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Abstract
A dynamic balance between strong excitatory and inhibitory neuronal inputs is hypothesized to play a pivotal role in

information processing in the brain. While there is evidence of the existence of a balanced operating regime in several

cortical areas and idealized neuronal network models, it is important for the theory of balanced networks to be reconciled

with more physiological neuronal modeling assumptions. In this work, we examine the impact of spike-frequency adap-

tation, observed widely across neurons in the brain, on balanced dynamics. We incorporate adaptation into binary and

integrate-and-fire neuronal network models, analyzing the theoretical effect of adaptation in the large network limit and

performing an extensive numerical investigation of the model adaptation parameter space. Our analysis demonstrates that

balance is well preserved for moderate adaptation strength even if the entire network exhibits adaptation. In the common

physiological case in which only excitatory neurons undergo adaptation, we show that the balanced operating regime in

fact widens relative to the non-adaptive case. We hypothesize that spike-frequency adaptation may have been selected

through evolution to robustly facilitate balanced dynamics across diverse cognitive operating states.

Keywords Spike-frequency adaptation � Balanced networks � Neuronal network models � Nonlinear dynamics

Introduction

There is strong experimental evidence that individual

neurons across the brain demonstrate highly irregular and

asynchronous firing activity, but the basis for this vari-

ability remains a subject of intense investigation (Shadlen

and Newsome 1998b; Britten et al. 1993; London et al.

2010; Compte et al. 2003). This irregular activity facili-

tates rich neuronal network computations and has been

shown to foster predictive neuronal coding, efficient rep-

resentation of stimuli, and effective short-term memory

(Shadlen and Newsome 1998a; Sussillo and Abbott 2009;

Whalley 2013). Considering biophysical sources of noise

are largely unable to account for irregular neuronal

dynamics (Softky and Koch 1993; Faisal et al. 2008), there

is robust evidence that neuronal network topology and

strong neuronal interaction together are sufficient to give

rise to the irregular activity observed in vivo even in the

absence of variability in external network inputs.

The theory of balanced networks indicates the existence

of an irregular operating regime in which strong excitatory

and inhibitory neuronal inputs are dynamically balanced,

typically rendering neurons in a near-firing state such that

firing events are caused by fluctuations in neuronal input

(van Vreeswijk and Sompolinsky 1996; Troyer and Miller

1997; Vogels and Abbott 2005; Miura et al. 2007). Theo-

retical analysis of the balanced operating state demon-

strates that when temporal fluctuations in neuronal input

are approximately as strong as the mean input, neuronal

firing rates in a balanced network are broadly distributed

while maintaining asynchronous dynamics and nearly

constant population-averaged activity. Supporting the

existence of a balanced state in physical neuronal networks,

experimental studies indicate that in several brain regions

excitatory and inhibitory inputs are indeed closely tracked

over time, with the ratio of excitatory to inhibitory con-

ductances remaining nearly constant both in vivo and

in vitro (Wehr and Zador 2003; Shu et al. 2003; Atallah

and Scanziani 2009; Xue et al. 2014).
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Crucial to the robustness of the theory of balanced

networks is that it generalizes to both experimental settings

and detailed neuronal network models. Neuronal network

models demonstrating balanced dynamics are generally

sparsely connected and exhibit relatively strong synaptic

connections, which are characteristics well supported

physiologically (Markram et al. 1997; Mason et al. 1991;

He et al. 2007; Achard and Bullmore 2007; Destexhe et al.

2003), but current theoretical work largely utilizes minimal

single neuron models for analytical tractability in studying

the persistence of balanced dynamics (Boerlin et al. 2013;

Litwin-Kumar and Doiron 2012; Mongillo et al. 2012;

Renart et al. 2010; Deneve and Machens 2016). In exam-

ining the robustness of the balanced network theory, a

question that naturally arises is whether balanced dynamics

are preserved in the face of more realistic neuronal mod-

eling assumptions.

One salient feature of single neuron dynamics found

widely across the brain is a decrease in firing rate over time

in response to a constant stimulus known as spike-fre-

quency adaptation (Brown and Adams 1980; Benda and

Herz 2003; Barranca et al. 2014a). Spike-frequency adap-

tation may serve a number of significant functional roles,

particularly in stimulus selection, decision making, and

population coding (Benda et al. 2005; Peron and Gabbiani

2009; Kilpatrick and Ermentrout 2011), and has profound

consequences on the dynamical characteristics of neurons,

including their bifurcation structure and bursting propen-

sity (van Vreeswijk and Hansel 2001; Stiefel et al. 2009).

To examine the robustness of the balanced network

theory and further characterize the implications of spike-

frequency adaptation, we examine the existence of the

balanced state in neuronal network models incorporating

spike-frequency attenuation. Our work shows that when the

entire neuronal network undergoes adaptation, balanced

dynamics persist even for moderately strong adaptation.

Using mean-field analysis and a long-time approximation

of the model dynamics, we derive theoretical bounds on the

network parameters necessary for balanced dynamics,

highlighting the impact of adaptation strength on the

parameter regime in which neuronal dynamics are bal-

anced. We also perform an exhaustive exploration of the

adaptation parameter space, investigating several relevant

metrics of balance as a function of adaptation strength. For

concreteness, we initially examine a binary network model

(van Vreeswijk and Sompolinsky 1996), and later demon-

strate how our analysis generalizes to a pulse-coupled

integrate-and-fire (I&F) network model (Corral et al. 1995;

Mather et al. 2009; Barranca et al. 2014b).

This work shows that the balanced state theory is indeed

consistent with more realistic neuronal dynamics, under-

lining a generalizable framework for potential verification

of balanced dynamics in novel neuronal models.

Importantly, we show that in the case when only the

excitatory neuron population demonstrates spike-frequency

attenuation, balanced dynamics are preserved for strong

adaptation well above the strength generally observed

in vivo and for a broader range of model parameters. This

result is consistent with experimental evidence that exci-

tatory neurons are generally more likely to undergo adap-

tation than inhibitory neurons (La Camera et al. 2006;

Augustin et al. 2013). We therefore conjecture that adap-

tation in excitatory neurons may in fact function as a

potential mechanism for fostering balanced dynamics

among neuronal populations.

The remainder of the paper is organized as follows. We

first formulate the binary network model incorporating

spike-frequency adaptation in the ‘‘Binary model with

spike-frequency adaptation’’ section and then we perform

mean-field analysis on the model in the ‘‘Mean-field

analysis’’ section, deriving conditions on the neuronal

inputs in the large network and long time limits necessary

for balanced dynamics. In the ‘‘Theoretical bounds on

balanced dynamics’’ section, we derive theoretical bounds

on the model parameters required for balanced activity,

analyzing in detail the specific impact of adaptation

strength. We also consider the physiological case in which

only the excitatory population undergoes adaptation in the

‘‘Adaptation exclusively in excitatory population’’ section,

demonstrating adaptation broadens the parameter regime

over which the dynamics are balanced. In the ‘‘Numerical

investigation of spike-frequency adaptation’’ section, we

numerically investigate the spike attenuation parameter

space and its impact on the model network dynamics,

generalizing these results to integrate-and-fire network

models with adaptation in the ‘‘Generalization to integrate-

and-fire model’’ section. Finally, in the ‘‘Discussion’’ sec-

tion, we discuss our findings, their implications, and

potential related areas of future investigation.

Binary model with spike-frequency
adaptation

We first introduce spike-frequency adaptation into the

framework of a binary neuronal model analogous to the

Ising model of ferromagnetism in statistical mechanics

(Glauber 1963; van Vreeswijk and Sompolinsky 1996). As

the name suggests, in this model each neuron has two

major states, firing (r ¼ 1) or quiescent (r ¼ 0). The net-

work is composed of N neurons, such that NE are excitatory

and NI are inhibitory, requiring that for balanced dynamics

these two subpopulations interact such that firing events are

largely the result of input fluctuations of strength compa-

rable to the mean input. The state of the ith neuron in the

kth population at time t is prescribed by the below
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dynamical system (subscripts k ¼ E and k ¼ I denote

excitatory and inhibitory neurons, respectively)

rikðtÞ ¼ H likðtÞ � hikðtÞ
� �

; ð1Þ

where Hð�Þ denotes the Heaviside function, likðtÞ is the

total input into the neuron at time t, and hikðtÞ is the firing

threshold for the ith neuron in the kth population at time

t. The total synaptic drive into the ith neuron in the kth

population at time t is

likðtÞ ¼
XNE

j¼1

R
ij
kEr

j
EðtÞ þ

XNI

j¼1

R
ij
kIr

j
IðtÞ þ l0k ; ð2Þ

where R
ij
kl denotes the recurrent connection strength

between the ith post-synaptic neuron in the kth population

and the jth pre-synaptic neuron in the lth population and l0k
is the strength of the external input into the kth population.

Note that the state of the neurons are updated sequentially

using a fixed step-size in numerical simulation of this

discrete dynamical system and only state transitions from

quiescent to firing are considered novel firing events. The

state space reflects only the neuronal firing dynamics,

which encode the essential information for determining

balanced dynamics, whereas the more physiological inte-

grate-and-fire model analyzed in the ‘‘Generalization to

integrate-and-fire model’’ section also reflects the sub-

threshold voltage dynamics.

To incorporate spike-frequency adaptation, we include

in our modeling framework a dynamic firing threshold for

each neuron rather than a static population-based firing

threshold as in classical balanced network theory. This

dynamic firing threshold increases the neuronal excitation

necessary for an action potential, with the impact of mul-

tiple subsequent spikes adding over time to yield an

accumulated increase in firing threshold and thus a cumu-

latively reduced firing frequency. From a physiological

perspective, there are two primary slow currents that pro-

mote spike-frequency attenuation through slow negative

feedback to the neuronal excitability. The first is the non-

inactivating muscarinic potassium current and the second is

the after-hyperpolarization (AHP) current, which together

largely determine the spike threshold and slope of the

neuronal voltage trace (Ermentrout et al. 2001; Yamada

et al. 1989). During an action potential, a large number of

voltage-gated and calcium-dependent ionic channels open,

facilitating a sharp rise in the adaptation currents passing

through the neuron. As these adaptation currents slowly

deactivate, their impact builds over time following addi-

tional firing events and thereby reduces the neuronal spike

frequency.

The use of a dynamic firing threshold in modeling spike-

frequency adaptation is ubiquitous in neuronal models,

generating negative correlations between the durations of

successive inter-spike intervals and reproducing adaptive

neuronal firing dynamics observed in vivo (Treves 1993;

Bibikov and Ivanitski 1985; Chacron et al. 2000; Kobayashi

2009; Kobayashi and Kitano 2016). Alternative models of

spike attenuation instead directly incorporate the dynamics

of the slow adaptation currents into the subthreshold voltage

activity (Benda et al. 2010;Barranca et al. 2014a; Fourcaud-

Trocme et al. 2003; Liu andWang 2001). Hence, to study the

impact of spike-frequency adaptation on balanced dynamics

in the context of the binary neuron model, which focuses on

firing activity only, we introduce a dynamic firing threshold

to reflect adaptation, and since the integrate-and-fire neuron

modeling framework incorporates subthreshold voltage

activity as well as firing dynamics, in the ‘‘Generalization to

integrate-and-fire model’’ section we also investigate the

dynamics of a current-based adaptation model. We observe

strong qualitative agreement in the effect of spike-frequency

adaptation on balanced dynamics using the two modeling

frameworks.

Building upon the state space dynamics of the network

model given by Eqs. (1) and (2), the dynamic firing

threshold hikðtÞ for the ith neuron in the kth population

evolves discretely according to

hikðtÞ ¼ hk þ hikðt0Þ � hk þ /FðlikðtÞÞ
� �

e�kðt�t0Þ; ð3Þ

where hk denotes the constant non-adapted firing threshold

for all neurons in the kth population, Fð�Þ denotes the firing

event indicator function, and t0 refers to the closest preced-

ing time at which the neuron fired. The firing threshold for a

given neuron in the kth population increases instantaneously

by jump strength / each time it undergoes an action poten-

tial, and the adaptation offset from default threshold hk
decreases exponentially in time with rate determined by k.
The overall adaptation strength thereby increases with jump

strength / and decreases with decay rate k, and a quotient of
these two parameters, for example, could be used to quantify

the adaptation strength. Thus, for sufficiently slow decay in

the firing threshold, several succeeding firing events will

result in a cumulative increase in the firing threshold.

However, in the absence of firing events, a neuronal firing

threshold will approach its non-adapted threshold.

In prescribing the network architecture, we select con-

nection strength R
ij
kl to be Rkl=

ffiffiffiffi
K

p
with probability K=Nl

and 0 otherwise, ignoring any detailed network structure to

mechanistically focus on the impact of the single neuron

dynamics. In this case, the excitatory connection strength

RkE [ 0 and the inhibitory connection strength RkI\0.

Assuming sparse connectivity, where 1 � K � NE;NI ,

each neuron receives on average K excitatory incoming

connections and K inhibitory incoming connections.

Therefore, if Rkl is Oð1Þ, then only Oð
ffiffiffiffi
K

p
Þ excitatory

inputs are necessary for a neuron to fire given an Oð1Þ
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firing threshold, reflecting strong recurrent connectivity as

in classical balanced network theory (van Vreeswijk and

Sompolinsky 1996). When the mean excitatory and inhi-

bitory inputs into each neuron are in summation of the

same order as the firing threshold, intermittent fluctuations

in input are typically responsible for firing events and also

their strongly irregular distribution. We derive conditions

for balanced dynamics under these modeling assumptions

in the ‘‘Theoretical bounds on balanced dynamics’’ sec-

tion. As the absolute scale of the neuronal input is incon-

sequential in this nondimensional model, we assume

connectivity parameters REE ¼ RIE ¼ 1, so the only

parameters that determine the inhibition relative to exci-

tation are the inhibitory connection strengths and external

input. We also use the notation RE ¼ jREI j and RI ¼ jRII j to
quantify the magnitude of the inhibitory connections.

In requiring that irregular firing activity is the product

only of interactions among neurons in the network, we

assume the external input is constant and with strength

determined by parameter m0. Specifically, the constant

external input into each population is l0E ¼ Em0

ffiffiffiffi
K

p
and

l0I ¼ Im0

ffiffiffiffi
K

p
, where E and I are Oð1Þ positive parameters

controlling the net external input into the excitatory and

inhibitory populations, respectively.

Before analyzing the impact of spike-frequency adap-

tation, for contrast, we first summarize several main

dynamical features of a neuronal network in the balanced

operating regime. As depicted in Fig. 1a, for a represen-

tative neuron in a balanced network, the total excitatory

and inhibitory inputs are much larger in magnitude than the

firing threshold, but the two input types dynamically cancel

over time, leaving the total input only irregularly crossing

threshold. This irregular spiking activity with strong exci-

tatory and inhibitory inputs dynamically counteracting

produces a nearly constant level of asynchronous neuronal

activity across the network, together characterizing the key

features of the balanced state considered in this work. We

will later use these key features as a means of bench-

marking the degree to which a network with spike-fre-

quency adaptation is balanced.

On a network level, the population-averaged state, or the

mean activity, for the kth population mkðtÞ ¼ 1
Nk

PNk

i¼1 r
i
kðtÞ

is nearly constant and far below 1 across time, demon-

strating irregular fluctuations with small temporal standard

deviation about the time-averaged mean activity mk.

Across the network, the variance of the inter-spike intervals

is larger than the mean inter-spike interval, signifying

irregular firing activity. Thus, a nearly stationary and

asynchronous balanced state is achieved, as demonstrated

in Fig. 1b. Similarly, for each neuron in the network, the

time-averaged ratio between the total excitatory and total

inhibitory input into each neuron, which we will refer to as

the EI ratio, is primarily near �1. This indicates that on a

neuron-by-neuron basis the excitatory and inhibitory inputs

are nearly proportional and consequently well-balanced

such that the total input into each neuron is near threshold.

A histogram of the EI ratios across a balanced network is

given in Fig. 1c. In this network, the ratio of excitatory to

inhibitory neurons is chosen to be 4 : 1 in accordance with

estimates in the primary visual cortex (Liu 2004; Gilbert

1992), and the remaining network parameter choices are

listed in the caption of Fig. 1. It is important to note that
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Fig. 1 Dynamics of binary neurons in the balanced operating regime.

a Excitatory (blue) and inhibitory (red) input into a sample neuron in

the balanced state. The total input (black) is dynamically balanced

over time, leaving the net input near threshold (dashed). b The

population-averaged state (mean activity) of each neuron population

over time. The mean activity is nearly constant with irregular

fluctuations and small temporal variance. c Histogram of the ratio

between time-averaged excitatory and inhibitory inputs across the

neuronal network. The excitatory and inhibitory inputs are primarily

proportional, yielding a mean EI ratio near �1. Parameters are chosen

such that N ¼ 5000;NE ¼ 4000;NI ¼ 1000;K ¼ 200;E ¼ 1; I ¼
0:8;REE ¼ RIE ¼ 1;RII ¼ �1:8;REI ¼ �2;m0 ¼ 0:5; hE ¼ 1; and

hI ¼ 0:8. (Color figure online)
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our analysis is largely not sensitive to the ratio of excitatory

to inhibitory neurons as well as perturbations in specific

parameter choices so long as they are in the subsequently

derived theoretical bounds.

Mean-field analysis

We now analytically examine the parameter regime for

which binary networks with spike-frequency adaptation

demonstrate balanced dynamics. A natural theoretical

requirement for a balanced operating state is that in the

large network limit the mean activity for both the excita-

tory and inhibitory populations remains positive and less

than 1, implying the mean activity is constant with asyn-

chronous dynamics. Hence, we require 0\mk\1 as N !
1 and as K ! 1 for fixed ratios NE=NI and K / N. This

requirement ultimately gives theoretical bounds on the

parameter space yielding balanced dynamics independent

of a specific network size in practice, requiring that a

particular finite network realization is composed of a suf-

ficiently large number of interconnected excitatory and

inhibitory neurons for these bounds to apply

approximately.

While in the absence of adaptation, this analysis is given

in van Vreeswijk and Sompolinsky (1998), in the case of

our adaptive binary model, we now must account for the

dynamic nature of each individual neuronal firing thresh-

old. Based on the requirement of stationarity, we assume

that when the network is in a balanced operating regime, in

the long-time limit the time-averaged mean activity of each

population is constant, given by mk1 for the kth population,

and similarly require that the long-time, time-averaged

mean threshold for the kth population, denoted hk1 , is

constant.

To approximate hk1 , we first observe using inductive

reasoning that we may compute the firing threshold for the

ith neuron in the kth population after n integer observation

times as

hikn ¼ hik0 þ
Xn

j¼1

/Fðlikn�j
Þe�kj: ð4Þ

This result facilitates the computation of the population-

averaged firing threshold for population k at time step n

½hikn � ¼ hkn ¼ hk0 þ
Xn

j¼1

/½Fðlikn�j
Þ�e�kj:

Recalling that FðlikðtÞÞ � rikðtÞ; we have that

½FðlikðtÞÞ� � ½rikðtÞ� ¼ mkðtÞ. Therefore, we can rewrite the

above as

hkn ¼ hk0 þ /
Xn

j¼1

mkn�j
e�kj:

As the number of time-steps approaches infinity,

lim
n!1

hkn ¼ hk1 ¼ hk0 þ lim
n!1

/
Xn

j¼1

mkn�j
e�kj: ð5Þ

Since for balanced dynamics we must have that

lim
n!1

mkn ¼ mk1 , Eq. (5) to leading order yields

hk1 ¼ hk0 þ /ðmk1e
�k þ :::Þ ¼ hk0 þ /

mk1e
�k

1� e�k
: ð6Þ

Thus, Eq. (6) provides an analytical approximation for the

long-time population-averaged firing threshold of utility in

deriving parameter bounds for balanced dynamics in the

next section.

In requiring that 0\mk\1, it is necessary for the time-

averaged mean total input into each neuronal population to

remain positive and finite, avoiding synchronous or com-

pletely quiescent network dynamics. For the kth popula-

tion, the population-averaged total input, or mean total

input, is

likðtÞ
� �

¼
X

l¼E;I

XNl

j¼1

R
ij
klr

j
lðtÞ þ l0k � hikðtÞ

" #

¼
X

l¼E;I

XNl

j¼1

R
ij
kl

� �
rjlðtÞ
� �

þ l0k � hikðtÞ
� �

:

Since each neuron is expected to receive K incoming

connections of each type and the individual connection

strength is Rkl=
ffiffiffiffi
K

p
,

½likðtÞ� ¼ lkðtÞ ¼
X

l¼E;I

Rkl

ffiffiffiffi
K

p
mlðtÞ þ Ekm0

ffiffiffiffi
K

p
� hkðtÞ:

ð7Þ

Taking the time-average of the above expression over a

long time horizon limit, such that mk1 � mk, yields

lE ¼ðEm0 þ mE � REmIÞ
ffiffiffiffi
K

p
� hE1 ; ð8aÞ

lI ¼ðIm0 þ mE � RImIÞ
ffiffiffiffi
K

p
� hI1 : ð8bÞ

Hence, the long-time, time-averaged mean total excitatory

and inhibitory inputs are at most Oð
ffiffiffiffi
K

p
Þ. The time-aver-

aged mean inputs thus increase with network size yet must

be dynamically adjusted in order for the network to exhibit

asynchronous and irregular dynamics. It is therefore nec-

essary for the total excitatory and total inhibitory inputs to

approximately cancel for this to be possible in the large

network limit, and so to yield Oð1Þ mean inputs in the large

network limit we require
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Em0 þ mE � REmI �
hE1ffiffiffiffi
K

p ¼ Oð1=
ffiffiffiffi
K

p
Þ; ð9aÞ

Im0 þ mE � RImI �
hI1ffiffiffiffi
K

p ¼ Oð1=
ffiffiffiffi
K

p
Þ: ð9bÞ

Theoretical bounds on balanced dynamics

In deriving theoretical bounds on the network parameters

which yield balanced dynamics, we consider two scenarios:

(i) hk1 = oð
ffiffiffiffi
K

p
Þ and (ii) hk1 ¼ Oð

ffiffiffiffi
K

p
Þ as K ! 1 in the

large network size limit. Case (i) corresponds to adaptation

sufficiently small such that it has no impact on the time-

averaged mean inputs in the large network size limit. Here

standard balanced network theory holds (van Vreeswijk

and Sompolinsky 1998), and the parameter bounds for

balanced dynamics in both the excitatory and inhibitory

populations are known to be

E

I
[

RE

RI

[ 1: ð10Þ

Thus, we focus case (ii), when hk1 = Oð
ffiffiffiffi
K

p
Þ, to determine

the impact of spike-frequency adaptation on the theoretical

parameter bounds. According to Eq. (6), the long-time,

population-averaged firing threshold hk1 may only have an

Oð
ffiffiffiffi
K

p
Þ impact in Eq. (9) originating from the term

mk1
/e�k

1�e�k =
ffiffiffiffi
K

p
, as the non-adapted threshold hk0 is assumed

Oð1Þ. Requiring that Eq. (9) be satisfied when the adap-

tation factor x ¼ /e�k

1�e�k =
ffiffiffiffi
K

p
is Oð1Þ as K ! 1 yields

Em0 þ ð1� xÞmE � REmI ¼Oð1=
ffiffiffiffi
K

p
Þ; ð11aÞ

Im0 þ mE � ðRI þ xÞmI ¼Oð1=
ffiffiffiffi
K

p
Þ: ð11bÞ

For K sufficiently large, this yields to leading order

1� x �RE

1 �RI � x

� �
mE

mI

� �
¼

�Em0

�Im0

� �
:

with solution

mE ¼ ðRI þ xÞE � REI

ðRI þ xÞðx� 1Þ þ RE

m0; ð12aÞ

mI ¼
E þ ðx� 1ÞI

ðRI þ xÞðx� 1Þ þ RE

m0: ð12bÞ

Requiring that both the excitatory and inhibitory popula-

tions are neither quiescent nor synchronous, in particular

0\mE\1 and 0\mI\1, we obtain parameter bounds

E

I
[

RE

RI þ x
[ 1� x[ 0: ð13Þ

These new parameter bounds are especially illuminating

when compared to the theoretical bounds obtained when

spike-frequency adaptation is negligible given in

Ineq. (10). First, note that adaptation factor x is a mono-

tonically increasing function of adaptation strength.

Depending on the adaptation factor, qualitatively distinct

dynamics manifest. We observe in Eq. (12) that the

numerators of mE and mI are linearly monotonically

increasing in x and the common denominator is quadrati-

cally monotonically decreasing in x for x[ ð1� RIÞ=2.
Thus, for x sufficiently large, the theoretical activities in

both populations will decrease with adaptation strength.

When adaptation strength is too large, the dynamics are

expected to become unbalanced. For extremely strong

adaptation, namely x[ 1, we see from Eq. (8), increasing

the theoretical mean excitatory population activity

decreases the mean input into the excitatory population,

thereby disrupting balance. Intuitively, as the adaptation

strength becomes sufficiently large, the long-time firing

threshold becomes of larger order than the expected inputs

into each population, making balance impossible to sustain.

In contrast, for smaller x, balanced dynamics can still

be well reconciled with spike-frequency adaptation. For

weak adaptation strength, 0\x\1� RI , Eq. (12)

demonstrates that adaptation instead increases the theo-

retical mean activity of each population. The effect of this

can be seen in the adapted bounds given by Ineq. (13). In

particular, for fixed RI , the inequality holds for RE larger in

magnitude than in the non-adapted bounds in Ineq. (10).

Intuitively, since E[ I, the increase in mE is more pro-

nounced than the increase in mI under weak adaptation, and

thus the excitatory population may undergo additional

recurrent inhibition and still maintain balanced dynamics.

For moderate adaptation strength, 1� RI\x\1,

Ineq. (13) analogously implies that adaptation decreases

the magnitude of the RE for which balance holds for fixed

RI , implying that balance is maintained when the excitatory

population is instead less recurrently inhibited. Here

adaptation begins to decrease the mean activity of the two

populations and, to compensate, more recurrent excitation

is necessary to achieve non-adapted levels of activity in the

balanced regime for the same choice of the remaining

parameters.

We further observe that since E
I
[ RE

RIþx in the adapted

bounds, increasing the adaptation strength maintains bal-

anced dynamics for potentially larger external inputs into

the inhibitory population relative to a fixed external input

into the excitatory population. Note that in the non-adapted

case, increasing the external input into the excitatory

population increases the theoretical mean activity of both

populations and increasing the external input into the

inhibitory population decreases the theoretical mean
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activity in both populations. In contrast, based on the mean

activities in Eq. (12) observed under adaptation, we see

that if x increases in the balanced regime, the decrease in

theoretical activity garnered by increasing I is offset by x,
and thus a larger I is required to attain non-adapted levels

of activity in the balanced regime for the same choice of

the remaining parameters.

To provide additional intuition for the impact of adap-

tation strength on the model network dynamics, we contrast

the network activity for two representative choices of

adaptation parameters. For relatively weak adaptation

strength, we observe, as depicted in Fig. 2a, typically any

increases in threshold from firing events are mitigated by

the decay in adaptation effect over time, yielding only a

slight overall increase in spiking threshold. In Fig. 2b, we

note that across both the excitatory and inhibitory popu-

lations, there is a small net gain in average threshold over a

short time scale, leveling off to yield a nearly constant

spiking threshold slightly increased relative to the non-

adapted threshold. In this case, balance is still quite well

maintained, with mean activities nearly constant about a

slightly decreased value and EI ratios faintly elevated in

magnitude, as shown in Fig. 2c, d. In contrast, when

adaptation is sufficiently strong (x[ 1), as considered

analogously in Fig. 3, the mean spiking threshold increases

significantly initially, ultimately saturating at a much larger

value than in the case of more moderate adaptation. The

level of mean activity decreases dramatically before satu-

rating about a significantly smaller level of activity with a

corresponding large increase in the magnitude of the EI

ratios, indicating a severe loss in balance under extreme

adaptation.

In light of these observations, we conclude that in the

presence of weak or moderate adaptation, although the

theoretical parameter bounds shift, balance is still achiev-

able in the proper parameter regime. However, for strong

adaptation, particularly x[ 1, balance may no longer be

achieved regardless of the choice of parameters. It is

important to underline the fact that the case of strong

adaptation is not biologically realistic (Benda and Herz

2003; La Camera et al. 2006; Augustin et al. 2013), and

thus these theoretical considerations provide evidence that

balanced dynamics may be reconciled with spike-fre-

quency adaptation in physiological neuronal networks. We

remark that our analysis does not make any specific

assumptions about the relative number of excitatory and

inhibitory neurons beyond 1 � K � NE;NI , such that the

neuronal populations are sufficiently large and sparsely

connected for the mean-field limit to be well justified.

Thus, balance may be consistent with spike-frequency

adaptation in alternative regions of the brain with diverse

ratios of excitatory to inhibitory neurons.
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Fig. 2 Dynamics of binary neurons under moderate spike-frequency

adaptation. a Firing threshold of a sample neuron over time. b Mean

firing threshold across the excitatory (blue) and inhibitory (red)

populations. c The mean activity across each neuron population.

d Histogram of the ratio between time-averaged excitatory and

inhibitory inputs across the neuronal network. Adaptation parameters

are k ¼ 0:2 and / ¼ 0:3, yielding adaptation factor x\1. (Color

figure online)
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Adaptation exclusively in excitatory
population

Reflecting the physiological observation that excitatory

neurons are typically more likely to undergo spike-fre-

quency adaptation than inhibitory neurons (La Camera

et al. 2006; Augustin et al. 2013), we instead assume that

only the excitatory population is subject to adaptation.

Significantly, the results in this case are fundamentally

distinct from those obtained when both populations exhibit

adaptation and provide valuable insights into a potentially

new role of adaptation in cognition. Repeating the analysis

in the previous section under the assumption hI1 ¼ hI
yields

mE ¼ RIE � REI

RIðx� 1Þ þ RE

m0; ð14aÞ

mI ¼
E þ ðx� 1ÞI

RIðx� 1Þ þ RE

m0 ð14bÞ

with corresponding parameter bounds

E

I
[

RE

RI

[ 1� x: ð15Þ

We observe that when only the excitatory population is

subject to adaptation, the parameter bounds necessary for

balanced dynamics in fact widen with adaptation strength.

As x ! 1, Eq. (14) admits a solution such that mE ! 0

and mI ! I
RI
m0, for which the inhibitory population never

ceases firing, allowing the inhibitory population to exhibit

asynchronous firing activity in response to the excitatory

external input while the excitatory population is approxi-

mately quiescent. If we consider such a solution balanced,

then x[ 1 is an admissible parameter choice. In contrast,

note that as x ! 1 when both populations undergo

adaptation, the firing rate for each population vanishes.

Similar analysis demonstrates that in the case when only

the inhibitory population undergoes spike-frequency

attenuation, the parameter bounds for balance become

more restrictive. For these reasons, we hypothesize that

evolution may have selected for this network architecture,

specifically adaptation primarily exhibited by excitatory

neurons, with the goal of more robustly preserving bal-

anced dynamics. We emphasize this holds broadly for

alternative network parameters, reflecting diverse brain

region structures, and thus may be a fundamental archi-

tectural principle aimed at robustly achieving balanced

dynamics.
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Fig. 3 Dynamics of binary neurons under strong spike-frequency

adaptation. a Firing threshold of a sample neuron over time. b Mean

firing threshold across the excitatory (blue) and inhibitory (red)

populations. c The mean activity across each neuron population.

d Histogram of the ratio between time-averaged excitatory and

inhibitory inputs across the neuronal network. Adaptation parameters

are k ¼ 0:005 and / ¼ 0:3, yielding adaptation factor x[ 1. (Color

figure online)

Cognitive Neurodynamics

123

Author's personal copy



Numerical investigation of spike-frequency
adaptation

The theoretical analysis discussed in the previous section

held approximately in the large network limit. To discern

the impact of spike-frequency adaptation for finite-sized

neuronal networks and gain a more detailed perspective on

the bounds on adaptation strength necessary for balanced

dynamics, we exhaustively investigate the adaptation

parameter space and its impact on several metrics of bal-

ance over an ensemble of network realizations. Performing

analysis on a network of N ¼ 5000 neurons, where all

neurons undergo adaptation, we are able to provide a more

detailed explanation of both when and how balance breaks

down for sufficiently strong adaptation.

In Fig. 4, we vary adaptation jump strength / and

adaptation decay rate k while holding the remainder of the

model network parameters constant. First, we analyze the

time-averaged mean ratio of the total excitatory and total

inhibitory input into each neuron across the network in

Fig. 4a. We observe that for weak adaptation (small / and

large k), the mean EI ratio is close to �1, indicative of

balance, with the EI ratio becoming more negative as the

adaptation strength increases and the dynamics become

more unbalanced. At the same time, as the adaptation

strength increases, the time-averaged mean activities across

the excitatory and inhibitory populations both decrease, as

exhibited in Fig. 4b, c, respectively.

While it is clear balance breaks down for sufficiently

strong adaptation, as the EI ratio decreases and mean

activity across the network decreases, the precise mecha-

nism for this transition in dynamics is important to discern.

In Fig. 4d, e, we investigate the time-averaged mean total

excitatory and inhibitory inputs, respectively, across the

neuronal network. We note that while both types of input

decrease in magnitude with adaptation strength, the

decrease in the magnitude of the inhibitory input is sig-

nificantly more dramatic. The mean firing threshold across

the two populations increases comparably with adaptation,

as shown in Fig. 4f, g, and thus the balance in EI ratio

appears broken largely due to the disproportionate decrease

in the magnitude of inhibitory inputs with high adaptation

strength. Note that corresponding to this relatively large

drop in the magnitude of the inhibitory input is a significant

decrease in the mean activity of the inhibitory population,

as shown in Fig. 4c, further evidencing that the inhibitory

population is more strongly impacted by increased adap-

tation and thereby facilitates the breakdown in balanced

dynamics.

These numerical results are consistent with the theo-

retical analysis in the previous sections. In particular, in

Fig. 4h, we plot the adaptation factor x ¼ /e�k

1�e�k =
ffiffiffiffi
K

p
over

the adaptation parameterscape. We observe that for x\1,

when the long-time adapted threshold is expected to be of

smaller size than the population inputs, the balanced

operating regime is robust. Comparing the numerically

computed value of the long-time population-averaged fir-

ing threshold to the theoretical approximation given by

Eq. (6) for adaptation parameters in the balanced regime

yields a relative error of only 0.07. Moreover, since the

parameterscape plots in Fig. 4a–g closely mimic the

changes in x with k and /, the adaptation factor x is

indeed closely aligned with the degree of balance demon-

strated by the network. Note that for the particular

parameters numerically investigated, Ineq. (13) holds for

x\1, which is consistent with the choices of adaptation

parameters empirically yielding balanced dynamics shown

in Fig. 4a–g. It is important to remark that the rate at which

the dynamics become unbalanced is quite slow for mod-

erate attenuation strengths, with balance only rapidly

diminishing for more extreme adaptation. Hence, even for

networks of finite size, we see balanced dynamics are

robust over a broad range of adaptation strengths.

Using the same choice of network parameters as dis-

cussed previously, we depict in Fig. 5 analogous metrics of

balance for the more physiological case in which only the

excitatory population is subject to spike-frequency adap-

tation. Here we see that the parameter regime in which

balanced dynamics are preserved becomes significantly

widened. Strikingly, there is only a marginal decrease in

the mean EI ratio even for extreme choices of adaptation

strength. In this case, the decrease in the time-averaged

mean total excitatory and inhibitory inputs as well as mean

activity are closely matched in magnitude, robustly pre-

serving balance over the investigated parameterscape. Our

numerical analysis thus agrees with the notion that by

spike-frequency adaptation manifesting primarily in exci-

tatory neurons, balanced dynamics are more broadly

achieved over a larger space of network architectures and

operating regimes than in the non-adapted case.

Generalization to integrate-and-fire model

To demonstrate that our results are generalizable to more

physiological neuronal models with spike-frequency

adaptation, we similarly investigate a pulse-coupled inte-

grate-and-fire (I&F) network model (Corral et al. 1995;

Mather et al. 2009; Barranca et al. 2014a). While relatively

computationally inexpensive, the I&F model reproduces

realistic neuronal firing rates and provides a fairly accurate

description of physiological subthreshold voltage dynamics

(Carandini et al. 1996; Rauch et al. 2003; Burkitt 2006).

We analyze two distinct variations of modeling spike-

frequency adaptation in this framework. The first will
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model adaptation analogously to the binary case by

increasing the neuronal firing threshold for each neuron

after it undergoes a firing event. The second will instead

keep the firing threshold constant while explicitly including

an adaptation current that decreases firing rate following

action potentials.

The membrane-potential dynamics of the ith neuron in

kth population of the pulse-coupled I&F network, vik, is

modeled by the differential equation
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Fig. 4 Impact of adaptation

strength on balanced dynamics

when both the excitatory and

inhibitory populations exhibit

adaptation in a binary neuronal

network. a–f Numerically

investigate the effect of

adaptation jump strength / and

adaptation decay rate k on the: a
mean ratio between time-

averaged excitatory and

inhibitory inputs across the

neuronal network; b time-

averaged mean activity of the

excitatory neuron population; c
time-averaged mean activity of

the inhibitory neuron

population; d time-averaged

mean total excitatory input into

the entire network; e time-

averaged mean total inhibitory

input into the entire network; f
time-averaged mean firing

threshold across the excitatory

population; g time-averaged

mean firing threshold across the

inhibitory population; h

adaptation factor x ¼
/e�k

1�e�k =
ffiffiffiffi
K

p
thresholded at x ¼ 1
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s
dvik
dt

¼� ðvik � hikÞ þ u0k þ
XNE

j¼1

j6¼i

R
ij
kE

X

l

dðt � sEjlÞ

þ
XNI

j¼1

j 6¼i

R
ij
kI

X

l

dðt � sIjlÞ; ð16Þ

evolving continuously on a time-scale reflected by s, until

reaching firing threshold hik. At that moment the neuron is

said to fire and its state is instantaneously reset to the value

vR. Using the same notation and connectivity structure as in

the binary model, a neuron in the kth population receives

external input u0k and the realization of adjacency matrix, R,

determines the recurrent connectivity in the network.

Neuronal interactions are reflected at the moment of action

potentials such that at the time of the lth firing event of the

jth neuron in the kth population, skjl, the activity of all post-

connected neurons is offset as a result of integrating over

the Dirac delta function dð�Þ in Eq. (16).

For an identical choice of network architecture param-

eters as considered for the binary model in Fig. 1, we

briefly underline several aspects of the dynamics of the

I&F network in the balanced regime. As shown in Fig. 6a,

the ratio of the time-averaged excitatory and inhibitory

inputs across the network is clustered near �1, indicative

of balance. The mean activity for each population across

time is nearly constant, depicted in Fig. 6b, demonstrating

neither synchronous nor quiescent dynamics overall. This

asynchronous activity is also reflected in the raster plot

shown in Fig. 6c, which exhibits a sequence of points

corresponding to the index of each spiking neuron as a

function of the time of each action potential.
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Fig. 5 Impact of adaptation

strength on balanced dynamics

when only the excitatory

population exhibits adaptation

in a binary neuronal network. a–
f Numerically investigate the

effect of adaptation jump

strength / and adaptation decay

rate k on the: a mean ratio

between the time-averaged

excitatory and inhibitory inputs

across the neuronal network;

b time-averaged mean activity

of the excitatory neuron

population; c time-averaged

mean activity of the inhibitory

neuron population; d time-

averaged mean total excitatory

input into the entire network;

e time-averaged mean total

inhibitory input into the entire

network; f time-averaged mean

firing threshold across the

excitatory population
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Using first an I&F model with threshold-based adapta-

tion, we reflect spike-frequency adaptation by increasing

the firing threshold of the ith neuron in the kth population,

hikðtÞ, by / the moment the neuron fires. Between firing

events, hikðtÞ, evolves according to

dhik
dt

¼ �kðhik � hkÞ; ð17Þ

such that the firing threshold decays to the constant non-

adapted firing threshold for all neurons in the kth popula-

tion, hk, in the absence of firing events. Hence, analogous

to the binary model with adaptation, / determines the

instantaneous increase in threshold following a firing event

and k determines the decay rate of the threshold offset.

Reflecting the essential characteristics of more biologi-

cally realistic adaptation currents, we also analyze an I&F

model with current-based adaptation, which specifically

incorporates an adaptation current wi
kðtÞ associated with the

ith neuron in the kth population while instead keeping the

firing threshold constant at hk. The dynamical system

model is adjusted in this case to

s
dvik
dt

¼� ðvik � hkÞ þ u0k þ
XNE

j¼1

j6¼i

R
ij
kE

X

l

dðt � sEjlÞ

þ
XNI

j¼1

j 6¼i

R
ij
kI

X

l

dðt � sIjlÞ � wi
k

dwi
k

dt
¼ �kwi

k; ð18Þ

where wi
k is instantaneously increased by / at each time its

corresponding neuron fires and k controls the decay rate for

the adaptation current.

In generalizing our analysis to the framework of the I&F

model, it is important to note that in the absence of adap-

tation, neurons in the balanced operating regime asyn-

chronously fire at a low rate and their spike trains are

approximately independent. Thus, the summed spike train

input of each type into each neuron tends asymptotically

towards a Poisson spike process (Cinlar 1972). In effect,

the mean network drive from the kth population to a neuron

in the jth population is approximately mkRjk

ffiffiffiffi
K

p
. For this

reason, the balance condition for the pulse-coupled I&F

network model is identical to Ineq. (10) derived for the

binary network model. In addition, the cumulative impact

of firing events on the firing threshold hikðtÞ for a given

neuron in the threshold-based I&F model is given by

/
P

sk
il
e�kðt�sk

il
Þ, which is the continuous analog for the

increase in threshold corresponding to firing events in the

adapted binary model. The analysis in the ‘‘Mean-field

analysis’’ section therefore carries over approximately to

the I&F network with threshold-based adaptation and

yields a perturbed adaptation factor that agrees with x to

leading order. Ineq. (13) thus retains an identical structure

and dependence on the resultant adaptation factor, thereby

demonstrating a similar theoretical relationship between

adaptation strength and balanced activity. Following in

suite, we expect that the bounds for balanced dynamics

determined for the I&F model with current-based adapta-

tion at least qualitatively demonstrates the same structure

as the adapted binary model and confirm this numerically.

We underline the numerical evidence that our previous

binary model analysis naturally generalizes to the I&F

model in Fig. 7, thereby providing a more robust connec-

tion between balanced dynamics and adaptation. In Fig. 7a,

b, we plot the time-averaged mean EI ratio and time-av-

eraged mean threshold, respectively, across the I&F
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Fig. 6 Dynamics of integrate-and-fire neurons in the balanced

operating regime. a Histogram of the ratio between time-averaged

excitatory and inhibitory inputs across the neuronal network. b The

mean activity across the excitatory (blue) and inhibitory (red)

populations. c Raster plot displaying asynchronous firing activity

across the network, displayed for a subset of simulation time for

greater resolution. The network architecture is identical to the binary

network considered in Fig. 1. (Color figure online)
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network with threshold-based adaptation over the k� /
parameter space. We see a nearly identical structure as

observed in the binary network, with the EI ratio

decreasing for sufficiently high adaptation strength and

high corresponding mean spiking threshold. Likewise, in

Fig. 7c, d, we depict analogous plots for the I&F network

with current-based adaptation, which demonstrate the same

trend. If instead only the excitatory population undergoes

spike-frequency attenuation, we observe in Fig. 7e, f that

both versions of the adapted I&F network demonstrate

little deviation from balance in the EI ratio even under high

adaptation strengths, agreeing with the notion that adap-

tation facilitates balanced dynamics in this case.

Discussion

Our work demonstrates in the context of several neuronal

network models that balanced dynamics are well preserved

for physiological spike-frequency adaptation strengths. We

verify this theoretically in the large network limit and

provide detailed numerical evidence in the finite network

case. While for sufficiently strong adaptation, balance does

diminish, such strengths are inconsistent with what is

observed in vivo. In the case when only excitatory neurons

undergo adaptation, as found in many areas of the brain, we

show that balance is yet more robustly preserved over a

wide parameter space. This provides new evidence for the

hypothesis that neuronal networks may have evolved such
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Fig. 7 Impact of adaptation

strength on balanced dynamics

in integrate-and-fire networks.

Each panel numerically

investigates the effect of

adaptation jump strength / and

adaptation decay rate k. a Mean

ratio between time-averaged

excitatory and inhibitory inputs

across a neuronal network in

which all neurons undergo

threshold-based adaptation.

b Time-averaged mean firing

threshold across a neuronal

network in which all neurons

undergo threshold-based

adaptation. c Mean ratio

between time-averaged

excitatory and inhibitory inputs

across a neuronal network in

which all neurons undergo

current-based adaptation.

d Time-averaged adaptation

current w across a neuronal

network in which all neurons

undergo current-based

adaptation. e Mean ratio

between time-averaged

excitatory and inhibitory inputs

across a neuronal network in

which only excitatory neurons

undergo threshold-based

adaptation. f Mean ratio

between time-averaged

excitatory and inhibitory inputs

across a neuronal network in

which only excitatory neurons

undergo current-based

adaptation

Cognitive Neurodynamics

123

Author's personal copy



that excitatory neurons exhibit spike attenuation in order to

maintain balanced dynamics over a broad range of oper-

ating states, potentially improving input encoding and

memory.

There are numerous lines of experimental evidence

suggesting that an imbalance in inhibitory and excitatory

neuronal inputs may underlie autism spectrum disorders as

well as schizophrenia (Gao and Penzes 2015; Tatti et al.

2017; Nelson and Valakh 2015; Rosenberg et al. 2015),

and thus degeneracies in neuronal dynamics, such as par-

ticularly strong or weak adaptation, could potentially aid in

explaining disorders in brain function. It may therefore be

informative to further examine experimentally the link

between adaptation and balanced dynamics.

While we investigated the relationship between spike-

frequency adaptation and the balanced operating regime in

the context of the binary and integrate-and-fire neuronal

models, we expect that our framework for investigation

largely generalizes to more physiological network models

with slow adaptation currents incorporated, such as the

Hodgkin-Huxley model and the quadratic as well as

exponential integrate-and-fire neuronal models (Richard-

son 2009; Fourcaud-Trocme et al. 2003; Barranca et al.

2014a). As the theory of balanced networks for continuous

models has largely been developed for pulse-coupled

neuronal networks (Boerlin et al. 2013; Litwin-Kumar and

Doiron 2012; Mongillo et al. 2012; Renart et al. 2010;

Deneve and Machens 2016), we expect that studying

alternative neuronal models with pulse-coupling would

facilitate the most natural setting to extend the results of

this study. Though we investigated the impact of several

idealized models of spike-frequency attenuation in this

work, in light of the multitude of alternative models and

mechanisms for spike-frequency adaptation (Barranca

et al. 2014a; Treves 1993; Liu and Wang 2001; Smith et al.

2002; Mensi et al. 2012; Touboul and Brette 2008), anal-

ogously studying adaptation in more physiological forms

would make for an interesting area of future examination.

Our theoretical analysis was more tractable under the

assumption that the network connectivity was homoge-

neous and random; however, an important direction for

future study is the impact of adaptation on the balanced

operating regime in networks with more biologically real-

istic structure, such as a small-world or scale-free archi-

tecture, commonly observed in the brain (Dorogovtsev and

Mendes 2002; van den Heuvel et al. 2008; Sporns and

Honey 2006; Netoff et al. 2004; Roxin et al. 2004).

Funding Funding was provided by National Science Foundation

(Grant No. DMS-1812478) and Swarthmore College (Faculty

Research Support Grant).
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