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Abstract—This paper studies a two-user state-dependent Gaus-
sian multiple-access channel with state noncausally known at
one encoder. Two new outer bounds on the capacity region are
derived, which improve uniformly over the best known (genie-
aided) outer bound. The two corner points of the capacity region
as well as the sum rate capacity are established, and it is shown
that a single-letter solution is adequate to achieve both the
corner points and the sum rate capacity. Furthermore, the full
capacity region is characterized in situations in which the sum
rate capacity is equal to the capacity of the helper problem. The
proof exploits the optimal-transportation idea of Polyanskiy and
Wu (which was used previously to establish an outer bound on
the capacity region of the interference channel) and the worst-
case Gaussian noise result for the case in which the input and
the noise are dependent.

I. INTRODUCTION

We study a two-user state-dependent Gaussian multiple-
access channel (MAC) with state noncausally known at one
encoder (see Fig. 1). The channel input-output relationship for
a single channel use is given by

Y=X1+Xo+S5S+7 (1)

where Z ~ N(0,1) denotes the additive white Gaussian
noise, and X; and X, are the channel inputs from two users,
which are subject to (average) power constraints P, and P,
respectively. The state S ~ N(0, Q) is known noncausally at
encoder 1 (state-cognitive user), but is not known at encoder 2
(non-cognitive user) nor at the decoder. This channel model
generalizes Costa’s dirty-paper channel [1] to the multiple-
access setting, and is also known as “dirty MAC” or “MAC
with a single dirty user” [2].

Although the capacity region of the dirty MAC described
in (1) has been studied extensively in the literature [2]-
[4], no single-letter expression for the capacity region is
available to date. Kotagiri and Laneman [3] derived an inner
bound on the capacity region using a generalized dirty paper
coding scheme at the cognitive encoder, which allows arbitrary
correlation between the input X; and the state S. Philosof
et al. [2] showed that the same rate region can be achieved
using lattice-based transmission. In general, it is not clear
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Figure 1. Gaussian MAC with additive Gaussian state available noncausally
at one encoder.

whether a single-letter solution (i.e., random coding/random
binning using independent and identically distributed (i.i.d.)
copies of some scalar distribution) is optimal for the dirty
MAC (1). However, as [2] and [4] demonstrated, a single-
letter solution is suboptimal for the doubly-dirty MAC, in
which the output is corrupted by two states, each known at
one encoder noncausally. In this case, (linear) structured lattice
coding outperforms the best known single-letter solution.

On the converse side, all existing outer bounds are obtained
by assuming that a genie provides auxiliary information to
the encoders/decoder. For example, by revealing the state to
the decoder, one obtains an outer bound given by the capa-
city region of the Gaussian MAC without state dependence.
Somekh-Baruch et al. [5] considered the setup in which the
cognitive encoder knows the message of the non-cognitive
encoder (also known as the dirty MAC with degraded message
sets), and derived the exact capacity region. The resulting
region is tighter than the trivial outer bound if the cognitive
encoder’s rate is above a threshold or if the state power @ is
large. In [6], Zaidi et al. considered the case in which the non-
cognitive encoder knows the message of the cognitive encoder
(i.e., the roles of the two encoders are reversed), and derived
another outer bound. To the best of our knowledge, no attempt
has been made to outer-bound the capacity region of the dirty
MAC (1) directly.

Different variants of the dirty MAC model in (1) have also
been investigated in the literature. A special case of the dirty
MAC model is the “helper problem” [7], in which the cognitive
user does not send any information, and its goal is to help the
non-cognitive user. For the helper problem, the capacity (of
the non-cognitive user) is known for a wide range of channel
parameters [8]. The authors in [9] and [10] considered the case
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in which the state is known only strictly causally or causally at
the cognitive encoder(s), and derived inner and outer bounds
on the capacity region. The capacity region of the MAC with
action-dependent states was established in Dikstein ef al. [11].

Contributions: The main contributions of this paper are
the establishment of two new outer bounds on the capacity re-
gion of the dirty MAC (1). Differently from [5], [6], and [12],
we do not assume degraded message sets or causal knowledge
of the state at the non-cognitive encoder. Our bounds improve
uniformly over the best known (genie-aided) outer bound (see
Fig. 2 for a numerical example). Together with the generalized
dirty paper coding inner bound in [3], the new outer bounds
allow us to characterize the two corner points of the capacity
region as well as the sum rate capacity (note that, unlike in [2],
we do not assume () — oo). This implies that a single-letter
solution is adequate to achieve both the corner points and
the sum rate capacity. Furthermore, the full capacity region
is established in situations in which the sum rate capacity
coincides with the capacity of the helper problem.

The proof of our outer bounds builds on a recent tech-
nique proposed by Polyanskiy and Wu [13] that bounds the
difference of the differential entropies of two probability
distributions via their quadratic Wasserstein distance and via
Talagrand’s transportation inequality [14]. It also relies on a
generalized version of the worst-case Gaussian noise result, in
which the Gaussian input and the noise are dependent [15].
We anticipate that these techniques can be useful more broadly
for other state-dependent multiuser models, such as state-
dependent interference channels and relay channels.

II. PROBLEM SETUP AND PREVIOUS RESULTS

Consider the Gaussian MAC (1) with additive Gaussian
state noncausally known at encoder 1 depicted in Fig. 1. The
state S~ N(0,Q) is independent of the additive white
Gaussian noise Z ~ N(0,1) and of the input X5 of the
non-cognitive encoder. The state and the noise are i.i.d. over
channel uses. We assume that encoder 1 and encoder 2 must
satisfy the (average) power constraints!

> E[X},(My,8")] <nPy 2)
=1
STE[X3,(My)] < nPy 3)
1=1

where the index ¢ denotes the channel use, and M and M
denote the transmitted messages, which are independently and
uniformly distributed.

Let C(P1, P2, Q) be the capacity region of the dirty Gaus-
sian MAC (1). A single-letter characterization for C(P;, Py, Q)
is not known. The best known achievable rate region was
derived by Kotagiri and Laneman [3], and is achieved by

INote that, the authors of [2] and [5] assumed per-codeword power
constraints, i.e., for all messages m1 and mg, the codewords =7 and z%
satisfy Yo7 4 @2 ,(m1,5™) < nPp and 31, X3 . (m2) < nP» almost
surely. Clearly, every outer bound for the average power constraint is also a
valid outer bound for the per-codeword power constraint.

generalized dirty paper coding. The best known outer bound
is given by the region of rate pairs (Ry, Ry) satisfying?

1
Ry < Slog(1+ Pi(1 = pi = p})) )
1 Py(1 - pf —p3)
< = A S S YA
Ry < 2log <1+ =2 (5)
1
Ry + Ry < Slog(1+ Pi(1 = pi = p3))
1 VP + p1V/Pr)?
+ 5 log(1+ 5% 2 ) ;) ©
2 L+ Pi(1=pi = p2) + (VQ + psvV'P1)
1
R+ Ry < 510g(1+P1+P2) (7)

for some p; € [0,1] and ps € [—1,0] that satisfy p? + p? < 1.
This outer bound is a combination of several (genie-aided)
outer bounds established in the literature:

o The bounds (4) and (6) characterize the capacity region of
the dirty MAC under the additional assumption that the
cognitive user knows the message of the non-cognitive
user [5].

e The bounds (5) and (6) form an outer bound on the
capacity region of the dirty MAC under the additional
assumption that the non-cognitive user knows the mes-
sage of the cognitive user [6].

o The bound (7) upper-bounds the sum rate of the Gaussian
MAC without state dependence.

As reviewed in Section I, the dirty MAC model includes
the helper problem as a special case. More specifically, in
the helper problem, the cognitive user does not send any
information, and its goal is to assist the non-cognitive user
by canceling the state. The capacity of the helper problem is

Chelper 2 max{Rz : (0,Rz) € C(P1, P2,Q)}.  (8)
Sun et al. [8, Th. 2] recently proved that

1
Chelper = 5 10g(1 + PZ) (9)

provided that P;, P, and () satisfy the following condition.
Condition 1: There exists an o € [1—+/P1/Q, 1+/P1/Q]
such that

(P — (a—1)2Q)* > a*Q(Py+ 1 — P + (o — 1)?Q). (10)

In other words, if Condition 1 is satisfied, then the state
can be perfectly canceled, and the non-cognitive user achieves
the channel capacity without state dependence. Note that, to
satisfy Condition 1 it is not necessary that P, > @ (e.g., (10)
holds as long as P; > P» + 1, regardless of the value of Q).

III. MAIN RESULTS
A. New outer bounds

The main results of this paper are new outer bounds on the
capacity region. For notational convenience, we denote

1 1
c, 2 §log(1 +P), Cy= §log(1 + ) (11)

2In this paper, the logarithm (log) and exponential (exp) functions are taken
with respect to an arbitrary basis.
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which are the maximum achievable rates of user 1 and user 2,
respectively. Due to space constraints, we have omitted the
proofs of most results. They can be found in [16].

Theorem 1: The capacity region C(Py, Py, Q) of the dirty
MAC (1) is outer-bounded by the region with rate pairs
(R1, Ro) satisfying

R2 S Chelper (12)
and
. 1 14+P, -4
< — -t =
Fa < 02421 {2 log(l + Py 9(R2)> + f(5)} (13)
where

g(Rz) £ exp(201 \/Coy — Ry + 2(02 — RQ)) -1 (14)
with

2 3VIF (VA VRP + P+ A(VPL+ VD)

c (15)
V(1 + P2)/(2loge)
and
1 1+P2+P1+Q+2p\/P1Q
5) = —q1
1) pen[lfffom{o 1P+ Q+20/PQ
i+ (1-p*)P

Remark 1: The objective function on the right-hand side
(RHS) of (16) is concave in p for every ¢ € [0, 1].

The proof of Theorem 1 is sketched in Section IV.

The outer bound provided in Theorem 1 improves the best
known outer bound in the regime where Ry is close to Co
(provided that Chelper is also close to Cs). The next theorem
provides a tighter upper bound on the sum rate than (6) and (7).

Theorem 2: The capacity region C(Py, P>, Q) of the dirty
MAC (1) is outer-bounded by the region with rate pairs
(R1, Ry) satisfying

1
Ry < Slog(14 Pi(1 - p?)) (17)
R2 < CVhelper (18)
1 Py
Ri+ Ry < =log| 1+
LT =g g( 1+P1+Q+2p\/P1Q)
1
+§log(1 + Pi(1—-p%) (19)

for some p € [—1,0].
B. Sum rate capacity
Let Cyym be the sum rate capacity of the dirty MAC (1),

i.e.,

Csum £ maX{Rl + Rs : (Rl, Rg) S C(Pl, PQ, Q)} (20)

By comparing the inner bound in [3] and the outer bound (19),
we establish the sum rate capacity Cgyp.
Theorem 3: The sum rate capacity of the dirty MAC (1) is

1 Py
max —< lo (1—|— )
p€[71,0]2{ T IR TQ+20/P0

+ % log(1+ P (1 — PQ))} 2h

C’sum -

or equivalently,
C’Sum - 02 + f(l)

The next result establishes that, if Cheiper = Csum, then the
outer bound in Theorem 2 matches the inner bound in [3]. In

this case, we obtain a complete characterization of the capacity
region C(Py, P2, Q).

(22)

Corollary 4: For the dirty MAC (1), if Chelper = Csums
then the capacity region is the set of rate pairs
1
Ry < Slog(1+ Pi(1 = p%) (23)
1 Py
Ry + Ry < —log| 1+
D g< 1+P1+Q+2p\/P1Q>
1
+ 5 log(1+ Pi(1 - p?)) 24)

for some p € [—1,0].

C. Corner points

The bounds in Theorems 1 and 2 allow us to characterize
the corner points of the capacity region, which are defined as

g'l(PthyQ) £ max{R; : (R,C,) € C(P1, P2, Q)} (25)
Co(P1, Py, Q) £ max{Ry : (C1,Ry) € C(Py, P>,Q)}. (26)

Corollary 5: For every Py, every P, and every (), we have

~ 1 P
Co(Py, Ps, =1 14+ —. 27
2 (P, P, Q) 20g< 1+P1+Q> 27
Furthermore, if P, P», and @ satisfy Condition 1, then
C1(P1, P,,Q) = f(0) (28)

where f(-) is defined in (16).

Proof: The corner point (27) follows from (17) and (19)
(with p = 0), and (28) follows from (13) by setting Ry = Co,
and by taking 6 — 0. |

A few remarks are in order.
« The bottom corner point (C, Cs) also follows from the

(genie-aided) outer bound in (4) and (6).

o The following three statements are equivalent [16]:
1) f(0) = 0;
2) Chelper = 02;
3) The parameters Py, P», ) satisfy Condition 1.
o In the asymptotic limit of strong state power (i.e., Q —
0), the two corner points become

(29)
(30)

- 1 Py
ngnoocl(Pth,Q) = ilog 2

lim éQ(Pl,PQ,Q) =0.
Q—o0

For comparison, existing outer bounds in [2] and [6] only
yield the upper bound

1+ P
log

~ 1
i < — .
ngnooCI(PhP%Q) <3 Iy 31
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Figure 2. Inner and outer bounds on the capacity region region C(Py, P2, Q)
with Py =5, P, =5, and Q = 12.
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Figure 3. A comparison between the capacity region C(P1, P2, Q) and the
genie-aided outer bound with P; = 2.5, P, = 5, and Q = 12.

D. Numerical results

In Fig. 2, we compare our new bounds in Theorems 1 and 2
with the inner and outer bounds reviewed in Section II for
P =5 P, =5, and @ = 12. It is not difficult to verify
that this set of parameters satisfy Condition 1. We make the
following observations from Fig. 2.

o The top corner point of the capacity region is given by
the rate pair (1.29,0.1).

o The outer bound in Theorem 2 matches the inner bound
when R; > 0.25 bits/ch. use.

e In the regime Ry € (0.1,0.25), there is a gap between
our outer bounds and the inner bound. This regime can
be further divided into two regimes: if Ry € (0.1,0.19),
then Theorem 1 yields a tighter upper bound on Ry; if
R; € (0.19,0.25), then the bound in Theorem 2 is tighter.

Overall, our outer bounds provide a substantial improvement
over the genie-aided outer bound in (4)—(7).

In Fig. 3, we consider another set of parameters with
P = 25, P, = 5, and Q = 12. In this case, we have
Chelper = Csum = 1.11 bits/ch. use, and the capacity
region C(Py, Py, () is completely characterized by Corol-
lary 4. We observe that the boundary of the capacity region
consists of three pieces: a straight line connecting the two
points (0, Cheiper) and (0.89,0.22), a curved line connecting
(0.89,0.22) and the bottom corner point (0.9,0.2), and a
vertical line connecting the bottom corner point (0.9,0.2) and
(0.9,0).

E. Generalization to MAC with non-Gaussian state

In the proofs of Theorems 1-3, the only place where we
have used the Gaussianity of S™ is to optimize appropriate
mutual information terms over Px,|s (see, e.g., (46)). If the
state sequence S is non-Gaussian (but is i.i.d.), then the upper
bound (13) remains valid if f(¢) is replaced by

F(6) 2 max {I(X1 +8;Ye) — I(S; Y,;)}. (32)
Px,|s
In this case, the top corner point becomes
C1= max (I(X, +8:Ye) ~ (X1 +5:5)}  (33)
and the sum rate capacity becomes
Csum = max I(X1;Y]X5,5) + I(X2;Y).  (34)

x5 Px,

Furthermore, both (21) and (34) can be achieved by treating
interference as noise for the non-cognitive user, and by using
generalized dirty paper coding for the cognitive user.

IV. SKETCH OF THE PROOF OF THEOREM 1
The upper bound (12) is straightforward. The proof of (13)

is sketched as follows. Let

1 1
R £ ﬁI(Ml;Y”), Ry, £ 5I(X§‘;Y"). (35)

As explained in [13], this definition of rate agrees with the
operational definition asymptotically.
Consider two auxiliary channels

YAEX!+S"+G"+ 2"

(36)
(37

where G™ ~ N(0, P2l,) is a Gaussian vector having the
same power as X4, and § € (0,1) is a constant. In words,
Y2 is obtained from Y™ by replacing the codeword X7 with
Gaussian interference of the same power, and Yj* is obtained
from Y™ by removing the interference X3 and by increasing
the signal-to-noise ratio (SNR). By standard manipulations of
mutual information terms, we obtain

nRy < I(X7 4 8™ Y9 — I(X? + 8™ V)

L7
+ I(X7 + 8™ Y4 — I(S™ Y5 +o(n).

Js

(38)
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We next bound the two terms /5 and Js on the RHS of (38)
separately. To upper-bound /5, we invoke an elegant argument
of Polyanskiy and Wu [13], used in the derivation of the
outer bound on the capacity region of Gaussian interference
channels. More specifically, by repeating the steps in [13,
Egs. (41)-(43)], we obtain

D(PX51+Z7L ||PGn+Zn) S n(C2 - RZ) (39)

and
n.  Ns(1+ Py)

nRy = h(Y") — h(YZ4) + = log

2 Ns(1) o

where D(-||-) denotes the relative entropy between two prob-
ability distributions, and

A 2 n n n
Ns(y) = exp{nh(Xl +S"+\/vZ )} 41)

Since E[[| X7 + S"|1?] < n(v/Pi + Q)2 by [13, Prop.
1], Talagrand’s inequality [14], and (39), we can bound the
entropy difference between Y™ and Y% as

h(Yn) — h(Yg;)) S nciy/ 02 - R2

where ¢y is defined in (15). Using (42) in (40), we obtain

(42)

Ng(1) - exp(2c1v/Cy — Ry 4 2(C2 — Ry)) 43)
Ns(1+ Py) = 1+ P, '

Using the concavity of Ng(v) (which follows from Costa’s
entropy power inequality [17]), we conclude that

Is=2log 59 Tpg T2 44
T BN+ 2% S “4)
n 1+P,—6
< = L
< 210g<1—|— 2% g(R2)> (45)

where g(Ry) is defined in (14).

To upper-bound J5, we observe that the sequence S™ is
i.i.d., that Py5| Xptsn is memoryless, and that the functional
Px,|s = I(X1+5;Yg) —I(S;Y5) is concave (which follows
since, for a fixed channel, mutual information is concave
in the input distribution, and for a fixed input distribution,
mutual information is convex in the channel). Here, Y and
Y are single-letter versions of Y} and Y, respectively. These
observations allow us to single-letterize Js as

Js <n max

{1(x1+ 8576) ~ 1(5: %)} @6)
Px, s E[X2]<P

By the Gaussian saddle point property (namely, the Gaus-
sian distribution is the best input distribution for a Gaussian
noise, and is the worst noise distribution for a Gaussian input),
it is natural to expect that the RHS of (46) is maximized when
X; and S are jointly Gaussian. A rigorous proof of this result
relies on the following lemma, which generalizes the well-
known worst-case Gaussian noise result [18], [19] to the case
in which the noise and the Gaussian input are dependent.

Lemma 6 ([15, Th. 1]): Suppose Xg ~ N(0,Kx) and
Zc ~ N(0,Kz) are Gaussian random vectors in R?, and

Z is a random vector in R? with the same covariance matrix
as Zq. Assume that X is independent of Z, and that

E[XcZ"] = 0axa (47)
where the superscript (-)T denotes transposition. Then
I(Xg;Xg—‘y-Zg) SI(XG*;XG-FZ). (48)

Using Lemma 6 and following algebraic manipulations, we
obtain
Js <nf(d). (49)

The proof is concluded by substituting (45) and (49) into (38).
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