In this section, we will present a detailed proof of Lemma 1
given the codebook generation method presented therein. The
proof consists of two parts: reliability and vanishing variational
distance.

Reliability: Let [W; W/

T = @590

1,
;lX;IYi”\U’l(x;Z» yiu") = IX;; Y;[U) — y }

= 2ndXi:YilU-27) We have

based on the definition of T "
Define two types of error events as follows: based on the
sent messages pair (w;, w}),

& = (", x] (wi, w)), y') ¢ T}
& = (", x (i, ), y') € T, for (ivi, d}) # (wi, w])}.

We have the error probability P{" < P[£] + P[&] by the
union bound. By the definition of I(X;; Y;|U), it is clear that
lim, 00 P[£1] = 0. Because the message pair (w,-,w;) is
chosen uniformly, it is sufficient to consider only the case
(w;, w;) = (1, 1). Let x!' represent the sequence correspond-
ing to (;, ) # (1, 1). For the event &, we have

P&]

< IR [, 57 @, ). 57) € T,
(u”,x}’,y?)e?’y(’"i)
— on(AX;;Y;[U)-2y)

>

| (n)
(e T

I(X;; Y |U)—2
— X Yi[U)=2y) ngyinun(xl(l’yin’un)

Pynjyn (vi'1u") Pxrjyn (x}' |u”™) Pyn (u™ )

(3D
< n(I(Xi;Yi[U)=2y)

(wn 2,y e
+ Py (' |u™) Pyn (u™)

—n
<27,

Py xnyn (37 1x7', u)2 XX =)

(32)

where (31) follows from the fact that y' is independent of x;'
given u" for the unsent codewords, and (32) follows from the
definition of 7;(") Therefore, as n — oo, P( " tends to zero.
We note that this result is a conditioned version of Feinstein’s

Lemma [37].
Consequently, we can conclude that R; + R =
I(X;; Y;]U) — 2y is achieved for the reliability constraint.
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Variational Distance for Output Distributions: Let {Cp},eN
represent a sequence of codes randomly generated according
to the codebook generation method presented above:

Co = {W", ¢! (wi, w)) : V(wi, w) € Wi x W], i =1,2},

where ¢! € AX'. In order to identify the channel input and
output when using a codeword from C,, we represent the
corresponding channel input and output variables as X ¢ and
Yi”, _i = 1,2, respectively, and the time sharing variables
as U". Based on the codebook C,, the joint probability
P}71n 73RN KA T Wy W) (on its support) can be factored as follows,
for (u”", ¢, c5) € Cy:

= ‘{In(yll/l’ y3|x1119-x£l)P_’ll|U"W1 (c?|una wl)
Pinjgw, (2" w2) P (") Py wy (w1, w2)
1
= Pw,w, (w1, w2
WG 2 2 Pl o)
wieW) wyeW,
Tn(y?a y;lc?(wl’w/l)acg(wZD w/z))

The last equality follows from the fact that given Cp,
Pg,(u") = 1 for u" e C,, and P‘;z‘U,IWi(C?|u”,wi) =
1 /
Wi 2wy Piojgnwwy (€] 1", wi, wj),
Pgmgmw,w (¢} " wi, wi) = Ucf =
1{~§ is the indicator function.

We aim to show that

lim Ec, [d(PWy;_L, PW[P-,_L)] —0, i,je{l,2)i#j. (33)
n—o00 Ly J

where

cM(w;, w})}, and

From (8), it suffices to show that (without loss of generality
setting i = 1, j =2)

lim Ec, [Ewl R30m [d(P-f‘Wl 10 Py Xgun)]] =0. (34)

n— oo

In (34), the components are presented as follows:
« the conditional output distribution based on the code Cj,

is
Piow, xgon (2101, €3, u")

n n n n
= Z P‘;\X7}?§U"W.(Y2|x1’czau , W)
xieCy

Pnigggnw, (K713, u”, w1)

= Z \P”(ygpc?,Cg)P‘?‘Unwl()C{l|un, wl)

xteCy
1 Wil
/
= 7 > W (wi, wh), )
1 /
wi=1
| Wil
- W Z PY;\X?X;U”(ySIC?(wla w/l)’cg’un)a
1 /
w;=1

where the last inequality follows because of the Markov
chain condition: U" — (X', X5) —Y;'. W" (7 |x], x} ) rep-
resents the marginal distribution defined by the channel
transition probability Py xn xx 5 |x7, x5).
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« the target distribution is
Py xnun (3 1x3, u)

= D WO, x5) Pxrxaon (6 x5, u")

n n
xfeX|

= D WO, x5 Py (] ™).

n n
x| eX]

According to Lemma 8, we have the following bound
(et u > 0):

Ec, IEwlmn [d(PY;\Wl)?gU"» Pyy

where

X,IUH)] <X 1oa,
2 loge

An = Ec, []Ew.x;z‘/n

s )|

and 172” is distributed according to P_Z”\W1=w|, Xn=ch in=un-
Considering the independence of codewords and the symmetry
of the codebook generation, we can choose w; = 1 for
simplicity. Consequently, A,, is expanded as shown at the top
of the next page.

We can represent the identification function in the following

_ _ _ Vi
PY2”\W1=101,X2=C§,U”=L¢” (YZ )

y 1
Pyrxn—en yrzun (Y3)

way:
P)‘/n Wi=1 XN =ch l_/”= n(yg)
1]10g 3 IWi=1,X5=c}, un -
Pynxn=cn un=un (¥3)
Wil .
— 110 1 ~ ORI (1, 0), ¢5) -
Wy = Pryixyun(yley, u")
A .
1 Y Pypixnxnyn (3 1ef (1, 0), ¢, u)
=1 > u

loglwil Z

P Pynxnyn(yylcy, u™)

1 .

= II IW,|exp (lx';y;\xgun (c{’(l, 1), y§|cg’ un))

1
Wy

+ > exp (ix'{Yz’qng" (c?(l,i),yé’lca’,u”))
i=2

Wil

> 1+2r], (35)

where 7 = Lz_l > 0.
By substituting the identification function (35) into A,,
we can bound A, as follows:

Anf]P’|:

exp (ix'{Yz’qng"(X?, Y)'1X3, U”)) > Ti|

Wil

> exp (ix’;yg\xgun (XT(1,0), Y5 X3, U"))
i=2

1
Wil

—HP’[
2%
> 1+r:|,

where X7 and Yj' are related through the channel ¥”, and
{X1(1,i),Y3} (i € {2,...,W]]}) are independent. By the
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_ _ _ Vi
PY2”|W|=1,X’21=c§,U”=u” (YZ)
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An = EC}Z [PY§|W|=1,)_(§=CQ,U”=M” |:10g

u”EL{” C”EX"
Z Py \wy=1, % =ct, On=un %)
V3 €Vy

L PY;\WI:L)‘(;:C;,UH:W (»2)
. Og
Py xn—cr ynzun (¥3)

Wil
1
= |W/ Z Z PU)L(M Z PX’21|U”(c£l|un)
—1uteln CgEXZH
AADEX! 1,V )eX]

- — — n
L Pyniw =1, %y =cs On=un ()
. og —
Py xa—cr ynzun (¥3)

= Z Pyn(u™) Z PXS\U”(CSIMH)

n n n n
u"eld cheX)

Pypixa=cs un=un (Y3)
2%

= > Pp@") D Pon(l [ D

wi=1cf(1,w)eX]

>ﬂ]

Py (e (1, wi)|u)

> Pxnue(cf(1, D"

(11X

Pynon (] (1, VDI D ¥ (051} (1, wh), ¢3)

>ﬂ]

2

I(1,2)eX]

1€y

2

LW heX!

Pynjyn (i (1, VD ™)

> D Pxiyppxaon (€f(1L 1), y3 e, u™)

A1, D)eXn yse)y

-1 [log

— — _ n
Py;\wlzl,x’zlzcg,m:u” (»2)

n
PY2”|X’21=cg,U”=u” (yz)

>#].

direct resolvability theorem in [16], the above two probabilities
approach zero if

A onl(X1:Y2|X2,U)+ny

for arbitrary y > 0, which implies that R, =
I(X1; Y2]X5, U)+y . Consequently, A, tends to zero asn — 0
which guarantees that the sufficient condition (34) for the
vanishing variational distance holds.

_ By a similar method, we can show that R, >
I(X5; Y1]X1,U) + y to make the target variational distance
vanish as n — oo. Combining the rate constraints for reliabil-
ity and output distribution, we conclude that (4) and (5) can
be achieved.

APPENDIX C
PROOF OF PROPOSITION 1
In this section, we provide the proof that if
lim,, 0o d( Py, yn, Py; Pyln) = 0, then lim,_ %

J
D(Py, Y"HPW Py") =0.

Let P and Q be two distributions defined on the same
measurable space (A, F), with P absolutely continuous with
respect to Q, i.e., P << Q. Let € > 0 be an arbitrary positive
number. Define a set E,

€
> .
1+€

E = {a cA: ’1 —(Z—g(a))*‘

According to the definition, we have

dP dP
d(P,Q)=/A @—1’&2/ ’dQ
dP dP
= - dP—’ —yHap
lao ’ 0’ /' T '
= TP )2 m”E ) 30

where the last inequality follows from the definition
dPpP
E* = {a eA: log(@(a)) > e] ,

and the fact that E* C E. Let (P,, Q) represent the sequence
of a pair of distributions for n € N. We therefore have the
relation that for any € > 0, if lim,— o d(Py, Q,) = 0, then
lim,—, P,(E*) = 0. Note that in the original proof of Pinsker,
the absolute continuity condition P << Q was dropped.
The idea is to split the sample space into two disjoint parts,
in one of which P << Q, and otherwise in the other. The
details of the proof are given in [19]. Overall, the relation
(36) holds in a general sense regardless of the continuity of
measures.

Let y > 0 be an arbitrary positive number. Let us write the
weak secrecy constraint as follows by dropping the subscripts
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in Wi and Y7 i # j):

1

—I(W; Y™

n
1

=E—iwyn (W, Y")1[iwyn(W,Y") < E]]

n

1
+E{—iwyn(W,Y")1[e < iwys(W,Y") <n(R+ V)]]
n

+

1
E ;iWY”(W, Y"1 [iwy»(W,Y") > n(R + )’)]]

€
-+ R+ )P [iwy(W,Y") > €]
1
+E ;iWYfl(W, Yn)l[iwyn(w, Yn) > n(R + y)]] (37)
where R = %log|W| for the message set V. Because of

(36), we know that when d(Pyyn, Py Pyn) — 0 for suffi-
ciently large n, then P [iWyn(W, Y > e] — 0. Therefore,
the second term of (37) tends to zero for sufficiently large n.
The vanishing of the third term follows by exploiting the fact
that iyyn(w, y") < log#(w) = nR for any w € W. The
desired relation of convergence is proved.

APPENDIX D
PROOF OF THEOREM 1

In this section, we present a detailed proof of Theorem 1,
which is based on the proof of Lemma 1. The key step is
to modify the codebook generation method in the proof of
Lemma 1 with the additional consideration of the additive cost
constraint. The purpose is to construct the input process such
that it satisfies additive cost constraint almost surely. Based on
the modified codebook generation, we further show that there
exists a sequence of codebooks {C,} such that the variational
distance of the targeted distributions decays exponentially with
respect to n. Henceforth, the information divergence can be
bounded according to Lemma 2 as in Remark 2.

A. Modifications in the Codebook Generation

Let 6 > 0. Fix a distribution Py on U. Fix the condi-
tional distributions Py, jy on A; x U such that E[c(X;)] <
P — ¢ for i = 1,2, respectively. Furthermore, fix the
product distributions Py»(u") = [/, Pu(ui), Pxmyn =
[T=i PxyuGerilug), and Pxngn =[5 Pxyju(x,ilus).
We construct new distributions such that the additive cost
constraint can be satisfied with probability 1. Let us define
the following sets:

1 n
Pin = [xn e X : ;Zc(x,-) < P] ,

i=1
l n
Popn = {x” e Xy —Zc(xi) < P} .
n
i=1

Due to the law of large numbers, it is clear that P[X] e
Piul — 1 and P[X] € Pp,] — 1, as n — oo. By the
Chernoff bound in Lemma 10, there exist a;(d) > 0 and
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02(0) > 0, such that

PX} € Pial>1—e 40,

P[X} € Pynl = 1 —e 20,
Note that we here assume that the moment generating func-
tions for ¢(X) and c(X3) exist. Define the following set:

a1
Go = {u" €U : Py [} & Pralu”] < e

a9 (0)
and ]P)XE’\U”:u” [)Cg & 'Pz,n|un] < e_”zT}.
Then we have
P[U" & Gu] = Pyn(Gy,)
A0
= Pyn ({Px’ﬂw[xf g Pialu"]l > e "2 }

as(9)
U {Pxgionles & Ponlul = e )

Pyn (P NP > e
vn (Pxmunlxy & Pralu"]l = e
an (0

)
+ Pyn (ng\un [x5 & Ponlu"] = 67"27)

a1 (0)

e” 2 Eun [PX’“U”[X? ¢ Pl,n|u"]]

()

+e" 2 Eyn [ng\un[xg ¢P2,n|“n]]

IA

IA

3 1O R, n%29
=" 2 PIX] ¢ Pial+e" 2 PIX; € Paal
(9) ) )
< einal2 + einal2 < Zefn%l

=1—g,,

where the second inequality follows from Markov’s inequality
as shown in Lemma 9, and a () = min{a (), a2(J)}. There-
fore, we have ¢, — 1 as n — oo.

Now let us define new random variables U™, )~(l” and 171.”
(i = 1,2) as follows. First, we construct U": choose u" € U"
according to the distribution

Pyn (u”) for u" € G,

1
P~n un — P[U"€G,]
v C {O for u™ & G,.

Then, we construct )Nfl” as follows, for u" € G, such that
1 ny,,n n X
P () = | PORFE P Pxpion O 1), Ve € P
xnon \Xi =
AU 0, Vx!' & Py, and x! € X7

Let us construct the input based on the process f(f We have
]P’[% Zl'-’zl c()~(,-) < P] = 1. Furthermore, the following
inequalities hold for all (x]', u") € &7 x Gy:

Pn n
Pg.(u") < i) (38)
&n
Px{l‘Un(anun)
Pin\in ") < ———— (39

n
Consequently, the output distribution Py, is constructed
according to the input. For all (y{,yy,x{,x5,u") € V! x
yg X Xl” X Xz” x G,, we have

= P[/n (Mn)P”ﬂgn(X?Wn)P”gmn(x§|un)‘f’n()’?a y;|x111, xg)
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TABLE I
NOTATION USED IN THE PROOF OF THEOREM 1

Notation | Meaning

X the basis distribution
X the newly constructed distribution based on X satisfying additive cost constraints almost surely
X the specific input induced by the chosen codebook based on X

Based on the newly constructed distributions, we repeat the
steps in the proof of Lemma 1. The rates are specified as
follows: for any y > 0,i # j and i, j € {I, 2},

Ri = I1(X;; Yi|U) — 1(X;; Yj|X;,U) =3y,
Rl = I(Xi; Yj|X;,U) + 7.

Before going further, let us summarize the notation that will
be used to represent different distributions, using the variable
X as an example in Table I.

B. Reliability

Following the standard method in the proof of Lemma 1 (the
conditional version of Feinstein’s Lemma), the achievable rate
region R; 4+ R < I(X;: Y;|U) — 2y guarantees the reliability
condition. Moreover, as shown in [30] the following relation
exists: I(X;; Y;|U) > I(X;; Y;|U). Therefore, the choice of
Ri+R! = I(X;; Y;|U)—2y satisfies the reliability constraints.

C. Strong Secrecy

Strong secrecy is shown by the establishment of Claim 1
which suffices if the following lemma holds.

Lemma 12 (Exponentially Decay): For any y > 0,
dN > 0 and a > O such that for all n > N

Ec, [d(PWi};;;, Py, Py/f;)] <e ™, i#]j

if Rz{ > 1(X;; YilX;,U)y+y.

Based on the above lemma, we shall use the upper bound in
Lemma 2 to show that for sufficiently large n, 34 > 0, such
that there exists at least a sequence of codebooks that satisfies
the additive constraint and induces

D(Py, yull Pw, Pgn) < e if Rl = I(X;; Yj|X;,U) +
for i, j € 1{1,2} and i # j. Strong secrecy constraints have
been shown to hold. Combining the reliability and strong
secrecy constraints, it is shown that the secrecy rate region
in (12) is achieved.

Proof of Lemma 12: Let us consider the case i = 1 and
j=2.Lety >0, and recall that [W;| = 2"/ (X1:121X2.U)+ny
The proof follows a similar method given in [13]. Note that
from (8), we have

Ec, [d(Py, 73> Pwi Pyy)]
< 2Ec» [d(P‘zqu.)‘(g[/"’ P?;\f(gc"/")]
< 2Ec, [d(P-z,W1 gaim> Pryixgum)

+d(Pyp xnun, P@g;m)]
=N+,

where T1 = 2Ec, [d(sz’l\Wl)_(g[/”’PY2"|X§'U”)]’ and T, =

2Ec, [d(Pyz’qng", P@U}ggn)]-
For the first term 77, by Lemma 8 we have, for every u > 0

2u
Ec, [d(Piz”\Wlngn, PY§|XgUn)] =< loge +2A,

where

I . n omn
An < P[Wexp (l)?alyznl)?lzll}n(xn,Y2n|Xn,Un)) > T}

Wil
—HP’[IW“ > exp (i)},ll);zn‘ggm(X’f(l,i), Y§|X§’,U"))
i=2
> 1+ r:|,
for 1 = % Recalling that [Wj| = 2l (X1: 12| X0,U)+ny |

the first term in A, is bounded as follows: Ja, > 0, such
that

1 ) U
P[Wexp (127};;‘2,2,0”(X”,Y2"|X5’, Un)) > ri|
1

1

<
— 3
&n

1,
P |:;lx’;y2"|xgun (X1, Y7 1X3,U")
logz
> (X1 ¥2| X2, U) + (y + Tg)}

< e "%

(40)

where the first inequality follows from factoring the distribu-
tion as follows:

P)"/g)"(zll;(g[/n (yg, -x;la -xg’ un)
< Pyrixpxa (33 1x7, x3)
Pyyjon (e ") Pyyn (31u") Pyn (u")
&n En &n
1

n n n n
= ;Py;quxgun(yz,xl Xy, "),
n

with the inequality following from the distributions’ con-
struction (38) and (39). Furthermore (40) follows from
the Chernoff inequality based on the assumption that the
moment generating function of ixnyn xryn (1, y5lxs, u)
exists.

For the second term in A,, we need to note that X T(1,i)is
independent of 1?2” given )?5’, U". Specifically, the distribution
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can be factored as
P (") Py g O 10°) Prggy g (3 107) Py . (02 107, 47)

1
= Shor (@) Pxrjgn (e [u™) Py jon (e [u™)
n
D Prpannon 03 {13, u”)
AneAT

1
= 8_3PU” (") Py jyn (x [u™) Py jon (x3 ™)
n

2 Pipixyrg 02151 23) Py (57 ")
AeXn

IA

1
b (") Py jyn (x [u") Py jon (x3 ™)
n

D WO Ix] L x5 Py (cF [u™)

XreXy

1
= 8—4PU" (") Py jyn (' [u™) Py jon (x5 ™)
n
< Pypixnyn (y3 1xg, u™)
1
= %”Y;’X’{X%’U” (yy, 1, x3,u").

(41)

Therefore, for the second term in A,, we bound it in the
following way:

Wil
. (yn N ynyyn yn
P[W Zzl exp (igy gy (X1 (1 1), 188, 0™)) > l+ri|
i=
1

== 2

n n n n
: ﬂy;x';xgun(yz,XpXQ,M )
"y U

Wil
l . .
1[|W/| ZCXP(IX';YZ"ngn(x{’(l,l),y§’|x§,u”))>1+r]
=
(42)
1 T1
= 8—4P|:;lx;’y2”|xgm(x?,y;|x§,un)
n
> I(X1; V2| X0, U) + y}
1 . n n n n
+ 128419 ;lx';yg\xg,un(xl,hlxgau )
n
i
e "2
> 11X, )+ 2]+ Sy 3)
2 ToE,
1 1 1 y
< _ ,nay —nay -n% 44
B 836 * 12836 * 12836 (44)

(42) comes from substituting (41) into the probability distri-
bution. (43) follows from the proof given by Han and Verdu
in the direct resolvability theorem [16], and (44) follows from
the Chernoff inequality.

Based on (40) and (44), we can show that there exists a;, >
0 such that when » is sufficiently large

T] = ZEC,, I:d(P'znlwl}'(rzz[}n, PY;\XSU”)] f e*nan. (45)
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To bound 7>, we have the following inequalities:

d(PY£’|X’21=x§,U”=u”a P)72n|)~(§':x§',[]ﬂ:un)

< d(Pxnxnyn xi=xi,un=u» P"g)"(';c"/np?g:xg,m:u") (46)
= d(PX'f\U”=u”> Pf(’f\[/”:u”)
= Sup Z ’Pxflllun:un [B] - P&llllljn:un [B]’
ASX Be(A, Ac)
= sup Z PX?|U”=L¢" [B n Pl,n]
ASX Be( A, Acy
+PX'|'|U”=L¢" (BN Plc,n] - P)?’f\[/":u” (BN Pl’”]
1
< sup Z (Px'llyn=un [BN Pl,n] (_ - 1)
ACXT Be( A, Ac) .
+ IP>X’11|U”=u” (BN Pf,n]) @7)
1 —np
S{—-1)+d—g) e, (48)
&n

for some B, > 0. (46) follows by the data processing
inequality in Lemma 7, and (47) follows by the distribution
construction (39).

Combining the bounds on 77 and 7>, ie., (45)
and (48), we conclude that 3 > O such that for suffi-
ciently large n, Ec,[d(Pw, P,;;, Pwlyzn)] < e, if R} >
[(X1; V2| X2, U) + 7. L

APPENDIX E
PROOF OF LEMMA 4

In this section, we present the proof of the properties for
the partition 7, and 7, as shown in Lemma 4.
1) For y € T', where

Ti= {y 1y € (—o0, —T' —V2nU[T! +v2n,oo)},
Vx{ € Cp, x5 € Cy, we have
|y — x1,i — p1x2,il = /2n,

because |x1,; + p1 x2,i| < T!. For Z ~ N(0, 1), by the tail
bound on the Gaussian distribution, we have

Py ({y —X1,i — p1 X2, Y€ F})

= Pz((—00, —/2n] U [V/2n, 00)) < \/ge

—n
—n

<e
n

2) Let fz(y) = minje[i:n) pz(y — x1,i — p1 x2,) for any
y € 7'. Then we have,

Py (Ty)
1 n

- / W z HPZ(yi —x1,; — p1 x2,))dy"
K (w1, wa,w},wh)eW i=1

1 n
= Wi >, /T [1rzGi = x1i = p1 x2.0)dy"

(w1, w2,w},wh)eW " " i=l
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> ﬁ > /T [ r2G0dy"

(w1,wz,w},wh)eVW ™ " i=l

[T/, ety

i=1

_ n
> (1 — max Py ({y — X1 —p1 X2,y € Ti}))
ie[l:n]
>(1- En)n-

The last inequality holds due to 7). A similar argument holds
for P-{,‘szwz (7). o

3) From 2), it is clear that P)-,]n(Tn) < 1-({0-¢e)".
The second inequality, known as Bernoulli’s inequality, can
be proved by induction.

4) This follows by the definition of 7,,. For y; € T°,
. 1
|y —x1i — pixai| < 2T +v2n = VP +v2)n2.

Substituting this bound into Py (y™) and Py Wy=w, (y™) for
y" € 7,, we obtain the desired result:

I 2
_ n s —tn
Py ") = (@) e,

1 " 2
_ n . —tn
pY{l‘WQ:wz(y ) 2 (\/E) e >
where t = 2+/ P + ﬁ)z.

5) For any y" € 7,, there exists at least one i such that
yi € T', so that following the definition for any x{ and xJ €
C}’Z’

|yi —x1,i — p1x2,il = ~/2n,
because |x1,; + p1 x2,i/| < T, Therefore, the density function

pz(yi—x1i—p1 x2.) < \/% exp (—n),Vy; € Ti, Substituting

this inequality to pyr (y™), we have the claim directly

1 n
w2 (o)
1 n
—— e_”.
(«/27r)
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