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Abstract—This paper studies a two-user state-dependent
Gaussian multiple-access channel (MAC) with state noncausally
known at one encoder. Two scenarios are considered: 1) each user
wishes to communicate an independent message to the common
receiver; and 2) the two encoders send a common message to the
receiver and the non-cognitive encoder (i.e., the encoder that does
not know the state) sends an independent individual message (this
model is also known as the MAC with degraded message sets).
For both scenarios, new outer bounds on the capacity region
are derived, which improve uniformly over the best known outer
bounds. In the first scenario, the two corner points of the capacity
region as well as the sum rate capacity are established, and it is
shown that a single-letter solution is adequate to achieve both the
corner points and the sum rate capacity. Furthermore, the full
capacity region is characterized in situations in which the sum
rate capacity is equal to the capacity of the helper problem. The
proof exploits the optimal-transportation idea of Polyanskiy and
Wu (which was used previously to establish an outer bound on
the capacity region of the interference channel) and the worst
case Gaussian noise result for the case in which the input and
the noise are dependent.

Index Terms— Channel with states, capacity region, dirty
paper coding, multiple access channel, outer bound.

I. INTRODUCTION

E STUDY a two-user state-dependent Gaussian

multiple-access channel (MAC) with the state non-
causally known at one encoder. The channel input-output
relationship for a single channel use is given by

Y=X+Xo+S+2Z )]
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Fig. 1. State-dependent Gaussian MAC with state available noncausally at
one encoder without degraded message sets.
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Fig. 2. State-dependent Gaussian MAC with state available noncausally at

one encoder with degraded message sets.

where Z ~ N(0, 1) denotes the additive white Gaussian noise,
and X and X are the channel inputs from two users, which
are subject to the (average) power constraints P; and P,
respectively. The state S ~ A(0, Q) is known noncausally at
encoder 1 (state-cognitive user), but is not known at encoder 2
(non-cognitive user) nor at the decoder. This channel model
generalizes Costa’s dirty-paper channel [1] to the multiple-
access setting, and is also known as the “dirty MAC” or “MAC
with a single dirty user” [2]. In this paper, we consider the
following two scenarios:

i) Each user wishes to communicate an independent mes-
sage to the common receiver, where the state-cognitive
user sends the message M) and the non-cognitive user
sends M; (see Fig. 1);

ii) The state-cognitive encoder sends the message M
and the non-cognitive encoder sends both M; and M;
(see Fig. 2). In this case, the message M can be also
viewed as a common message.

We shall refer to the first setting as the “dirty MAC without
degraded message sets,” and the second setting as the “dirty
MAC with degraded message sets.”

0018-9448 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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Although the dirty MAC (with and without degraded mes-
sage sets) described in (1) has been studied extensively in the
literature [2]-[5], no single-letter expression for the capacity
region has been characterized to date. For the dirty MAC
without degraded message sets, Kotagiri and Laneman [3]
derived an inner bound on the capacity region using a gen-
eralized dirty paper coding scheme at the cognitive encoder,
which allows arbitrary correlation between the input X; and
the state S. Philosof et al. [2] showed that the same rate
region can be achieved by using lattice-based transmission.
In general, it is not clear whether a single-letter solution (i.e.,
random coding/random binning using independent and identi-
cally distributed (i.i.d.) copies of a certain scalar distribution)
is optimal for the dirty MAC (1). However, as [2] and [4]
demonstrated, a single-letter solution is suboptimal for the
doubly-dirty MAC, in which the output is corrupted by two
states, each known at one encoder noncausally (see also [6]).
In this case, (linear) structured lattice coding outperforms the
best known single-letter solution. An inner bound for the dirty
MAC with degraded message sets was derived in [5], which
uses superposition coding at the non-cognitive encoder to send
the two messages M1 and M>.

On the converse side, all existing outer bounds for the
dirty MAC without degraded message sets are obtained by
assuming that a genie provides auxiliary information to the
encoders/decoder. For example, by revealing the state to the
decoder, one obtains an outer bound given by the capac-
ity region of the Gaussian MAC without state dependence.
Zaidi et al. [5] derived an outer bound on the capacity region
of the dirty MAC with degraded message sets, which also
serves as an outer bound for the dirty MAC without degraded
message sets. Somekh-Baruch ef al. [7] considered the setting
in which the cognitive encoder knows the message of the
non-cognitive encoder (i.e., the roles of the two encoders
are reversed), and derived the exact capacity region (see
also [8]). Interestingly, this capacity region remains valid
if the non-cognitive encoder possesses strictly causal state
information [9].

Different variants of the dirty MAC model in (1) have also
been investigated in the literature. A special case of the dirty
MAC model is the “helper problem” [10], in which the cogni-
tive user does not send any information, and its goal is to help
the non-cognitive user. For the helper problem, the capacity (of
the non-cognitive user) is known for a wide range of channel
parameters [11]. Lapidoth and Steinberg [12] and Li et al. [13]
considered the case in which the state is known only strictly
causally or causally at the cognitive encoder, and derived inner
and outer bounds on the capacity region. The capacity region
of the MAC with action-dependent states was established in
Dikstein et al. [14]. Inner and outer bounds on the capacity
region of the state-dependent MAC with rate-limited decoder
side information were derived in [15]. Finally, Wang [16]
characterized the capacity region of the K-user dirty MAC to
within a bounded gap. For a general account of state-dependent
multiuser models, we refer the reader to [17] and [18].

The main contributions of this paper are the establishment
of new outer bounds on the capacity region of the dirty MAC
given in (1) with and without degraded message sets. In both

7867

scenarios, our bounds improve uniformly over the best known
outer bounds (see Fig. 3—Fig. 6 for numerical examples). For
the dirty MAC without degraded message sets, the new outer
bounds allow us to characterize the two corner points of the
capacity region as well as the sum rate capacity (note that,
unlike [2], we do not assume Q — o0). In this case, a single-
letter solution is shown to be adequate to achieve both the
corner points and the sum rate capacity. Furthermore, the full
capacity region of the dirty MAC without degraded message
sets is established in situations in which the sum rate capacity
coincides with the capacity of the helper problem. The new
outer bounds derived in this paper also lead to a new upper
bound on the capacity of the helper problem.

The proof of our outer bounds builds on two sets of
techniques that are quite different from each other. Inter-
estingly, each set of techniques yields one corner point of
the capacity region. The first set of techniques is algebraic
in nature, exploiting certain algebraic properties of mutual
information and differential entropy. Among others, we make
use of a recent technique proposed by Polyanskiy and Wu [19]
that bounds the difference of the differential entropies of
two probability distributions via their quadratic Wasserstein
distance and via Talagrand’s transportation inequality [20].
The second set of techniques are standard outer-bounding
techniques in network information theory, including a general-
ized version of the worst-case Gaussian noise result, in which
the Gaussian input and the noise are dependent (but are
uncorrelated) [21]-[23]. The improvement of our bounds over
existing ones in, e.g., [3] and [S] mainly lies in the way
we apply these techniques, and in a novel identification of a
certain auxiliary random variable in the degraded-message-set
case. We anticipate that these techniques can be useful more
broadly for other state-dependent multiuser models, such as
state-dependent interference channels and relay channels.

In addition to the outer-bounding techniques reviewed
above, the idea of generalization (or extension) has been
applied several times in this manuscript. In a nutshell, this
idea allows us to solve a problem by either generalizing
it or extending its domain. For example, to establish one of
the outer bounds on the capacity region of the state-dependent
MAC, we generalize the MAC to an interference channel. It is
this generalization that allows us to use the recent advances in
the study of interference channels (including Polyanskiy and
Wu’s technique [19]) on the state-dependent MAC. As another
instance of this powerful idea, we show how an outer bound
on the capacity region of the state-dependent MAC leads to an
upper bound on the capacity of the helper problem. We believe
that this idea of generalization/extension will be very beneficial
in information theory. It also parallels the “reductionist” view
of information theory that was propounded recently in [24].

II. PROBLEM SETUP AND PREVIOUS RESULTS
A. Problem Setup

Consider the Gaussian MAC (1) with additive Gaussian
state noncausally known at encoder 1 depicted in Fig. 1 and
Fig. 2. The state S ~ AN (0, Q) is independent of the additive
white Gaussian noise Z ~ A (0, 1) and of the input X, of the



7868

non-cognitive encoder. The state and the noise are i.i.d. over
channel uses. For the dirty MAC without degraded message
sets (Fig. 1), we assume that encoder 1 and encoder 2 must
satisfy the (average) power constraints'

iE[Xii(Ml,Sn)] <nP, )

i=1

n

> E[x3,(Mn)] < nPy 3)

i=1
where the index i denotes the channel use, and M| and M
denote the transmitted messages, which are independently and
uniformly distributed. The decoder reconstructs the transmitted
messages M1 and M> from the channel output, and outputs
M; and M,. The (average) probability of error is defined as

P, 2 P[(My, Ma) # (M, M>)). 4

If the message sets are degraded (Fig. 2), then the power
constraint (3) becomes

n
S E[X3,(M1, M2)| < n. 5)
i=1
The capacity regions for the dirty MAC with and without
degraded message sets are denoted by Cgee(Pr, P2, Q) and
C(Py, P>, Q), respectively. Note that, by definition,

C(P1, P2, Q) C Caeg(P1, P2, Q). (6)

In both scenarios, a single-letter characterization for the capac-
ity region is not known in the literature. In Section II-B
below, we review the existing inner and outer bounds on
Caeg(P1, P2, Q) and C(Py, P2, Q).

B. Previous Results

For the dirty MAC without degraded message sets, the best
known achievable rate region was derived by Kotagiri and
Laneman [3], and is given by the convex hull of the rate pairs
(R1, Ry) satisfying

Ry < I(U;Y|X2) = I(U;S) (7
Ry < I(X2; Y|U) (3)
Ri+R <I(U,X2;Y)—1I(U,YS) )

for some joint probability distribution Pyyx,|sPx,. A com-
putable inner bound was obtained in [3] from (7)-(9) by
setting

Pris=s = N (pv/Pr/Qs, Pi(1 = p?)) (10)
Py, = N(0, P2) (11)

U—X—\/ES—HX 1+\/ES (12)
=Xi-n/5 "o

INote that, Philosof et al. [2] and Somekh-Baruch ef al. [7] assumed
per-codeword power constraints, i.e., for all messages m| and m, the code-
words x} and x} satisfy 37, x%,i(ml, S") <nPpand 31, X%ﬂi(mz) <
n P, almost surely. Clearly, every outer bound for the average power constraint
is also a valid outer bound for the per-codeword power constraint.
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for some p € [—1, 0] and o € R. This choice of input distribu-
tion is also known as generalized dirty paper coding. Unlike in
the point-to-point setting [1], allowing a (negative) correlation
between X and S may be beneficial since it partially cancels
the state for the non-cognitive encoder. However, it is not
clear whether the Gaussian distribution optimizes the bounds
in (7)—(9).

The best known outer bound is given by the region of rate
pairs (R, Ry) satisfying?

1
Ry < 2 log(1+ Pi(1 = pf = p?) (13)
1 Py(1 — p? — p?
Ry < —log 1+ w (14)
2 1 —p?
Ri+ R
1 2 2
< Elog(1+Pl(l—p1 = p5)
+llog(1+ WP+ pyPY )
2 1+ Pi(1 = pf — p2) + (VO + psi/P1)?
(15)
1
R+ R < EIOg(l + P+ P) (16)

for some p; € [0, 1] and p; € [—1, 0] that satisfy plz—f—ps2 <1.
This outer bound is a combination of several (genie-aided)
outer bounds established in the literature:
o The bounds (14) and (15) form the outer bound in [5] on
Cdeg(P1, P2, Q), and hence on C(Py, P2, Q).

o The bounds (13) and (15) characterize the capacity region
of the dirty MAC under the assumption that the cognitive
user knows the message of the non-cognitive user [7].

o The bound (16) upper-bounds the sum rate of the
Gaussian MAC without state dependence.

For the dirty MAC with degraded message sets, inner and
outer bounds on the capacity region were derived in [5].
As reviewed above, the capacity region Cgeg(P1, P2, Q) is
outer-bounded by the region with rate pairs (Ry, Ry) satisfy-
ing (14) and (15). This outer bound follows from the following
single-letter outer region [5, Th. 2]:

Ry < I1(X2;Y1S, X1)
Ri+ Ry < I(X1, X2; Y|S) — I(S; X2|Y)

a7
(18)
where the joint probability distributions of X1, X2, and S must

be of the form PsPx, Px,|x,,s- The inner bound in [5] consists
of rate pairs (R, Ry) satisfying

Ry < I(X2; YUy, U) (19)
Ry < 1(X2,Uz; Y|Uy) — 1(Us; S|Uy) (20)
Ri+ R < I(X2,U1, U Y)—1(Up; SIUY)  (21)

for some joint probability distributions Ps Py, Px, v, Pu,juy,s

Px,|u;,U,,s that satisfy
1(U2; YUy, X1) — 1(Uz; S|Up) = 0. (22)

This inner bound is evaluated in [5] for the case in
which (X1, X2, U1, Us, S) are jointly Gaussian distributed.

2In this paper, the logarithm (log) and exponential (exp) functions are taken
with respect to an arbitrary basis.
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Again, it is not known whether the Gaussian input optimizes
the bound.

C. The Helper Problem

As reviewed in the introduction, the dirty MAC model
includes the helper problem as a special case. More specif-
ically, in the helper problem, the cognitive user (also known
as the helper) does not send any information, and its goal is
to assist the non-cognitive user by canceling the state. The
capacity of the helper problem is defined as

Chelper £ max{R; : (0, Ry) € C(Py, Pa, 0)} (23)

= max{Ry : (0, R2) € Caeg(P1, P2, Q)}. (24)
The equivalence between (23) and (24) follows since
I(My; X3) = 0 regardless of whether the message sets are
degraded or not.

The capacity of the helper problem was studied
in [10] and [11], and is known for a wide range of channel
parameters. More specifically, it was shown that [11, Th. 2]

1
Chelper = 5 IOg(l + PZ) (25)

provided that
condition.

Condition 1: Thereexists an a € [1—4/P;/Q, 1+/P1/ 0]
such that

P, P, and Q satisfy the following

(P = (@ = 1)?Q)* = a®Q(Py+ 1= P+ (@ — 1)*Q). (26)

In other words, if Condition 1 is satisfied, then the state
can be perfectly canceled, and the non-cognitive user achieves
the channel capacity without state dependence. Note that,
to satisfy Condition 1 it is not necessary that P; > Q
(e.g., (26) holds as long as P; > P, + 1, regardless of the
value of Q).

The following upper bound on Chelper, Which holds for all
parameters, was derived in [10]:

1 P
C < max {-log|l+
helper = 1550 i 2 g( 14+ P+ 0+ 2p«/P1Q)

1
+3 log(1 + Pi(1 — pz))]- (27)

III. MAIN RESULTS

The main results of this paper are the establishment of
several new outer bounds on the capacity region of the
dirty MAC (1) with and without degraded message sets. For
notational convenience, we denote

Al
C = Elog(l + Py),

1
2 3 log(1 + P). (28)
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A. Dirty MAC Without Degraded Message Sets

1) New Outer Bounds: In this section, we present two outer
bounds on C(Py, P2, Q).

Theorem 1: The capacity region C(Py, P>, Q) of the dirty
MAC without degraded message sets is outer-bounded by the
region with rate pairs (R, Ry) satisfying

Ry < Chelper (29)

and

) 1 1+P,—90
R < 02%21 {5 log(l + Tg(RZ)) + f(5)} (30)

where

g(Ry) = CXP(ZCI\/CQ — Ry +2(Cy — Rz)) -1 (@D

with
o2 WIH WP VO AP VD) o
V(I + P)/2loge)
and
~ 1 I+ P+ P+ Q+2p/P1Q
f(0) = max —{1
pel-1,01 2 0+ P+ Q+2pJ/PI O
d+ (1 —p?P
+log = } (33)
Proof: See Section IV-A. |

Remark 1: The objective function on the right-hand
side (RHS) of (33) is concave in p for every ¢ € [0, 1].

Remark 2: The upper bound (30) can be slightly improved
by replacing Q on the RHS of (30) with Q0 < Q and by
minimizing over Q This follows because, for a fixed rate R»,
the maximum achievable R; is monotonically non-increasing
in Q, whereas the RHS of (30) is not.

We next illustrate the main intuition behind Theorem 1.
To concentrate ideas, we assume that the channel parameters
Py, P>, and Q satisfy Condition 1, which implies that Cpejper =
C> [11, Th. 2]. Consider two auxiliary channels

(1>

(34)
(35)

YA 2 X!+ 8"+ G+ 2"
Yy & X} 48"+ oz"

where G" ~ N(0, Pl,) is a Gaussian vector having the same
power as X7, and J € (0,1) is a constant. In words, Y[} is
obtained from Y" by replacing the codeword X’ with Gaussian
interference of the same power, and Y is obtained from Y" by
removing the interference X’ and by increasing the signal-to-
noise ratio (SNR). Therefore, the channel M; — Y, is worse
than the original channel whereas the channel M; — Y§ is
better than the original one. In fact, we argue next that, when
the non-cognitive user is communicating at a rate close to its
maximum rate C, the three channels have approximately the
same rate for the cognitive user.

Indeed, suppose that Ry ~ C,. Then, on the one hand,
the distribution of X7 is close to that of G", and hence

I(XT + S YR ~ I(X" + S"; Y™). (36)
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On the other hand, since the receiver is able to decode the
message of the non-cognitive user, it follows that

I(XT+ 85 YY) ~ I(X)+ S Y"X5) (37)
=IXT+S X1 +8"+2Z". (38)
Combining (36) and (38), we conclude that
I(XT+ 8" X1+ 8"+ G" +2Z")
~IXP+SXT+S8"+ZY.  (39)

In other words, reducing the power of the Gaussian noise
(from 1+ P> to 1) does not (significantly) increase the mutual
information between X| + S" and the output. By further
reducing the noise power, we obtain

IXT+ S5 YY)~ I(X) + S YE) =~ T(XT + 8", Yy). (40)
The errors in the estimation (40) can be bounded via Costa’s
entropy power inequality [25] or the -MMSE relation [26].

To see how the relation (40) can be used to upper-bound Rj,
we note that by standard manipulations of mutual information,

nRy < I(X} + 8" Y") —1(S"; Y"). 41

By (40), we may replace the two Y"’s on the RHS of (41)
with Y g and Y§, respectively, and obtain

nRy S I(XT + 8" Y8 — (S Y)) (42)
< 1 max {I(Xl 1S YG) — I(S: Y(s)} (43)
Px,|s
where
Y6 2 X1 +S+G+7Z (44)
Ys = X1+ S ++0Z (45)

are the single-letter versions of Y7 and Yy, respectively.
By the Gaussian saddle point property (namely, the Gaussian
distribution is the best input distribution for Gaussian noise,
and is the worst noise distribution for a Gaussian input),
we expect that the RHS of (43) is maximized when (X1, S)
are jointly Gaussian. The maximum of the objective function
on the RHS of (43) is precisely the f(d) defined in (33),
whereas the logarithm term on the RHS of (30) quantifies the
error in the approximation (40), which vanishes as Ry — C».
The rigorous proof of Theorem 1 which builds upon the above
intuition can be found in Section IV-A.

The outer bound provided in Theorem 1 improves the
best known outer bound in the regime where R» is close
to C; (provided that Chepper is also close to Cz). The next
theorem provides a tighter upper bound on the sum rate
than (15) and (16).

Theorem 2: The capacity region C(P1, P2, Q) of the dirty
MAC without degraded message sets is outer-bounded by the
region with rate pairs (Rp, R) satisfying

Ri = 5 log(1 + P11~ p?) (46)
Ry < Cy 47)
Ri+ Ry < = log(l + P2 )
2 1+ P+ Q+2pJP10
+ % log(1 + P (1 — p?)) (48)

for some p € [—1,0].
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Remark 3: The upper bound (48) on the sum rate coincides
with the upper bound (27) on the capacity of the helper
problem. In fact, the proof of (48) generalizes the proof
techniques used in the derivation of (27).

Proof: The proof of Theorem 2 follows from the following
single-letter outer bound on the capacity region.

Proposition 3: The capacity region C(Pi, P>, Q) of the
dirty MAC without degraded message sets is outer-bounded
by the region with rate pairs (R, Ry) satisfying

Ry = I(X1:Y|X2,S) (49)
Ry = I(X2; Y1X1, 5) (50)
Ri+ R = I(X13Y[|X2,8) +1(X2: Y) &1V

for some joint distributions Pg Px,|s Px, that satisfy the power
constraint

E[x%] < P, and E[x%] <Py (52)
Proof: See Section IV-B. |
It is not difficult to show that the outer bound in
Proposition 3 is maximized when S, X, and X, are jointly
Gaussian (proof omited). Evaluating (49)—(51) for Gaussian
distributions Ps Py, s Px,, we obtain the outer bound in
Theorem 2. |
2) Sum Rate Capacity: Let Cgyy be the sum rate capacity
of the dirty MAC (1) without degraded message sets, i.e.,

Csum = max{R; + Ry : (Ry, R2) € C(P1, P2, @)}, (53)

By comparing the inner bound (9) (evaluated using Gaussian
inputs) and the outer bound (48), we establish the sum rate
capacity Csum-

Theorem 4: The sum rate capacity of the dirty MAC with-
out degraded message sets is given by

1 P
max —11lo (1 + )
pel—1,0] 2{ & 1+Pi+0+2p/P10
1
+5log(1+ i1 = p?)] (54)

Csum =

or equivalently,

Csum = C2 + f(l) (55)

Proof: ~ The converse part of (54) follows directly
from (48). Since the objective function on the RHS of (54)
is continuous and concave in p € [—1,0] (see Remark 1),
it has a unique maximizer on [—1, 0], which we denote by p*.
It follows that the rate pair

_ Al N

Ry & Slog(1+ Pi(1 = (p )%)) (56)
2 L (1+ P ) (57)
2T 2T T P 0+ 20°VP 0O

is achievable by treating the interference X; + S as noise for
the non-cognitive user, and by using generalized dirty paper
coding for the cognitive user with p = p* and

L PU=()
P = (7)) +1

(58)
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in (10)—(12). The choice of a in (58) is the usual dirty paper
coding coefficient for the equivalent channel (obtained by
canceling the interference X, from the non-cognitive user)

~ P
Y=Xo+(1—p*,/5‘)s+z

where Xo £ X1 — p*/Pi/OS ~ N0, Pi(1 — (p*)?)) is
independent of S. The rate pair in (56) and (57) achieves the
sum rate capacity (54). The equivalence between (54) and (55)
is straightforward to establish. [ |

The next result shows that, if Cheper = Csum, then the
outer bound in Theorem 2 matches the inner bound in (7)—(9)
evaluated for Gaussian inputs. In this case, we obtain a
complete characterization of the capacity region C(Py, P2, Q).

Corollary 5: For the dirty MAC without degraded mes-
sages, if Chelper = Csum, then the capacity region is given
by the convex hull of the set of rate pairs (Ry, Ry) satisfying

(59)

1
Ry < 5 log(l+ Pi(1 = p?)) (60)
Ri+R <=1 (1+ P2 )
— 10
LT =B T T P 01 20RO
1
+ 5 log(1 4 Pi(1 = p*) (61)

for some p € [—1,0].

Proof: By Theorem 2, the rate region characterized
by (60) and (61), which we denote by R*(Py, P>, Q), is an
outer bound on the capacity region C(P1, P2, Q).

To prove Corollary 5, it suffices to show that the rate region
R*(P1, P2, Q) is achievable. Observe that, by the hypothesis
Chelper = Csum, the sum rate capacity is _achieve(_i with the rate
pairs (0, Chelper) and (Ry, R2), where Ry and R; are defined
in (56) and (57), respectively. Let now (R, R») be an arbitrary
point that lies on the boundary of R*(Py, P>, Q). If Ry < Ry,
then the rate pair (Ry, Csum — R1) is achievable using time
sharing. Since, by (61), R < Csym — Ry, we conclude that
the rate pair (Ry, Csym — R1) coincides with (R, R). If R <
R; < Cjy, it follows that there exists an pg € [p*, 0] which
satisfies Ry = 4 log(1 + P;(1 — pg)). In this case, we have

P
. 62
1+P1+Q+2p0«/P1Q) ©2)

This rate pair is again achievable by treating interference as
noise for the non-cognitive user, and by using generalized dirty
paper coding for the cognitive user. [ |

For the case when Cpelper < Csum, the outer bound in
Theorem 2 matches the inner bound only for R; values greater
than a threshold Ry . This threshold is given by

Ry =1(U";Y)—I1(U";S) (63)

where X7, X7, and U™ are given in (10)-(12) with p and a
chosen as in the proof of Theorem 4. It is also not difficult to
check that Ry q > 0 if and only if Chelper < Coum-

3) Corner Points: The bounds in Theorems 1 and 2 allow
us to characterize the corner points of the capacity region,
which are defined as

Ci(P1, P2, Q) £ max{R; : (R1,C2) € C(P1, P, Q)} (64)
C2(P1, P2, Q) £ max{Ry : (C1, R) € C(Py, P2, Q)}. (65)

1
Ry = -1 1
2 2og( +

7871

Corollary 6: For every P, every P, and every Q, we have

~ 1 P
Ca(P1, P, 0) = —log|[ 1+ ——=—). 66
2(P1, P2, Q) ZOg(+1+P1+Q) (66)
Furthermore, if P;, P>, and Q satisfy Condition 1, then
Ci(P1, P2, Q) = f(0) (67)

where f(-) is defined in (33).

Proof: The corner point (66) follows from (46) and (48)
(with p = 0), and (67) follows from (30) by setting Ry = C»,
and by taking 6 = 0. [ ]

A few remarks are in order. _
o The bottom corner point (Cy, C) also follows from the
(genie-aided) outer bound (13) and (15) developed in [7].

o In the asymptotic limit of strong state power
(i.e., Q — 00), the two corner points become
lim &\(P1. P2, 0) = + log — (68)
0—00 2 14+ P
lim C2(Py, P2, Q) = 0. (69)
Q—00

For comparison, existing outer bounds in [2] and [5] only
yield the upper bound

14+ P
1+ P

lim Ci(P1, P2, 0) < ~ log 10)
Q—00 2
o The top corner point (C1,C,) is achieved by using
generalized dirty paper coding with U = X1 + S and by
treating the interference X» as noise for the cognitive user.
The proof of Theorem 1 suggests that there is essentially
no other alternative. Indeed, if R, = Cx+o0(1) asn — oo,
then by (40) and the I-MMSE relation [26], the minimum
mean-square error (MMSE) in estimating X{ + S" given
Y satisfies

MMSE (X} + §"|Y2) = o(n). 1)

This implies that, in order to achieve Ry = Co+o(1), itis
necessary for the decoder to “decode” X7 + S without
knowing the codebook of the non-cognitive user (recall
that Y is obtained from Y" by replacing the codeword
X’ with Gaussian interference of the same power).

4) Numerical Results: In Fig. 3, we compare our new outer
bounds in Theorem 1 (dashed red curve) and Theorem 2
(solid red curve) with the inner (solid blue curve) and outer
bounds (solid black curve) reviewed in Section II for P; =5,
P, =5, and Q = 12. It is not difficult to verify that this
set of parameters satisfy Condition 1. We make the following

observations from Fig. 3.
o The outer bound in Theorem 2 matches the inner bound

when Ry > Ry n = 0.25 bits/(ch. use).

o In the regime R; € (0.1,0.25), there is a gap between
our outer bounds and the inner bound. This regime can be
further divided into two regimes: if R € (0.1, 0.19), then
Theorem 1 yields a tighter upper bound on Ry; if R; €
(0.19, 0.25), then the bound in Theorem 2 is tighter.

o The improvement of Theorem 1 (dashed red curve) over
the genie aided outer bound (solid black curve) is not
clearly visible in the figure. However, numerically the
outer bound in Theorem 1 indicates that R, is strictly
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Fig. 3. Inner and outer bounds on the capacity region region C(Py, P2, Q)

with P; =5, P, =5, and Q = 12.

1.2
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1r- 4
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2
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Ry, bits/(ch. use)

Fig. 4. A comparison between the capacity region C(Pj, P>, Q) and the
genie-aided outer bound with Py =2.5, P, =5, and Q = 12.

below C, = 1.29 when R; > 0.1. This implies that the
top corner point of the capacity region is given by the rate
pair (0.1, 1.29), which confirms the corner point result in
Section III-A.3.
Overall, our outer bounds provide a substantial improvement
over the genie-aided outer bound in (13)-(16).

In Fig. 4, we consider another set of parameters with
Py = 25, P, = 5, and Q = 12, which do not satisfy
Condition 1. In this case, we have Cpelper = Csum =
1.11 bits/(ch. use), and the capacity region C(P;, P2, Q) is
completely characterized by Corollary 5. As explained in the
proof of Corollary 5, the capacity region consists of three
pieces:_a s_traight line c_:onnecting the two points (0, C}lelper)
and (Ry, Ry), where R; = 0.89 bits/(ch. use) and Ry =
0.22 bits/(ch. use), a curved line connecting (R;, R2) and the
bottom corner point (0.9, 0.2), and a vertical line connecting
the bottom corner point (0.9, 0.2) and (0.9, 0).

5) Generalization to MAC With Non-Gaussian State: In the
proofs of Theorems 1-4, the only place where we have
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used the Gaussianity of S” is to optimize appropriate mutual
information terms over Pyx,s (see, e.g., (43)). If the state
sequence S" is non-Gaussian but is i.i.d., then the upper
bound (30) remains valid if f(d) is replaced by

F@ 2 max 100+ S:¥0) ~ 15: V). (72)
X118
In this case, the top corner point becomes
Ci = IIDnaX{I(Xl +8:Y6) — (X1 + S: 5)} (73)
X118
and the sum rate capacity becomes
Coum = max (I(X1;Y|X2,8)+1(X2:Y)). (74

Px s Px,

Furthermore, both (54) and (74) can be achieved by treating
interference as noise for the non-cognitive user, and by using
generalized dirty paper coding for the cognitive user (recall
that, in the dirty paper coding problem, the state S does not
need to be Gaussian; see [27, Sec. 7.7]).

B. Dirty MAC With Degraded Message Sets

Theorem 7 below extends the outer bound in Theorem 1 to
the dirty MAC with degraded message sets.

Theorem 7: The capacity region Cgeg(P1, P2, Q) of the
dirty MAC with degraded message sets is outer-bounded by
the region with rate pairs (R1, Ry) satisfying

Ry < Chelper (75)
and
. 1 14+P,—0._
R < Jmin, {5 log(l + Tg(Rz)) + f(5)]
+(c2+c3)(Ca—Ry)  (76)

where f(-) is defined in (33),
§(R2) 2 exp(262y/Co — R +2(C2— R)) =1 (77)
with
o o WIH WP VP + V0P + 4P+ V0)
J (1 + Py)/(2loge)

(78)

and

c3 = 2(1+ Py)loge - (3\/1 +(/Pi+ VP, +/0)?
+4(/Pi + /Py + J@). (79)

Proof: See Section IV-C. [ |

As a corollary of Theorem 7, we establish that under Con-

dition 1, the top corner point established in (67) is unchanged

even if the non-cognitive user knows the message of the
cognitive user. Formally, the top corner point is defined as

Caeg.1(P1, P2, Q) 2 max{R) : (R, C2) € Caeg(P1, P2, Q)}
(80)

Corollary 8: For the dirty MAC with degraded message
sets, if Py, P>, and Q satisfy Condition 1, then

6;deg,l(Pla P2a Q) = f(O)
with f(-) defined in (33).

(81)
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Note that, for the dirty MAC with degraded message sets,
both the bottom corner point and the sum rate capacity can be
established from the inner and outer bounds in [5].

The next theorem provides an outer bound, which is
uniformly tighter than the one in (14) and (15) derived
in [5, Th. 4].

Theorem 9: The capacity region of the dirty MAC with
degraded message set is outer-bounded by the region with rate
pairs (Ry, Ry) satisfying

1
Ry < Slog(l+ Pa(1 = p3)) (82)
1
Ry = S log(1+ Pi(1 = pf = p)
1 Py(1 = p3)
+ = log| 1+
2 ( 1+ (VO + ps/P)?+ Pi(1 = p? —Psz))
(83)
R+ Ry

1
< 5 log(1+ Pi(1 = pf = p}))

+ Liog Py(1 = p3) + (p2v/P2 + p1v/P1)? )

1+
2 ( 1+ (VO + ps/P)? + Pi(1 — p? — p?)
(84)

for some p; € [0, 1], p2 € [0, 1], ps € [—1, 0] that satisfy

p12+p32 < 1. (85)

Proof: The proof of Theorem 9 follows from the following
single-letter outer bound on the capacity region, whose proof
is given in Section IV-D.

Proposition 10: The capacity region of the dirty MAC with
degraded message set is outer-bounded by the region with rate
pairs (R, Ry) satisfying

Ry < I(X2; Y|X1, 8, U) (86)
Ry < I(X1;Y|X2, S, U) + I(X2; YIU)  (87)
Ri+R = I(X1;Y|X2,S,U) +1(X2,UsY)  (883)

for some joint distributions Py, x, s,u that satisfy

e X1 and X, are conditionally independent given U

e U and X, are independent of S;

« E[X}] < P and E[X3] < P>

To prove Theorem 9, it remains to show that the bounds
in (86)—(88) are maximized when U, S, X, and X, are
jointly Gaussian. The proof of this result is provided in the
appendix. [ ]

Next, we explain how the outer bound in Proposition 10
improves upon (17) and (18). Observe that (18) can be
rewritten as

Ri+ R <I(X1;Y[S,X2)+1(X2;Y) (89)

where the joint probability distribution of S, X1, and X> has
the form Ps Py, Px,|x,,s. The key difference between Proposi-
tion 10 and the outer bound in (17) and (18) is the introduction
of the auxiliary random variable U in Proposition 10. The
intuition for this auxiliary random variable is as follows. Since
the non-cognitive user knows both messages M| and M, its
input X, must contain two parts, where each part depends
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Fig. 5. Inner and outer bounds for the capacity region of the dirty MAC

with degraded message sets for P| =4, P, = 2.5, and Q = 5. The red solid
curve denotes our new outer bound in Theorem 9, the blue dashed curve and
the black curve denote the inner and outer bounds obtained in [5].

Ro, bits/(ch. use)

0 0.2 0.4 0.6 0.8 1 1.2
Ry, bits/(ch. use)

Fig. 6. Inner and outer bounds for the capacity region of the dirty MAC
with degraded message sets for P| =2, P, =5, and Q = 12. The red solid
curve denotes our new outer bound in Theorem 9, the blue dashed curve and
the black curve denote the inner and outer bounds obtained in [5].

only on one message. The auxiliary random variable U in
Proposition 10 captures precisely the part of X, that depends
on Mj. Since the input X; of the cognitive user depends
on X, only through the message M;, and hence through U,
we see that X and X, are conditionally independent given
U, as stated in the proposition. For comparison, the bound
determined by (17) and (18), which allow arbitrary dependence
between X and X», is looser than the bound in Proposition 10
(unless Ry = 0, in which case U = X)»).

In Figs. 5 and 6, we compare our new outer bound in
Theorem 9 with the inner and outer bounds in [5] for different
values of P;, P>, and Q. In both figures, the red solid curve
denotes our new outer bound in Theorem 9, and the blue
dashed curve and the black curve denote the inner and outer
bounds obtained in [5]. As expected, our new outer bound
is tighter than the outer bound in [5, Th. 4], and is almost
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on top of the inner bound for the parameters considered
in Figs. 5 and 6. For the scenario considered in Fig. 5, our
outer bound does not match the inner bound (unless Ry = 0).
Numerically, we observe that the gap between the inner bound
and our outer bound is less than 0.013 bits/(ch. use). For
the scenario considered in Fig. 6, our outer bound matches
the inner bound if either Ry < 0.1 or Ry = 0. The gap
between the inner and outer bounds in this scenario is less than
3.4 x 1073 bits/(ch. use).

C. The Helper Problem

The outer bound in Theorem 1 also yields an upper bound
on the capacity of the helper problem as shown in the next
result.

Theorem 11: For the helper problem, we have

Chelper < max[Rz Ry < Cy, and

Hlog(l + 1+“’72_%(1%2)) 4 f(5)] > 0]

P
(90)

min
0<o<l1

where g(-) and f(-) are defined in (31) and (33), respectively.

Proof: Setting Ry = 0 in the outer bound (30) in
Theorem 1, we conclude that the rate Ry of the non-cognitive
user must satisfy

min

1 1+P,—6
0=o<1 Hil"g(l + 72&.’(1?2)) + f(&)] >0. (91)

Pyo
This implies (90). |

A simple consequence of Theorem 11 is the following
result, which shows that Condition 1 is both necessary and
sufficient for the non-cognitive user to achieve the channel
capacity without state dependence.

Corollary 12: For the helper problem, the following three
statements are equivalent:

1) Chelper = %log(l + P);

2) the channel parameters

Condition 1;

3) f(0) >0, where f(-) is defined in (33).

In Fig. 7, we compare the new upper bound in Theorem 11
with the upper and lower bounds in [11]. The two upper
bounds reported in [11, Lemmas 2 and 3] correspond to

P, P, and Q satisfy

Chelper < Csum (92)

and

Chelper = % IOg(l + P2) (93)
respectively. The lower bound (achievability bound) is
[11, Th. 1]. As observed in [11], the upper bound (92) is
tight (i.e., Chelper = Csum) if P1 < 2.5, and the bound (93)
is tight (i.e., Chelper = %log(l + P»)) if P; > 4.5. Our new
upper bound is tighter than (92) and (93) for P; € [3.5,4.5].
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1.5

Csum
14+
New converse Llog(1 + Py)

1.3 g

Rate, bits/(ch. use)
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26 28 3 32 34 36 38 4 42 44 46 48 5
Py
Fig. 7. Upper and lower bounds on Chejper as a function of Py for P, =35

and O = 12.

IV. TECHNICAL PROOFS

A. Proof of Theorem 1
Define

Ry

l1 (My; Y™ (94)
n

R %I(XE’; Y. (95)
By Fano’s inequality, there is no difference asymptotically
between this definition of the rate and the operational one
(i.e., the ratio between the logarithm of the number of
messages and the blocklength). Without loss of generality,
we further assume that X7 and X3 have zero mean.

The upper bound (29) is straightforward. The proof of (30),
which builds upon the intuition described in Section III-A,
consists of three steps.

1) We derive the following upper bound on R; by standard
manipulations of the mutual information terms:

nRy < (X7 +S" Y)) — 1(X} + 8", Y2)

25

FIXT S YE) — IS Y. (96)

275

Here, Y(; and Y are defined in (34) and (35), respec-

tively. Note that, the upper bound on R; in (96) depends

on the joint distribution of X} and S” but not on X73.
2) We upper-bound the term /5 in (96) as follows:

)

Pyo ©7)

Is < Zlog(1
153 Og( +
where g(R») is defined in (31). The derivation relies on
an elegant argument of Polyanskiy and Wu [19], used in
the derivation of the outer bound on the capacity region
of Gaussian interference channels.
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3) We show that the term J; in (96) can be single-letterized
as

Js<n

max I(X1+8;Yc)—I(S; Ya‘)}.

Py s E[XT]<Py {
(98)

Then, we show that the expression on the RHS of (98)
is maximized when X; and S are jointly Gaussian.
Substituting the upper bounds on I5 and Js derived in
Step 2 and Step 3 into (96), we obtain the desired upper
bound (30).

1) Step 1: Proof of (96): We start by observing that the
channel M| — Y" is stochastically degraded with respect to
the channel M; — Y, since Y” has the same distribution as
Y+ X5+ V11— 627", where Z" ~ N(0,1,). This implies
that

nRy = I(My; Y") < I(My; Yy). (99)

The mutual information /(M;; Y§') can be upper-bounded as
follows:

I(My; Yy)

=1(My,S";Y5) = 1(S": Y§|My) (100)
< I(My, XY, 8" Y5) — 1(S"; Y5 | M) (101)
= I(X], 8" Y)) + I(M,; Y} X7, ™)

—I(S"; Y}, My) + 1(S"; My) (102)
= 1(X1, 8" Y} — I(S™: Y}, My) (103)
= I(X] + 8 YD) = I(S"; Y — I(S"; My|Y))  (104)
< I(XT 48" Y5 —I1(S"; Y]). (105)

Here, in (103) we used that I(M;; Y§|X7],S") = 0, which
follows because M; — (X1,S8") — Yy forms a Markov
chain; (104) follows because I (X', S"; Y§') = I (X{+S"; Y§);
and (105) follows because 1(S"; M1|Y§') > 0. Itis not difficult
to verify that (105) is equivalent to (96).

2) Step 2: Upper-Bounding Is: We next upper-bound the
term Is defined in (96). The derivation follows closely the
proof of [19, Th. 7]. Let

2
Ns(y) éexp[—h(X’f + " +ﬁz")] (106)
n
where Z" ~ N(0, I,,) is independent of X' and S”. By Costa’s
entropy power inequality [25], the function Ng(-) is concave.
The term Is can be expressed in terms of Ng(-) as
I n 1 Ns(9) n 1+ P
=—log———————+=1Io .
TN+ ) 2%
Repeating the steps in [19, egs. (41)—(43)], we obtain (recall
that G" ~ N(0, Pzl,))

D(Pxz 4701l PGryzn) < n(Ca — Ry)

(107)

(108)

where D(-]|-) denotes the relative entropy between two distri-
butions, and

nRy = I(X2;Y") (109)
= h(Y") = h(Y2) + h(Y2) — h(X? 4+ S" + Z") (110)

Ns(1 + P
= h(Y") — h(Y2) + %log Ns(+ Po)

111
Ns(D) (b

7875

Note that E[X7 + "] = 0, E[X4] = 0, E[IIX5]°] < nPs,
and

E[ X} + 5]
- E[ux'fnz] +E[||S"||2] F2E[(XE, ] (112)
<nPi+nQ +2E[|X][IS"]I] (113)
<nP +nQ +2\/E[||X’11||2]IE[||S"||2] (114)
< n(/P+0)% (115)

By [19, Propostion. 2], the random variable Y0 is

(3 loge 4(/Pi++/0)loge
T+P; T+ P,

function pyn (y") of Y satisfies

)-regular, i.e., the probability density

IV log p n(y")” < M”yn” +4(VP1+\/§)10g€
vy" eR".  (116)

Therefore, by [19, Propostion 1], the entropy difference
between Y”" and Y can be bounded via the Wasserstein
distance Wz(Pyﬂ,Pyg) (see [28, p. 12] for the definition
of W) as

h(Y") —h(Yg)

< (3\/1+(\/P_1+\/§)2+P2+4(\/P_1+\/§))

J/nloge
Y Wo(Pyn || Pyn). 117
TP 2(Pyn || Pyp) (117)
Furthermore, we have
Wa(Pyn [ Pys) = Wa(PxnyznllPonyzn) (118)
2(1 + Py)
< \/liD(ngjLanlPGwZ”) (119)
oge
2n(l + P
< \/M(Cz - Ry). (120)
loge

Here, (118) follows because the W,(-,-) distance is
non-increasing under convolutions, (119) follows by using
Talagrand’s inequality [20], and (120) follows from (108).
Substituting (120) into (117), and then (117) into (111),
we conclude that

Ng(1
og L <2c1v/Ca — Ry+2(Cy — Ry) — log(1 + P»)
Ns(1 + P>)

(121)
where ¢ is defined in (32), or equivalently,
Ns()  _expavC- R+ 2G—R) -
Ns(1+ P,) — 1+ P,
Let a £ P,/(1 + P> — 6) be such that
00+ (1 —a)(1+ P) =1. (123)
By the concavity of Ng(-), we have
aNs(©)+ (1 —a)Ns(1 4+ P») < Ns(1) (124)
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which implies that

_ Ns@
Ns(1 + P)
_INs() = (1 —a)Ns(1 + Py) (125)
= Ns(1 + P)
L (GXP(chm7L 2 —R) a)'
= I+ P
(126)

Substituting (126) into (107), we conclude the desired upper
bound (97) on Is.

3) Step 3: Upper-Bounding Js: We proceed to upper-bound
the term Js defined in (96). Observe that

I(X] 4+ 8™ Y0

n
=> (h(YG,,-|Yé_1) —h(Yg,ilX1,i, Si))

(127)
i=1
<> (h(¥6.) = h(YG.il X1, S)) (128)
i=1
= ZI(XU +8i; YG.:) (129)
i=1
and
1(S"; Y} = h(S") — h(S"|Y}) (130)
= > (r(s) —n(siy;.s7H) a3
i=1
> > (h(S) — h(Si1Ys)) (132)
i=1
= > 1(Si Ya) (133)
i=1

where both (128) and (132) follow because conditioning
reduces entropy. Combining (129) and (133), we obtain

I(XT + 8" Y8 — 1(S"; YD)

n
< D (I + Sis Yo.) = 1(Sis Ya)) - (134)
i=1
where the RHS of (134) depends on Pxns» only through
the (marginal) conditional distributions {Px, ;s;}.

Now, a critical observation is that the functional Px,|s
I(X1+S;Ys)—1(S;Yy) is concave (recall that Y and Y5 are
defined in (44) and (45), respectively). This follows because,
for a fixed channel, mutual information is concave in the
input distribution, and for a fixed input distribution, mutual
information is convex in the channel (see [29, Th. 2.7.3]).
Furthermore, both the state sequence S” and noise sequence
Z™ are i.i.d. This allows us to conclude the single-letter upper
bound (98) on Js.

To solve the maximization problem in (98), we next invoke
the Gaussian saddle-point property as explained in the intuitive
argument after Theorem 1. Lemma 13 below generalizes the
well-known worst-case Gaussian noise result [21], [22] to the
case in which the noise and the Gaussian input are dependent.
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Lemma 13 ([23, Th. 1]): Let Xg ~ N(0,K,) and Zg ~
N(0,K,) be Gaussian random vectors in R¢. Let Z be a
random vector in RY with the same covariance matrix as Zg.
Assume that X is independent of Zg, and that

E[XG ZT] = 0 (135)
where the superscript (-)T denotes transposition. Then
I(Xg; Xg+Zg) <I(Xg; Xg+ 2). (136)

We proceed as follows. For a given Pyx,s, let p =
E[X S1//P1Q be the correlation coefficient between
X1 and S. Denote

X, £ X1 —pJ/P1/QS (137)
S22 1+pJ/Pi/0O)S. (138)

It is not difficult to verify that E[glg] = 0 and )?1 +8 =
X1 + S. Therefore, we have

IX1+8:Y6)=I(X1+8: X1 +S+J/1+ P,Z) (139)
and
1(S;Y5) = I1(S;Ys) =1(S; S+ X1 ++5Z)  (140)

where the inequality holds with equality if p/P1/Q # —1.

Observe now that, for a fixed p and b £ E[gj] the mutual
information term in (139) is maximized when X is Gaussian
and is independent of §. Furthermore, by Lemma 13, the
mutual information term on the RHS of (140) is minimized
also when X 1 is Gaussian and is independent of S. Therefore,
we conclude that

max
Py sE[X{]<Pi

1 (4P +b+(1+pJPi/0)20O)> +b)
512ax I

2 T @ bt (1 p/PT020O) + Po)
(141)

{I(X1 1 8:YG) — I(S: Y(;)}

where the maximization on the RHS is over all pair (b, p)
satisfying
b>0, and b+ p’P; < P. (142)
By examining the Karush-Kuhn-Tucker (KKT) necessary con-
ditions [30, Sec. 5.5.3], it can be shown that the constraint
b+ P;p? < Py is always binding (namely, the optimal (b*, p*)
pair must satisfy this inequality with equality), and that the
optimal p* must be non-positive. As a result, the maximization
problem on the RHS of (141) can be simplified to the one
dimensional one in (33). In other words, we have proved that
Js =nf(9). (143)
Finally, substituting (97) and (143) into (96), and optimizing
the resulting bound over d, we conclude the desired result (30).
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B. Proof of Proposition 3

It is straightforward to show the bounds

n
nRy < > 1(X1i Yil X2, $)

i=1

(144)

and

n
nRy < D1 (Xoi; YilX 14, 5)).
i=1

(145)

The counterpart of (51) can be proved as follows. As in the
proof of Theorem 1, we define the rates Ry and R» as in (94)
and (95) without loss of generality. We have

n(Ri + Ry) = I(My; Y") + 1 (X5; Y") (146)
=I(M, X5, Y") — I(X5; My|Y")  (147)
< h(Y") — h(Y"| M), X5) (148)
< D h(Y) = h(Y" My, X3). (149)
i=1

Here, (147) follows because X7 and M; are independent.
The conditional differential entropy term A(Y"|My, X%) can
be further lower-bounded as follows:

h(Y"| M, X3) (150)
= h(Y", S"|My, X3) — h(S"|Y", M1, X3) (151)

= h(S"|My, X5) +h(Y"|M;, X5, S
—h(S"|Y", My, X%) (152)

= h(S") +h(Y"|XT, S", X5) — h(S"|Y", My, X5) (153)
> h(S")+h(Y"|XY, ", X5) — h(S"|Y", X3) (154)

n
> D (h(S) + h(Yi| X1, Siu X2.0) — h(Si|Yi, X2.0)) -
i=1
(155)

Here, both (154) and (155) hold because conditioning does
not increase differential entropy. Substituting (155) into (149),
we conclude that

n
n(Ri+Ry) <> (h(Yi) —h(YilX1,i, Si, X2,i)
i=1

—h(S) +h(Si]Yi, X2.)) (156)
=> (h(Yi) —h(YilX1i, Si, X2.0)
i=1
—h(Yi1X2,) + h(YiIS X2))  (57)

n
=, (I(Xl,i; YilXo,i, Si) + 1(Xa,i; Yi))-
i=1
(158)

Here, (157) follows because S; and X5 ; are independent.
Introducing the time-sharing random variable Q, which is
uniformly distributed over the integers {1, ...,n}, we obtain
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the following outer bound:

R = I(X1:Y|X2, S, Q) (159)

Ry < I(X2: Y|X1, S, Q) (160)

Ri+ Ry < I(X15Y[X2, S, Q) + 1(X2; Y]Q). (161)

Using the concavity of mutual information and the fact that
Q is independent of S, it can be shown that the above region
is equivalent to the one stated in the proposition (without the
time sharing random variable Q). This concludes the proof.

C. Proof of Theorem 7

The proof uses techniques similar to the ones used in the
proof of Theorem 1. The main twist in this case compared
with Theorem 1 is that X7 and X are not independent.
To circumvent this, we need to modify the steps in (108)—(126)
by conditioning on M, and by using the fact that X and
X7 are conditionally independent given M;. In particular,
the counterpart of 75 in (96) is defined as

Is & I(X] + S YJIM) — T(XT + 8" YgIMD) - (162)
Ns(8|M 1+ P
= EIEM, [log ~S(—|1):| E og 1 (163)
2 Ns(1+ P2 M) ] 2 J

where
~ 2
Ns(y |m) £ exp[—h(x? + 8"+ 72"\ My = m)] . (164)
n

The function N (y |m) inherits all the properties of Ng(y ) that
are used in Section IV-A, such as monotonicity and concavity.
In the remaining part of the proof, we omit the mechanical
details and only highlight the steps that differ from the ones
in Section IV-A.

As in Section IV-A, we first upper-bound I5. Let

Ry = I(My;Y")

£ (1653)
Ry £ I(X5; Y"|My).

(166)

Again, by Fano’s inequality, the definitions of the rates in (165)
and (166) agree with the operational ones. With the condition-
ing on Mj, the bounds (108) and (111) become

D(Pxnyznmy | PGraze|Puy) = n(C2 — Ry)  (167)
and

nRy = h(Y"|My) — h(Yg| M)

Ns(1 + P,|M
+Eu, ElogM . (168)
2 Ns(1|My)

Here, D(erzz +zmm; | PGny-zn| Pyy) denotes the conditional
relative entropy
D(Pxnyznm, 1 PGrt-zn | Puy)

2 Ey, [D(ng+zn\M1 l PG”+Z")] . (169)
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Using [19, Propositions 1 and 2] and (167), we bound the
difference h(Y"|M1) — h(Y{|M1) as follows:

h(Y"|My) — h(YG|My)
loge
Ewm, |:W2(Pyg|Ml, Py”/wl)(‘ﬂE[IIX']1 + ™| |Mi]

<
T 14+ P
3 3
+§\/E[||Y(’;||2|M1] + 5\/E[||Y"||2|Ml]):|
(170)

loge
14+ P

2(1+ P)
Ep, || ————D(Px2 170 m, | PGn+2n) -
loge 2

3
(4JE[||X7 + S12IM] + S E[IVE 121

3
+5\/E[||Y"||2|M1])} (171)
loge [2(1+ P»)
=9 +gP2\/ loge 2 D(Pxnyznm, 1 PGnyz | Pyy) -
3 3
(4/E[||X7 + 512] + SyEIvalR] + 5\/1E[|IY”II2])
(172)
< conyCy— Ry (173)
where
o2 31+ (VP + VP +V0)? + 4P + VO)
J(I+ Py)/(2loge) '
(174)

Here, (170) follows from [19, Propositions 1 and 2]; (171)
follows because for every message 1,

E[I1X] + $"[|M; =m] < \JE[IX! + S"|21M; = m]

(175)
and
Wz(PY(rHMl:m’ PY”|M1:m)
< Wa(Pxyyz0\my=m> PGrizn) (176)
2(1+ P)
= \/ loge D(PX§'+Z”\M1:m ||PG”+Z”) (177)

where (176) follows because the W (-,-) distance is non-
decreasing under convolutions and because X + §" and X7
are conditionally independent given Mj, and the bound (177)
follows from Talagrand’s inequality [20]; (172) follows from
the Cauchy-Schwarz inequality; and finally (173) follows
from (167), (115), and because

1
B[] < 14+ WP+ VR +V0? (78)
1
CE[IVAIP] < 1+ P+ VR VR (79)

Substituting (173) into (168), we conclude that
E Ns(1 + P2|My)
M log—————
Ns(1|My)

< 2¢c2y/Cy2 — Ry +2(Cy — Ry) — log(1 + P»). (180)
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Letting a £ P, /(1 + P, — ¢) as in Section IV-A, we obtain

E [l Ns (5| M) }
M| 108 =—————————
Ns(1 + P2|My)
<Eyp |:10g(~— -1 +a)i| —loga (181)
: Ng(1 4+ P2|My)

Ns(1|My)
exp(2coa/C2—Ry +2(C2—R
§log( p(2c2/ 21+2P2 (C2—Ry)) —1+a)—loga.

(182)

Here, (181) follows from the concavity of y > Ns (y |My),
and (182) follows from Jensen’s inequality and because the
function x — log(exp(x) — (1 — a)) is concave. Finally,
substituting (182) into (163), we conclude that

1 -0
ig(Rz))

183
Prs (183)

- n
Is < 7 log(l +
where g(R3) is defined in (77).

We next relate I~5 to Rp. This part is quite different from
the steps in Section IV-A.1, since for the dirty MAC with
degraded message sets, the information about the message M
is contained in both X7 and X7%. Consider the following chain:

Is = I(X}, S"; Y] IMy) — L(X} + S", My; Y2)

+I(My; YY) (184)
= I(S"; Y}, My) + [(X"; YI|S", My)

— (X7 + 8", My; Y2y + T (My; Y2 (185)
> I(S"; YY) — I(XT + 8™ YE) + I(My; Y2 (186)
= I(S"; Y]) = I(XT 4 S™, YE) + [ (My; YE)

—I(My;Y") +nRy. (187)

Here, the penultimate step follows because My — X +5" —
Y7 forms a Markov chain. The first two terms on the RHS
of (187) can be single-letterized and bounded in the same way
as in Section IV-A.3, i.e.,

I(S" ) — I(XY + 8" Yg) = —nf(9)

where f(-) was defined in (33).
To conclude the proof, it remains to lower-bound

I(My; Yg) — I(My; Y"™). To this end, we rewrite it as
I(My;YG) — 1(My; Y™)

=h(YE) —h(Y") +h(Y"|M) — h(Y5IM1). (189)
The differences h(Y[)—h(Y") and h(Y"|M1) —h(Y{|M}) can
be bounded via steps similar to those in (170)—(173). More
specifically, we have

(188)

h(YLIM)) — h(Y"|M)) < c3ny/Co — Ry (190)
and
h(Y") = h(Y5) < cany/C2 — Ry (191)

where c3 was defined in (79). Here, to prove (191), we have
used

D(Pyn||Pyy) < D(Pynim || Py v, | Pay) (192)
< D(Pxz4znm I1PGryzn | Pry)  (193)
<n(Cy — Ry) (194)
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where (192) follows from the data processing inequality, (193)
follows from the data processing inequality and because
X! 4+ 8" and X7 are conditionally independent given M,
and (194) follows from (167). Substituting (190) and (191)
into (189), then (189) and (188) into (187), and combin-
ing (187) with (183), we conclude the proof of (76).

D. Proof of Proposition 10

The key idea of the proof is to identify the auxiliary random
variables U £ (Mj, Q), where Q denotes the time-sharing
random variable that is uniformly distributed over the integers
{1,...,n}. We have

nRy = I(X2; Y"|M) (195)
< I(Xy; Y", X, S"|My) (196)
= I(X}; Y"|X", S", My) (197)
= h(Y"|X7, §", My) — h(Y"|X", X2, S", M) (198)

n
< D h(YilX1i, Sio Mi) — h(Yil X1, X0, Sin Mi)

i=1

(199)

n
ZZI(Xz,i:Yilxl,i,Si,Ml) (200)

i=1
= 1(X2; Y[X1, S, U). (201)

This yields the upper bound in (86).
To prove (87), we observe that
Ry = 1(X5: Y"|My) (202)
= h(Y"|My) — h(Y"|My, X3) (203)
n

< > h(Yi M) — h(Y"|My, X3). (204)

i=1
Proceeding as in (149)-(161) while keeping the conditioning
on M, we conclude that

n

Ry = D (1(X105 Yil Xy, S, M) + 13 Y1M1)) - (205)
i=1

= [(X1:Y|X2. S. M1, Q)+ I(X2: Y|Q. M) (206)

< I(X1: Y|X2, 5, U) + 1(X2: Y|U). (207)

Finally, we prove (88). We proceed again as in (146)—(155)
and keep the conditioning on M| whenever appropriate. This
yields

n(Ri + R»)

n
< Z (h(Yi) —h(YilX1,i, Si, X2,i))
i=1

—h(S"|My) + h(S"|Y", My, X5) (208)
n
= > (0D = hIX 10, Si, Xai, M)
i=1
— h(SiMy, Xo0) +h(SIM, Y, X2)) - (209)

n

= > (1 X033 YilXai, Siy M) + 1(Xa, M1 Y))) (210)
i=1
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=I1(X1;Y|X2, S, My, Q)+ 1(X2, M1;Y|Q) (211)
< I(X1;Y|X2,8,U)+ 1(X2,UsY). (212)

Here, (209) follows because S; is independent of M7 and X» ;,
and because conditioning does not increase entropy. The proof
is concluded by observing that the auxiliary random variable U
and the random variables X1, X» and § satisfy the conditions
listed in the theorem.

V. CONCLUSION

In this paper, we have studied a two-user state-dependent
Gaussian MAC with state noncausally known at one encoder
and with and without degraded message sets. We have derived
several new outer bounds on the capacity region, which
provide substantial improvements over the best previously
known outer bounds. For the dirty MAC without degraded
message sets, our outer bounds yield the following:

« the characterization of the sum rate capacity;

« the establishment of the two corner points of the capacity

region;

o the characterization of the full capacity region in the
special case in which the sum rate capacity is equal to
the capacity Chelper Of the helper problem; and

e a new upper bound on Chelper, and a necessary and
sufficient condition to achieve Chelper = %log(l + P).

We have shown that a single-letter solution is adequate to
achieve both the corner points and the sum rate capacity.
In addition, we have generalized our outer bounds to the case
of additive non-Gaussian states.

There are several possible generalizations of the results in
this paper.

o The outer bounds derived in this paper can be readily
generalized to the discrete case and to the multiple-
input multiple-output (MIMO) setting. This is unlike the
doublely dirty Gaussian MAC setting, in which additional
difficulties arise when extending from the single-input
single-output channel to the MIMO setting [31].

« In this paper, we assume that the state is not known at the
non-cognitive user. It would be interesting to investigate
whether revealing the state information strictly causally
to the non-cognitive user can increase the capacity region.
As shown in [32], strictly causal state information enables
cooperation between the two encoders (e.g., by letting the
encoders convey the past state information jointly to the
decoder).

o In this paper, we have considered two state-dependent
MAC settings: the dirty MAC without degraded
message sets and the dirty MAC with degraded message
sets. In the latter case, we assumed that the state
non-cognitive encoder has access to the message of the
state-cognitive encoder. As mentioned in the introduction,
the setting in which the state-cognitive encoder knows
the message of the non-cognitive encoder was studied
in Somekh-Baruch et al. [7], where the exact capacity
region was established. A general model that unifies
all the three settings listed above is the state-dependent
MAC with common and private messages. In this model,
the state-cognitive and state non-cognitive encoders
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each has a private message to transmit, in addition to
a common message that is known at both encoders.
This model generalizes the Slepian-Wolf model of the
MAC with correlated sources [33] to the state-dependent
setting. Establishing the capacity region of this model is
an interesting open problem.

o In the proofs of Theorem 1 and Theorem 7, we have
essentially transformed the dirty MAC into a state-
dependent Z-interference channel with input-output

relationship
Y1 = X1 + S + 07, (213)
“o=X1+X2+S+2; (214)
where the Gaussian noises Zi,Z; ~ N(0,1) are

independent. This suggests that our techniques may
yield tighter outer bounds on the capacity region of the
state-dependent Gaussian Z-interference channel than
the ones derived in [34].

o Another related setting is the state-dependent relay
channel with state available noncausally at the relay
considered in [35]. It would be interesting to see whether
our techniques can lead to any improvement over the
bounds there.
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APPENDIX
GAUSSIAN INPUTS MAXIMIZE (86)—(88)

We shall prove that the outer region provided in Propo-
sition 10 is maxmized when U, S, X, and X, are jointly
Gaussian distributed. Differently from [5, Th. 4], the presence
of the auxiliary random variable U complicates the proof
substantially.

Consider an arbitrary distribution Py sy, x, that satisfies the
conditions stated in the proposition. Without loss of generality,
we assume that Pysyx,x, satisfies the following conditions,
in addition to the ones stated in Proposition 10:

o U has zero mean and unit variance;

« E[X?] = Pi and E[X>] = P».

The first assumption comes without loss of generality since
U does not appear in the channel input-output relation ¥ =
X1+ X2+ S+ Z, and the second assumption comes without
loss of generality because we do not assume X; and X to
have zero mean. We next introduce the following notation:

pi(u) 2 E[Xi|U = u] (215)
or(u) £ /Var[X;|U = u] (216)
pk 2 \E[up ()] /P (217)
s(u) £ E[X1S|U =ul /\/O (218)
ps 2 Elus(U)]// P (219)
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where k € {1, 2}. It follows that

Ri < I1(X2;Y|X1,S,U) (220)
1 2
< 3E[log(1 +0(0)?] (221)
1 2
< Elog(l +E[02(U) ]) (222)
1
=3 log(1 + P>(1 — p%)) (223)

Here, (222) follows from Jensen’s inequality, and (223) fol-
lows because

E[ag(U)] - E[]E [x%w] - m(U)z] =Py~ p2P. (224)

This proves (82).
To prove (83), we proceed as follows:

Ry < I(X1;Y[X2,S8,U)+ 1(X2; Y|U) (225)
= 1(X1, X2, S; Y|U) = I(S; YU, X2).  (226)
To upper-bound 7 (X1, X2, S; Y|U), we observe that
Var[ X1 + X2 + S|U = u]
_ 2 2
=07 () + 05 W) + Q+2/0us(w)  (227)

where we have used (216) and (218), and that X and X, are
conditionally independent given U. It thus follows that

I(X1+ X2+ S;Y|U)
< 2E[los(1 + 07(V) + 032U) + 0 + 2/, )] (228)

1

=3 1og(1 + E[alz(U) + 03 U)+ 0+ ZJEMS(U)])
(229)

1
= Slog(1+ Pi(1 = p}) + P21 = p}) + 0 + 29,/ OPY)
(230)
Here, in (230) we have used the following identity:

E[J,E(U)] — E[Var[X:|U]] 231)
= Var[Xy] — Var[ux(U)] (232)

= VarlX] - E[ 1 (U)*| + B, (233)
= P — Peaf, ke{l,2) (234)
where (232) follows from the law of total variance.
We next bound the second term on the RHS of (226). Let
us(U)S
Jo

X1 2 X, —um(U) -

. (235)

It follows that
E[XiSIU = u] = E[X1S|U = u] — pus(u)y/Q = 0. (236)
Since S is Gaussian distributed, by Lemma 13,
I1(S;Y|X2,U) (237)
=By [1(5: (1+ u )V Q) + X1 + Z10)| 238)

1 (VO + s (U))?
> §E|:log(1 + T alz(U) - #S(U)z)j| . (239)
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By (216), (235), and (236),
ot ) = E[X}U = u] - uiw (240)
= B[RV = u + 1,00 = . 41)

Now, observe that the function

2
@) (242)

1
£ ] 1

is jointly convex in (a, b) as long as a> < b. Indeed, let H be
the Hessian matrix of &(a, b). It follows that

Hyp = 2% 243
=73 (243)
_ WO -aP(JO—aP 242 -2
(0 4b—ad)?(V0—-a)+1+b—a®?
>0 (245)
and that
_ V0 -a)*
Det[H] = T e T (246)
> 0. (247)

Therefore, H is positive semi-definite for all (a, b) satisfying
a’ < b, which implies that the function &(a, b) is convex.
Therefore, by Jensen’s inequality,

I(S; X1+ S+ Z|U) (243)
1 (VO + Elus(U)))?
Ztogf 1+ 249
=508 1+ E[o2(U)] - Elus ()1 (249)
1 (WO + ps P1)2
— L1oef1 v v 2
il R ey (230

Here, in (250) we have used (234). Substituting (230)

and (250) into (226) and rearranging the terms, we obtain (83).
The proof of (84) follows steps analogous to those in the

proof of (83). More specifically, we obtain from (88) that

Ri+ Ry < h(Y|X2,S8,U) —h(Y|X1,X>,S,U)
+h(¥)—h(Y|X,U) 251
=IX1+X2+S;Y)—I(S; X1 +S+ Z|U).
(252)
The term 1(S; X1 + S+ Z|U) on the RHS of (252) has been

lower-bounded in (250). To upper-bound I (X; + X, + S; Y),
we bound E[(X| + X2 + S5)?] as

E[(X) + X2 + )7
= P1+ P+ O +2E[X1S] + 2E[X X>] (253)
= P+ P+ Q +2p,y/P1 O + 2E[E[ X U] E[X2|U]]
(254)
(255)

IA

Pi+ P+ O+ 2ps/P1O+2p1p2y/ P1LPa.

Here, (254) follows because X; and X, are conditionally
independent given U, and (255) follows because

EIE[X1|U]E[X2|U]] = Elu1(U)u2(U)] (256)
< VE[u1 0] E[2U)?] @57)
= p1p2v/ P1P2. (258)
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It thus follows that
1
IX1+X2+57) < 510g<1+P1 +P+0

+2p/PL0 + 2012/ PiP2). (259)

Substituting (259) and (250) into (252), we obtain (84).
Finally, observe from (234) and (241) that

Py = Pio?=E[o} (V)] 2 B[ s (U] = Elu, ()P = P1p?
(260)

which implies the condition (85). This concludes the proof.
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