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State-Dependent Gaussian Multiple Access Channels:

New Outer Bounds and Capacity Results
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Abstract— This paper studies a two-user state-dependent
Gaussian multiple-access channel (MAC) with state noncausally
known at one encoder. Two scenarios are considered: 1) each user
wishes to communicate an independent message to the common
receiver; and 2) the two encoders send a common message to the
receiver and the non-cognitive encoder (i.e., the encoder that does
not know the state) sends an independent individual message (this
model is also known as the MAC with degraded message sets).
For both scenarios, new outer bounds on the capacity region
are derived, which improve uniformly over the best known outer
bounds. In the first scenario, the two corner points of the capacity
region as well as the sum rate capacity are established, and it is
shown that a single-letter solution is adequate to achieve both the
corner points and the sum rate capacity. Furthermore, the full
capacity region is characterized in situations in which the sum
rate capacity is equal to the capacity of the helper problem. The
proof exploits the optimal-transportation idea of Polyanskiy and
Wu (which was used previously to establish an outer bound on
the capacity region of the interference channel) and the worst
case Gaussian noise result for the case in which the input and
the noise are dependent.

Index Terms— Channel with states, capacity region, dirty
paper coding, multiple access channel, outer bound.

I. INTRODUCTION

W
E STUDY a two-user state-dependent Gaussian

multiple-access channel (MAC) with the state non-

causally known at one encoder. The channel input-output

relationship for a single channel use is given by

Y = X1 + X2 + S + Z (1)
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Fig. 1. State-dependent Gaussian MAC with state available noncausally at
one encoder without degraded message sets.

Fig. 2. State-dependent Gaussian MAC with state available noncausally at
one encoder with degraded message sets.

where Z ∼ N (0, 1) denotes the additive white Gaussian noise,

and X1 and X2 are the channel inputs from two users, which

are subject to the (average) power constraints P1 and P2,

respectively. The state S ∼ N (0, Q) is known noncausally at

encoder 1 (state-cognitive user), but is not known at encoder 2

(non-cognitive user) nor at the decoder. This channel model

generalizes Costa’s dirty-paper channel [1] to the multiple-

access setting, and is also known as the “dirty MAC” or “MAC

with a single dirty user” [2]. In this paper, we consider the

following two scenarios:

i) Each user wishes to communicate an independent mes-

sage to the common receiver, where the state-cognitive

user sends the message M1 and the non-cognitive user

sends M2 (see Fig. 1);

ii) The state-cognitive encoder sends the message M1

and the non-cognitive encoder sends both M1 and M2

(see Fig. 2). In this case, the message M1 can be also

viewed as a common message.

We shall refer to the first setting as the “dirty MAC without

degraded message sets,” and the second setting as the “dirty

MAC with degraded message sets.”

0018-9448 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-8998-8515
https://orcid.org/0000-0003-2631-4262
https://orcid.org/0000-0002-6594-3371
https://orcid.org/0000-0002-2062-131X


YANG et al.: STATE-DEPENDENT GAUSSIAN MAC: NEW OUTER BOUNDS AND CAPACITY RESULTS 7867

Although the dirty MAC (with and without degraded mes-

sage sets) described in (1) has been studied extensively in the

literature [2]–[5], no single-letter expression for the capacity

region has been characterized to date. For the dirty MAC

without degraded message sets, Kotagiri and Laneman [3]

derived an inner bound on the capacity region using a gen-

eralized dirty paper coding scheme at the cognitive encoder,

which allows arbitrary correlation between the input X1 and

the state S. Philosof et al. [2] showed that the same rate

region can be achieved by using lattice-based transmission.

In general, it is not clear whether a single-letter solution (i.e.,

random coding/random binning using independent and identi-

cally distributed (i.i.d.) copies of a certain scalar distribution)

is optimal for the dirty MAC (1). However, as [2] and [4]

demonstrated, a single-letter solution is suboptimal for the

doubly-dirty MAC, in which the output is corrupted by two

states, each known at one encoder noncausally (see also [6]).

In this case, (linear) structured lattice coding outperforms the

best known single-letter solution. An inner bound for the dirty

MAC with degraded message sets was derived in [5], which

uses superposition coding at the non-cognitive encoder to send

the two messages M1 and M2.

On the converse side, all existing outer bounds for the

dirty MAC without degraded message sets are obtained by

assuming that a genie provides auxiliary information to the

encoders/decoder. For example, by revealing the state to the

decoder, one obtains an outer bound given by the capac-

ity region of the Gaussian MAC without state dependence.

Zaidi et al. [5] derived an outer bound on the capacity region

of the dirty MAC with degraded message sets, which also

serves as an outer bound for the dirty MAC without degraded

message sets. Somekh-Baruch et al. [7] considered the setting

in which the cognitive encoder knows the message of the

non-cognitive encoder (i.e., the roles of the two encoders

are reversed), and derived the exact capacity region (see

also [8]). Interestingly, this capacity region remains valid

if the non-cognitive encoder possesses strictly causal state

information [9].

Different variants of the dirty MAC model in (1) have also

been investigated in the literature. A special case of the dirty

MAC model is the “helper problem” [10], in which the cogni-

tive user does not send any information, and its goal is to help

the non-cognitive user. For the helper problem, the capacity (of

the non-cognitive user) is known for a wide range of channel

parameters [11]. Lapidoth and Steinberg [12] and Li et al. [13]

considered the case in which the state is known only strictly

causally or causally at the cognitive encoder, and derived inner

and outer bounds on the capacity region. The capacity region

of the MAC with action-dependent states was established in

Dikstein et al. [14]. Inner and outer bounds on the capacity

region of the state-dependent MAC with rate-limited decoder

side information were derived in [15]. Finally, Wang [16]

characterized the capacity region of the K -user dirty MAC to

within a bounded gap. For a general account of state-dependent

multiuser models, we refer the reader to [17] and [18].

The main contributions of this paper are the establishment

of new outer bounds on the capacity region of the dirty MAC

given in (1) with and without degraded message sets. In both

scenarios, our bounds improve uniformly over the best known

outer bounds (see Fig. 3–Fig. 6 for numerical examples). For

the dirty MAC without degraded message sets, the new outer

bounds allow us to characterize the two corner points of the

capacity region as well as the sum rate capacity (note that,

unlike [2], we do not assume Q → ∞). In this case, a single-

letter solution is shown to be adequate to achieve both the

corner points and the sum rate capacity. Furthermore, the full

capacity region of the dirty MAC without degraded message

sets is established in situations in which the sum rate capacity

coincides with the capacity of the helper problem. The new

outer bounds derived in this paper also lead to a new upper

bound on the capacity of the helper problem.

The proof of our outer bounds builds on two sets of

techniques that are quite different from each other. Inter-

estingly, each set of techniques yields one corner point of

the capacity region. The first set of techniques is algebraic

in nature, exploiting certain algebraic properties of mutual

information and differential entropy. Among others, we make

use of a recent technique proposed by Polyanskiy and Wu [19]

that bounds the difference of the differential entropies of

two probability distributions via their quadratic Wasserstein

distance and via Talagrand’s transportation inequality [20].

The second set of techniques are standard outer-bounding

techniques in network information theory, including a general-

ized version of the worst-case Gaussian noise result, in which

the Gaussian input and the noise are dependent (but are

uncorrelated) [21]–[23]. The improvement of our bounds over

existing ones in, e.g., [3] and [5] mainly lies in the way

we apply these techniques, and in a novel identification of a

certain auxiliary random variable in the degraded-message-set

case. We anticipate that these techniques can be useful more

broadly for other state-dependent multiuser models, such as

state-dependent interference channels and relay channels.

In addition to the outer-bounding techniques reviewed

above, the idea of generalization (or extension) has been

applied several times in this manuscript. In a nutshell, this

idea allows us to solve a problem by either generalizing

it or extending its domain. For example, to establish one of

the outer bounds on the capacity region of the state-dependent

MAC, we generalize the MAC to an interference channel. It is

this generalization that allows us to use the recent advances in

the study of interference channels (including Polyanskiy and

Wu’s technique [19]) on the state-dependent MAC. As another

instance of this powerful idea, we show how an outer bound

on the capacity region of the state-dependent MAC leads to an

upper bound on the capacity of the helper problem. We believe

that this idea of generalization/extension will be very beneficial

in information theory. It also parallels the “reductionist” view

of information theory that was propounded recently in [24].

II. PROBLEM SETUP AND PREVIOUS RESULTS

A. Problem Setup

Consider the Gaussian MAC (1) with additive Gaussian

state noncausally known at encoder 1 depicted in Fig. 1 and

Fig. 2. The state S ∼ N (0, Q) is independent of the additive

white Gaussian noise Z ∼ N (0, 1) and of the input X2 of the
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non-cognitive encoder. The state and the noise are i.i.d. over

channel uses. For the dirty MAC without degraded message

sets (Fig. 1), we assume that encoder 1 and encoder 2 must

satisfy the (average) power constraints1

n∑

i=1

E

[
X2

1,i(M1, Sn)
]

≤ n P1 (2)

n∑

i=1

E

[
X2

2,i (M2)
]

≤ n P2 (3)

where the index i denotes the channel use, and M1 and M2

denote the transmitted messages, which are independently and

uniformly distributed. The decoder reconstructs the transmitted

messages M1 and M2 from the channel output, and outputs

M̂1 and M̂2. The (average) probability of error is defined as

Pe � P[(M1, M2) 6= (M̂1, M̂2)]. (4)

If the message sets are degraded (Fig. 2), then the power

constraint (3) becomes

n∑

i=1

E

[
X2

2,i (M1, M2)
]

≤ n P2. (5)

The capacity regions for the dirty MAC with and without

degraded message sets are denoted by Cdeg(P1, P2, Q) and

C(P1, P2, Q), respectively. Note that, by definition,

C(P1, P2, Q) ⊆ Cdeg(P1, P2, Q). (6)

In both scenarios, a single-letter characterization for the capac-

ity region is not known in the literature. In Section II-B

below, we review the existing inner and outer bounds on

Cdeg(P1, P2, Q) and C(P1, P2, Q).

B. Previous Results

For the dirty MAC without degraded message sets, the best

known achievable rate region was derived by Kotagiri and

Laneman [3], and is given by the convex hull of the rate pairs

(R1, R2) satisfying

R1 ≤ I (U ; Y |X2) − I (U ; S) (7)

R2 ≤ I (X2; Y |U) (8)

R1 + R2 ≤ I (U, X2; Y ) − I (U, S) (9)

for some joint probability distribution PU X1|S PX2 . A com-

putable inner bound was obtained in [3] from (7)–(9) by

setting

PX1|S=s = N

(
ρ
√

P1/Qs, P1(1 − ρ2)
)

(10)

PX2 = N (0, P2) (11)

U = X1 − ρ

√
P1

Q
S + α

(
1 + ρ

√
P1

Q

)
S (12)

1Note that, Philosof et al. [2] and Somekh-Baruch et al. [7] assumed
per-codeword power constraints, i.e., for all messages m1 and m2, the code-

words xn
1 and xn

2 satisfy
∑n

i=1 x2
1,i (m1, Sn) ≤ n P1 and

∑n
i=1 X2

2,i (m2) ≤
n P2 almost surely. Clearly, every outer bound for the average power constraint
is also a valid outer bound for the per-codeword power constraint.

for some ρ ∈ [−1, 0] and α ∈ R. This choice of input distribu-

tion is also known as generalized dirty paper coding. Unlike in

the point-to-point setting [1], allowing a (negative) correlation

between X1 and S may be beneficial since it partially cancels

the state for the non-cognitive encoder. However, it is not

clear whether the Gaussian distribution optimizes the bounds

in (7)–(9).

The best known outer bound is given by the region of rate

pairs (R1, R2) satisfying2

R1 ≤ 1

2
log(1 + P1(1 − ρ2

1 − ρ2
s )) (13)

R2 ≤ 1

2
log

(
1 + P2(1 − ρ2

1 − ρ2
s )

1 − ρ2
s

)
(14)

R1 + R2

≤ 1

2
log(1 + P1(1 − ρ2

1 − ρ2
s ))

+1

2
log

(
1 + (

√
P2 + ρ1

√
P1)

2

1 + P1(1 − ρ2
1 − ρ2

s ) + (
√

Q+ ρs

√
P1)2

)

(15)

R1 + R2 ≤ 1

2
log(1 + P1 + P2) (16)

for some ρ1 ∈ [0, 1] and ρs ∈ [−1, 0] that satisfy ρ2
1 +ρ2

s ≤ 1.

This outer bound is a combination of several (genie-aided)

outer bounds established in the literature:
• The bounds (14) and (15) form the outer bound in [5] on

Cdeg(P1, P2, Q), and hence on C(P1, P2, Q).

• The bounds (13) and (15) characterize the capacity region

of the dirty MAC under the assumption that the cognitive

user knows the message of the non-cognitive user [7].

• The bound (16) upper-bounds the sum rate of the

Gaussian MAC without state dependence.
For the dirty MAC with degraded message sets, inner and

outer bounds on the capacity region were derived in [5].

As reviewed above, the capacity region Cdeg(P1, P2, Q) is

outer-bounded by the region with rate pairs (R1, R2) satisfy-

ing (14) and (15). This outer bound follows from the following

single-letter outer region [5, Th. 2]:

R2 ≤ I (X2; Y |S, X1) (17)

R1 + R2 ≤ I (X1, X2; Y |S) − I (S; X2|Y ) (18)

where the joint probability distributions of X1, X2, and S must

be of the form PS PX2 PX1|X2,S . The inner bound in [5] consists

of rate pairs (R1, R2) satisfying

R2 ≤ I (X2; Y |U1, U2) (19)

R2 ≤ I (X2, U2; Y |U1) − I (U2; S|U1) (20)

R1 + R2 ≤ I (X2, U1, U2; Y ) − I (U2; S|U1) (21)

for some joint probability distributions PS PU1 PX2|U1 PU2|U1,S

PX1|U1,U2,S that satisfy

I (U2; Y |U1, X1) − I (U2; S|U1) ≥ 0. (22)

This inner bound is evaluated in [5] for the case in

which (X1, X2, U1, U2, S) are jointly Gaussian distributed.

2In this paper, the logarithm (log) and exponential (exp) functions are taken
with respect to an arbitrary basis.
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Again, it is not known whether the Gaussian input optimizes

the bound.

C. The Helper Problem

As reviewed in the introduction, the dirty MAC model

includes the helper problem as a special case. More specif-

ically, in the helper problem, the cognitive user (also known

as the helper) does not send any information, and its goal is

to assist the non-cognitive user by canceling the state. The

capacity of the helper problem is defined as

Chelper � max{R2 : (0, R2) ∈ C(P1, P2, Q)} (23)

= max{R2 : (0, R2) ∈ Cdeg(P1, P2, Q)}. (24)

The equivalence between (23) and (24) follows since

I (M1; Xn
2) = 0 regardless of whether the message sets are

degraded or not.

The capacity of the helper problem was studied

in [10] and [11], and is known for a wide range of channel

parameters. More specifically, it was shown that [11, Th. 2]

Chelper = 1

2
log(1 + P2) (25)

provided that P1, P2, and Q satisfy the following

condition.

Condition 1: There exists an α ∈ [1−
√

P1/Q, 1+
√

P1/Q]
such that

(P1 − (α − 1)2 Q)2 ≥ α2 Q(P2+ 1− P1+ (α − 1)2 Q). (26)

In other words, if Condition 1 is satisfied, then the state

can be perfectly canceled, and the non-cognitive user achieves

the channel capacity without state dependence. Note that,

to satisfy Condition 1 it is not necessary that P1 ≥ Q

(e.g., (26) holds as long as P1 ≥ P2 + 1, regardless of the

value of Q).

The following upper bound on Chelper, which holds for all

parameters, was derived in [10]:

Chelper ≤ max
−1≤ρ≤0

{
1

2
log

(
1 + P2

1 + P1 + Q + 2ρ
√

P1 Q

)

+ 1

2
log(1 + P1(1 − ρ2))

}
. (27)

III. MAIN RESULTS

The main results of this paper are the establishment of

several new outer bounds on the capacity region of the

dirty MAC (1) with and without degraded message sets. For

notational convenience, we denote

C1 �
1

2
log(1 + P1), C2 �

1

2
log(1 + P2). (28)

A. Dirty MAC Without Degraded Message Sets

1) New Outer Bounds: In this section, we present two outer

bounds on C(P1, P2, Q).

Theorem 1: The capacity region C(P1, P2, Q) of the dirty

MAC without degraded message sets is outer-bounded by the

region with rate pairs (R1, R2) satisfying

R2 ≤ Chelper (29)

and

R1 ≤ min
0≤δ≤1

{1

2
log

(
1 + 1 + P2 − δ

P2δ
g(R2)

)
+ f (δ)

}
(30)

where

g(R2) � exp
(

2c1

√
C2 − R2 + 2(C2 − R2)

)
− 1 (31)

with

c1 �
3
√

1 + (
√

P1 +
√

Q)2 + P2 + 4(
√

P1 +
√

Q)√
(1 + P2)/(2 log e)

(32)

and

f (δ) � max
ρ∈[−1,0]

1

2

{
log

1 + P2 + P1 + Q + 2ρ
√

P1 Q

δ + P1 + Q + 2ρ
√

P1 Q

+ log
δ + (1 − ρ2)P1

1 + P2

}
. (33)

Proof: See Section IV-A.

Remark 1: The objective function on the right-hand

side (RHS) of (33) is concave in ρ for every δ ∈ [0, 1].
Remark 2: The upper bound (30) can be slightly improved

by replacing Q on the RHS of (30) with Q̃ ≤ Q and by

minimizing over Q̃. This follows because, for a fixed rate R2,

the maximum achievable R1 is monotonically non-increasing

in Q, whereas the RHS of (30) is not.

We next illustrate the main intuition behind Theorem 1.

To concentrate ideas, we assume that the channel parameters

P1, P2, and Q satisfy Condition 1, which implies that Chelper =
C2 [11, Th. 2]. Consider two auxiliary channels

Y n
G � Xn

1 + Sn + Gn + Zn (34)

Y n
δ � Xn

1 + Sn +
√

δZn (35)

where Gn ∼ N (0, P2In) is a Gaussian vector having the same

power as Xn
2 , and δ ∈ (0, 1) is a constant. In words, Y n

G is

obtained from Y n by replacing the codeword Xn
2 with Gaussian

interference of the same power, and Y n
δ is obtained from Y n by

removing the interference Xn
2 and by increasing the signal-to-

noise ratio (SNR). Therefore, the channel M1 → Y n
G is worse

than the original channel whereas the channel M1 → Y n
δ is

better than the original one. In fact, we argue next that, when

the non-cognitive user is communicating at a rate close to its

maximum rate C2, the three channels have approximately the

same rate for the cognitive user.

Indeed, suppose that R2 ≈ C2. Then, on the one hand,

the distribution of Xn
2 is close to that of Gn , and hence

I (Xn
1 + Sn; Y n

G) ≈ I (Xn
1 + Sn; Y n). (36)
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On the other hand, since the receiver is able to decode the

message of the non-cognitive user, it follows that

I (Xn
1 + Sn; Y n) ≈ I (Xn

1 + Sn; Y n|Xn
2) (37)

= I (Xn
1 + Sn; Xn

1 + Sn + Zn). (38)

Combining (36) and (38), we conclude that

I (Xn
1 + Sn; Xn

1 + Sn + Gn + Zn)

≈ I (Xn
1 + Sn; Xn

1 + Sn + Zn). (39)

In other words, reducing the power of the Gaussian noise

(from 1+ P2 to 1) does not (significantly) increase the mutual

information between Xn
1 + Sn and the output. By further

reducing the noise power, we obtain

I (Xn
1 + Sn; Y n) ≈ I (Xn

1 + Sn; Y n
G) ≈ I (Xn

1 + Sn; Y n
δ ). (40)

The errors in the estimation (40) can be bounded via Costa’s

entropy power inequality [25] or the I-MMSE relation [26].

To see how the relation (40) can be used to upper-bound R1,

we note that by standard manipulations of mutual information,

n R1 ≤ I (Xn
1 + Sn; Y n) − I (Sn; Y n). (41)

By (40), we may replace the two Y n’s on the RHS of (41)

with Y n
G and Y n

δ , respectively, and obtain

n R1 � I (Xn
1 + Sn; Y n

G) − I (Sn; Y n
δ ) (42)

� n max
PX1|S

{
I (X1 + S; YG) − I (S; Yδ)

}
(43)

where

YG � X1 + S + G + Z (44)

Yδ = X1 + S +
√

δZ (45)

are the single-letter versions of Y n
G and Y n

δ , respectively.

By the Gaussian saddle point property (namely, the Gaussian

distribution is the best input distribution for Gaussian noise,

and is the worst noise distribution for a Gaussian input),

we expect that the RHS of (43) is maximized when (X1, S)

are jointly Gaussian. The maximum of the objective function

on the RHS of (43) is precisely the f (δ) defined in (33),

whereas the logarithm term on the RHS of (30) quantifies the

error in the approximation (40), which vanishes as R2 → C2.

The rigorous proof of Theorem 1 which builds upon the above

intuition can be found in Section IV-A.

The outer bound provided in Theorem 1 improves the

best known outer bound in the regime where R2 is close

to C2 (provided that Chelper is also close to C2). The next

theorem provides a tighter upper bound on the sum rate

than (15) and (16).

Theorem 2: The capacity region C(P1, P2, Q) of the dirty

MAC without degraded message sets is outer-bounded by the

region with rate pairs (R1, R2) satisfying

R1 ≤ 1

2
log(1 + P1(1 − ρ2)) (46)

R2 ≤ C2 (47)

R1 + R2 ≤ 1

2
log

(
1 + P2

1 + P1 + Q + 2ρ
√

P1 Q

)

+ 1

2
log(1 + P1(1 − ρ2)) (48)

for some ρ ∈ [−1, 0].

Remark 3: The upper bound (48) on the sum rate coincides

with the upper bound (27) on the capacity of the helper

problem. In fact, the proof of (48) generalizes the proof

techniques used in the derivation of (27).

Proof: The proof of Theorem 2 follows from the following

single-letter outer bound on the capacity region.

Proposition 3: The capacity region C(P1, P2, Q) of the

dirty MAC without degraded message sets is outer-bounded

by the region with rate pairs (R1, R2) satisfying

R1 ≤ I (X1; Y |X2, S) (49)

R2 ≤ I (X2; Y |X1, S) (50)

R1 + R2 ≤ I (X1; Y |X2, S) + I (X2; Y ) (51)

for some joint distributions PS PX1|S PX2 that satisfy the power

constraint

E

[
X2

1

]
≤ P1 and E

[
X2

2

]
≤ P2. (52)

Proof: See Section IV-B.

It is not difficult to show that the outer bound in

Proposition 3 is maximized when S, X1, and X2 are jointly

Gaussian (proof omited). Evaluating (49)–(51) for Gaussian

distributions PS PX1|S PX2 , we obtain the outer bound in

Theorem 2.

2) Sum Rate Capacity: Let Csum be the sum rate capacity

of the dirty MAC (1) without degraded message sets, i.e.,

Csum � max{R1 + R2 : (R1, R2) ∈ C(P1, P2, Q)}. (53)

By comparing the inner bound (9) (evaluated using Gaussian

inputs) and the outer bound (48), we establish the sum rate

capacity Csum.

Theorem 4: The sum rate capacity of the dirty MAC with-

out degraded message sets is given by

Csum = max
ρ∈[−1,0]

1

2

{
log

(
1 + P2

1 + P1 + Q + 2ρ
√

P1 Q

)

+ 1

2
log(1 + P1(1 − ρ2))

}
(54)

or equivalently,

Csum = C2 + f (1). (55)

Proof: The converse part of (54) follows directly

from (48). Since the objective function on the RHS of (54)

is continuous and concave in ρ ∈ [−1, 0] (see Remark 1),

it has a unique maximizer on [−1, 0], which we denote by ρ∗.

It follows that the rate pair

R̄1 �
1

2
log(1 + P1(1 − (ρ∗)2)) (56)

R̄2 �
1

2
log

(
1 + P2

1 + P1 + Q + 2ρ∗√P1 Q

)
(57)

is achievable by treating the interference X1 + S as noise for

the non-cognitive user, and by using generalized dirty paper

coding for the cognitive user with ρ = ρ∗ and

α = P1(1 − (ρ∗)2)

P1(1 − (ρ∗)2) + 1
(58)
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in (10)–(12). The choice of α in (58) is the usual dirty paper

coding coefficient for the equivalent channel (obtained by

canceling the interference X2 from the non-cognitive user)

Ỹ = X0 +
(

1 − ρ∗
√

P1

Q

)
S + Z (59)

where X0 � X1 − ρ∗√P1/QS ∼ N (0, P1(1 − (ρ∗)2)) is

independent of S. The rate pair in (56) and (57) achieves the

sum rate capacity (54). The equivalence between (54) and (55)

is straightforward to establish.

The next result shows that, if Chelper = Csum, then the

outer bound in Theorem 2 matches the inner bound in (7)–(9)

evaluated for Gaussian inputs. In this case, we obtain a

complete characterization of the capacity region C(P1, P2, Q).

Corollary 5: For the dirty MAC without degraded mes-

sages, if Chelper = Csum, then the capacity region is given

by the convex hull of the set of rate pairs (R1, R2) satisfying

R1 ≤ 1

2
log

(
1 + P1(1 − ρ2)

)
(60)

R1 + R2 ≤ 1

2
log

(
1 + P2

1 + P1 + Q + 2ρ
√

P1 Q

)

+ 1

2
log(1 + P1(1 − ρ2)) (61)

for some ρ ∈ [−1, 0].
Proof: By Theorem 2, the rate region characterized

by (60) and (61), which we denote by R∗(P1, P2, Q), is an

outer bound on the capacity region C(P1, P2, Q).

To prove Corollary 5, it suffices to show that the rate region

R∗(P1, P2, Q) is achievable. Observe that, by the hypothesis

Chelper = Csum, the sum rate capacity is achieved with the rate

pairs (0, Chelper) and (R̄1, R̄2), where R̄1 and R̄2 are defined

in (56) and (57), respectively. Let now (R1, R2) be an arbitrary

point that lies on the boundary of R∗(P1, P2, Q). If R1 ≤ R̄1,

then the rate pair (R1, Csum − R1) is achievable using time

sharing. Since, by (61), R2 ≤ Csum − R1, we conclude that

the rate pair (R1, Csum − R1) coincides with (R1, R2). If R̄1 ≤
R1 ≤ C1, it follows that there exists an ρ0 ∈ [ρ∗, 0] which

satisfies R1 = 1
2

log(1 + P1(1 − ρ2
0 )). In this case, we have

R2 = 1

2
log

(
1 + P2

1 + P1 + Q + 2ρ0

√
P1 Q

)
. (62)

This rate pair is again achievable by treating interference as

noise for the non-cognitive user, and by using generalized dirty

paper coding for the cognitive user.

For the case when Chelper < Csum, the outer bound in

Theorem 2 matches the inner bound only for R1 values greater

than a threshold R1,th. This threshold is given by

R1,th = I (U∗; Y ) − I (U∗; S) (63)

where X∗
1 , X∗

2 , and U∗ are given in (10)–(12) with ρ and α

chosen as in the proof of Theorem 4. It is also not difficult to

check that R1,th > 0 if and only if Chelper < Csum.

3) Corner Points: The bounds in Theorems 1 and 2 allow

us to characterize the corner points of the capacity region,

which are defined as

C̃1(P1, P2, Q) � max{R1 : (R1, C2) ∈ C(P1, P2, Q)} (64)

C̃2(P1, P2, Q) � max{R2 : (C1, R2) ∈ C(P1, P2, Q)}. (65)

Corollary 6: For every P1, every P2, and every Q, we have

C̃2(P1, P2, Q) = 1

2
log

(
1 + P2

1 + P1 + Q

)
. (66)

Furthermore, if P1, P2, and Q satisfy Condition 1, then

C̃1(P1, P2, Q) = f (0) (67)

where f (·) is defined in (33).

Proof: The corner point (66) follows from (46) and (48)

(with ρ = 0), and (67) follows from (30) by setting R2 = C2,

and by taking δ = 0.

A few remarks are in order.
• The bottom corner point (C1, C̃2) also follows from the

(genie-aided) outer bound (13) and (15) developed in [7].

• In the asymptotic limit of strong state power

(i.e., Q → ∞), the two corner points become

lim
Q→∞

C̃1(P1, P2, Q) = 1

2
log

P1

1 + P2
(68)

lim
Q→∞

C̃2(P1, P2, Q) = 0. (69)

For comparison, existing outer bounds in [2] and [5] only

yield the upper bound

lim
Q→∞

C̃1(P1, P2, Q) ≤ 1

2
log

1 + P1

1 + P2
. (70)

• The top corner point (C̃1, C2) is achieved by using

generalized dirty paper coding with U = X1 + S and by

treating the interference X2 as noise for the cognitive user.

The proof of Theorem 1 suggests that there is essentially

no other alternative. Indeed, if R2 = C2+o(1) as n → ∞,

then by (40) and the I-MMSE relation [26], the minimum

mean-square error (MMSE) in estimating Xn
1 + Sn given

Y n
G satisfies

MMSE(Xn
1 + Sn |Y n

G) = o(n). (71)

This implies that, in order to achieve R2 = C2+o(1), it is

necessary for the decoder to “decode” Xn
1 + Sn without

knowing the codebook of the non-cognitive user (recall

that Y n
G is obtained from Y n by replacing the codeword

Xn
2 with Gaussian interference of the same power).

4) Numerical Results: In Fig. 3, we compare our new outer

bounds in Theorem 1 (dashed red curve) and Theorem 2

(solid red curve) with the inner (solid blue curve) and outer

bounds (solid black curve) reviewed in Section II for P1 = 5,

P2 = 5, and Q = 12. It is not difficult to verify that this

set of parameters satisfy Condition 1. We make the following

observations from Fig. 3.
• The outer bound in Theorem 2 matches the inner bound

when R1 ≥ R1,th = 0.25 bits/(ch. use).

• In the regime R1 ∈ (0.1, 0.25), there is a gap between

our outer bounds and the inner bound. This regime can be

further divided into two regimes: if R1 ∈ (0.1, 0.19), then

Theorem 1 yields a tighter upper bound on R2; if R1 ∈
(0.19, 0.25), then the bound in Theorem 2 is tighter.

• The improvement of Theorem 1 (dashed red curve) over

the genie aided outer bound (solid black curve) is not

clearly visible in the figure. However, numerically the

outer bound in Theorem 1 indicates that R2 is strictly
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Fig. 3. Inner and outer bounds on the capacity region region C(P1, P2, Q)
with P1 = 5, P2 = 5, and Q = 12.

Fig. 4. A comparison between the capacity region C(P1, P2, Q) and the
genie-aided outer bound with P1 = 2.5, P2 = 5, and Q = 12.

below C2 = 1.29 when R1 > 0.1. This implies that the

top corner point of the capacity region is given by the rate

pair (0.1, 1.29), which confirms the corner point result in

Section III-A.3.

Overall, our outer bounds provide a substantial improvement

over the genie-aided outer bound in (13)–(16).

In Fig. 4, we consider another set of parameters with

P1 = 2.5, P2 = 5, and Q = 12, which do not satisfy

Condition 1. In this case, we have Chelper = Csum =
1.11 bits/(ch. use), and the capacity region C(P1, P2, Q) is

completely characterized by Corollary 5. As explained in the

proof of Corollary 5, the capacity region consists of three

pieces: a straight line connecting the two points (0, Chelper)

and (R̄1, R̄2), where R̄1 = 0.89 bits/(ch. use) and R̄2 =
0.22 bits/(ch. use), a curved line connecting (R̄1, R̄2) and the

bottom corner point (0.9, 0.2), and a vertical line connecting

the bottom corner point (0.9, 0.2) and (0.9, 0).

5) Generalization to MAC With Non-Gaussian State: In the

proofs of Theorems 1–4, the only place where we have

used the Gaussianity of Sn is to optimize appropriate mutual

information terms over PX1|S (see, e.g., (43)). If the state

sequence Sn is non-Gaussian but is i.i.d., then the upper

bound (30) remains valid if f (δ) is replaced by

f̃ (δ) � max
PX1|S

{
I (X1 + S; YG ) − I (S; Yδ)

}
. (72)

In this case, the top corner point becomes

C̃1 = max
PX1|S

{I (X1 + S; YG) − I (X1 + S; S)} (73)

and the sum rate capacity becomes

Csum = max
PX1|S PX2

(
I (X1; Y |X2, S) + I (X2; Y )

)
. (74)

Furthermore, both (54) and (74) can be achieved by treating

interference as noise for the non-cognitive user, and by using

generalized dirty paper coding for the cognitive user (recall

that, in the dirty paper coding problem, the state S does not

need to be Gaussian; see [27, Sec. 7.7]).

B. Dirty MAC With Degraded Message Sets

Theorem 7 below extends the outer bound in Theorem 1 to

the dirty MAC with degraded message sets.

Theorem 7: The capacity region Cdeg(P1, P2, Q) of the

dirty MAC with degraded message sets is outer-bounded by

the region with rate pairs (R1, R2) satisfying

R2 ≤ Chelper (75)

and

R1 ≤ min
0≤δ≤1

{
1

2
log

(
1 + 1 + P2 − δ

P2δ
g̃(R2)

)
+ f (δ)

}

+ (c2 + c3)(C2 − R2) (76)

where f (·) is defined in (33),

g̃(R2) � exp
(

2c2

√
C2 − R2 + 2(C2 − R2)

)
− 1 (77)

with

c2 �
3
√

1 + (
√

P1 +
√

P2 +
√

Q)2 + 4(
√

P1 +
√

Q)√
(1 + P2)/(2 log e)

(78)

and

c3 �
√

2(1 + P2) log e ·
(

3

√
1 + (

√
P1 +

√
P2 +

√
Q)2

+ 4(
√

P1 +
√

P2 +
√

Q)

)
. (79)

Proof: See Section IV-C.

As a corollary of Theorem 7, we establish that under Con-

dition 1, the top corner point established in (67) is unchanged

even if the non-cognitive user knows the message of the

cognitive user. Formally, the top corner point is defined as

C̃deg,1(P1, P2, Q) � max{R1 : (R1, C2) ∈ Cdeg(P1, P2, Q)}
.(80)

Corollary 8: For the dirty MAC with degraded message

sets, if P1, P2, and Q satisfy Condition 1, then

C̃deg,1(P1, P2, Q) = f (0) (81)

with f (·) defined in (33).
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Note that, for the dirty MAC with degraded message sets,

both the bottom corner point and the sum rate capacity can be

established from the inner and outer bounds in [5].

The next theorem provides an outer bound, which is

uniformly tighter than the one in (14) and (15) derived

in [5, Th. 4].

Theorem 9: The capacity region of the dirty MAC with

degraded message set is outer-bounded by the region with rate

pairs (R1, R2) satisfying

R2 ≤ 1

2
log(1 + P2(1 − ρ2

2 )) (82)

R2 ≤ 1

2
log(1 + P1(1 − ρ2

1 − ρ2
s ))

+ 1

2
log

(
1+ P2(1 − ρ2

2 )

1 + (
√

Q + ρs

√
P1)2 + P1(1 − ρ2

1 − ρ2
s )

)

(83)

R1 + R2

≤ 1

2
log(1 + P1(1 − ρ2

1 − ρ2
s ))

+ 1

2
log

(
1+ P2(1 − ρ2

2 ) + (ρ2

√
P2 + ρ1

√
P1)

2

1 + (
√

Q + ρs

√
P1)2 + P1(1 − ρ2

1 − ρ2
s )

)

(84)

for some ρ1 ∈ [0, 1], ρ2 ∈ [0, 1], ρs ∈ [−1, 0] that satisfy

ρ2
1 + ρ2

s ≤ 1. (85)

Proof: The proof of Theorem 9 follows from the following

single-letter outer bound on the capacity region, whose proof

is given in Section IV-D.

Proposition 10: The capacity region of the dirty MAC with

degraded message set is outer-bounded by the region with rate

pairs (R1, R2) satisfying

R2 ≤ I (X2; Y |X1, S, U) (86)

R2 ≤ I (X1; Y |X2, S, U) + I (X2; Y |U) (87)

R1 + R2 ≤ I (X1; Y |X2, S, U) + I (X2, U ; Y ) (88)

for some joint distributions PX1,X2,S,U that satisfy

• X1 and X2 are conditionally independent given U ;

• U and X2 are independent of S;

• E
[
X2

1

]
≤ P1 and E

[
X2

2

]
≤ P2.

To prove Theorem 9, it remains to show that the bounds

in (86)–(88) are maximized when U , S, X1, and X2 are

jointly Gaussian. The proof of this result is provided in the

appendix.

Next, we explain how the outer bound in Proposition 10

improves upon (17) and (18). Observe that (18) can be

rewritten as

R1 + R2 ≤ I (X1; Y |S, X2) + I (X2; Y ) (89)

where the joint probability distribution of S, X1, and X2 has

the form PS PX2 PX1|X2,S . The key difference between Proposi-

tion 10 and the outer bound in (17) and (18) is the introduction

of the auxiliary random variable U in Proposition 10. The

intuition for this auxiliary random variable is as follows. Since

the non-cognitive user knows both messages M1 and M2, its

input X2 must contain two parts, where each part depends

Fig. 5. Inner and outer bounds for the capacity region of the dirty MAC
with degraded message sets for P1 = 4, P2 = 2.5, and Q = 5. The red solid
curve denotes our new outer bound in Theorem 9, the blue dashed curve and
the black curve denote the inner and outer bounds obtained in [5].

Fig. 6. Inner and outer bounds for the capacity region of the dirty MAC
with degraded message sets for P1 = 2, P2 = 5, and Q = 12. The red solid
curve denotes our new outer bound in Theorem 9, the blue dashed curve and
the black curve denote the inner and outer bounds obtained in [5].

only on one message. The auxiliary random variable U in

Proposition 10 captures precisely the part of X2 that depends

on M1. Since the input X1 of the cognitive user depends

on X2 only through the message M1, and hence through U ,

we see that X1 and X2 are conditionally independent given

U , as stated in the proposition. For comparison, the bound

determined by (17) and (18), which allow arbitrary dependence

between X1 and X2, is looser than the bound in Proposition 10

(unless R2 = 0, in which case U = X2).

In Figs. 5 and 6, we compare our new outer bound in

Theorem 9 with the inner and outer bounds in [5] for different

values of P1, P2, and Q. In both figures, the red solid curve

denotes our new outer bound in Theorem 9, and the blue

dashed curve and the black curve denote the inner and outer

bounds obtained in [5]. As expected, our new outer bound

is tighter than the outer bound in [5, Th. 4], and is almost
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on top of the inner bound for the parameters considered

in Figs. 5 and 6. For the scenario considered in Fig. 5, our

outer bound does not match the inner bound (unless R2 = 0).

Numerically, we observe that the gap between the inner bound

and our outer bound is less than 0.013 bits/(ch. use). For

the scenario considered in Fig. 6, our outer bound matches

the inner bound if either R1 ≤ 0.1 or R2 = 0. The gap

between the inner and outer bounds in this scenario is less than

3.4 × 10−3 bits/(ch. use).

C. The Helper Problem

The outer bound in Theorem 1 also yields an upper bound

on the capacity of the helper problem as shown in the next

result.

Theorem 11: For the helper problem, we have

Chelper ≤ max

{
R2 : R2 ≤ C2, and

min
0≤δ≤1

{
1

2
log

(
1 + 1 + P2 − δ

P2δ
g(R2)

)
+ f (δ)

}
≥ 0

}

(90)

where g(·) and f (·) are defined in (31) and (33), respectively.

Proof: Setting R1 = 0 in the outer bound (30) in

Theorem 1, we conclude that the rate R2 of the non-cognitive

user must satisfy

min
0≤δ≤1

{
1

2
log

(
1 + 1 + P2 − δ

P2δ
g(R2)

)
+ f (δ)

}
≥ 0. (91)

This implies (90).

A simple consequence of Theorem 11 is the following

result, which shows that Condition 1 is both necessary and

sufficient for the non-cognitive user to achieve the channel

capacity without state dependence.

Corollary 12: For the helper problem, the following three

statements are equivalent:

1) Chelper = 1
2

log(1 + P2);

2) the channel parameters P1, P2, and Q satisfy

Condition 1;

3) f (0) ≥ 0, where f (·) is defined in (33).

In Fig. 7, we compare the new upper bound in Theorem 11

with the upper and lower bounds in [11]. The two upper

bounds reported in [11, Lemmas 2 and 3] correspond to

Chelper ≤ Csum (92)

and

Chelper ≤ 1

2
log(1 + P2) (93)

respectively. The lower bound (achievability bound) is

[11, Th. 1]. As observed in [11], the upper bound (92) is

tight (i.e., Chelper = Csum) if P1 ≤ 2.5, and the bound (93)

is tight (i.e., Chelper = 1
2

log(1 + P2)) if P1 ≥ 4.5. Our new

upper bound is tighter than (92) and (93) for P1 ∈ [3.5, 4.5].

Fig. 7. Upper and lower bounds on Chelper as a function of P1 for P2 = 5
and Q = 12.

IV. TECHNICAL PROOFS

A. Proof of Theorem 1

Define

R1 �
1

n
I (M1; Y n) (94)

R2 �
1

n
I (Xn

2 ; Y n). (95)

By Fano’s inequality, there is no difference asymptotically

between this definition of the rate and the operational one

(i.e., the ratio between the logarithm of the number of

messages and the blocklength). Without loss of generality,

we further assume that Xn
1 and Xn

2 have zero mean.

The upper bound (29) is straightforward. The proof of (30),

which builds upon the intuition described in Section III-A,

consists of three steps.

1) We derive the following upper bound on R1 by standard

manipulations of the mutual information terms:

n R1 ≤ I (Xn
1 + Sn; Y n

δ ) − I (Xn
1 + Sn; Y n

G)︸ ︷︷ ︸
�Iδ

+ I (Xn
1 + Sn; Y n

G) − I (Sn; Y n
δ )︸ ︷︷ ︸

�Jδ

. (96)

Here, Y n
G and Y n

δ are defined in (34) and (35), respec-

tively. Note that, the upper bound on R1 in (96) depends

on the joint distribution of Xn
1 and Sn but not on Xn

2 .

2) We upper-bound the term Iδ in (96) as follows:

Iδ ≤ n

2
log

(
1 + 1 + P2 − δ

P2δ
g(R2)

)
(97)

where g(R2) is defined in (31). The derivation relies on

an elegant argument of Polyanskiy and Wu [19], used in

the derivation of the outer bound on the capacity region

of Gaussian interference channels.
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3) We show that the term Jδ in (96) can be single-letterized

as

Jδ ≤ n max
PX1|S :E

[
X2

1

]
≤P1

{
I (X1 + S; YG ) − I (S; Yδ)

}
.

(98)

Then, we show that the expression on the RHS of (98)

is maximized when X1 and S are jointly Gaussian.

Substituting the upper bounds on Iδ and Jδ derived in

Step 2 and Step 3 into (96), we obtain the desired upper

bound (30).
1) Step 1: Proof of (96): We start by observing that the

channel M1 → Y n is stochastically degraded with respect to

the channel M1 → Y n
δ , since Y n has the same distribution as

Y n
δ + Xn

2 +
√

1 − δ2 Z̃n , where Z̃n ∼ N (0, In). This implies

that

n R1 = I (M1; Y n) ≤ I (M1; Y n
δ ). (99)

The mutual information I (M1; Y n
δ ) can be upper-bounded as

follows:

I (M1; Y n
δ )

= I (M1, Sn; Y n
δ ) − I (Sn; Y n

δ |M1) (100)

≤ I (M1, Xn
1 , Sn; Y n

δ ) − I (Sn; Y n
δ |M1) (101)

= I (Xn
1 , Sn; Y n

δ ) + I (M1; Y n
δ |Xn

1 , Sn)

− I (Sn; Y n
δ , M1) + I (Sn; M1) (102)

= I (Xn
1 , Sn; Y n

δ ) − I (Sn; Y n
δ , M1) (103)

= I (Xn
1 + Sn; Y n

δ ) − I (Sn; Y n
δ ) − I (Sn; M1|Y n

δ ) (104)

≤ I (Xn
1 + Sn; Y n

δ ) − I (Sn; Y n
δ ). (105)

Here, in (103) we used that I (M1; Y n
δ |Xn

1 , Sn) = 0, which

follows because M1 → (X1, Sn) → Y n
δ forms a Markov

chain; (104) follows because I (Xn
1 , Sn; Y n

δ ) = I (Xn
1+Sn; Y n

δ );

and (105) follows because I (Sn; M1|Y n
δ ) ≥ 0. It is not difficult

to verify that (105) is equivalent to (96).

2) Step 2: Upper-Bounding Iδ: We next upper-bound the

term Iδ defined in (96). The derivation follows closely the

proof of [19, Th. 7]. Let

NS(γ ) � exp

{
2

n
h(Xn

1 + Sn + √
γ Zn)

}
(106)

where Zn ∼ N (0, In) is independent of Xn
1 and Sn . By Costa’s

entropy power inequality [25], the function NS(·) is concave.

The term Iδ can be expressed in terms of NS(·) as

Iδ = n

2
log

NS(δ)

NS(1 + P2)
+ n

2
log

1 + P2

δ
. (107)

Repeating the steps in [19, eqs. (41)–(43)], we obtain (recall

that Gn ∼ N (0, P2In))

D(PXn
2 +Zn kPGn+Zn ) ≤ n(C2 − R2) (108)

where D(·k·) denotes the relative entropy between two distri-

butions, and

n R2 = I (Xn
2 ; Y n) (109)

= h(Y n) − h(Y n
G ) + h(Y n

G ) − h(Xn
1 + Sn + Zn) (110)

= h(Y n) − h(Y n
G ) + n

2
log

NS(1 + P2)

NS(1)
. (111)

Note that E
[
Xn

1 + Sn
]

= 0, E
[
Xn

2

]
= 0, E

[
kXn

2k2
]

≤ n P2,

and

E

[
kXn

1 + Snk2
]

= E

[
kXn

1k2
]

+ E

[
kSnk2

]
+ 2E

[
hXn

1 , Sni
]

(112)

≤ n P1 + nQ + 2E
[
kXn

1kkSnk
]

(113)

≤ n P1 + nQ + 2

√
E

[
kXn

1k2
]
E

[
kSnk2

]
(114)

≤ n(
√

P1 +
√

Q)2. (115)

By [19, Propostion. 2], the random variable Y n
G is

(
3 log e
1+P2

,
4(

√
P1+

√
Q) log e

1+P2
)-regular, i.e., the probability density

function pY n
G
(yn) of Y n

G satisfies

k∇ log pY n
G
(yn)k ≤ 3 log e

1 + P2
kynk + 4(

√
P1 +

√
Q) log e

1 + P2
,

∀yn ∈ R
n . (116)

Therefore, by [19, Propostion 1], the entropy difference

between Y n and Y n
G can be bounded via the Wasserstein

distance W2(PY n , PY n
G
) (see [28, p. 12] for the definition

of W2) as

h(Y n) − h(Y n
G)

≤
(

3

√
1 + (

√
P1 +

√
Q)2 + P2 + 4(

√
P1 +

√
Q)

)

·
√

n log e

1 + P2
· W2(PY n kPY n

G
). (117)

Furthermore, we have

W2(PY n kPY n
G
) ≤ W2(PXn

2+Zn kPGn+Zn ) (118)

≤
√

2(1 + P2)

log e
D(PXn

2 +Zn kPGn+Zn) (119)

≤
√

2n(1 + P2)

log e
(C2 − R2). (120)

Here, (118) follows because the W2(·, ·) distance is

non-increasing under convolutions, (119) follows by using

Talagrand’s inequality [20], and (120) follows from (108).

Substituting (120) into (117), and then (117) into (111),

we conclude that

log
NS(1)

NS(1 + P2)
≤ 2c1

√
C2 − R2+2(C2 − R2) − log(1 + P2)

(121)

where c1 is defined in (32), or equivalently,

NS(1)

NS(1 + P2)
≤

exp
(
2c1

√
C2 − R2 + 2(C2 − R2)

)

1 + P2
. (122)

Let α � P2/(1 + P2 − δ) be such that

αδ + (1 − α)(1 + P2) = 1. (123)

By the concavity of NS(·), we have

αNS (δ) + (1 − α)NS(1 + P2) ≤ NS(1) (124)
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which implies that

NS(δ)

NS(1 + P2)

≤ 1

α

NS (1) − (1 − α)NS (1 + P2)

NS(1 + P2)
(125)

≤ 1

α

(
exp

(
2c1

√
C2 − R2 + 2(C2 − R2)

)

1 + P2
− 1 + α

)
.

(126)

Substituting (126) into (107), we conclude the desired upper

bound (97) on Iδ .

3) Step 3: Upper-Bounding Jδ: We proceed to upper-bound

the term Jδ defined in (96). Observe that

I (Xn
1 + Sn; Y n

G)

=
n∑

i=1

(
h(YG,i |Y i−1

G ) − h(YG,i |X1,i , Si )
)

(127)

≤
n∑

i=1

(
h(YG,i ) − h(YG,i |X1,i , Si )

)
(128)

=
n∑

i=1

I (X1,i + Si ; YG,i) (129)

and

I (Sn; Y n
δ ) = h(Sn) − h(Sn |Y n

δ ) (130)

=
n∑

i=1

(
h(Si ) − h(Si |Y n

δ , Si−1)
)

(131)

≥
n∑

i=1

(
h(Si ) − h(Si |Yδ,i )

)
(132)

=
n∑

i=1

I (Si ; Yδ,i) (133)

where both (128) and (132) follow because conditioning

reduces entropy. Combining (129) and (133), we obtain

I (Xn
1 + Sn; Y n

G) − I (Sn; Y n
δ )

≤
n∑

i=1

(
I (X1,i + Si ; YG,i) − I (Si ; Yδ,i)

)
(134)

where the RHS of (134) depends on PXn
1 |Sn only through

the (marginal) conditional distributions {PX1,i |Si }.
Now, a critical observation is that the functional PX1|S 7→

I (X1 + S; YG)− I (S; Yδ) is concave (recall that YG and Yδ are

defined in (44) and (45), respectively). This follows because,

for a fixed channel, mutual information is concave in the

input distribution, and for a fixed input distribution, mutual

information is convex in the channel (see [29, Th. 2.7.3]).

Furthermore, both the state sequence Sn and noise sequence

Zn are i.i.d. This allows us to conclude the single-letter upper

bound (98) on Jδ .

To solve the maximization problem in (98), we next invoke

the Gaussian saddle-point property as explained in the intuitive

argument after Theorem 1. Lemma 13 below generalizes the

well-known worst-case Gaussian noise result [21], [22] to the

case in which the noise and the Gaussian input are dependent.

Lemma 13 ([23, Th. 1]): Let XG ∼ N (0, Kx ) and ZG ∼
N (0, Kz) be Gaussian random vectors in R

d . Let Z be a

random vector in R
d with the same covariance matrix as ZG .

Assume that XG is independent of ZG , and that

E

[
XG Z

T
]

= 0d×d (135)

where the superscript (·)T denotes transposition. Then

I (XG; XG + ZG) ≤ I (XG; XG + Z). (136)

We proceed as follows. For a given PX1|S , let ρ �
E[X1 S] /

√
P1 Q be the correlation coefficient between

X1 and S. Denote

X̃1 � X1 − ρ
√

P1/QS (137)

S̃ � (1 + ρ
√

P1/Q)S. (138)

It is not difficult to verify that E
[
X̃1 S̃

]
= 0 and X̃1 + S̃ =

X1 + S. Therefore, we have

I (X1 + S; YG ) = I (X̃1 + S̃; X̃1 + S̃ +
√

1 + P2 Z) (139)

and

I (S; Yδ) ≥ I (S̃; Yδ) = I (S̃; S̃ + X̃1 +
√

δZ) (140)

where the inequality holds with equality if ρ
√

P1/Q 6= −1.

Observe now that, for a fixed ρ and b � E
[
X̃2

1

]
, the mutual

information term in (139) is maximized when X̃1 is Gaussian

and is independent of S. Furthermore, by Lemma 13, the

mutual information term on the RHS of (140) is minimized

also when X̃1 is Gaussian and is independent of S. Therefore,

we conclude that

max
PX1|S :E

[
X2

1

]
≤P1

{
I (X1 + S; YG ) − I (S; Yδ)

}

≤ max
b,ρ

1

2
log

(1 + P2 + b + (1 + ρ
√

P1/Q)2 Q)(δ2 + b)

(δ2 + b + (1 + ρ
√

P1/Q)2 Q)(1 + P2)

(141)

where the maximization on the RHS is over all pair (b, ρ)

satisfying

b ≥ 0, and b + ρ2 P1 ≤ P1. (142)

By examining the Karush-Kuhn-Tucker (KKT) necessary con-

ditions [30, Sec. 5.5.3], it can be shown that the constraint

b+ P1ρ
2 ≤ P1 is always binding (namely, the optimal (b∗, ρ∗)

pair must satisfy this inequality with equality), and that the

optimal ρ∗ must be non-positive. As a result, the maximization

problem on the RHS of (141) can be simplified to the one

dimensional one in (33). In other words, we have proved that

Jδ ≤ n f (δ). (143)

Finally, substituting (97) and (143) into (96), and optimizing

the resulting bound over δ, we conclude the desired result (30).
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B. Proof of Proposition 3

It is straightforward to show the bounds

n R1 ≤
n∑

i=1

I (X1,i ; Yi |X2,i , Si ) (144)

and

n R2 ≤
n∑

i=1

I (X2,i ; Yi |X1,i , Si ). (145)

The counterpart of (51) can be proved as follows. As in the

proof of Theorem 1, we define the rates R1 and R2 as in (94)

and (95) without loss of generality. We have

n(R1 + R2) = I (M1; Y n) + I (Xn
2 ; Y n) (146)

= I (M1, Xn
2 ; Y n) − I (Xn

2 ; M1|Y n) (147)

≤ h(Y n) − h(Y n |M1, Xn
2 ) (148)

≤
n∑

i=1

h(Yi ) − h(Y n|M1, Xn
2 ). (149)

Here, (147) follows because Xn
2 and M1 are independent.

The conditional differential entropy term h(Y n |M1, Xn
2 ) can

be further lower-bounded as follows:

h(Y n |M1, Xn
2 ) (150)

= h(Y n, Sn |M1, Xn
2 ) − h(Sn |Y n, M1, Xn

2 ) (151)

= h(Sn |M1, Xn
2 ) + h(Y n |M1, Xn

2 , Sn)

− h(Sn|Y n, M1, Xn
2 ) (152)

= h(Sn) + h(Y n |Xn
1 , Sn, Xn

2 ) − h(Sn |Y n, M1, Xn
2 ) (153)

≥ h(Sn) + h(Y n |Xn
1 , Sn, Xn

2 ) − h(Sn |Y n, Xn
2 ) (154)

≥
n∑

i=1

(
h(Si ) + h(Yi |X1,i , Si , X2,i ) − h(Si |Yi , X2,i )

)
.

(155)

Here, both (154) and (155) hold because conditioning does

not increase differential entropy. Substituting (155) into (149),

we conclude that

n(R1 + R2) ≤
n∑

i=1

(
h(Yi ) − h(Yi |X1,i , Si , X2,i )

−h(Si ) + h(Si |Yi , X2,i )
)

(156)

=
n∑

i=1

(
h(Yi ) − h(Yi |X1,i , Si , X2,i )

−h(Yi |X2,i ) + h(Yi |Si , X2,i )
)

(157)

=
n∑

i=1

(
I (X1,i ; Yi |X2,i , Si ) + I (X2,i ; Yi )

)
.

(158)

Here, (157) follows because Si and X2,i are independent.

Introducing the time-sharing random variable Q, which is

uniformly distributed over the integers {1, . . . , n}, we obtain

the following outer bound:

R1 ≤ I (X1; Y |X2, S, Q) (159)

R2 ≤ I (X2; Y |X1, S, Q) (160)

R1 + R2 ≤ I (X1; Y |X2, S, Q) + I (X2; Y |Q). (161)

Using the concavity of mutual information and the fact that

Q is independent of S, it can be shown that the above region

is equivalent to the one stated in the proposition (without the

time sharing random variable Q). This concludes the proof.

C. Proof of Theorem 7

The proof uses techniques similar to the ones used in the

proof of Theorem 1. The main twist in this case compared

with Theorem 1 is that Xn
2 and Xn

1 are not independent.

To circumvent this, we need to modify the steps in (108)–(126)

by conditioning on M1, and by using the fact that Xn
1 and

Xn
2 are conditionally independent given M1. In particular,

the counterpart of Iδ in (96) is defined as

Ĩδ � I (Xn
1 + Sn; Y n

δ |M1) − I (Xn
1 + Sn; Y n

G |M1) (162)

= n

2
EM1

[
log

ÑS(δ|M1)

ÑS(1 + P2|M1)

]
+ n

2
log

1 + P2

δ
(163)

where

ÑS(γ |m) � exp

{
2

n
h(Xn

1 + Sn + √
γ Zn |M1 = m)

}
. (164)

The function ÑS(γ |m) inherits all the properties of NS(γ ) that

are used in Section IV-A, such as monotonicity and concavity.

In the remaining part of the proof, we omit the mechanical

details and only highlight the steps that differ from the ones

in Section IV-A.

As in Section IV-A, we first upper-bound Ĩδ . Let

R1 � I (M1; Y n) (165)

R2 � I (Xn
2 ; Y n|M1). (166)

Again, by Fano’s inequality, the definitions of the rates in (165)

and (166) agree with the operational ones. With the condition-

ing on M1, the bounds (108) and (111) become

D(PXn
2 +Zn |M1

kPGn+Zn |PM1) ≤ n(C2 − R2) (167)

and

n R2 = h(Y n|M1) − h(Y n
G |M1)

+ EM1

[
n

2
log

ÑS (1 + P2|M1)

ÑS(1|M1)

]
. (168)

Here, D(PXn
2 +Zn |M1

kPGn+Zn |PM1) denotes the conditional

relative entropy

D(PXn
2 +Zn |M1

kPGn+Zn |PM1)

� EM1

[
D(PXn

2 +Zn|M1
kPGn+Zn )

]
. (169)
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Using [19, Propositions 1 and 2] and (167), we bound the

difference h(Y n |M1) − h(Y n
G |M1) as follows:

h(Y n|M1) − h(Y n
G |M1)

≤ log e

1 + P2
EM1

[
W2(PY n

G |M1
, PY n |M1)

(
4E

[
kXn

1 + Snk|M1

]

+ 3

2

√
E

[
kY n

Gk2|M1

]
+ 3

2

√
E

[
kY nk2|M1

])]

(170)

≤ log e

1 + P2
EM1

[√
2(1 + P2)

log e
D(PXn

2 +Zn |M1
kPGn+Zn ) ·

(
4

√
E

[
kXn

1 + Snk2|M1

]
+ 3

2

√
E

[
kY n

Gk2|M1

]

+ 3

2

√
E

[
kY nk2|M1

])]
(171)

≤ log e

1 + P2

√
2(1 + P2)

log e
D(PXn

2 +Zn |M1
kPGn+Zn |PM1) ·

(
4

√
E

[
kXn

1 + Snk2
]
+ 3

2

√
E

[
kY n

Gk2
]
+ 3

2

√
E

[
kY nk2

])

(172)

≤ c2n
√

C2 − R2 (173)

where

c2 �
3
√

1 + (
√

P1 +
√

P2 +
√

Q)2 + 4(
√

P1 +
√

Q)√
(1 + P2)/(2 log e)

.

(174)

Here, (170) follows from [19, Propositions 1 and 2]; (171)

follows because for every message m,

E
[
kXn

1 + Snk|M1 = m
]

≤
√

E
[
kXn

1 + Snk2|M1 = m
]

(175)

and

W2(PY n
G |M1=m, PY n |M1=m)

≤ W2(PXn
2+Zn |M1=m , PGn+Zn ) (176)

≤
√

2(1 + P2)

log e
D(PXn

2 +Zn |M1=mkPGn+Zn ) (177)

where (176) follows because the W2(·, ·) distance is non-

decreasing under convolutions and because Xn
1 + Sn and Xn

2

are conditionally independent given M1, and the bound (177)

follows from Talagrand’s inequality [20]; (172) follows from

the Cauchy-Schwarz inequality; and finally (173) follows

from (167), (115), and because

1

n
E

[
kY nk2

]
≤ 1 + (

√
P1 +

√
P2 +

√
Q)2 (178)

1

n
E

[
kY n

Gk2
]

≤ 1 + (
√

P1 +
√

P2 +
√

Q)2. (179)

Substituting (173) into (168), we conclude that

EM1

[
log

ÑS(1 + P2|M1)

ÑS(1|M1)

]

≤ 2c2

√
C2 − R2 + 2(C2 − R2) − log(1 + P2). (180)

Letting α � P2/(1 + P2 − δ) as in Section IV-A, we obtain

EM1

[
log

ÑS(δ|M1)

ÑS(1 + P2|M1)

]

≤ EM1

[
log

(
ÑS (1|M1)

ÑS (1 + P2|M1)
− 1 + α

)]
− log α (181)

≤ log

(
exp

(
2c2

√
C2− R2 + 2(C2− R2)

)

1 + P2
− 1 + α

)
− log α.

(182)

Here, (181) follows from the concavity of γ 7→ ÑS(γ |M1),

and (182) follows from Jensen’s inequality and because the

function x 7→ log(exp(x) − (1 − α)) is concave. Finally,

substituting (182) into (163), we conclude that

Ĩδ ≤ n

2
log

(
1 + 1 + P2 − δ

P2δ
g̃(R2)

)
(183)

where g̃(R2) is defined in (77).

We next relate Ĩδ to R1. This part is quite different from

the steps in Section IV-A.1, since for the dirty MAC with

degraded message sets, the information about the message M1

is contained in both Xn
1 and Xn

2 . Consider the following chain:

Ĩδ = I (Xn
1 , Sn; Y n

δ |M1) − I (Xn
1 + Sn, M1; Y n

G)

+ I (M1; Y n
G) (184)

= I (Sn; Y n
δ , M1) + I (Xn

1 ; Y n
δ |Sn, M1)

− I (Xn
1 + Sn , M1; Y n

G) + I (M1; Y n
G) (185)

≥ I (Sn; Y n
δ ) − I (Xn

1 + Sn; Y n
G) + I (M1; Y n

G) (186)

= I (Sn; Y n
δ ) − I (Xn

1 + Sn; Y n
G) + I (M1; Y n

G)

− I (M1; Y n) + n R1. (187)

Here, the penultimate step follows because M1 → Xn
1 +Sn →

Y n
G forms a Markov chain. The first two terms on the RHS

of (187) can be single-letterized and bounded in the same way

as in Section IV-A.3, i.e.,

I (Sn; Y n
δ ) − I (Xn

1 + Sn; Y n
G) ≥ −n f (δ) (188)

where f (·) was defined in (33).

To conclude the proof, it remains to lower-bound

I (M1; Y n
G) − I (M1; Y n). To this end, we rewrite it as

I (M1; Y n
G) − I (M1; Y n)

= h(Y n
G ) − h(Y n) + h(Y n|M1) − h(Y n

G |M1). (189)

The differences h(Y n
G )−h(Y n) and h(Y n|M1)−h(Y n

G |M1) can

be bounded via steps similar to those in (170)–(173). More

specifically, we have

h(Y n
G |M1) − h(Y n |M1) ≤ c3n

√
C2 − R2 (190)

and

h(Y n) − h(Y n
G ) ≤ c2n

√
C2 − R2 (191)

where c3 was defined in (79). Here, to prove (191), we have

used

D(PY n kPY n
G
) ≤ D(PY n |M1kPY n

G |M1
|PM1) (192)

≤ D(PXn
2 +Zn |M1

kPGn+Zn |PM1) (193)

≤ n(C2 − R2) (194)
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where (192) follows from the data processing inequality, (193)

follows from the data processing inequality and because

Xn
1 + Sn and Xn

2 are conditionally independent given M1,

and (194) follows from (167). Substituting (190) and (191)

into (189), then (189) and (188) into (187), and combin-

ing (187) with (183), we conclude the proof of (76).

D. Proof of Proposition 10

The key idea of the proof is to identify the auxiliary random

variables U � (M1, Q), where Q denotes the time-sharing

random variable that is uniformly distributed over the integers

{1, . . . , n}. We have

n R2 = I (Xn
2 ; Y n|M1) (195)

≤ I (Xn
2 ; Y n, Xn

1 , Sn |M1) (196)

= I (Xn
2 ; Y n|Xn

1 , Sn, M1) (197)

= h(Y n |Xn
1 , Sn , M1) − h(Y n|Xn

1 , Xn
2 , Sn, M1) (198)

≤
n∑

i=1

h(Yi |X1,i , Si , M1) − h(Yi |X1,i , X2,i , Si , M1)

(199)

=
n∑

i=1

I (X2,i ; Yi |X1,i , Si , M1) (200)

= I (X2; Y |X1, S, U). (201)

This yields the upper bound in (86).

To prove (87), we observe that

R2 = I (Xn
2 ; Y n|M1) (202)

= h(Y n|M1) − h(Y n |M1, Xn
2 ) (203)

≤
n∑

i=1

h(Yi |M1) − h(Y n|M1, Xn
2 ). (204)

Proceeding as in (149)–(161) while keeping the conditioning

on M1, we conclude that

R2 ≤
n∑

i=1

(
I (X1,i ; Yi |X2,i , Si , M1) + I (X2,i ; Yi |M1)

)
(205)

= I (X1; Y |X2, S, M1, Q) + I (X2; Y |Q, M1) (206)

≤ I (X1; Y |X2, S, U) + I (X2; Y |U). (207)

Finally, we prove (88). We proceed again as in (146)–(155)

and keep the conditioning on M1 whenever appropriate. This

yields

n(R1 + R2)

≤
n∑

i=1

(
h(Yi ) − h(Yi |X1,i , Si , X2,i )

)

− h(Sn |M1) + h(Sn |Y n, M1, Xn
2 ) (208)

≤
n∑

i=1

(
h(Yi ) − h(Yi |X1,i , Si , X2,i , M1)

− h(Si |M1, X2,i ) + h(Si |M1, Yi , X2,i )
)

(209)

=
n∑

i=1

(
I (X1,i ; Yi |X2,i , Si , M1) + I (X2,i , M1; Yi )

)
(210)

= I (X1; Y |X2, S, M1, Q) + I (X2, M1; Y |Q) (211)

≤ I (X1; Y |X2, S, U) + I (X2, U ; Y ). (212)

Here, (209) follows because Si is independent of M1 and X2,i ,

and because conditioning does not increase entropy. The proof

is concluded by observing that the auxiliary random variable U

and the random variables X1, X2 and S satisfy the conditions

listed in the theorem.

V. CONCLUSION

In this paper, we have studied a two-user state-dependent

Gaussian MAC with state noncausally known at one encoder

and with and without degraded message sets. We have derived

several new outer bounds on the capacity region, which

provide substantial improvements over the best previously

known outer bounds. For the dirty MAC without degraded

message sets, our outer bounds yield the following:
• the characterization of the sum rate capacity;

• the establishment of the two corner points of the capacity

region;

• the characterization of the full capacity region in the

special case in which the sum rate capacity is equal to

the capacity Chelper of the helper problem; and

• a new upper bound on Chelper, and a necessary and

sufficient condition to achieve Chelper = 1
2

log(1 + P2).
We have shown that a single-letter solution is adequate to

achieve both the corner points and the sum rate capacity.

In addition, we have generalized our outer bounds to the case

of additive non-Gaussian states.

There are several possible generalizations of the results in

this paper.
• The outer bounds derived in this paper can be readily

generalized to the discrete case and to the multiple-

input multiple-output (MIMO) setting. This is unlike the

doublely dirty Gaussian MAC setting, in which additional

difficulties arise when extending from the single-input

single-output channel to the MIMO setting [31].

• In this paper, we assume that the state is not known at the

non-cognitive user. It would be interesting to investigate

whether revealing the state information strictly causally

to the non-cognitive user can increase the capacity region.

As shown in [32], strictly causal state information enables

cooperation between the two encoders (e.g., by letting the

encoders convey the past state information jointly to the

decoder).

• In this paper, we have considered two state-dependent

MAC settings: the dirty MAC without degraded

message sets and the dirty MAC with degraded message

sets. In the latter case, we assumed that the state

non-cognitive encoder has access to the message of the

state-cognitive encoder. As mentioned in the introduction,

the setting in which the state-cognitive encoder knows

the message of the non-cognitive encoder was studied

in Somekh-Baruch et al. [7], where the exact capacity

region was established. A general model that unifies

all the three settings listed above is the state-dependent

MAC with common and private messages. In this model,

the state-cognitive and state non-cognitive encoders
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each has a private message to transmit, in addition to

a common message that is known at both encoders.

This model generalizes the Slepian-Wolf model of the

MAC with correlated sources [33] to the state-dependent

setting. Establishing the capacity region of this model is

an interesting open problem.

• In the proofs of Theorem 1 and Theorem 7, we have

essentially transformed the dirty MAC into a state-

dependent Z -interference channel with input-output

relationship

Y1 = X1 + S +
√

δZ1 (213)

Y2 = X1 + X2 + S + Z2 (214)

where the Gaussian noises Z1, Z2 ∼ N (0, 1) are

independent. This suggests that our techniques may

yield tighter outer bounds on the capacity region of the

state-dependent Gaussian Z -interference channel than

the ones derived in [34].

• Another related setting is the state-dependent relay

channel with state available noncausally at the relay

considered in [35]. It would be interesting to see whether

our techniques can lead to any improvement over the

bounds there.
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APPENDIX

GAUSSIAN INPUTS MAXIMIZE (86)–(88)

We shall prove that the outer region provided in Propo-

sition 10 is maxmized when U , S, X1, and X2 are jointly

Gaussian distributed. Differently from [5, Th. 4], the presence

of the auxiliary random variable U complicates the proof

substantially.

Consider an arbitrary distribution PU S X1 X2 that satisfies the

conditions stated in the proposition. Without loss of generality,

we assume that PU S X1 X2 satisfies the following conditions,

in addition to the ones stated in Proposition 10:

• U has zero mean and unit variance;

• E
[
X2

1

]
= P1 and E[X2] = P2.

The first assumption comes without loss of generality since

U does not appear in the channel input-output relation Y =
X1 + X2 + S + Z , and the second assumption comes without

loss of generality because we do not assume X1 and X2 to

have zero mean. We next introduce the following notation:

µk(u) � E[Xk |U = u] (215)

σk(u) �
√

Var[Xk |U = u] (216)

ρk �
√

E
[
µ2

k(U)
]
/Pk (217)

µs(u) � E[X1S|U = u] /
√

Q (218)

ρs � E[µs(U)] /
√

P1 (219)

where k ∈ {1, 2}. It follows that

R1 ≤ I (X2; Y |X1, S, U) (220)

≤ 1

2
E

[
log(1 + σ2(U)2

]
(221)

≤ 1

2
log

(
1 + E

[
σ2(U)2

])
(222)

= 1

2
log(1 + P2(1 − ρ2

2 )). (223)

Here, (222) follows from Jensen’s inequality, and (223) fol-

lows because

E

[
σ 2

2 (U)
]

= E

[
E

[
X2

2|U
]

− µ2(U)2
]

= P2 − ρ2
2 P2. (224)

This proves (82).

To prove (83), we proceed as follows:

R2 ≤ I (X1; Y |X2, S, U) + I (X2; Y |U) (225)

= I (X1, X2, S; Y |U) − I (S; Y |U, X2). (226)

To upper-bound I (X1, X2, S; Y |U), we observe that

Var[X1 + X2 + S|U = u]
= σ 2

1 (u) + σ 2
2 (u) + Q + 2

√
Qµs(u) (227)

where we have used (216) and (218), and that X1 and X2 are

conditionally independent given U . It thus follows that

I (X1 + X2 + S; Y |U)

≤ 1

2
E

[
log(1 + σ 2

1 (U) + σ 2
2 (U) + Q + 2

√
Qµs(U))

]
(228)

≤ 1

2
log

(
1 + E

[
σ 2

1 (U) + σ 2
2 (U) + Q + 2

√
Qµs(U)

])

(229)

= 1

2
log

(
1 + P1(1 − ρ2

1 ) + P2(1 − ρ2
2 ) + Q + 2ρs

√
Q P1

)
.

(230)

Here, in (230) we have used the following identity:

E

[
σ 2

k (U)
]

= E[Var[Xk |U ]] (231)

= Var[Xk] − Var[µk(U)] (232)

= Var[Xk] − E

[
µk(U)2

]
+ E[Xk]2 (233)

= Pk − Pkσ
2
k , k ∈ {1, 2} (234)

where (232) follows from the law of total variance.

We next bound the second term on the RHS of (226). Let

X̃1 � X1 − µ1(U) − µs(U)S√
Q

. (235)

It follows that

E
[
X̃1S|U = u

]
= E[X1S|U = u] − µs(u)

√
Q = 0. (236)

Since S is Gaussian distributed, by Lemma 13,

I (S; Y |X2, U) (237)

= EU

[
I (S; (1 + µs(U)/

√
Q)S + X̃1 + Z |U)

]
(238)

≥ 1

2
E

[
log

(
1 + (

√
Q + µs(U))2

1 + σ 2
1 (U) − µs(U)2

)]
. (239)
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By (216), (235), and (236),

σ 2
1 (u) = E

[
X2

1 |U = u
]

− µ2
1(u) (240)

= E

[
X̃2

1 |U = u
]

+ µs(u)2 ≥ µs(u)2. (241)

Now, observe that the function

ξ(a, b) �
1

2
log

(
1 + (

√
Q − a)2

1 + b − a2

)
(242)

is jointly convex in (a, b) as long as a2 ≤ b. Indeed, let H be

the Hessian matrix of ξ(a, b). It follows that

H11 = ∂2ξ

∂a2
(243)

= (
√

Q − a)2((
√

Q − a)2 + 2 + 2b − 2a2)

(1 + b − a2)2(
√

Q − a)2 + 1 + b − a2)2
(244)

≥ 0 (245)

and that

Det[H] = (
√

Q − a)4

(1 + b − a2)3(
√

Q − a)2 + 1 + b − a2)2
(246)

≥ 0. (247)

Therefore, H is positive semi-definite for all (a, b) satisfying

a2 ≤ b, which implies that the function ξ(a, b) is convex.

Therefore, by Jensen’s inequality,

I (S; X1 + S + Z |U) (248)

≥ 1

2
log

(
1 + (

√
Q + E[µs(U)])2

1 + E
[
σ 2

1 (U)
]
− E[µs(U)]2

)
(249)

= 1

2
log

(
1 + (

√
Q + ρs

√
P1)

2

1 + P1 − ρ2
1 P1 − ρ2

s P1

)
. (250)

Here, in (250) we have used (234). Substituting (230)

and (250) into (226) and rearranging the terms, we obtain (83).

The proof of (84) follows steps analogous to those in the

proof of (83). More specifically, we obtain from (88) that

R1 + R2 ≤ h(Y |X2, S, U) − h(Y |X1, X2, S, U)

+ h(Y ) − h(Y |X2, U) (251)

= I (X1 + X2 + S; Y ) − I (S; X1 + S + Z |U).

(252)

The term I (S; X1 + S + Z |U) on the RHS of (252) has been

lower-bounded in (250). To upper-bound I (X1 + X2 + S; Y ),

we bound E
[
(X1 + X2 + S)2

]
as

E

[
(X1 + X2 + S)2

]

= P1 + P2 + Q + 2E[X1S] + 2E[X1 X2] (253)

= P1 + P2 + Q + 2ρs

√
P1 Q + 2E[E[X1|U ] E[X2|U ]]

(254)

≤ P1 + P2 + Q + 2ρs

√
P1 Q + 2ρ1ρ2

√
P1 P2. (255)

Here, (254) follows because X1 and X2 are conditionally

independent given U , and (255) follows because

E[E[X1|U ] E[X2|U ]] = E[µ1(U)µ2(U)] (256)

≤
√

E
[
µ1(U)2

]
E

[
µ2(U)2

]
(257)

= ρ1ρ2

√
P1 P2. (258)

It thus follows that

I (X1 + X2 + S; Y ) ≤ 1

2
log

(
1 + P1 + P2 + Q

+ 2ρs

√
P1 Q + 2ρ1ρ2

√
P1 P2

)
. (259)

Substituting (259) and (250) into (252), we obtain (84).

Finally, observe from (234) and (241) that

P1 − P1σ
2
1 =E

[
σ 2

1 (U)
]
≥ E

[
µs(U)2

]
≥ E[µs(U)]2 ≥ P1ρ

2
s

(260)

which implies the condition (85). This concludes the proof.
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