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Abstract

A dynamic balance between strong excitatory and inhibitory neuronal inputs is hypothesized to play a pivotal role in
information processing in the brain. While there is evidence of the existence of a balanced operating regime in several
cortical areas and idealized neuronal network models, it is important for the theory of balanced networks to be reconciled
with more physiological neuronal modeling assumptions. In this work, we examine the impact of spike-frequency adap-
tation, observed widely across neurons in the brain, on balanced dynamics. We incorporate adaptation into binary and
integrate-and-fire neuronal network models, analyzing the theoretical effect of adaptation in the large network limit and
performing an extensive numerical investigation of the model adaptation parameter space. Our analysis demonstrates that
balance is well preserved for moderate adaptation strength even if the entire network exhibits adaptation. In the common
physiological case in which only excitatory neurons undergo adaptation, we show that the balanced operating regime in
fact widens relative to the non-adaptive case. We hypothesize that spike-frequency adaptation may have been selected

through evolution to robustly facilitate balanced dynamics across diverse cognitive operating states.

Keywords Spike-frequency adaptation - Balanced networks - Neuronal network models - Nonlinear dynamics

Introduction

There is strong experimental evidence that individual
neurons across the brain demonstrate highly irregular and
asynchronous firing activity, but the basis for this vari-
ability remains a subject of intense investigation (Shadlen
and Newsome 1998b; Britten et al. 1993; London et al.
2010; Compte et al. 2003). This irregular activity facili-
tates rich neuronal network computations and has been
shown to foster predictive neuronal coding, efficient rep-
resentation of stimuli, and effective short-term memory
(Shadlen and Newsome 1998a; Sussillo and Abbott 2009;
Whalley 2013). Considering biophysical sources of noise
are largely unable to account for irregular neuronal
dynamics (Softky and Koch 1993; Faisal et al. 2008), there
is robust evidence that neuronal network topology and
strong neuronal interaction together are sufficient to give
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rise to the irregular activity observed in vivo even in the
absence of variability in external network inputs.

The theory of balanced networks indicates the existence
of an irregular operating regime in which strong excitatory
and inhibitory neuronal inputs are dynamically balanced,
typically rendering neurons in a near-firing state such that
firing events are caused by fluctuations in neuronal input
(van Vreeswijk and Sompolinsky 1996; Troyer and Miller
1997; Vogels and Abbott 2005; Miura et al. 2007). Theo-
retical analysis of the balanced operating state demon-
strates that when temporal fluctuations in neuronal input
are approximately as strong as the mean input, neuronal
firing rates in a balanced network are broadly distributed
while maintaining asynchronous dynamics and nearly
constant population-averaged activity. Supporting the
existence of a balanced state in physical neuronal networks,
experimental studies indicate that in several brain regions
excitatory and inhibitory inputs are indeed closely tracked
over time, with the ratio of excitatory to inhibitory con-
ductances remaining nearly constant both in vivo and
in vitro (Wehr and Zador 2003; Shu et al. 2003; Atallah
and Scanziani 2009; Xue et al. 2014).
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Crucial to the robustness of the theory of balanced
networks is that it generalizes to both experimental settings
and detailed neuronal network models. Neuronal network
models demonstrating balanced dynamics are generally
sparsely connected and exhibit relatively strong synaptic
connections, which are characteristics well supported
physiologically (Markram et al. 1997; Mason et al. 1991;
He et al. 2007; Achard and Bullmore 2007; Destexhe et al.
2003), but current theoretical work largely utilizes minimal
single neuron models for analytical tractability in studying
the persistence of balanced dynamics (Boerlin et al. 2013;
Litwin-Kumar and Doiron 2012; Mongillo et al. 2012;
Renart et al. 2010; Deneve and Machens 2016). In exam-
ining the robustness of the balanced network theory, a
question that naturally arises is whether balanced dynamics
are preserved in the face of more realistic neuronal mod-
eling assumptions.

One salient feature of single neuron dynamics found
widely across the brain is a decrease in firing rate over time
in response to a constant stimulus known as spike-fre-
quency adaptation (Brown and Adams 1980; Benda and
Herz 2003; Barranca et al. 2014a). Spike-frequency adap-
tation may serve a number of significant functional roles,
particularly in stimulus selection, decision making, and
population coding (Benda et al. 2005; Peron and Gabbiani
2009; Kilpatrick and Ermentrout 2011), and has profound
consequences on the dynamical characteristics of neurons,
including their bifurcation structure and bursting propen-
sity (van Vreeswijk and Hansel 2001; Stiefel et al. 2009).

To examine the robustness of the balanced network
theory and further characterize the implications of spike-
frequency adaptation, we examine the existence of the
balanced state in neuronal network models incorporating
spike-frequency attenuation. Our work shows that when the
entire neuronal network undergoes adaptation, balanced
dynamics persist even for moderately strong adaptation.
Using mean-field analysis and a long-time approximation
of the model dynamics, we derive theoretical bounds on the
network parameters necessary for balanced dynamics,
highlighting the impact of adaptation strength on the
parameter regime in which neuronal dynamics are bal-
anced. We also perform an exhaustive exploration of the
adaptation parameter space, investigating several relevant
metrics of balance as a function of adaptation strength. For
concreteness, we initially examine a binary network model
(van Vreeswijk and Sompolinsky 1996), and later demon-
strate how our analysis generalizes to a pulse-coupled
integrate-and-fire (I&F) network model (Corral et al. 1995;
Mather et al. 2009; Barranca et al. 2014b).

This work shows that the balanced state theory is indeed
consistent with more realistic neuronal dynamics, under-
lining a generalizable framework for potential verification
of balanced dynamics in novel neuronal models.

@ Springer

Importantly, we show that in the case when only the
excitatory neuron population demonstrates spike-frequency
attenuation, balanced dynamics are preserved for strong
adaptation well above the strength generally observed
in vivo and for a broader range of model parameters. This
result is consistent with experimental evidence that exci-
tatory neurons are generally more likely to undergo adap-
tation than inhibitory neurons (La Camera et al. 2006;
Augustin et al. 2013). We therefore conjecture that adap-
tation in excitatory neurons may in fact function as a
potential mechanism for fostering balanced dynamics
among neuronal populations.

The remainder of the paper is organized as follows. We
first formulate the binary network model incorporating
spike-frequency adaptation in the “Binary model with
spike-frequency adaptation” section and then we perform
mean-field analysis on the model in the “Mean-field
analysis” section, deriving conditions on the neuronal
inputs in the large network and long time limits necessary
for balanced dynamics. In the “Theoretical bounds on
balanced dynamics” section, we derive theoretical bounds
on the model parameters required for balanced activity,
analyzing in detail the specific impact of adaptation
strength. We also consider the physiological case in which
only the excitatory population undergoes adaptation in the
“Adaptation exclusively in excitatory population” section,
demonstrating adaptation broadens the parameter regime
over which the dynamics are balanced. In the “Numerical
investigation of spike-frequency adaptation” section, we
numerically investigate the spike attenuation parameter
space and its impact on the model network dynamics,
generalizing these results to integrate-and-fire network
models with adaptation in the “Generalization to integrate-
and-fire model” section. Finally, in the “Discussion” sec-
tion, we discuss our findings, their implications, and
potential related areas of future investigation.

Binary model with spike-frequency
adaptation

We first introduce spike-frequency adaptation into the
framework of a binary neuronal model analogous to the
Ising model of ferromagnetism in statistical mechanics
(Glauber 1963; van Vreeswijk and Sompolinsky 1996). As
the name suggests, in this model each neuron has two
major states, firing (¢ = 1) or quiescent (¢ = 0). The net-
work is composed of N neurons, such that Ny are excitatory
and N; are inhibitory, requiring that for balanced dynamics
these two subpopulations interact such that firing events are
largely the result of input fluctuations of strength compa-
rable to the mean input. The state of the ith neuron in the
kth population at time ¢ is prescribed by the below
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dynamical system (subscripts k =FE and k =1 denote
excitatory and inhibitory neurons, respectively)

0, (1) = H (i (1) = 04(0)), (1)

where H(-) denotes the Heaviside function, i (z) is the

total input into the neuron at time ¢, and 0} (¢) is the firing
threshold for the ith neuron in the kth population at time
t. The total synaptic drive into the ith neuron in the kth
population at time ¢ is

NE .o . N’ .s .
1 (1) = ZRZEOJEO) + ZRZIO-]I(t) + s (2)
j=1 j=1

where R, denotes the recurrent connection strength
between the ith post-synaptic neuron in the kth population
and the jth pre-synaptic neuron in the /th population and 1
is the strength of the external input into the kth population.
Note that the state of the neurons are updated sequentially
using a fixed step-size in numerical simulation of this
discrete dynamical system and only state transitions from
quiescent to firing are considered novel firing events. The
state space reflects only the neuronal firing dynamics,
which encode the essential information for determining
balanced dynamics, whereas the more physiological inte-
grate-and-fire model analyzed in the “Generalization to
integrate-and-fire model” section also reflects the sub-
threshold voltage dynamics.

To incorporate spike-frequency adaptation, we include
in our modeling framework a dynamic firing threshold for
each neuron rather than a static population-based firing
threshold as in classical balanced network theory. This
dynamic firing threshold increases the neuronal excitation
necessary for an action potential, with the impact of mul-
tiple subsequent spikes adding over time to yield an
accumulated increase in firing threshold and thus a cumu-
latively reduced firing frequency. From a physiological
perspective, there are two primary slow currents that pro-
mote spike-frequency attenuation through slow negative
feedback to the neuronal excitability. The first is the non-
inactivating muscarinic potassium current and the second is
the after-hyperpolarization (AHP) current, which together
largely determine the spike threshold and slope of the
neuronal voltage trace (Ermentrout et al. 2001; Yamada
et al. 1989). During an action potential, a large number of
voltage-gated and calcium-dependent ionic channels open,
facilitating a sharp rise in the adaptation currents passing
through the neuron. As these adaptation currents slowly
deactivate, their impact builds over time following addi-
tional firing events and thereby reduces the neuronal spike
frequency.

The use of a dynamic firing threshold in modeling spike-
frequency adaptation is ubiquitous in neuronal models,
generating negative correlations between the durations of

successive inter-spike intervals and reproducing adaptive
neuronal firing dynamics observed in vivo (Treves 1993;
Bibikov and Ivanitski 1985; Chacron et al. 2000; Kobayashi
2009; Kobayashi and Kitano 2016). Alternative models of
spike attenuation instead directly incorporate the dynamics
of the slow adaptation currents into the subthreshold voltage
activity (Bendaet al. 2010; Barrancaet al. 2014a; Fourcaud-
Trocme et al. 2003; Liu and Wang 2001). Hence, to study the
impact of spike-frequency adaptation on balanced dynamics
in the context of the binary neuron model, which focuses on
firing activity only, we introduce a dynamic firing threshold
to reflect adaptation, and since the integrate-and-fire neuron
modeling framework incorporates subthreshold voltage
activity as well as firing dynamics, in the “Generalization to
integrate-and-fire model” section we also investigate the
dynamics of a current-based adaptation model. We observe
strong qualitative agreement in the effect of spike-frequency
adaptation on balanced dynamics using the two modeling
frameworks.

Building upon the state space dynamics of the network
model given by Egs. (1) and (2), the dynamic firing
threshold Qi(t) for the ith neuron in the kth population
evolves discretely according to

0(1) = Ok + (03 (10) — O + PF (1(1)) Je "7, (3)

where 0, denotes the constant non-adapted firing threshold
for all neurons in the kth population, F(-) denotes the firing
event indicator function, and 7, refers to the closest preced-
ing time at which the neuron fired. The firing threshold for a
given neuron in the kth population increases instantaneously
by jump strength ¢ each time it undergoes an action poten-
tial, and the adaptation offset from default threshold 6y
decreases exponentially in time with rate determined by A.
The overall adaptation strength thereby increases with jump
strength ¢ and decreases with decay rate 1, and a quotient of
these two parameters, for example, could be used to quantify
the adaptation strength. Thus, for sufficiently slow decay in
the firing threshold, several succeeding firing events will
result in a cumulative increase in the firing threshold.
However, in the absence of firing events, a neuronal firing
threshold will approach its non-adapted threshold.

In prescribing the network architecture, we select con-
nection strength R;Zl to be Ry;/v/K with probability K/N;
and O otherwise, ignoring any detailed network structure to
mechanistically focus on the impact of the single neuron
dynamics. In this case, the excitatory connection strength
Rz > 0 and the inhibitory connection strength R;; <O.
Assuming sparse connectivity, where 1 < K < Ng, Ny,
each neuron receives on average K excitatory incoming
connections and K inhibitory incoming connections.
Therefore, if Ry is O(1), then only O(vK) excitatory
inputs are necessary for a neuron to fire given an O(1)
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firing threshold, reflecting strong recurrent connectivity as
in classical balanced network theory (van Vreeswijk and
Sompolinsky 1996). When the mean excitatory and inhi-
bitory inputs into each neuron are in summation of the
same order as the firing threshold, intermittent fluctuations
in input are typically responsible for firing events and also
their strongly irregular distribution. We derive conditions
for balanced dynamics under these modeling assumptions
in the “Theoretical bounds on balanced dynamics” sec-
tion. As the absolute scale of the neuronal input is incon-
sequential in this nondimensional model, we assume
connectivity parameters Rpg = Rjp =1, so the only
parameters that determine the inhibition relative to exci-
tation are the inhibitory connection strengths and external
input. We also use the notation Rg = |Rg/| and R; = |Ry| to
quantify the magnitude of the inhibitory connections.

In requiring that irregular firing activity is the product
only of interactions among neurons in the network, we
assume the external input is constant and with strength
determined by parameter my. Specifically, the constant
external input into each population is uf = Emgv/K and
19 = Img\/K, where E and I are O(1) positive parameters
controlling the net external input into the excitatory and
inhibitory populations, respectively.

Before analyzing the impact of spike-frequency adap-
tation, for contrast, we first summarize several main
dynamical features of a neuronal network in the balanced
operating regime. As depicted in Fig. la, for a represen-
tative neuron in a balanced network, the total excitatory
and inhibitory inputs are much larger in magnitude than the
firing threshold, but the two input types dynamically cancel
over time, leaving the total input only irregularly crossing
threshold. This irregular spiking activity with strong exci-
tatory and inhibitory inputs dynamically counteracting
produces a nearly constant level of asynchronous neuronal
activity across the network, together characterizing the key
features of the balanced state considered in this work. We
will later use these key features as a means of bench-
marking the degree to which a network with spike-fre-
quency adaptation is balanced.

On a network level, the population-averaged state, or the

mean activity, for the kth population my(t) = N%Z?Z L ok (1)
is nearly constant and far below 1 across time, demon-
strating irregular fluctuations with small temporal standard
deviation about the time-averaged mean activity my.
Across the network, the variance of the inter-spike intervals
is larger than the mean inter-spike interval, signifying
irregular firing activity. Thus, a nearly stationary and
asynchronous balanced state is achieved, as demonstrated
in Fig. 1b. Similarly, for each neuron in the network, the
time-averaged ratio between the total excitatory and total
inhibitory input into each neuron, which we will refer to as

@ Springer
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Fig. 1 Dynamics of binary neurons in the balanced operating regime.
a Excitatory (blue) and inhibitory (red) input into a sample neuron in
the balanced state. The total input (black) is dynamically balanced
over time, leaving the net input near threshold (dashed). b The
population-averaged state (mean activity) of each neuron population
over time. The mean activity is nearly constant with irregular
fluctuations and small temporal variance. ¢ Histogram of the ratio
between time-averaged excitatory and inhibitory inputs across the
neuronal network. The excitatory and inhibitory inputs are primarily
proportional, yielding a mean EI ratio near —1. Parameters are chosen
such that N = 5000, Ng = 4000, N; = 1000,K =200,E =1,] =
0.87REE = R]E = I,R[] = —1.8,RE] = —2,}’}10 = OS,OE = 1, and
0; = 0.8. (Color figure online)

the EI ratio, is primarily near —1. This indicates that on a
neuron-by-neuron basis the excitatory and inhibitory inputs
are nearly proportional and consequently well-balanced
such that the total input into each neuron is near threshold.
A histogram of the EI ratios across a balanced network is
given in Fig. 1c. In this network, the ratio of excitatory to
inhibitory neurons is chosen to be 4 : 1 in accordance with
estimates in the primary visual cortex (Liu 2004; Gilbert
1992), and the remaining network parameter choices are
listed in the caption of Fig. 1. It is important to note that



Cognitive Neurodynamics

our analysis is largely not sensitive to the ratio of excitatory
to inhibitory neurons as well as perturbations in specific
parameter choices so long as they are in the subsequently
derived theoretical bounds.

Mean-field analysis

We now analytically examine the parameter regime for
which binary networks with spike-frequency adaptation
demonstrate balanced dynamics. A natural theoretical
requirement for a balanced operating state is that in the
large network limit the mean activity for both the excita-
tory and inhibitory populations remains positive and less
than 1, implying the mean activity is constant with asyn-
chronous dynamics. Hence, we require 0 <my; <1 as N —
oo and as K — oo for fixed ratios Ng/N; and K / N. This
requirement ultimately gives theoretical bounds on the
parameter space yielding balanced dynamics independent
of a specific network size in practice, requiring that a
particular finite network realization is composed of a suf-
ficiently large number of interconnected excitatory and
inhibitory neurons for these bounds to apply
approximately.

While in the absence of adaptation, this analysis is given
in van Vreeswijk and Sompolinsky (1998), in the case of
our adaptive binary model, we now must account for the
dynamic nature of each individual neuronal firing thresh-
old. Based on the requirement of stationarity, we assume
that when the network is in a balanced operating regime, in
the long-time limit the time-averaged mean activity of each
population is constant, given by my_ for the kth population,
and similarly require that the long-time, time-averaged
mean threshold for the kth population, denoted 0y, is
constant.

To approximate 0, we first observe using inductive
reasoning that we may compute the firing threshold for the
ith neuron in the kth population after n integer observation
times as

0, =0, + > _ OF(u, Je . 4)
=1

This result facilitates the computation of the population-
averaged firing threshold for population & at time step n

0] = 0, = 0, + 3 GIF (G, Y]e ™.
=1

Recalling that F(ui(r)) ~ oi(t), we have that
[F(1(1))] = [0%(1)] = my(t). Therefore, we can rewrite the
above as

Ok, = Ok, +¢Zm“, e
As the number of time-steps approaches infinity,

lim 0y, = O, = 0, + lim ¢’ka” e (s)

Since for balanced dynamics we must have that
lim my, = my_, Eq. (5) to leading order yields

n—oo

T L LSO

Ok, = Ok, + Pp(my_e™”

Thus, Eq. (6) provides an analytical approximation for the
long-time population-averaged firing threshold of utility in
deriving parameter bounds for balanced dynamics in the
next section.

In requiring that 0 <my <1, it is necessary for the time-
averaged mean total input into each neuronal population to
remain positive and finite, avoiding synchronous or com-
pletely quiescent network dynamics. For the kth popula-
tion, the population-averaged total input, or mean total
input, is

Z ZRZIOJ )+ 4 — 6(1)

I=E] j=1
— [0:(0)]-

Since each neuron is expected to receive K incoming
connections of each type and the individual connection

strength is Ry / VK,
Z RuVKmy(t) + ExmoVK — 0,(2).

I=E]I

[, (1)] = (¢

(7)

Taking the time-average of the above expression over a
long time horizon limit, such that my =~ my, yields

e =(Emo +mgp — Rgm)VK — 0, (8a)
:(II’)’Z() +mg — Rﬂ’l’l])\/_lg — 0]%. (Sb)

Hence, the long-time, time-averaged mean total excitatory

and inhibitory inputs are at most O(v/K). The time-aver-
aged mean inputs thus increase with network size yet must
be dynamically adjusted in order for the network to exhibit
asynchronous and irregular dynamics. It is therefore nec-
essary for the total excitatory and total inhibitory inputs to
approximately cancel for this to be possible in the large
network limit, and so to yield O(1) mean inputs in the large
network limit we require

@ Springer
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EmoerE—REm]—f/E%O(l/\/l?), (9a)
Imo—l—mE—R]ml—%:O(l/\/l?). (gb)

VK

Theoretical bounds on balanced dynamics

In deriving theoretical bounds on the network parameters
which yield balanced dynamics, we consider two scenarios:
(i) 0r. = o(v/K) and (ii) 0, . = O(V/K) as K — oo in the
large network size limit. Case (i) corresponds to adaptation
sufficiently small such that it has no impact on the time-
averaged mean inputs in the large network size limit. Here
standard balanced network theory holds (van Vreeswijk
and Sompolinsky 1998), and the parameter bounds for
balanced dynamics in both the excitatory and inhibitory
populations are known to be

E R

7> R, > 1. (10)
Thus, we focus case (ii), when 0 = O( V/K), to determine
the impact of spike-frequency adaptation on the theoretical
parameter bounds. According to Eq. (6), the long-time,
population-averaged firing threshold 0; . may only have an
O(VK) impact in Eq. (9) originating from the term

My, 1(/):; >/ VK, as the non-adapted threshold 0y, is assumed
O(1). Requiring that Eq. (9) be satisfied when the adap-
tation factor w = 2= /\/K is O(1) as K — oo yields

l—e*

Em0+(1 —w)mE—REm1 :O(l/\/?), (11&)

Img + mg — (R; + 0)m; =O(1/VK). (11b)

For K sufficiently large, this yields to leading order
1l—w —RE mg . —Emo
1 7R1 — my N 71]110 '
with solution
(R[ + (D)E — REI

mg = m,

ETRi+o)w—1)+Rg "

E+(w—1I

my =

(12a)

mo. (12b)

Requiring that both the excitatory and inhibitory popula-
tions are neither quiescent nor synchronous, in particular
0<mg<1 and 0<m; <1, we obtain parameter bounds

E Rg

>
1 R1+(1)

>1—-w>0. (13)
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These new parameter bounds are especially illuminating
when compared to the theoretical bounds obtained when
spike-frequency adaptation is negligible given in
Ineq. (10). First, note that adaptation factor w is a mono-
tonically increasing function of adaptation strength.
Depending on the adaptation factor, qualitatively distinct
dynamics manifest. We observe in Eq. (12) that the
numerators of mg and m; are linearly monotonically
increasing in @ and the common denominator is quadrati-
cally monotonically decreasing in o for o > (1 — R;)/2.
Thus, for w sufficiently large, the theoretical activities in
both populations will decrease with adaptation strength.
When adaptation strength is too large, the dynamics are
expected to become unbalanced. For extremely strong
adaptation, namely @ > 1, we see from Eq. (8), increasing
the theoretical mean excitatory population activity
decreases the mean input into the excitatory population,
thereby disrupting balance. Intuitively, as the adaptation
strength becomes sufficiently large, the long-time firing
threshold becomes of larger order than the expected inputs
into each population, making balance impossible to sustain.
In contrast, for smaller w, balanced dynamics can still
be well reconciled with spike-frequency adaptation. For
weak adaptation strength, O<w<1-—R;, Eq.(12)
demonstrates that adaptation instead increases the theo-
retical mean activity of each population. The effect of this
can be seen in the adapted bounds given by Ineq. (13). In
particular, for fixed R;, the inequality holds for Rg larger in
magnitude than in the non-adapted bounds in Ineq. (10).
Intuitively, since E > I, the increase in mg is more pro-
nounced than the increase in m; under weak adaptation, and
thus the excitatory population may undergo additional
recurrent inhibition and still maintain balanced dynamics.
For moderate adaptation strength, 1 —R;<w<1,
Ineq. (13) analogously implies that adaptation decreases
the magnitude of the Rg for which balance holds for fixed
R;, implying that balance is maintained when the excitatory
population is instead less recurrently inhibited. Here
adaptation begins to decrease the mean activity of the two
populations and, to compensate, more recurrent excitation
is necessary to achieve non-adapted levels of activity in the
balanced regime for the same choice of the remaining

parameters.
E

We further observe that since 7> RRE
1+

bounds, increasing the adaptation strength maintains bal-
anced dynamics for potentially larger external inputs into
the inhibitory population relative to a fixed external input
into the excitatory population. Note that in the non-adapted
case, increasing the external input into the excitatory
population increases the theoretical mean activity of both
populations and increasing the external input into the
inhibitory population decreases the theoretical mean

in the adapted
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activity in both populations. In contrast, based on the mean
activities in Eq. (12) observed under adaptation, we see
that if o increases in the balanced regime, the decrease in
theoretical activity garnered by increasing / is offset by o,
and thus a larger [ is required to attain non-adapted levels
of activity in the balanced regime for the same choice of
the remaining parameters.

To provide additional intuition for the impact of adap-
tation strength on the model network dynamics, we contrast
the network activity for two representative choices of
adaptation parameters. For relatively weak adaptation
strength, we observe, as depicted in Fig. 2a, typically any
increases in threshold from firing events are mitigated by
the decay in adaptation effect over time, yielding only a
slight overall increase in spiking threshold. In Fig. 2b, we
note that across both the excitatory and inhibitory popu-
lations, there is a small net gain in average threshold over a
short time scale, leveling off to yield a nearly constant
spiking threshold slightly increased relative to the non-
adapted threshold. In this case, balance is still quite well
maintained, with mean activities nearly constant about a
slightly decreased value and EI ratios faintly elevated in
magnitude, as shown in Fig. 2¢, d. In contrast, when
adaptation is sufficiently strong (w > 1), as considered
analogously in Fig. 3, the mean spiking threshold increases
significantly initially, ultimately saturating at a much larger
value than in the case of more moderate adaptation. The
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Fig. 2 Dynamics of binary neurons under moderate spike-frequency
adaptation. a Firing threshold of a sample neuron over time. b Mean
firing threshold across the excitatory (blue) and inhibitory (red)
populations. ¢ The mean activity across each neuron population.

level of mean activity decreases dramatically before satu-
rating about a significantly smaller level of activity with a
corresponding large increase in the magnitude of the EI
ratios, indicating a severe loss in balance under extreme
adaptation.

In light of these observations, we conclude that in the
presence of weak or moderate adaptation, although the
theoretical parameter bounds shift, balance is still achiev-
able in the proper parameter regime. However, for strong
adaptation, particularly « > 1, balance may no longer be
achieved regardless of the choice of parameters. It is
important to underline the fact that the case of strong
adaptation is not biologically realistic (Benda and Herz
2003; La Camera et al. 2006; Augustin et al. 2013), and
thus these theoretical considerations provide evidence that
balanced dynamics may be reconciled with spike-fre-
quency adaptation in physiological neuronal networks. We
remark that our analysis does not make any specific
assumptions about the relative number of excitatory and
inhibitory neurons beyond 1 < K < Ng, Nj, such that the
neuronal populations are sufficiently large and sparsely
connected for the mean-field limit to be well justified.
Thus, balance may be consistent with spike-frequency
adaptation in alternative regions of the brain with diverse
ratios of excitatory to inhibitory neurons.
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d Histogram of the ratio between time-averaged excitatory and
inhibitory inputs across the neuronal network. Adaptation parameters
are A =0.2 and ¢ = 0.3, yielding adaptation factor w<1. (Color
figure online)
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Fig. 3 Dynamics of binary neurons under strong spike-frequency
adaptation. a Firing threshold of a sample neuron over time. b Mean
firing threshold across the excitatory (blue) and inhibitory (red)
populations. ¢ The mean activity across each neuron population.

Adaptation exclusively in excitatory
population

Reflecting the physiological observation that excitatory
neurons are typically more likely to undergo spike-fre-
quency adaptation than inhibitory neurons (La Camera
et al. 2006; Augustin et al. 2013), we instead assume that
only the excitatory population is subject to adaptation.
Significantly, the results in this case are fundamentally
distinct from those obtained when both populations exhibit
adaptation and provide valuable insights into a potentially
new role of adaptation in cognition. Repeating the analysis
in the previous section under the assumption 0; = 0;
yields
R/E — Rgl

—m
R[((,l) — 1) + R E

E+(w—1I m

mg = 05 (14a)

0 (14b)

my =

with corresponding parameter bounds

E Rg
- > —>1—w.
1 R;

(15)
We observe that when only the excitatory population is

subject to adaptation, the parameter bounds necessary for
balanced dynamics in fact widen with adaptation strength.
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are 4 = 0.005 and ¢ = 0.3, yielding adaptation factor » > 1. (Color
figure online)

As w — oo, Eq. (14) admits a solution such that mg — 0
and m; — Rilmo, for which the inhibitory population never

ceases firing, allowing the inhibitory population to exhibit
asynchronous firing activity in response to the excitatory
external input while the excitatory population is approxi-
mately quiescent. If we consider such a solution balanced,
then @ > 1 is an admissible parameter choice. In contrast,
note that as @ — oo when both populations undergo
adaptation, the firing rate for each population vanishes.
Similar analysis demonstrates that in the case when only
the inhibitory population undergoes spike-frequency
attenuation, the parameter bounds for balance become
more restrictive. For these reasons, we hypothesize that
evolution may have selected for this network architecture,
specifically adaptation primarily exhibited by excitatory
neurons, with the goal of more robustly preserving bal-
anced dynamics. We emphasize this holds broadly for
alternative network parameters, reflecting diverse brain
region structures, and thus may be a fundamental archi-
tectural principle aimed at robustly achieving balanced
dynamics.
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Numerical investigation of spike-frequency
adaptation

The theoretical analysis discussed in the previous section
held approximately in the large network limit. To discern
the impact of spike-frequency adaptation for finite-sized
neuronal networks and gain a more detailed perspective on
the bounds on adaptation strength necessary for balanced
dynamics, we exhaustively investigate the adaptation
parameter space and its impact on several metrics of bal-
ance over an ensemble of network realizations. Performing
analysis on a network of N = 5000 neurons, where all
neurons undergo adaptation, we are able to provide a more
detailed explanation of both when and how balance breaks
down for sufficiently strong adaptation.

In Fig. 4, we vary adaptation jump strength ¢ and
adaptation decay rate 1 while holding the remainder of the
model network parameters constant. First, we analyze the
time-averaged mean ratio of the total excitatory and total
inhibitory input into each neuron across the network in
Fig. 4a. We observe that for weak adaptation (small ¢ and
large /), the mean EI ratio is close to —1, indicative of
balance, with the EI ratio becoming more negative as the
adaptation strength increases and the dynamics become
more unbalanced. At the same time, as the adaptation
strength increases, the time-averaged mean activities across
the excitatory and inhibitory populations both decrease, as
exhibited in Fig. 4b, c, respectively.

While it is clear balance breaks down for sufficiently
strong adaptation, as the EI ratio decreases and mean
activity across the network decreases, the precise mecha-
nism for this transition in dynamics is important to discern.
In Fig. 4d, e, we investigate the time-averaged mean total
excitatory and inhibitory inputs, respectively, across the
neuronal network. We note that while both types of input
decrease in magnitude with adaptation strength, the
decrease in the magnitude of the inhibitory input is sig-
nificantly more dramatic. The mean firing threshold across
the two populations increases comparably with adaptation,
as shown in Fig. 4f, g, and thus the balance in EI ratio
appears broken largely due to the disproportionate decrease
in the magnitude of inhibitory inputs with high adaptation
strength. Note that corresponding to this relatively large
drop in the magnitude of the inhibitory input is a significant
decrease in the mean activity of the inhibitory population,
as shown in Fig. 4c, further evidencing that the inhibitory
population is more strongly impacted by increased adap-
tation and thereby facilitates the breakdown in balanced
dynamics.

These numerical results are consistent with the theo-
retical analysis in the previous sections. In particular, in

Fig. 4h, we plot the adaptation factor w = Mﬂ; /VK over

l—e™

the adaptation parameterscape. We observe that for w <1,
when the long-time adapted threshold is expected to be of
smaller size than the population inputs, the balanced
operating regime is robust. Comparing the numerically
computed value of the long-time population-averaged fir-
ing threshold to the theoretical approximation given by
Eq. (6) for adaptation parameters in the balanced regime
yields a relative error of only 0.07. Moreover, since the
parameterscape plots in Fig. 4a—g closely mimic the
changes in w with 1 and ¢, the adaptation factor w is
indeed closely aligned with the degree of balance demon-
strated by the network. Note that for the particular
parameters numerically investigated, Ineq. (13) holds for
w <1, which is consistent with the choices of adaptation
parameters empirically yielding balanced dynamics shown
in Fig. 4a—g. It is important to remark that the rate at which
the dynamics become unbalanced is quite slow for mod-
erate attenuation strengths, with balance only rapidly
diminishing for more extreme adaptation. Hence, even for
networks of finite size, we see balanced dynamics are
robust over a broad range of adaptation strengths.

Using the same choice of network parameters as dis-
cussed previously, we depict in Fig. 5 analogous metrics of
balance for the more physiological case in which only the
excitatory population is subject to spike-frequency adap-
tation. Here we see that the parameter regime in which
balanced dynamics are preserved becomes significantly
widened. Strikingly, there is only a marginal decrease in
the mean EI ratio even for extreme choices of adaptation
strength. In this case, the decrease in the time-averaged
mean total excitatory and inhibitory inputs as well as mean
activity are closely matched in magnitude, robustly pre-
serving balance over the investigated parameterscape. Our
numerical analysis thus agrees with the notion that by
spike-frequency adaptation manifesting primarily in exci-
tatory neurons, balanced dynamics are more broadly
achieved over a larger space of network architectures and
operating regimes than in the non-adapted case.

Generalization to integrate-and-fire model

To demonstrate that our results are generalizable to more
physiological neuronal models with spike-frequency
adaptation, we similarly investigate a pulse-coupled inte-
grate-and-fire (I&F) network model (Corral et al. 1995;
Mather et al. 2009; Barranca et al. 2014a). While relatively
computationally inexpensive, the I&F model reproduces
realistic neuronal firing rates and provides a fairly accurate
description of physiological subthreshold voltage dynamics
(Carandini et al. 1996; Rauch et al. 2003; Burkitt 2006).
We analyze two distinct variations of modeling spike-
frequency adaptation in this framework. The first will

@ Springer
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Fig. 4 Impact of adaptation
strength on balanced dynamics
when both the excitatory and
inhibitory populations exhibit
adaptation in a binary neuronal
network. a—f Numerically
investigate the effect of
adaptation jump strength ¢ and
adaptation decay rate / on the: a
mean ratio between time-
averaged excitatory and
inhibitory inputs across the
neuronal network; b time-
averaged mean activity of the
excitatory neuron population; ¢
time-averaged mean activity of
the inhibitory neuron
population; d time-averaged
mean total excitatory input into
the entire network; e time-
averaged mean total inhibitory
input into the entire network; f
time-averaged mean firing
threshold across the excitatory
population; g time-averaged
mean firing threshold across the
inhibitory population; h
adaptation factor o =

1_e;7t / VK thresholded at » = 1

model adaptation analogously to the binary case by
increasing the neuronal firing threshold for each neuron
after it undergoes a firing event. The second will instead
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keep the firing threshold constant while explicitly including
an adaptation current that decreases firing rate following

action potentials.
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The membrane-potential dynamics of the ith neuron in
kth population of the pulse-coupled I&F network, vi, is
modeled by the differential equation
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Fig. 5 Impact of adaptation (a) El Ratios Mean (b) Exc. Pop. Mean activity

strength on balanced dynamics 06 104 0.6

when only the excitatory ’

population exhibits adaptation 0.5 -1.06 05 01
in a binary neuronal network. a— 04 0.4 .
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across the neuronal network;
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population; ¢ time-averaged

¢

mean activity of the inhibitory (©)  Inh. Pop. Mean activity (d) Mean Total Exc. Input
neuron population; d time- 06 0.6
averaged mean total excitatory 0.15
input into the entire network; 0.5 0.5 4
e time-averaged mean total 04 014
inhibitory input into the entire ' 013
network; f time-averaged mean ~ 03
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i N, jith neuron in the kth population, 7%, the activity of all post-
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dr K~ Yk kT2 ke jl connected neurons is offset as a result of integrating over
’;i ! the Dirac delta function &(-) in Eq. (16).
N For an identical choice of network architecture param-
i , . . IR
+ Z RY, Z 3(t — 1), (16) etérs as cons1.dered for the binary model in E1g. 1, we
= i briefly underline several aspects of the dynamics of the
J#

evolving continuously on a time-scale reflected by 7, until
reaching firing threshold 0};. At that moment the neuron is
said to fire and its state is instantaneously reset to the value
vg. Using the same notation and connectivity structure as in
the binary model, a neuron in the kth population receives
external input «? and the realization of adjacency matrix, R,
determines the recurrent connectivity in the network.
Neuronal interactions are reflected at the moment of action
potentials such that at the time of the /th firing event of the

I&F network in the balanced regime. As shown in Fig. 6a,
the ratio of the time-averaged excitatory and inhibitory
inputs across the network is clustered near —1, indicative
of balance. The mean activity for each population across
time is nearly constant, depicted in Fig. 6b, demonstrating
neither synchronous nor quiescent dynamics overall. This
asynchronous activity is also reflected in the raster plot
shown in Fig. 6¢, which exhibits a sequence of points
corresponding to the index of each spiking neuron as a
function of the time of each action potential.
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Fig. 6 Dynamics of integrate-and-fire neurons in the balanced
operating regime. a Histogram of the ratio between time-averaged
excitatory and inhibitory inputs across the neuronal network. b The
mean activity across the excitatory (blue) and inhibitory (red)
populations. ¢ Raster plot displaying asynchronous firing activity
across the network, displayed for a subset of simulation time for
greater resolution. The network architecture is identical to the binary
network considered in Fig. 1. (Color figure online)

Using first an I&F model with threshold-based adapta-
tion, we reflect spike-frequency adaptation by increasing
the firing threshold of the ith neuron in the kth population,
0:(1), by ¢ the moment the neuron fires. Between firing
events, 0} (t), evolves according to
a0, _
T
such that the firing threshold decays to the constant non-
adapted firing threshold for all neurons in the kth popula-
tion, 0, in the absence of firing events. Hence, analogous
to the binary model with adaptation, ¢ determines the
instantaneous increase in threshold following a firing event
and A determines the decay rate of the threshold offset.

Reflecting the essential characteristics of more biologi-
cally realistic adaptation currents, we also analyze an I&F

(0, - 0,), an
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model with current-based adaptation, which specifically
incorporates an adaptation current wi (7) associated with the
ith neuron in the kth population while instead keeping the
firing threshold constant at ;. The dynamical system
model is adjusted in this case to

av ; Ney
Td_tk =— (i —0) +u) + ZRZE25(I - rﬁ)
= 7
J#i
N .. .
+ ZRZI Z ot — ‘cjl-l) —wp
=1 7
i
awi ;
TII( = —lwk, (18)

where wi is instantaneously increased by ¢ at each time its
corresponding neuron fires and 4 controls the decay rate for
the adaptation current.

In generalizing our analysis to the framework of the I&F
model, it is important to note that in the absence of adap-
tation, neurons in the balanced operating regime asyn-
chronously fire at a low rate and their spike trains are
approximately independent. Thus, the summed spike train
input of each type into each neuron tends asymptotically
towards a Poisson spike process (Cinlar 1972). In effect,
the mean network drive from the kth population to a neuron
in the jth population is approximately m;Rj VK. For this
reason, the balance condition for the pulse-coupled I&F
network model is identical to Ineq. (10) derived for the
binary network model. In addition, the cumulative impact
of firing events on the firing threshold Hi(t) for a given
neuron in the threshold-based I&F model is given by

O> ¢~*=7), which is the continuous analog for the
il

increase in threshold corresponding to firing events in the
adapted binary model. The analysis in the “Mean-field
analysis” section therefore carries over approximately to
the I&F network with threshold-based adaptation and
yields a perturbed adaptation factor that agrees with o to
leading order. Ineq. (13) thus retains an identical structure
and dependence on the resultant adaptation factor, thereby
demonstrating a similar theoretical relationship between
adaptation strength and balanced activity. Following in
suite, we expect that the bounds for balanced dynamics
determined for the I&F model with current-based adapta-
tion at least qualitatively demonstrates the same structure
as the adapted binary model and confirm this numerically.

We underline the numerical evidence that our previous
binary model analysis naturally generalizes to the I&F
model in Fig. 7, thereby providing a more robust connec-
tion between balanced dynamics and adaptation. In Fig. 7a,
b, we plot the time-averaged mean EI ratio and time-av-
eraged mean threshold, respectively, across the I&F
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network with threshold-based adaptation over the A — ¢
parameter space. We see a nearly identical structure as
observed in the binary network, with the EI ratio
decreasing for sufficiently high adaptation strength and
high corresponding mean spiking threshold. Likewise, in
Fig. 7c, d, we depict analogous plots for the I&F network
with current-based adaptation, which demonstrate the same
trend. If instead only the excitatory population undergoes
spike-frequency attenuation, we observe in Fig. 7e, f that
both versions of the adapted I&F network demonstrate
little deviation from balance in the EI ratio even under high
adaptation strengths, agreeing with the notion that adap-
tation facilitates balanced dynamics in this case.

Fig. 7 Impact of adaptation (a)
0.2

El Ratios Mean

Discussion

Our work demonstrates in the context of several neuronal
network models that balanced dynamics are well preserved
for physiological spike-frequency adaptation strengths. We
verify this theoretically in the large network limit and
provide detailed numerical evidence in the finite network
case. While for sufficiently strong adaptation, balance does
diminish, such strengths are inconsistent with what is
observed in vivo. In the case when only excitatory neurons
undergo adaptation, as found in many areas of the brain, we
show that balance is yet more robustly preserved over a
wide parameter space. This provides new evidence for the
hypothesis that neuronal networks may have evolved such
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that excitatory neurons exhibit spike attenuation in order to
maintain balanced dynamics over a broad range of oper-
ating states, potentially improving input encoding and
memory.

There are numerous lines of experimental evidence
suggesting that an imbalance in inhibitory and excitatory
neuronal inputs may underlie autism spectrum disorders as
well as schizophrenia (Gao and Penzes 2015; Tatti et al.
2017; Nelson and Valakh 2015; Rosenberg et al. 2015),
and thus degeneracies in neuronal dynamics, such as par-
ticularly strong or weak adaptation, could potentially aid in
explaining disorders in brain function. It may therefore be
informative to further examine experimentally the link
between adaptation and balanced dynamics.

While we investigated the relationship between spike-
frequency adaptation and the balanced operating regime in
the context of the binary and integrate-and-fire neuronal
models, we expect that our framework for investigation
largely generalizes to more physiological network models
with slow adaptation currents incorporated, such as the
Hodgkin-Huxley model and the quadratic as well as
exponential integrate-and-fire neuronal models (Richard-
son 2009; Fourcaud-Trocme et al. 2003; Barranca et al.
2014a). As the theory of balanced networks for continuous
models has largely been developed for pulse-coupled
neuronal networks (Boerlin et al. 2013; Litwin-Kumar and
Doiron 2012; Mongillo et al. 2012; Renart et al. 2010;
Deneve and Machens 2016), we expect that studying
alternative neuronal models with pulse-coupling would
facilitate the most natural setting to extend the results of
this study. Though we investigated the impact of several
idealized models of spike-frequency attenuation in this
work, in light of the multitude of alternative models and
mechanisms for spike-frequency adaptation (Barranca
et al. 2014a; Treves 1993; Liu and Wang 2001; Smith et al.
2002; Mensi et al. 2012; Touboul and Brette 2008), anal-
ogously studying adaptation in more physiological forms
would make for an interesting area of future examination.
Our theoretical analysis was more tractable under the
assumption that the network connectivity was homoge-
neous and random; however, an important direction for
future study is the impact of adaptation on the balanced
operating regime in networks with more biologically real-
istic structure, such as a small-world or scale-free archi-
tecture, commonly observed in the brain (Dorogovtsev and
Mendes 2002; van den Heuvel et al. 2008; Sporns and
Honey 2006; Netoff et al. 2004; Roxin et al. 2004).

Funding Funding was provided by National Science Foundation
(Grant No. DMS-1812478) and Swarthmore College (Faculty
Research Support Grant).
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