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Abstract—This paper studies a two-user state-dependent Gaus-
sian multiple-access channel with state noncausally known at
one encoder. Two new outer bounds on the capacity region are
derived, which improve uniformly over the best known (genie-
aided) outer bound. The two corner points of the capacity region
as well as the sum rate capacity are established, and it is shown
that a single-letter solution is adequate to achieve both the
corner points and the sum rate capacity. Furthermore, the full
capacity region is characterized in situations in which the sum
rate capacity is equal to the capacity of the helper problem. The
proof exploits the optimal-transportation idea of Polyanskiy and
Wu (which was used previously to establish an outer bound on
the capacity region of the interference channel) and the worst-
case Gaussian noise result for the case in which the input and
the noise are dependent.

I. INTRODUCTION

We study a two-user state-dependent Gaussian multiple-

access channel (MAC) with state noncausally known at one

encoder (see Fig. 1). The channel input-output relationship for

a single channel use is given by

Y = X1 +X2 + S + Z (1)

where Z ∼ N (0, 1) denotes the additive white Gaussian

noise, and X1 and X2 are the channel inputs from two users,

which are subject to (average) power constraints P1 and P2,

respectively. The state S ∼ N (0, Q) is known noncausally at

encoder 1 (state-cognitive user), but is not known at encoder 2

(non-cognitive user) nor at the decoder. This channel model

generalizes Costa’s dirty-paper channel [1] to the multiple-

access setting, and is also known as “dirty MAC” or “MAC

with a single dirty user” [2].

Although the capacity region of the dirty MAC described

in (1) has been studied extensively in the literature [2]–

[4], no single-letter expression for the capacity region is

available to date. Kotagiri and Laneman [3] derived an inner

bound on the capacity region using a generalized dirty paper

coding scheme at the cognitive encoder, which allows arbitrary

correlation between the input X1 and the state S. Philosof

et al. [2] showed that the same rate region can be achieved

using lattice-based transmission. In general, it is not clear
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Figure 1. Gaussian MAC with additive Gaussian state available noncausally
at one encoder.

whether a single-letter solution (i.e., random coding/random

binning using independent and identically distributed (i.i.d.)

copies of some scalar distribution) is optimal for the dirty

MAC (1). However, as [2] and [4] demonstrated, a single-

letter solution is suboptimal for the doubly-dirty MAC, in

which the output is corrupted by two states, each known at

one encoder noncausally. In this case, (linear) structured lattice

coding outperforms the best known single-letter solution.

On the converse side, all existing outer bounds are obtained

by assuming that a genie provides auxiliary information to

the encoders/decoder. For example, by revealing the state to

the decoder, one obtains an outer bound given by the capa-

city region of the Gaussian MAC without state dependence.

Somekh-Baruch et al. [5] considered the setup in which the

cognitive encoder knows the message of the non-cognitive

encoder (also known as the dirty MAC with degraded message

sets), and derived the exact capacity region. The resulting

region is tighter than the trivial outer bound if the cognitive

encoder’s rate is above a threshold or if the state power Q is

large. In [6], Zaidi et al. considered the case in which the non-

cognitive encoder knows the message of the cognitive encoder

(i.e., the roles of the two encoders are reversed), and derived

another outer bound. To the best of our knowledge, no attempt

has been made to outer-bound the capacity region of the dirty

MAC (1) directly.

Different variants of the dirty MAC model in (1) have also

been investigated in the literature. A special case of the dirty

MAC model is the “helper problem” [7], in which the cognitive

user does not send any information, and its goal is to help the

non-cognitive user. For the helper problem, the capacity (of

the non-cognitive user) is known for a wide range of channel

parameters [8]. The authors in [9] and [10] considered the case
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in which the state is known only strictly causally or causally at

the cognitive encoder(s), and derived inner and outer bounds

on the capacity region. The capacity region of the MAC with

action-dependent states was established in Dikstein et al. [11].

Contributions: The main contributions of this paper are

the establishment of two new outer bounds on the capacity re-

gion of the dirty MAC (1). Differently from [5], [6], and [12],

we do not assume degraded message sets or causal knowledge

of the state at the non-cognitive encoder. Our bounds improve

uniformly over the best known (genie-aided) outer bound (see

Fig. 2 for a numerical example). Together with the generalized

dirty paper coding inner bound in [3], the new outer bounds

allow us to characterize the two corner points of the capacity

region as well as the sum rate capacity (note that, unlike in [2],

we do not assume Q → ∞). This implies that a single-letter

solution is adequate to achieve both the corner points and

the sum rate capacity. Furthermore, the full capacity region

is established in situations in which the sum rate capacity

coincides with the capacity of the helper problem.

The proof of our outer bounds builds on a recent tech-

nique proposed by Polyanskiy and Wu [13] that bounds the

difference of the differential entropies of two probability

distributions via their quadratic Wasserstein distance and via

Talagrand’s transportation inequality [14]. It also relies on a

generalized version of the worst-case Gaussian noise result, in

which the Gaussian input and the noise are dependent [15].

We anticipate that these techniques can be useful more broadly

for other state-dependent multiuser models, such as state-

dependent interference channels and relay channels.

II. PROBLEM SETUP AND PREVIOUS RESULTS

Consider the Gaussian MAC (1) with additive Gaussian

state noncausally known at encoder 1 depicted in Fig. 1. The

state S ∼ N (0, Q) is independent of the additive white

Gaussian noise Z ∼ N (0, 1) and of the input X2 of the

non-cognitive encoder. The state and the noise are i.i.d. over

channel uses. We assume that encoder 1 and encoder 2 must

satisfy the (average) power constraints1

n∑

i=1

E
[
X2

1,i(M1, S
n)
]
≤ nP1 (2)

n∑

i=1

E
[
X2

2,i(M2)
]
≤ nP2 (3)

where the index i denotes the channel use, and M1 and M2

denote the transmitted messages, which are independently and

uniformly distributed.

Let C(P1, P2, Q) be the capacity region of the dirty Gaus-

sian MAC (1). A single-letter characterization for C(P1, P2, Q)
is not known. The best known achievable rate region was

derived by Kotagiri and Laneman [3], and is achieved by

1Note that, the authors of [2] and [5] assumed per-codeword power
constraints, i.e., for all messages m1 and m2, the codewords xn

1
and xn

2

satisfy
∑n

i=1
x2

1,i
(m1, S

n) ≤ nP1 and
∑n

i=1
X2

2,i
(m2) ≤ nP2 almost

surely. Clearly, every outer bound for the average power constraint is also a
valid outer bound for the per-codeword power constraint.

generalized dirty paper coding. The best known outer bound

is given by the region of rate pairs (R1, R2) satisfying2

R1 ≤ 1

2
log(1 + P1(1− ρ21 − ρ2s)) (4)

R2 ≤ 1

2
log

(
1 +

P2(1− ρ21 − ρ2s)

1− ρ2s

)
(5)

R1 +R2 ≤ 1

2
log(1 + P1(1− ρ21 − ρ2s))

+
1

2
log

(
1 +

(
√
P2 + ρ1

√
P1)

2

1 + P1(1− ρ21 − ρ2s) + (
√
Q+ ρs

√
P1)2

)
(6)

R1 +R2 ≤ 1

2
log(1 + P1 + P2) (7)

for some ρ1 ∈ [0, 1] and ρs ∈ [−1, 0] that satisfy ρ21+ρ2s ≤ 1.

This outer bound is a combination of several (genie-aided)

outer bounds established in the literature:

• The bounds (4) and (6) characterize the capacity region of

the dirty MAC under the additional assumption that the

cognitive user knows the message of the non-cognitive

user [5].

• The bounds (5) and (6) form an outer bound on the

capacity region of the dirty MAC under the additional

assumption that the non-cognitive user knows the mes-

sage of the cognitive user [6].

• The bound (7) upper-bounds the sum rate of the Gaussian

MAC without state dependence.

As reviewed in Section I, the dirty MAC model includes

the helper problem as a special case. More specifically, in

the helper problem, the cognitive user does not send any

information, and its goal is to assist the non-cognitive user

by canceling the state. The capacity of the helper problem is

Chelper � max{R2 : (0, R2) ∈ C(P1, P2, Q)}. (8)

Sun et al. [8, Th. 2] recently proved that

Chelper =
1

2
log(1 + P2) (9)

provided that P1, P2, and Q satisfy the following condition.

Condition 1: There exists an α ∈ [1−
√
P1/Q, 1+

√
P1/Q]

such that

(P1 − (α− 1)2Q)2 ≥ α2Q(P2 + 1− P1 + (α− 1)2Q). (10)

In other words, if Condition 1 is satisfied, then the state

can be perfectly canceled, and the non-cognitive user achieves

the channel capacity without state dependence. Note that, to

satisfy Condition 1 it is not necessary that P1 ≥ Q (e.g., (10)

holds as long as P1 ≥ P2 + 1, regardless of the value of Q).

III. MAIN RESULTS

A. New outer bounds

The main results of this paper are new outer bounds on the

capacity region. For notational convenience, we denote

C1 �
1

2
log(1 + P1), C2 �

1

2
log(1 + P2) (11)

2In this paper, the logarithm (log) and exponential (exp) functions are taken
with respect to an arbitrary basis.
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which are the maximum achievable rates of user 1 and user 2,

respectively. Due to space constraints, we have omitted the

proofs of most results. They can be found in [16].

Theorem 1: The capacity region C(P1, P2, Q) of the dirty

MAC (1) is outer-bounded by the region with rate pairs

(R1, R2) satisfying

R2 ≤ Chelper (12)

and

R1 ≤ min
0≤δ≤1

{1

2
log

(
1 +

1 + P2 − δ

P2δ
g(R2)

)
+ f(δ)

}
(13)

where

g(R2) � exp
(
2c1

√
C2 −R2 + 2(C2 −R2)

)
− 1 (14)

with

c1 �
3
√

1 + (
√
P1 +

√
Q)2 + P2 + 4(

√
P1 +

√
Q)√

(1 + P2)/(2 log e)
(15)

and

f(δ) � max
ρ∈[−1,0]

1

2

{
log

1 + P2 + P1 +Q+ 2ρ
√
P1Q

δ + P1 +Q+ 2ρ
√
P1Q

+ log
δ + (1− ρ2)P1

1 + P2

}
. (16)

Remark 1: The objective function on the right-hand side

(RHS) of (16) is concave in ρ for every δ ∈ [0, 1].
The proof of Theorem 1 is sketched in Section IV.

The outer bound provided in Theorem 1 improves the best

known outer bound in the regime where R2 is close to C2

(provided that Chelper is also close to C2). The next theorem

provides a tighter upper bound on the sum rate than (6) and (7).

Theorem 2: The capacity region C(P1, P2, Q) of the dirty

MAC (1) is outer-bounded by the region with rate pairs

(R1, R2) satisfying

R1 ≤ 1

2
log(1 + P1(1− ρ2)) (17)

R2 ≤ Chelper (18)

R1 +R2 ≤ 1

2
log

(
1 +

P2

1 + P1 +Q+ 2ρ
√
P1Q

)

+
1

2
log(1 + P1(1− ρ2)) (19)

for some ρ ∈ [−1, 0].

B. Sum rate capacity

Let Csum be the sum rate capacity of the dirty MAC (1),

i.e.,

Csum � max{R1 +R2 : (R1, R2) ∈ C(P1, P2, Q)}. (20)

By comparing the inner bound in [3] and the outer bound (19),

we establish the sum rate capacity Csum.

Theorem 3: The sum rate capacity of the dirty MAC (1) is

Csum = max
ρ∈[−1,0]

1

2

{
log

(
1 +

P2

1 + P1 +Q+ 2ρ
√
P1Q

)

+
1

2
log(1 + P1(1− ρ2))

}
(21)

or equivalently,

Csum = C2 + f(1). (22)

The next result establishes that, if Chelper = Csum, then the

outer bound in Theorem 2 matches the inner bound in [3]. In

this case, we obtain a complete characterization of the capacity

region C(P1, P2, Q).
Corollary 4: For the dirty MAC (1), if Chelper = Csum,

then the capacity region is the set of rate pairs

R1 ≤ 1

2
log

(
1 + P1(1− ρ2)

)
(23)

R1 +R2 ≤ 1

2
log

(
1 +

P2

1 + P1 +Q+ 2ρ
√
P1Q

)

+
1

2
log(1 + P1(1− ρ2)) (24)

for some ρ ∈ [−1, 0].

C. Corner points

The bounds in Theorems 1 and 2 allow us to characterize

the corner points of the capacity region, which are defined as

C̃1(P1, P2, Q) � max{R1 : (R1, C2) ∈ C(P1, P2, Q)} (25)

C̃2(P1, P2, Q) � max{R2 : (C1, R2) ∈ C(P1, P2, Q)}. (26)

Corollary 5: For every P1, every P2, and every Q, we have

C̃2(P1, P2, Q) =
1

2
log

(
1 +

P2

1 + P1 +Q

)
. (27)

Furthermore, if P1, P2, and Q satisfy Condition 1, then

C̃1(P1, P2, Q) = f(0) (28)

where f(·) is defined in (16).

Proof: The corner point (27) follows from (17) and (19)

(with ρ = 0), and (28) follows from (13) by setting R2 = C2,

and by taking δ → 0.

A few remarks are in order.

• The bottom corner point (C1, C̃2) also follows from the

(genie-aided) outer bound in (4) and (6).

• The following three statements are equivalent [16]:

1) f(0) ≥ 0;

2) Chelper = C2;

3) The parameters P1, P2, Q satisfy Condition 1.

• In the asymptotic limit of strong state power (i.e., Q →
∞), the two corner points become

lim
Q→∞

C̃1(P1, P2, Q) =
1

2
log

P1

1 + P2
(29)

lim
Q→∞

C̃2(P1, P2, Q) = 0. (30)

For comparison, existing outer bounds in [2] and [6] only

yield the upper bound

lim
Q→∞

C̃1(P1, P2, Q) ≤ 1

2
log

1 + P1

1 + P2
. (31)
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D. Numerical results

In Fig. 2, we compare our new bounds in Theorems 1 and 2

with the inner and outer bounds reviewed in Section II for

P1 = 5, P2 = 5, and Q = 12. It is not difficult to verify

that this set of parameters satisfy Condition 1. We make the

following observations from Fig. 2.

• The top corner point of the capacity region is given by

the rate pair (1.29, 0.1).
• The outer bound in Theorem 2 matches the inner bound

when R1 ≥ 0.25 bits/ch. use.

• In the regime R1 ∈ (0.1, 0.25), there is a gap between

our outer bounds and the inner bound. This regime can

be further divided into two regimes: if R1 ∈ (0.1, 0.19),
then Theorem 1 yields a tighter upper bound on R2; if

R1 ∈ (0.19, 0.25), then the bound in Theorem 2 is tighter.

Overall, our outer bounds provide a substantial improvement

over the genie-aided outer bound in (4)–(7).

In Fig. 3, we consider another set of parameters with

P1 = 2.5, P2 = 5, and Q = 12. In this case, we have

Chelper = Csum = 1.11 bits/ch. use, and the capacity

region C(P1, P2, Q) is completely characterized by Corol-

lary 4. We observe that the boundary of the capacity region

consists of three pieces: a straight line connecting the two

points (0, Chelper) and (0.89, 0.22), a curved line connecting

(0.89, 0.22) and the bottom corner point (0.9, 0.2), and a

vertical line connecting the bottom corner point (0.9, 0.2) and

(0.9, 0).

E. Generalization to MAC with non-Gaussian state

In the proofs of Theorems 1–3, the only place where we

have used the Gaussianity of Sn is to optimize appropriate

mutual information terms over PX1|S (see, e.g., (46)). If the

state sequence Sn is non-Gaussian (but is i.i.d.), then the upper

bound (13) remains valid if f(δ) is replaced by

f̃(δ) � max
PX1|S

{
I(X1 + S;YG)− I(S;Yδ)

}
. (32)

In this case, the top corner point becomes

C̃1 = max
PX1|S

{I(X1 + S;YG)− I(X1 + S;S)} (33)

and the sum rate capacity becomes

Csum = max
PX1|SPX2

I(X1;Y |X2, S) + I(X2;Y ). (34)

Furthermore, both (21) and (34) can be achieved by treating

interference as noise for the non-cognitive user, and by using

generalized dirty paper coding for the cognitive user.

IV. SKETCH OF THE PROOF OF THEOREM 1

The upper bound (12) is straightforward. The proof of (13)

is sketched as follows. Let

R1 �
1

n
I(M1;Y

n), R2 �
1

n
I(Xn

2 ;Y
n). (35)

As explained in [13], this definition of rate agrees with the

operational definition asymptotically.

Consider two auxiliary channels

Y n
G � Xn

1 + Sn +Gn + Zn (36)

Y n
δ � Xn

1 + Sn +
√
δZn (37)

where Gn ∼ N (0, P2In) is a Gaussian vector having the

same power as Xn
2 , and δ ∈ (0, 1) is a constant. In words,

Y n
G is obtained from Y n by replacing the codeword Xn

2 with

Gaussian interference of the same power, and Y n
δ is obtained

from Y n by removing the interference Xn
2 and by increasing

the signal-to-noise ratio (SNR). By standard manipulations of

mutual information terms, we obtain

nR1 ≤ I(Xn
1 + Sn;Y n

δ )− I(Xn
1 + Sn;Y n

G )︸ ︷︷ ︸
�Iδ

+ I(Xn
1 + Sn;Y n

G )− I(Sn;Y n
δ )︸ ︷︷ ︸

Jδ

+o(n). (38)
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We next bound the two terms Iδ and Jδ on the RHS of (38)

separately. To upper-bound Iδ , we invoke an elegant argument

of Polyanskiy and Wu [13], used in the derivation of the

outer bound on the capacity region of Gaussian interference

channels. More specifically, by repeating the steps in [13,

Eqs. (41)–(43)], we obtain

D(PXn
2
+Zn‖PGn+Zn) ≤ n(C2 −R2) (39)

and

nR2 = h(Y n)− h(Y n
G ) +

n

2
log

NS(1 + P2)

NS(1)
(40)

where D(·‖·) denotes the relative entropy between two prob-

ability distributions, and

NS(γ) � exp

{
2

n
h(Xn

1 + Sn +
√
γZn)

}
. (41)

Since E
[
‖Xn

1 + Sn‖2
]

≤ n(
√
P1 +

√
Q)2, by [13, Prop.

1], Talagrand’s inequality [14], and (39), we can bound the

entropy difference between Y n and Y n
G as

h(Y n)− h(Y n
G ) ≤ nc1

√
C2 −R2 (42)

where c1 is defined in (15). Using (42) in (40), we obtain

NS(1)

NS(1 + P2)
≤ exp

(
2c1

√
C2 −R2 + 2(C2 −R2)

)

1 + P2
. (43)

Using the concavity of NS(γ) (which follows from Costa’s

entropy power inequality [17]), we conclude that

Iδ =
n

2
log

NS(δ)

NS(1 + P2)
+

n

2
log

1 + P2

δ
(44)

≤ n

2
log

(
1 +

1 + P2 − δ

P2δ
g(R2)

)
(45)

where g(R2) is defined in (14).

To upper-bound Jδ , we observe that the sequence Sn is

i.i.d., that PY n

G
|Xn

1
+Sn is memoryless, and that the functional

PX1|S 
→ I(X1+S;YG)−I(S;Yδ) is concave (which follows

since, for a fixed channel, mutual information is concave

in the input distribution, and for a fixed input distribution,

mutual information is convex in the channel). Here, YG and

Yδ are single-letter versions of Y n
G and Y n

δ , respectively. These

observations allow us to single-letterize Jδ as

Jδ ≤ n max
PX1|S :E[X2

1 ]≤P1

{
I(X1 + S;YG)− I(S;Yδ)

}
. (46)

By the Gaussian saddle point property (namely, the Gaus-

sian distribution is the best input distribution for a Gaussian

noise, and is the worst noise distribution for a Gaussian input),

it is natural to expect that the RHS of (46) is maximized when

X1 and S are jointly Gaussian. A rigorous proof of this result

relies on the following lemma, which generalizes the well-

known worst-case Gaussian noise result [18], [19] to the case

in which the noise and the Gaussian input are dependent.

Lemma 6 ([15, Th. 1]): Suppose XG ∼ N (0,KX) and

ZG ∼ N (0,KZ) are Gaussian random vectors in R
d, and

Z is a random vector in R
d with the same covariance matrix

as ZG. Assume that XG is independent of ZG, and that

E
[
XGZ

T
]
= 0d×d (47)

where the superscript (·)T denotes transposition. Then

I(XG;XG +ZG) ≤ I(XG;XG +Z). (48)

Using Lemma 6 and following algebraic manipulations, we

obtain

Jδ ≤ nf(δ). (49)

The proof is concluded by substituting (45) and (49) into (38).
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