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Abstract
Making a decision among numerous alternatives is a pervasive and central undertaking encountered by mammals in natural
settings. While decision making for two-option tasks has been studied extensively both experimentally and theoretically,
characterizing decision making in the face of a large set of alternatives remains challenging. We explore this issue by
formulating a scalable mechanistic network model for decision making and analyzing the dynamics evoked given various
potential network structures. In the case of a fully-connected network, we provide an analytical characterization of the model
fixed points and their stability with respect to winner-take-all behavior for fair tasks. We compare several means of input
integration, demonstrating a more gradual sigmoidal transfer function is likely evolutionarily advantageous relative to binary
gain commonly utilized in engineered systems. We show via asymptotic analysis and numerical simulation that sigmoidal
transfer functions with smaller steepness yield faster response times but depreciation in accuracy. However, in the presence
of noise or degradation of connections, a sigmoidal transfer function garners significantly more robust and accurate decision-
making dynamics. For fair tasks and sigmoidal gain, our model network also exhibits a stable parameter regime that produces
high accuracy and persists across tasks with diverse numbers of alternatives and difficulties, satisfying physiological
energetic constraints. In the case of more sparse and structured network topologies, including random, regular, and small-
world connectivity, we show the high-accuracy parameter regime persists for biologically realistic connection densities. Our
work shows how neural system architecture is potentially optimal in making economic, reliable, and advantageous decisions
across tasks.

Keywords Network structure · Firing rate models · Nonlinear dynamics · Decision-Making · Input integration

1 Introduction

Decision-making is central to the survival of a broad
spectrum of species and, as a result, the ability to make
an optimal selection among several alternatives is a skill
that is likely fine-tuned through evolution. Everyday choices
are typically made quickly and robustly upon integrating
a small amount of information even in the presence of
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distractions and many possible alternatives. Despite its
ubiquity, the underlying mechanism of choice in even the
simplest settings remains to be fully characterized. Thus,
decision making is now a central and interdisciplinary
area of psychological, neurophysiological, and theoretical
investigation.

Neurobiological experiments over the last several
decades have demonstrated that several key areas of the
brain, such as the prefrontal cortex, thalamus, basal ganglia,
and parietal cortex, play an important role in decision-
making tasks (Munakata et al. 2011; Platt and Glimcher
1999; Ding and Gold 2013). Activity in the awake mon-
key lateral intraparietal cortex area (LIP), for example, is
highly correlated with simple visual motion discrimination
tasks and displays particularly heightened activity around
the time of a decision (Shadlen and Newsome 2001; Gold
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and Shadlen 2002). Similarly, the pre-motor cortex as well
as dorsolateral prefrontal cortex contain pools of neurons
that display gradually increased activity as perceptual infor-
mation from upstream cortical layers is integrated, and the
signature of this activity is highly correlated with specific
choices (Schall 2001; Heekeren et al. 2008; de Lafuente and
Romo 2006).

These physiological considerations suggest that when
specific groups of neurons, commonly known as integrator
neurons, display sufficiently high activity, a decision is
made. This decision-making mechanism is the basis for
several classes of mathematical models in which a particular
choice is selected when one of several competing neuronal
clusters exhibits a sufficiently high firing rate in response
to upstream input. For instance, in the classical drift-
diffusion model, one of two alternatives is to be selected
as a noisy process integrates information akin to a random
walk with drift, and when one of two decision boundaries is
reached, a specific decision is made. A particular decision
boundary can be interpreted to correspond to one group of
neurons reaching a specific level of activity necessary to
initiate a choice, and the model well reflects experimental
data for a wide array of psychological tasks (Ratcliff
1978; Ratcliff et al. 2016). The modeling methodology,
however, is not straightforward to generalize to tasks with a
larger number of alternatives, as independent racing single-
boundary diffusion processes lack the response competition
inherent in the classical two-alternative forced choice
framework. The leaky competing accumulator (LCA) model
instead facilitates the competition of an arbitrary number of
neuronal assemblies by directly including lateral inhibition
between all clusters (Usher and McClelland 2001).

While the LCA model is capable of reflecting more
alternatives through the inclusion of additional nodes
and corresponding differential equations, the input into a
particular node may become arbitrarily high, especially as
the number of alternatives becomes large. Additionally,
the standard LCA model assumes that neuronal clusters
integrate information linearly over time. While there is
experimental evidence suggesting a linear input-output
mapping in certain operating regimes (Ahmed et al. 1998;
Mason and Larkman 1990), a sigmoidal transfer function
is more physiological, broadly valid, and potentially yields
more gradual integration of evidence (Dayan and Abbott
2001; Hodgkin and Huxley 1952; Polsky et al. 2004;
Marreiros et al. 2008; Rauch et al. 2003; Miller and Katz
2013).

In this work, we formulate a scalable mechanistic network
model framework for decision making and analyze the
model performance in the context of several network

structures as well as alternative means of input integration,
demonstrating agreement with physiological constraints and
prevalent experimental observations. We utilize an attractor-
based system in which each attractor corresponds to a
specific choice. An attractor such that the output of a
particular node, which in this case reflects the firing activity
of a pool of neurons, is significantly more active than the
remaining nodes displays winner-take-all (WTA) behavior.
Systems demonstrating WTA dynamics are able to display
important computational characteristics beyond decision
making, such as selective amplification, state-dependent
processing, sequence learning, classification, and signal
restoration (Rutishauser et al. 2011; McKinstry et al. 2016;
Luo et al. 2017; Krizhevsky et al. 2017), with important
applications in machine learning and artificial intelligence
(You and Wang 2017). Though typical attractor models
require fine-tuning of parameters such that stable WTA
dynamics are garnered (Binas et al. 2014), our model
demonstrates accurate WTA dynamics for a stable set of
parameters largely invariant with respect to the number of
alternatives and task difficulty.

The dynamical properties associated with attractor-
based decision-making models with idealized structure have
been the subject of intense mathematical investigation,
yielding an extensive characterization of the uniqueness and
stability of attractors capable of gleaning accurate decision-
making dynamics. Nevertheless, the majority of previous
theoretical studies were limited to classical models with
fully-connected network structure or non-physiological
integration of inputs (Ermentrout 1992; Rutishauser et al.
2011; Maass 2000; Fukai and Tanaka 1997; Mao and
Massaquoi 2007). There is a great deal of evidence
suggesting the connectivity between neuronal clusters is
relatively sparse and not entirely random (Perin et al. 2011;
Markram et al. 1997; Mason et al. 1991; He et al. 2007),
and thus we also address the dynamics of our attractor
model in the context of several network structures beyond
fully dense connectivity. While recent analysis of detailed
physiological models has given important insights into the
neural circuitry of inhibitory control, receptor function,
and decision stopping (Wang 2002; Wei and Wang 2016),
we instead focus on fundamental mechanisms impacting
decision-making dynamics, such as input gain and network
structure, in the context of a minimal yet physiologically
motivated network model.

We first introduce our competing firing rate net-
work model and its biological motivation in Section 2.
We develop a theoretical framework for measuring key
decision-making properties, including accuracy, response
time, and task difficulty, and discuss how these measures
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relate to task alternatives and integration of inputs. In
Section 3.1, we proceed by analyzing the decision-making
dynamics of our model in the case of a fully-connected
network, particularly for several gain functions with vary-
ing steepness. Given analytical methods are more amenable
in this context, we analyze the existence, uniqueness, and
stability of winner-take-all fixed points given sigmoidal
and then binary gain functions in Sections 3.1.1 and 3.1.2,
respectively.

Investigating the impact of input integration on network
dynamics, we show in Section 3.2 that for fair decision-
making tasks, our model with sigmoidal gain yields
an optimal parameter regime which is largely invariant
with respect to the number of alternatives and difficulty
of tasks. Crucially, optimal accuracy is achieved for
lateral inhibition strengths that satisfy intuitive energetic
constraints on decision making. Later, we demonstrate
in Section 3.3, via asymptotic analysis and numerical
simulation, that as sigmoidal gain becomes steep, akin to
a binary transfer function, more accurate decision making
is achieved at the cost of increased response time. On
the other hand, in Section 3.4, we show that sigmoidal
input integration maintains significantly higher levels of
accuracy in the presence of noise as well as connection
removal. These results suggest that more gradual input
integration was selected by evolution to facilitate swift
and successful decision making over a broad spectrum of
conditions. In Section 3.5, we analyze the model dynamics
for random, regular, and small-world network structures,
demonstrating the same optimal lateral inhibition strengths
persist across network topologies over a broad range of
connection densities. We further observe that the decision-
making accuracy is closely tied to the network clustering
properties, with maximal choice fidelity well corresponding
to biologically realistic network structure. Finally, we
discuss the implications and potential extensions of this
work in Section 4.

2Model andmethods

To study the decision-making properties of neuronal
clusters, we construct a competing firing rate network model
with nonlinear dynamics. Firing rate models are canonically
utilized to reflect the collective dynamics of a large number
of neurons, and have emerged in the study of diverse
phenomena, including content addressable memories, sleep-
wake cycle dynamics, and perceptual bistability (Wilson
and Cowan 1972; Hopfield 1982; Patel and Rangan 2017;
Shpiro et al. 2007). Here we focus on the firing rate

dynamics for neuronal clusters evoked in response to a task
requiring a forced decision to be selected among multiple
alternatives.

In our competing firing rate network model, the state
of the ith node, xi(t), reflects the firing rate of the ith
neuronal assembly at time t in response to incoming input
from upstream layers and is governed by

dxi

dt
= −xi + f

⎛
⎜⎝−

N∑
j=1
j �=i

w

p(i)
Aij xj + Si

⎞
⎟⎠ , (1)

where there are N competing neuronal clusters, w is the
lateral inhibition strength, Si is the incoming evidence for
the ith cluster, p(i) is the incoming degree of the ith cluster,
and f (·) is the gain function determining the integration
of input. The recurrent connectivity among the nodes is
prescribed by theN×N adjacency matrixA = (Aij ), which
indicates the presence or absence of inhibition from the
j th cluster to the ith cluster. We consider decision-making
dynamics for fair tasks corresponding to initial conditions
xi = I for i = 1, . . . , N , such that all clusters begin with
an identical firing rate I > 0. For concreteness, we assume
the initial firing rate I and the incoming upstream inputs Si

are bounded in the unit interval [0, 1].
It is important to note that by normalizing the connection

strength for the ith node by its incoming degree p(i),
the expected recurrent input into a neuronal cluster is
approximately invariant with respect to network size and
node degree. Without such a normalization, as typical
in alternative decision-making models, the recurrent input
would potentially grow with the number of neuronal
clusters, and thus the decision-making dynamical regime
would be intricately impacted by the number of alternatives
in a task. We will initially assume the network is fully-
connected in Section 3.1 for analytical tractability and
examine alternative sparser network structures later in
Section 3.5.

While we will consider several choices of nonlinear gain
functions, we assume in general that f is nondecreasing
and bounded in [0, 1] to reflect general physiological
observations. These properties well agree with the lower and
upper firing rate bounds for neuronal assemblies. Intuitively,
an upper bound must exist due to neuronal refractory
periods following firing events and a lower bound must
exist since full quiescence corresponds to minimal activity.
We analyze the effect of two particular classes of gain
functions, namely sigmoidal and binary gain, on decision-
making dynamics (Dayan and Abbott 2001; Hodgkin and
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Huxley 1952; Polsky et al. 2004; Marreiros et al. 2008;
Rauch et al. 2003). The sigmoidal gain function has form

f (x) = 1

1 + e−k(x−b)
, (2)

where k prescribes the steepness and b determines the center
of f (x). Note that f (0) is positive and generally small,
indicating that some neurons in the clusters will still fire
at relatively low rates in the absence of external inputs, as
observed in awake mammals (Yamada et al. 1989; Wilson
and Cowan 1972; Rauch et al. 2003).

In the limit of infinitely large steepness, k → ∞, the
sigmoid approaches a binary gain function

f (x) =
{
1, x ≥ b

0, x < b,
(3)

with center b. Unless specified otherwise, in our model
simulations we choose b = 0.5, which is the expected firing
rate for a node assuming each xi is uniformly distributed on
domain [0, 1], and k = 4 for relatively gradual integration
ofO(1) inputs. For graphical comparison, the sigmoidal and
binary gain functions are depicted in Fig. 1a.

In further contrasting our modeling framework from
prior decision-making models, it is also necessary to empha-
size that all inputs are integrated by a single gain function
as typical in more physiological rate models. Alternative
decision-making models instead typically assume that sep-
arate gain functions integrate each recurrent input. Refor-
mulating our model framework into the context of separated
gain yields

dxi

dt
= −xi +

⎡
⎢⎣−

N∑
j=1
j �=i

w

p(i)
Aijf (xj ) + Si

⎤
⎥⎦

+

, (4)

where [·]+ is the positive part function, which guarantees
nonnegative firing rates (Fukai and Tanaka 1997; Mao and
Massaquoi 2007; Usher and McClelland 2001). However,
the model given by Eq. (4) has several undesirable decision-
making properties relative to the single gain function
framework that we utilize in this work. For example, in the
single gain function network model prescribed by Eq. (1),
xi remains bounded in [0, 1] for initial conditions in this
unit interval, whereas the separated gain function model in
Eq. (4) is generally unbounded. The boundedness of Eq. (1)
is guaranteed since x′

i ≥ 0 when xi = 0 and x′
i ≤ 0 when

xi = 1, for i = 1, . . . , N , yielding a compact region over
which decision-making accuracy may be analyzed.

Comparing the two modeling frameworks further, it is
significant to observe that in the large inhibition limit, the
separated gain function model with sigmoidal integration
approaches a fixed point such that all neuronal clusters are
quiescent. This yields no means for the network to parse
decision alternatives. Since f is non-decreasing, f (0) > 0,
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Fig. 1 Gain functions and Hick’s law. a Sigmoidal (solid) and binary
(dashed) gain function response f (x) to a common set of inputs x. b
Normalized response time as a function of the number of alternatives,
N , and the lateral inhibition strength, w, for a fully-coupled network
with sigmoidal gain and easy task difficulty. For relatively smallN , we
observe an approximately logarithmic growth in normalized response
time with the number of alternatives, as suggested by Hick’s law

and 0 ≤ Si ≤ 1, the recurrent input into the ith node,∑
j �=i

w
p(i)

Aij f (xj ), is O(w), and is greater in magnitude
than the upstream layer input Si for sufficiently large w.
Thus, large lateral inhibition evokes exponential decay to
quiescence across all nodes and thereby no decision-making
capability. In the single gain function setting, however,
the cluster with the largest external input would still
generally fire at the highest rate, showing a graded response
important for winner-take-all dynamics. Considering that
in both the resting-state and under external stimulation,
cerebral circuits demonstrate a rich repertoire of active
dynamical states, determined in part by the underlying
network structure as well as the stream of ongoing cognitive
inputs (Barttfeld et al. 2015; Deco et al. 2011), it is most
informative to analyze model dynamics in which at least a
single cluster of neurons is active.

With our modeling framework formulated, we now
develop a natural means for defining the accuracy, response

Author's personal copy



J Comput Neurosci

time, and difficulty corresponding to a particular task. When
the network reaches a fixed point, the neuronal clusters
may be divided into two sets, namely the set of nodes, W ,
that achieve the maximal firing rate, xw, and the set of
all remaining nodes, L. If only a single neuronal assembly
achieves a maximal firing rate at steady-state, the system
demonstrates winner-take-all dynamics. In this case, the
difference between the maximal firing rate and the second
largest firing rate, xw − maxl∈L xl , defines the decision
accuracy. A task with high accuracy thus demonstrates
large separation between the highest neuronal cluster firing
rate and the remaining cluster firing rates, yielding a clear
optimal choice.

Physiologically, the response time corresponds to the
time transpired from the onset of a choice-related stimulus
to the moment an action corresponding to a specific decision
is initiated. In the context of our model, the response
time is naturally interpreted as the time elapsed from the
initial condition until stationary dynamics are achieved.
Such decision making is analogous to free response tasks,
where individuals make a decision over a time horizon of
their own design. We compute the time elapsed until the
system reaches a fixed point numerically by requiring that
the magnitude of total change in the output of all clusters
is sufficiently small over a given time horizon. Note that
we observe numerically and show analytically over a broad
parameter regime that the model is indeed guaranteed to
reach a unique fixed point, and thus our methodology for
determining accuracy and response time is robustly well
defined. While Eq. (1) is a deterministic dynamical system,
we also investigate how our analysis extends to a noisy
system in Section 3.4. In the stochastic model, we utilize
an analogous notion of accuracy based on the output of
the clusters after sufficient time passes, corresponding to an
interrogation task that requires a response after an alloted
time period, since such a stochastic system never reaches a
fully stationary state.

In the context of an experiment, the difficulty of a task
is generally gauged by the closeness in the profitability
of the various alternatives. In our model, task difficulty is
determined by the distribution of incoming evidence, Si , for
i = 1, . . . , N , and particularly the difference between the
largest two inputs from the upstream layer. We thus define
the decision difficulty as 1− (maxi Si −maxj �=i Sj ), which
is bounded in the unit interval [0, 1] and yields a value
of unity for maximally challenging tasks such that at least
two alternatives have identical profitability. A simple task
is considered to be one for which there is only a single
node with maximal evidence greater than the gain function
center b, and for such tasks we typically observe the
greatest decision-making fidelity across network structures.
In our analysis, we generally consider three difficulties for
concreteness, where one particular node receives maximal

evidence Si = Sw and all other nodes receive evidence
Sj = Sl for j �= i. In each case, maximal evidence Sw =
1, with (i) easy corresponding to Sl = 0.2, (ii) medium
corresponding to Sl = 0.5, and (iii) hard corresponding to
Sl = 0.8. The easy task is simple, whereas the medium
and hard tasks are non-simple and demonstrate increasingly
higher difficulty.

For relatively easy forced-decision tasks, it is generally
found in experiments that as the number of alternatives
increases, the response time for a fixed level of accuracy
increases approximately logarithmically, thereby following
Hick’s law (Hick 1952). In our model framework, we
verify Hick’s law by gradually increasing the number of
task alternatives and computing the corresponding model
response time normalized by accuracy, so as to analogously
demand an individual may take the necessary time to
achieve a specified level of accuracy. For easy tasks, we
see rapid growth in normalized response time given a small
number of alternatives, which ultimately levels off for tasks
with sufficiently numerous options. We plot, for example,
in Fig. 1b the normalized response time dependence on
the number of alternatives, N , and the lateral inhibition
strength, w, for a fully-connected network and easy task
difficulty. We note that across a broad range of inhibition
strengths, Hick’s law is well obeyed, with largerw generally
yielding increased response times.

3 Results

3.1 All-to-all network analysis

Given its analytical tractability and conventional utilization
in decision-making models, we first analyze a fully-
connected, or all-to-all, network in the context of our model
framework. In our analysis, it is important to note that
for a fully-connected network the incoming degree of all
nodes is identical with p(i) = N − 1 since each cluster
receives inhibition from all other clusters. Assuming fair
initial conditions such that xi = I for i = 1, . . . , N as
well as evidences Si = Sw and Sj = Sl for j �= i,
the network dynamics reduce to a planar system of two
nonlinear differential equations. In particular, we need only
investigate the firing rate dynamics of the cluster receiving
maximal evidence, xw, and dynamics of the remaining
clusters, xl , which are identical in this case since nodes in set
L receive the same incoming evidence. Therefore, Eq. (1)
reduces to
dxw

dt
= −xw + f (−wxl + Sw) (5a)

dxl

dt
= −xl + f

(
−wxl − w

N − 1
(xw − xl) + Sl

)
, (5b)
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for which analysis of fixed points and their stability,
which determine decision-making accuracy, is tractable.
A numerical investigation of the model accuracy as a
function of the number of alternatives and lateral inhibition
strength for each of the three difficulties and the two gain
functions is depicted in Fig. 2. For each plot, the accuracy
averaged over 100 fair initial conditions is depicted. In the
case of the model with binary gain, we observe that for
sufficiently large lateral inhibition, the network achieves
nearly perfect accuracy. A downside, however, is that,
particularly in more difficult cases, the necessary large
inhibition between neuronal clusters is not physiological.
Moreover, the optimal choice of large w is not stable across
difficulties and numbers of alternatives, indicating a lack of
robustness for binary integration of evidence. For sigmoidal
gain, we instead observe a clear optimal span of relatively
small inhibition strengths for which maximal accuracy is
achieved, agreeing with energetic constraints on interactions
between clusters, and the location of this extremum is
preserved across the number of alternatives and difficulty
associated with tasks. Hence, no fine-tuning of parameters
is necessary in general. While the maximum accuracy
achieved by the sigmoidal gain function is typically lower
than that which is optimally achieved via binary gain,
we will see in Sections 3.4 and 3.5 that networks with
sigmoidal gain are significantly more robust to noise as well
as deviations in network structure.

For a decision to be well resolved and an optimal
alternative to be selected with nonzero probability, the
model network must achieve a unique and asymptotically
stable fixed point, such that the neuronal cluster with
highest incoming evidence is most active. As expected
intuitively, we generally see that as the difficulty of a

task increases, the maximal accuracy, corresponding to
the separation between the highest two firing rates at a
fixed point, typically decreases. In providing an analytical
characterization of these decision-making dynamics, we
first consider a sigmoidal gain function in Section 3.1.1
and then similarly examine model dynamics in the context
of a binary gain function in Section 3.1.2. In our initial
theoretical analysis, we will focus on model fixed points
and their stability across the number of alternatives and
difficulty associated with a task. By demonstrating that
the dynamical system model is guaranteed to approach a
unique fixed point for a given set of parameter choices,
we are able to robustly determine decision-making accuracy
by comparing the output of neuronal assemblies upon
reaching a steady-state. The theoretical results obtained
for the all-to-all network thus provide a strong basis for
subsequently interpreting the model dynamics in networks
with more realistic topology. For the cases in which a
unique asymptotically stable fixed point does not exist, by
averaging accuracy over a large number of initial conditions,
we are still able to compare decision-making dynamics
across dynamical regimes.

3.1.1 Winner-take-all attractors given a sigmoidal gain
function

Since Eq. (1) with sigmoidal gain is a continuous dynamical
system on the compact and convex set [0, 1]N , Brouwer’s
fixed point theorem guarantees the existence of a fixed point
in [0, 1]N (Brouwer 1912). Note the existence of a fixed
point is indeed assured across all network topologies and is
not only limited to the all-to-all network considered in this
section.

Fig. 2 Dynamics of all-to-all
network. a–c Accuracy
dependence on number of
alternatives, N , and lateral
inhibition strength, w, in the
case of a binary gain function
for easy, medium, and hard
difficulties, respectively. d–f
Accuracy dependence on
number of alternatives, N , and
lateral inhibition strength, w, in
the case of a sigmoidal gain
function for easy, medium, and
hard difficulties, respectively.
For each plot, the network is
fully-connected and the accuracy
computed via numerical
simulation averaged over 100
fair initial conditions is depicted
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The uniqueness of the fixed point is guaranteed for the
fully-coupled network under conditions on both the lateral
inhibition strength and steepness of the sigmoidal gain
function, which are given below and demonstrated in the
Appendix A.

Uniqueness of Fixed Point with Sigmoidal Gain: The
decision-making network model given in Eq. (1) with
sigmoidal gain function f as prescribed by Eq. (2) has a
unique fixed point if there exists positive constant M such
that f ′(xi) ≤ M, ∀xi , and wM

N−1 < 1 for i = 1, . . . , N .

The sufficient conditions shown for uniqueness of the fixed
point require a balance between the maximal sigmoid slope,
M , and the lateral inhibition strength, w, such that their
product is less than unity. Thus, a steeper gain function
requires smaller inhibition. In the context of sigmoidal gain
functions demonstrating gradual integration of information,
as depicted in Fig 1a, the restriction for uniqueness is
automatically satisfied in the set of w that yield optimal
decision accuracy. Note that while a similar property could
be analogously proven for an alternative version of our
model that does not incorporate normalization by incoming
degree, stricter restrictions on w are generated as instead
wM < 1 is required if normalization by p(i) is omitted.

Since the dynamics of Eq. (1) are equivalent to the planar
system (5) in our analysis, the Poincaré-Bendixon theorem
guarantees the asymptotic stability of the unique fixed

point (Bendixson 1901; Andronov 1973). Given the reduced
model dynamics are confined to [0, 1]2 and Bendixon’s
criterion rules out the existence of limit cycles, the system
must approach the unique attractor after sufficiently long
time elapses. We observe empirically that indeed the model
demonstrates winner-take-all dynamics in approaching this
attractor, yielding positive accuracy in Fig. 2d–f for a broad
range of w and N .

3.1.2Winner-take-all attractors given a binary gain function

In light of the discontinuity of the binary gain function
prescribed by Eq. (3), we are required to use an alternate
methodology to characterize the model network dynamics
with binary gain.

For simple tasks such that Sw > b and Sl < b for l �= w,
the binary network model exhibits a unique asymptotically
stable fixed point with perfect accuracy across all positive
choices of w, N , and initial conditions, as indicated in Fig. 2
(a). In this case, the fixed point for all clusters receiving
low evidence is x∗

l = f (− ∑
j �=l

w
N−1Aljx

∗
j + Sl) ≤

f (Sl) = 0 since f is a binary function with center b.
The fixed point for the node receiving maximal evidence is
therefore x∗

w = f (− ∑
j �=i Aij

w
N−1x

∗
j +Sw) = f (Sw) = 1.

Considering all clusters i �= w exhibit exponential decay in
firing rate towards zero, this unique fixed point with perfect
accuracy is asymptotically stable. Note this analysis makes
no specific assumptions regarding the network topology,

Fig. 3 Comparison of
analytical and empirical
accuracy for all-to-all
networks with binary gain. a-b
Numerically computed accuracy
dependence on the number of
alternatives, N , and lateral
inhibition strength, w, in the
case of a binary gain function for
medium and hard difficulties,
respectively, magnified in the
high accuracy region by cutting
off accuracies less than 0.8 for
enhanced visual comparison.
c–d Analogous plots using the
analytically computed accuracy
for medium and hard
difficulties, respectively. The
green line corresponds to the
first part of assumption (7a), the
black line corresponds to the
second part of assumption (7a),
and the white line corresponds
to assumption (7b). Each
network is fully-connected and,
for each empirical plot, the
accuracy averaged over 100 fair
initial conditions is depicted
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and thus applies across network connectivity, as verified
empirically in Section 3.5.

For tasks that are non-simple, the previous result no
longer applies, and the nature of the model dynamics is
determined by the number of alternatives, lateral inhibition,
and difficulty of the task. For fair tasks such that w >

(N − 1)(Sl − b) and N ≥ 3, there is a unique fixed
point, x∗

w = 1, x∗
l = 0, for the reduced planar system

(5). This is a natural consequence of eliminating the
possibility of the three other potential fixed points with
alternative combinations of x∗

w and x∗
l taking on binary

values. We observe that this unique perfect accuracy fixed
point requires a larger choice of lateral inhibition strength
for tasks with more alternatives, which is not likely to be
enacted physiologically since this would potentially require
excessively large lateral inhibition. An analogous argument
for the asymptotic stability of the fixed point as utilized
in the case of the sigmoidal gain function may be applied
using the generalization of Poincaré-Bendixon theory to
dynamical systems with jump discontinuities, noting that for
the large w required in the uniqueness of the fixed point, the
divergence of Eq. (5) in the distributional sense is negative
(Melin 2005). From Fig. 2a–c, it is empirically clear that the
fixed point is asymptotically stable. A magnified version of
these accuracy plots for tasks of medium and hard difficulty
is depicted in Fig. 3a and b, showing perfect accuracy across
all initial conditions in this parameter regime.

There is a large parameter regime over which w ≤
(N − 1)(Sl − b) and consequently the fixed point analyzed
previously no longer exists for non-simple tasks. In this
case, we generally observe, from numerical simulation,
that the network evolves towards an attracting state nearby
which xw → 1 and xl demonstrates extremely small
oscillations that decay in magnitude with decreasing time-
step size. While this attracting state is not a fixed point
in the traditional sense since the system is not completely
stationary, the oscillations about the attracting state, which
we refer to as a perturbed fixed point, are infinitesimally
small in the true dynamical system. Intuitively, the perturbed
fixed point manifests when the input into the gain function
for xl hovers around threshold b. We summarize the
dynamics about the perturbed fixed point in the property
below, which we demonstrate in the Appendix B.

Global Attraction to the Perturbed Fixed Point with Binary
Gain: For non-simple and fair tasks with number of
alternatives N ≥ 3, the reduced decision-making network
model given in Eq. (5) with binary gain function f as
prescribed by Eq. (3) is globally attracted to the perturbed
fixed point such that

lim
t→∞ xw = 1, (6a)

lim
t→∞ xl ∈ [z, z + ε), (6b)

for any ε > 0 under assumptions

N > max

(
2w − (Sl − b)

w − (Sl − b)
,

w

Sl − b
+ 1

)
, (7a)

w > Sl − b, (7b)

where

z = (N − 1)(Sl − b) − w

(N − 2)w
. (8)

We verify our analysis in the case of medium and hard
difficulties empirically, and show strong agreement between
the accuracy corresponding to the theoretical perturbed
fixed point, 1 − z, and the accuracy determined via
simulation. Comparing the accuracy computed analytically,
depicted in Fig. 3c and d, to the numerically computed
accuracy in Fig. 3a and b, we see the results are nearly
indistinguishable over a broad range of parameters, w and
N . The only noticeable deviation occurs when w < Sl − b,
for which assumptions (7) and our theory do not apply.
These dynamics together preclude the possibility of an
optimal parameter regime for relatively small w in the case
of binary gain, and thus the system is unable to achieve
high accuracy via low lateral inhibition strength as observed
using sigmoidal gain.

3.2 Optimal network parameters

As observed empirically in Section 3.1, the sigmoidal gain
function facilitates an optimal span of relatively small lateral
inhibition strengths for which maximal accuracy is achieved
over tasks with varying numbers of alternatives and dif-
ficulty. We demonstrate the existence of such an optimal
parameter regime in the limit of a large number of alterna-
tives, N → ∞, and further show that our approximation
still holds well for finite and relatively smallN . We consider
the reduced system given by Eq. (5) in the large N limit,
with fixed points reducing to x∗

w = f (−wx∗
l +Sw) and x∗

l =
limN→∞ f

(
− (N−2)

N−1 wx∗
l − w

N−1x
∗
w + Sl

)
= f (−wx∗

l +
Sl). We solve the resultant transcendental system of equa-
tions for the approximate fixed point numerically for large
N and a range of w. In particular, in Fig. 4, we compare the
accuracy determined via the fixed point approximation with
the accuracy computed through numerical simulation. The
numerical and approximate accuracies are nearly identical,
yielding the highest accuracy for a similar range of small lat-
eral inhibition strengths in each case. We see that the ideal
span of w in the large N limit agrees well with the optimal
inhibition strengths identified for a small number of alterna-
tives in Fig. 2d–f. While the peak accuracy achieved using
sigmoidal gain is still lower than the maximal accuracy
computed via binary gain, the small magnitude and stability
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Fig. 4 Accuracy in the limit of a large number of alternatives for
all-to-all networks with sigmoidal gain. a–c Accuracy dependence
on lateral inhibition strength, w, in the case of a sigmoidal gain
function in the large number of alternatives limit for easy, medium,
and hard difficulties, respectively. In each case, the accuracy computed
using the large N approximation is depicted in blue and the accuracy
computed via numerical simulation is plotted in red. Each network
is fully-connected with N = 100 and, for each empirical plot, the
accuracy averaged over 100 fair initial conditions is depicted

of the optimal lateral inhibition strengths make sigmoidal
integration of evidence suited for a wider spectrum of tasks
and efficient in requiring relatively low energy expenditure
via weak interaction between neuronal clusters.

3.3 Impact of gain function steepness

In comparing the two classes of gain functions, it is
significant to observe that in the large steepness limit, k →
∞, sigmoidal integration approaches binary gain. For this

reason, we utilize asymptotic analysis to demonstrate the
impact of sigmoid steepness on decision-making accuracy.
We later numerically investigate the effect on response time
in the context of our model framework.

We determine a two-term asymptotic expansion for the
fixed point of reduced model (5) assuming sigmoidal gain
of high steepness. In doing so, the leading order term
of the expansion yields the fixed point corresponding to
binary gain, whereas the second term takes into account the
effects of finite steepness, from which we can approximate
the impact of sigmoidal steepness on accuracy. Note that
we make identical assumptions as given in Eq. (7) when
determining the perturbed fixed point for the network model
with binary gain. Letting steepness k = 1

ε
for 0 < ε � 1 in

Eq. (2) yields small parameter ε in which we will expand the
transcendental system of equations determining the model
fixed point

x∗
w = f (−wx∗

l + Sw) (9a)

x∗
l = f (−Ax∗

l − Bf (−wx∗
l + Sw) + Sl), (9b)

where A = w N−2
N−1 and B = w

N−1 for notational
convenience. Note Eq. (9b) is rewritten in terms of x∗

l only,
and thus we determine the expansion for x∗

l first and later
use it to determine the expansion for x∗

w.
Before expanding with respect to x∗

l , we rewrite Eq. (9b)
explicitly in terms of the sigmoidal gain function

1

1 + e
ε−1

(
Ax∗

l + B

1+e
ε−1(wx∗

l
+b−Sw)

+b−Sl

) = x∗
l ,

and then rearrange terms so as to determine the impact of
small parameter ε in our analysis, yielding

−Ax∗
l − B

1 + eε−1(wx∗
l +b−Sw)

− b + Sl = ε ln

(
x∗
l

1 − x∗
l

)
.

We assume asymptotic expansion x∗
l ∼ x0 + μ(ε)x1 + . . .

and thus obtain

− A(x0+μ(ε)x1+. . . ) − B

1+eε−1(w(x0+μ(ε)x1+... )+b−Sw)

− b + Sl = ε ln

(
x0 + μ(ε)x1 + . . .

1 − (x0 + μ(ε)x1 + . . . )

)
. (10)

Letting ε → 0 yields the leading O(1) equation

−Ax0 − B

1 + eε−1(w(x0)+b−Sw)
− b + Sl = 0,

and leading order term x0 = (N−1)(Sl−b)−w
(N−2)w = z, agreeing

with the perturbed fixed point for the model with binary gain
given by Eq. (8).
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Next, we determine the finite-steepness correction term,
μ(ε)x1, in the asymptotic expansion. Expanding Eq. (10) in
geometric series, we obtain

− A(x0 + μ(ε)x1 + . . . ) − b + Sl

− B
(
1 − eε−1w(x0+μ(ε)x1+... )+b−Sw + . . .

)

= ε ln

(
x0 + μ(ε)x1 + . . .

1 − (x0 + μ(ε)x1 + . . . )

)

Proceeding in the asymptotic hierarchy requires gauge
function μ(ε) = ε. Equating O(ε) terms, we obtain

−Ax1 = ln

(
x0 + εx1 + . . .

1 − (x0 + εx1 + . . . )

)
,

yielding x1 = ln
(
1−z
z

)
/A. Hence, the two-term asymptotic

expansion for x∗
l is

x∗
l ∼ z + ε

N − 1

(N − 2)w
ln

(
1 − z

z

)
+ . . . (11)

and may be utilized in Eq. (9a) to generate the two-term
expansion for x∗

w. Assuming x∗
w ∼ x′

0 + μ′(ε)x′
1 + . . . , it

follows

x′
0+μ′(ε)x′

1+ . . .= 1

1+e
ε−1

(
w

(
z+ε

ln
(
1−z
z

)

A
+...

)
+b−Sw

)

= 1 − e
ε−1

(
w

(
z+ε

ln
(
1−z
z

)

A
+...

)
+b−Sw

)

+ . . . ,

and matching terms in the asymptotic hierarchy yields x′
0 =

1, μ′(ε) = e−ε−1(Sw−wz−b), and x′
1 = −e

N−1
N−2 ln(

1−z
z

). Thus,
the two-term asymptotic expansion for x∗

w is

x∗
w ∼ 1 − e− 1

ε
(Sw−wz−b)e

N−1
N−2 ln

(
1−z
z

)
+ . . . (12)

Before interpreting the asymptotic expansion with respect to
decision-making accuracy, we note that our analysis yields
a high fidelity approximation for the model fixed points,
particularly for sigmoidal steepness k > 10. In Fig. 5
(a)-(b), we depict the relative error in the approximation
using the difference in accuracy computed via the two-
term asymptotic expansion and numerical simulation for
tasks of medium and hard difficulty. We see that only for
especially small w, which violate assumptions (7), does the
approximation yield error that is not negligible.
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Fig. 5 Accuracy approximation via asymptotic analysis. a–b Rel-
ative error in the high sigmoidal steepness fixed point approximation
determined using the difference in decision-making accuracy com-
puted via the two-term asymptotic expansion for the fixed point
of Eq. (5) and the numerically computed decision-making accuracy
for medium and hard difficulties, respectively. c–d Decision-making
accuracy computed via the two-term asymptotic expansion for the
fixed points of Eq. (5) for medium and hard difficulties, respectively.

e–f Decision-making accuracy computed via the one-term asymptotic
expansion for the fixed points of Eq. (5) for medium and hard dif-
ficulties, respectively. Asymptotic expansions were computed for the
network model with sigmoidal gain in the high steepness limit. In each
panel, steepness k = 15 was utilized for concreteness. The number of
alternatives, N , and lateral inhibition strength, w, were varied in each
case
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To underline the impact of sigmoidal steepness, we
plot in Fig. 5c and d the accuracy computed using the
two-term asymptotic expansion and in Fig. 5e and f the
accuracy using only the leading order term for tasks of
medium and hard difficulty. We observe that the two-term
expansion, incorporating the effects of finite steepness,
yields lower accuracy over a broad spectrum of N and
w. Thus, based on the form of the correction term in the
expansion, we conclude more gradual gain functions yield
decreased decision-making fidelity, though marginally so in
the high-steepness limit.

Investigating the effect of k for sigmoidal gain of
relatively small steepness, we depict in Fig. 6 the accuracy
computed via numerical simulation for k = 1, 2, 4, and 10.
Even outside of the high-steepness regime, we affirm that
increasing gain function steepness still generally results in
increased accuracy. However, for sufficiently high k, (i.e.,
k > 10) further increasing gain function steepness has
negligible impact on decision-making accuracy, yielding

performance analogous to binary gain. At the same time, as
shown analogously in Fig. 7, a steeper gain function causes
the system to require additional time in order to reach a
steady-state. Thus, there exists a trade-off between decision-
making accuracy and response time with gain function
steepness. Nevertheless, as we will discuss in Section 3.4,
the robustness of the more gradual sigmoidal gain function
likely suggests that it is more favorable across decision-
making tasks. It is also important to note that, as shown in
Fig. 6, the optimal lateral inhibition regime for sigmoidal
gain, discussed in Section 4, exists for a wide range of
relatively low k, further highlighting the utility of more
gradual integration of information.

3.4 Robustness to noise and attacks

The dynamics of neuronal clusters participating in the
decision-making process are subject to noise and their
connectivity is impacted by potential degradation over time,
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Fig. 6 Gain function steepness and accuracy. Numerically com-
puted accuracy dependence on the number of alternatives, N , and
lateral inhibition strength, w, for sigmoidal steepness: a–c k = 1, d–f

k = 2, g–i k = 4, and j–l k = 10 for easy, medium, and hard diffi-
culties, respectively. Each network is fully-connected and the accuracy
averaged over 100 fair initial conditions is depicted
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Fig. 7 Gain function steepness and response time. Numerically
computed response time dependence on the number of alternatives, N ,
and lateral inhibition strength, w, for sigmoidal steepness: a–c k = 1,

d–f k = 2, g–i k = 4, and j–l k = 10 for easy, medium, and hard diffi-
culties, respectively. Each network is fully-connected and the response
time averaged over 100 fair initial conditions is depicted

necessitating a decision-making mechanism that is largely
invariant to perturbations in system conditions. Biophysical
sources of noise in decision making, such as stochasticity
in neuronal firing, variation in internal state, environmental
effects, and transduction of sensory information (Dunn
and Rieke 2006; Faisal et al. 2008; London et al. 2010),
are typically averaged over or ignored in deterministic
firing rate models, though we may extend our modeling
framework to incorporate noisy dynamics in the context
of a system of stochastic differential equations. The
noisy competing firing rate network model is analogously
determined by

dxi =
⎡
⎢⎣−xi + f

⎛
⎜⎝−

N∑
j=1
j �=i

w

p(i)
Aij xj + Si

⎞
⎟⎠

⎤
⎥⎦ dt + σdWi,

(13)

where Wi(t) is a Wiener process of standard deviation
σ forcing the ith neuronal assembly, thereby yielding

independent, zero-mean noise injected into each cluster of
neurons. Note that since the model is now stochastic, a
stationary state cannot analogously be used to determine
the time at which accuracy is measured as in the
deterministic counterpart. Instead, the accuracy is measured
after sufficient time elapses, at which point a decision is
forced, as in an interrogation task.

We investigate the impact of noise on decision-making
accuracy by adjusting σ , which determines the strength of
the noise, across the w − N parameter space. In Figs. 8
and 9, we compare the performance of the all-to-all network
with sigmoidal and binary gain functions, respectively,
for various choices of σ for a task of medium difficulty.
Comparing the two gain function types, we observe that
the network with sigmoidal gain is more robust to noise,
demonstrating nearly no degradation in performance until
strong noise with σ > 2−4 is injected in the medium
difficulty case. For the network model with binary gain, we
see an immediate qualitative shift in the accuracy structure,
with a broad region of parameter space shifting from nearly
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Fig. 8 Impact of noise on accuracy for networks with sigmoidal
gain and medium difficulty tasks. Numerically computed accu-
racy dependence on number of alternatives, N , and lateral inhibition
strength, w, for a fully-connected network with sigmoidal gain and

noise of strength: a σ = 2−8, b σ = 2−7, c σ = 2−6, d σ = 2−5, e
σ = 2−4, f σ = 2−3, g σ = 2−2, and h σ = 2−1. Each plot depicts the
accuracy averaged over 100 fair initial conditions and tasks of medium
difficulty

perfect to almost zero accuracy even for weak noise in
which σ = 2−8. The optimal span of small lateral inhibition
strength for the network with sigmoidal gain also persists for

weak to moderate noise strength up through approximately
σ = 2−3, underlining the resilience of the operating
regime. For either gain function, once the noise becomes
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Fig. 9 Impact of noise on accuracy for networks with binary gain
andmedium difficulty tasks.Numerically computed accuracy depen-
dence on number of alternatives, N , and lateral inhibition strength, w,
for a fully-connected network with binary gain and noise of strength:
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g σ = 2−2, and h σ = 2−1. Each plot depicts the accuracy averaged
over 100 fair initial conditions and tasks of medium difficulty
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Fig. 10 Impact of connection removal on accuracy for networks
with sigmoidal gain and medium difficulty tasks.Numerically com-
puted accuracy dependence on number of alternatives, N , and lateral
inhibition strength, w, for a fully-connected network with sigmoidal

gain and connection removal of probability: a 0.003, b 0.01, c 0.1, d
0.2, e 0.4, and f 0.8. Each plot depicts the accuracy averaged over 100
fair initial conditions and tasks of medium difficulty

0 5 10

w

20

40

60

80

100

N

0.003 Removal

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5 10

w

20

40

60

80

100

N

0.01 Removal

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5 10

w

20

40

60

80

100

N

0.1 Removal

0

0.05

0.1

0.15

0.2

0.25

0.3

0 5 10

w

20

40

60

80

100

N

0.2 Removal

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 5 10

w

20

40

60

80

100

N

0.4 Removal

0

0.002

0.004

0.006

0.008

0.01

0.012

0 5 10

w

20

40

60

80

100

N

0.8 Removal

-1

-0.5

0

0.5

1

cba

fed

Fig. 11 Impact of connection removal on accuracy for networks
with binary gain and medium difficulty tasks. Numerically com-
puted accuracy dependence on number of alternatives, N , and lateral
inhibition strength, w, for a fully-connected network with binary gain
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Fig. 12 Decision-making dynamics for networks with regular con-
nectivity. a–c Numerically computed accuracy dependence on the
connection density, p, and lateral inhibition strength, w, for a net-
work with regular connectivity and sigmoidal gain for tasks of easy,

medium, and hard difficulty, respectively. d–f Analogous plots for a
network with regular connectivity and binary gain. Each plot depicts
the accuracy for N = 300 neuronal clusters averaged over 100 fair
initial conditions

sufficiently strong, overpowering the deterministic portion
of the dynamics, the integrated evidence becomes less
significant and the system generally exhibits low accuracy.

In a similar vein, it is important for a decision-
making system to function well even if connections are
removed through, for example, damage to a brain area or
synaptic pruning (Manes et al. 2002; Craik and Bialystok
2006). We analyze the robustness of the model dynamics
to perturbations in connectivity by randomly removing
connections with increasing probability from an all-to-
all network and computing the decision-making accuracy
using the resultant model dynamics prescribed by Eq. (1).
In Figs. 10 and 11, we plot the accuracy over the w −
N parameter space for a medium difficulty task when
connections are removed with increasing probability using
sigmoidal and binary gain functions, respectively. For the
network model with sigmoidal gain, we observe a relatively
slow and gradual decrease in accuracy as additional
connections are removed, maintaining a qualitatively
similar dependence on the number of alternatives and
lateral inhibition strength in each case. As with injected

noise, high accuracy is generally achieved for a stable
range of small lateral inhibition strengths across connection
removals. Using instead the binary gain function, we see an
immediate and rapid drop in accuracy across a large range
of w and N even after only a small proportion of 0.003
network connections are removed. The impact of noise and
connection removal for a hard difficulty task is similar
and is depicted in the Appendix C. Together, we conclude
that the competing firing rate model with sigmoidal gain
is robust to perturbations in both network structure and
dynamics, indicating that while binary gain may yield
highest accuracy for an idealized fully-connected network,
its performance quickly diminishes for alternative scenarios
and thus was likely not selected across the broad decision-
making scenarios encountered throughout the evolution of
species.

3.5 Alternative network structures

We conclude by analyzing the decision-making dynam-
ics in our model framework for several canonical net-
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Fig. 13 Decision-making dynamics for networks with random con-
nectivity. a–c Numerically computed accuracy dependence on the
connection density, p, and lateral inhibition strength, w, for a net-
work with random connectivity and sigmoidal gain for tasks of easy,

medium, and hard difficulty, respectively. d–f Analogous plots for a
network with random connectivity and binary gain. Each plot depicts
the accuracy for N = 300 neuronal clusters averaged over 100 fair
initial conditions

work structures beyond all-to-all connectivity. While the
fully-connected network discussed in previous sections was
amenable to theoretical analysis and typically used in pre-
existing decision-making models, relatively sparse network
connectivity with more intricate structure has been observed
on both small and large scales in the brain and signifi-
cantly determines the evoked network dynamics (van den

Heuvel et al. 2008; Sporns and Honey 2006; Roxin et al.
2004; Barranca et al. 2015b; Markov et al. 2013). Depend-
ing on their graph structure, networks can be described
through a wealth of characterizations (Markov et al. 2013;
Erdos and Renyi 1959; Barranca et al. 2015a). Here we
focus on networks with varying degrees of randomness
and diverse connection densities, studying decision-making
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Fig. 14 Decision-making dynamics for networks across connec-
tivity structures. a–c Numerically computed accuracy for a network
with inhibition strength, w, and connectivity determined by randomly
rewiring connections in a regular network with a prescribed rewiring

probability for tasks of easy, medium, and hard difficulty, respectively.
Each plot depicts the accuracy for N = 300 neuronal clusters, connec-
tion density p = 0.1, and sigmoidal gain averaged over 100 fair initial
conditions
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accuracy in the context of regular, random, and small-world
connectivity.

We first investigate dynamics on a regular ring lattice of
mean degree k such that neuronal clusters are connected
to their nearest k/2 neighbors. Analogous to our previous
analysis, we investigate model accuracy as the lateral
inhibition strength is varied along with mean connection
density, p, which prescribes the degree across the network.
For concreteness, we fix the network size in this section
at N = 300, with sufficiently many nodes to yield robust
connectivity statistics in the randomly generated networks
that we analyze next. In Fig. 12a–c, we depict the accuracy
for networks with regular connectivity and sigmoidal gain
for tasks of easy, medium, and hard difficulty, respectively.
We similarly plot the accuracy for networks with regular
connectivity and binary gain in Fig. 12d–f. In the case
of sigmoidal gain, we see relatively high and comparable
accuracy across connection densities for each task difficulty
in the optimal span of low inhibition strengths. For the
regular network with binary gain, reasonable accuracy is
generally only achieved for high connection densities, near
all-to-all connectivity, in the cases of medium and hard
difficulty tasks. It is significant to remark that the accuracy
achieved via sparse connectivity with sigmoidal gain is
near that which is obtained with all-to-all connectivity,
indicating a less connected network may be evolutionarily
advantageous since it still produces high accuracy with less
interactions and potentially less energy expenditure. Note
that while we also observe high accuracy using sigmoidal
gain for very sparse connectivity and high w, the necessary
w grows with network size and is therefore not likely
physiological.

Turning now to a complementary network topology,
we analyze decision-making dynamics on networks with
random connectivity. In this case, each pair of nodes is
randomly and independently connected with probability p.
In Fig. 13a–c, we vary the lateral inhibition strength and
connection density for such random networks, plotting the
resultant accuracy using sigmoidal gain across tasks of
easy, medium, and hard difficulties. The related plots using
binary gain are depicted in 13d–f. Though the connectivity
structure is entirely distinct from the regular connectivity
case, the results are still qualitatively similar. The random
network with sigmoidal gain demonstrates high accuracy for
low w over a range of connection densities 0.1 or higher.
As in the regular case, the random network with binary gain
only displays accurate decision making for high connection
densities near p = 1 in non-simple tasks, indicating a
lack of robustness for networks with more physiological
connectivity.

Comparing the overall performance for the regular and
random network topologies, we observe that the regular
network with sigmoidal gain generally exhibits higher
accuracy across connection densities. We have verified
empirically that the network clustering coefficient, as
opposed to, for example, average shortest path length,
is a good predictor of decision-making accuracy, well
aligning with the higher accuracy of the regular network.
To more thoroughly examine the role of randomness and
regularity in decision-making networks, we analyze the
accuracy for connectivity structures that interpolate between
the two extremes. In particular, we randomly rewire
connections in the regular lattice with rewiring probability
β, removing links from the lattice and randomly placing
a new connection between two originally nonadjacent
nodes in each rewire. Thus, networks with larger rewiring
probability display more randomness in their connectivity
structure. For intermediate rewiring probabilities, in the
approximate range of 0.01 ≤ β ≤ 0.1, such networks
are considered small-world and demonstrate simultaneously
high clustering and short path lengths, thereby exhibiting
advantageous properties of regular and random networks,
respectively (Watts and Strogatz 1998).

In Fig. 14a–c, we plot the decision-making accuracy
dependence on the rewiring probability and lateral inhi-
bition strength for networks with sigmoidal integration of
evidence and fixed low connection density as common in
small-world networks. We observe across levels of ran-
domness and task difficulty that relatively high accuracy
is achieved for the same range of low lateral inhibition
strengths as identified in previous sections. Note that in
the case of binary gain, 0 accuracy is yielded across such
network configurations for tasks of medium and hard dif-
ficulty, largely due to multiple winning nodes, and thus
these results are omitted from Fig. 14. Examining the opti-
mal connectivity structure for decision-making performance
across choices of w using sigmoidal gain, networks with
regular or small-world connectivity exhibit the highest accu-
racy overall. This is consistent with the analysis of purely
regular and random networks across connection densities,
underlining clustering of neuronal assemblies as a key facet
in decision making. Though networks with high connection
density generally demonstrate high clustering automatically
and corresponding robust performance in decision mak-
ing, such dense connectivity is likely inconsistent with the
limitations on energy consumption, rapid information pro-
cessing, and functional separation selected by evolution
(Bogacz et al. 2007; Douglas and Martin 2007; Sporns and
Honey 2006). We hypothesize that more sparsely connected
clusters of neuronal assemblies, in the form of small-world
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networks, for example (van den Heuvel et al. 2008; Sporns
and Honey 2006; Roxin et al. 2004), optimally balance
accuracy and efficiency in decision-making tasks.

4 Discussion

Through analysis of our competing firing rate network
model, we provide a novel characterization of the interplay
between information integration structure, network connec-
tivity, and the accuracy as well as robustness of decision
making for tasks that potentially involve a large number
of alternatives. We underline the existence of a dynami-
cal regime signified by weak lateral inhibition that broadly
achieves optimal accuracy across task difficulties, num-
bers of task alternatives, reasonably noisy conditions, and
network structures. Such desirable decision-making dynam-
ics are energetically efficient and agree with fundamen-
tal physiological observations. For networks that demon-
strate excessively steep integration of evidence, however,
we observe a lack of robustness in terms of the stabil-
ity of an optimal parameter regime in addition to poor
resistance to noise and changes in network structure. For
sufficiently large lateral inhibition strength, which grows
with the number of task alternatives, we do observe high
decision-making accuracy for systems with nearly binary
gain at the price of increased response time, demonstrating a
speed-accuracy trade-off as commonly observed in psycho-
logical studies (Fitts 1966; Bogacz et al. 2010). Diverging
levels of activity in neuronal clusters via attractor dynamics
is well documented for decision making in experimental set-
tings, particularly for visual search, virtual navigation, and
reaching tasks (Thomas and Pare 2007; Cohen et al. 2010;
Harvey et al. 2012; Churchland et al. 2012), and thus our
analysis serves to gain deeper insight into the mechanisms
and evolutionary benefits of such neuronal computations in
the context of a biologically plausible yet idealized model
network setting.

Our network analysis demonstrates that systems with a
mixture of randomness and regularity in their structure, as
typically observed in experiment, are able to robustly per-
form decision-making tasks utilizing sigmoidal integration
of evidence. However, for systems with excessively random
structure, degradation in accuracy is incurred, particularly
for more difficult tasks. These results suggest that evolu-
tion has selected decision-making systems with relatively
sparse and modular structure among neuronal assemblies
with relatively gradual integration of information, thereby
achieving parsimonious and profitable outcomes across a
large ensemble of conditions.

Impaired decision making is believed to play a fun-
damental role in a variety of mental disorders, including
obsessive-compulsive behavior, autism, and several forms

of anxiety (Sachdev and Malhi 2005; Fellows 2004), and
thus understanding the neural mechanisms of choice has
important implications in human health. Our work suggests
that particularly rapid integration of information or per-
turbations in the circuitry connecting neuronal assemblies
could potentially contribute to such decision-making disor-
ders. Recent experimental studies suggest the existence of
a neural system that identifies task difficulty and modulates
resources necessary in order to accurately choose among
alternatives (Heekeren et al. 2008), and, in the context of
our theoretical observations, we hypothesize that increased
functional connectivity among neuronal clusters, akin to a
more highly connected network, is consistent with improved
decision making via larger utilization of energetic resources.

While we studied the decision-making dynamics for
a neural system using two plausible classes of gain
functions and several representative network structures,
experimental data may also be used in conjunction with
our model framework to guide future investigations upon,
for example, obtaining more physiological approximations
of neuronal cluster response functions or recovering the
connectivity between neuronal assemblies (Kumar and
Penny 2014; La Camera et al. 2006; Markov et al.
2013). Reconciling our macroscale competing firing rate
network model with the dynamics of biologically realistic
neurons at the individual level also marks an interesting
area of future analysis. There is experimental evidence
for alternative classes of attractors in cortical decision-
making systems, ranging from line attractors in area LIP
(Gold and Shadlen 2002; Brody et al. 2003; Ganguli
et al. 2008) to ring attractors in head-direction systems
(Taube 2007; Xie et al. 2002); while our work primarily
focused on decision-making dynamics via point attractors,
exhibiting a unique asymptotically stable fixed point for
a given choice of model parameters, alternative nonlinear
dynamical system models may be analogously investigated
for cortical areas demonstrating low-dimensional attractors.
With a continuum of potential attracting fixed points, and
corresponding decisions depending on the initial state of the
system, network models with more complicated attractor
structures may give insights into the encoding of continuous
decision-making information as well as working memory.

Grounded in analog rate-based encoding of evidence
at steady-state, our network model demonstrates accurate
winner-take-all behavior across biologically plausible set-
tings. While taking the minimal state space for individual
neurons to be binary, determined by the presence or absence
of firing events, is consistent with our neuronal-assembly-
based decision-making framework in prescribing a firing
rate function for each cluster, our work indicates that such
binary state thresholding at the level of neuronal assemblies
is potentially counterproductive to robust decision making.
Though modern technology largely utilizes binary encoding
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of information, biological constraints and a vast repertoire
of task conditions have likely pushed evolution towards
more continuous decision-making mechanisms, highlight-
ing the importance of engineering novel systems which
operate under principles that reflect neuronal network com-
putation.
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Appendix A: Uniqueness of Fixed Point with
Sigmoidal Gain

In this section of the Appendix, we provide a justification
for the sufficient conditions guaranteeing a unique fixed
point in the all-to-all network with sigmoidal gain discussed
in Section 3.1.1, which we restate below.

Uniqueness of Fixed Point with Sigmoidal Gain: The
decision-making network model given in Eq. (1) with
sigmoidal gain function f as prescribed by Eq. (2) has a
unique fixed point if there exists positive constant M such
that f ′(xi) ≤ M, ∀xi , and wM

N−1 < 1 for i = 1, . . . , N .

We consider fixed points x∗ = (x∗
1 , x

∗
2 , . . . , x

∗
N) and x′ =

(x′
1, x

′
2, . . . , x

′
N) for Eq. (1), and demonstrate that x∗ = x′

if wM
N−1 < 1. Let ui = x′

i −x∗
i denote the difference between

the ith components of the fixed points. Since x′ is a fixed
point, it follows that x′

i = f (− ∑
j �=i

w
N−1x

′
j + Si). Hence,

x∗
i + ui = f

⎛
⎝−

∑
j �=i

w

N − 1
x∗
j + Si −

∑
j �=i

w

N − 1
uj

⎞
⎠ .

(14)

Since f is smooth, according to the mean value theorem

f

⎛
⎝−

∑
j �=i

w

N − 1
x∗
j + Si −

∑
j �=i

w

N − 1
uj

⎞
⎠

= f

⎛
⎝−

∑
j �=i

w

N − 1
x∗
j + Si

⎞
⎠+f ′(ci)

⎛
⎝−

∑
j �=i

w

N − 1
uj

⎞
⎠ ,

where ci is contained in open interval (−∑
j �=i

w
N−1x

∗
j +

Si − ∑
j �=i

w
N−1uj , −∑

j �=i
w

N−1x
∗
j + Si). Given x∗

i is a
fixed point, we re-express Eq. (14) as

x∗
i + ui = f

⎛
⎝−

∑
j �=i

wx∗
j

N−1
+ Si

⎞
⎠+f ′(ci)

⎛
⎝−

∑
j �=i

wuj

N−1

⎞
⎠

=⇒ ui = − w

N − 1
f ′(ci)

⎛
⎝∑

j �=i

uj

⎞
⎠ .

Labeling ai = w
N−1f

′(ci) for notational convenience, it
follows ui +ai

∑
j �=i uj = 0. We can rewrite this compactly

in matrix notation as Au = 0, where

A =

⎡
⎢⎢⎢⎢⎢⎣

1 a1 a1 . . . a1
a2 1 a2 . . . a2
a3 a3 1 . . . a3
...

...
...

. . .
...

aN aN aN . . . 1

⎤
⎥⎥⎥⎥⎥⎦

,

and det(A) = ∏N
k=1(1−ak)+∑N

i=1 ai

∏
k �=i (1−ak) (Horn

and Johnson 2012).
Finally, assuming f ′(xi) ≤ M, ∀xi , and w

N−1M < 1, it
follows that ai = w

N−1f
′(ci) ≤ w

N−1M < 1. As a result,
det(A) �= 0, and the linear system Au = 0 has a unique
solution u = 0. This implies that x′ = x∗, demonstrating
the fixed point is indeed unique.

Appendix B: Global Attraction to the
Perturbed Fixed Point with Binary Gain

In Appendix B, we provide a justification for the conditions
guaranteeing the existence and global attraction of the
perturbed fixed point in the all-to-all network with binary
gain discussed in Section 3.1.2, which we restate below.

Global Attraction to the Perturbed Fixed Point with Binary
Gain: For non-simple and fair tasks with number of
alternatives N ≥ 3, the reduced decision-making network
model given in Eq. (5) with binary gain function f as
prescribed by Eq. (3) is globally attracted to the perturbed
fixed point such that

lim
t→∞ xw = 1, (6a)

lim
t→∞ xl ∈ [z, z + ε), (6b)

for any ε > 0 under assumptions

N > max

(
2w − (Sl − b)

w − (Sl − b)
,

w

Sl − b
+ 1

)
, (7a)

w > Sl − b, (7b)
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where

z = (N − 1)(Sl − b) − w

(N − 2)w
. (8)

Under assumptions (7), we first show that it is impossible
for dxl

dt
= 0 and thus impossible for stationary dynamics

to be reached. If dxl

dt
= 0, then either (i) xl = 0 and

f
(
−wxl − w

N−1 (xw − xl) + Sl

)
= 0, or (ii) xl = 1

and f
(
−wxl − w

N−1 (xw − xl) + Sl

)
= 1. We verify that

neither of these cases are possible. Case (i) requires xw >
(Sl−b)(N−1)

w
, but assumption (7a) requires w < (Sl −b)(N −

1), forcing xw > 1 and making this potential fixed point
impossible. Case (ii) requires −wxl − w

N−1 (xw −xl)+Sl ≥
b, making xw ≤ (Sl−b)(N−1)

w
+ 1 − (N − 1). However,

assumption (7b) requires that (N − 1) >
(Sl−b)(N−1)

w
+ 1,

forcing xw < 0, which is impossible.
Next, to determine the state around which the system

gravitates after a long time horizon, we show zl =
(N−1)(Sl−b)−wxw

(N−2)w separates the dynamics of xl into distinct
strictly increasing and strictly decreasing regimes, such
that if xl ≤ zl then dxl

dt
> 0 and if xl > zl then

dxl

dt
< 0. To see this, note that if dxl

dt
> 0, then

f
(
−wxl − w

N−1 (xw − xl) + Sl

)
= 1 necessarily, and thus

−wxl − w
N−1 (xw − xl) + Sl ≥ b. This forces xl ≤

(N−1)(Sl−b)−wxw

(N−2)w , which demonstrates xl > zl =⇒ dxl

dt
<

0. An analogous argument assuming instead dxl

dt
< 0 yields

xl ≤ zl =⇒ dxl

dt
> 0.

As a result, it is guaranteed after sufficient time elapses
xl → [zl, zl + ε), for any ε > 0. Since zl ∈ (0, 1) under
assumptions (7) and xw ∈ [0, 1], we obtain, independent of
xw, the upper bound zl ≤ (N−1)(Sl−b)

(N−2)w <
Sl−b

w
. Thus, as

t → ∞, the total input into the gain function for the wth
node is −wxl + Sw > b + (Sw − Sl) > b, and consequently
xw → 1. As a result, xl → [z, z+ε) for z = (N−1)(Sl−b)−w

(N−2)w ,
which gives an attracting perturbed fixed point depending
only on the model parameters.

Appendix C: Robustness of Decision-Making
for Hard Difficulty Tasks

In this Appendix, we provide additional figures depicting
the network model decision-making dynamics subject to
noise and then connection removal for hard difficulty tasks.
In Figs. 15 and 16, we plot, for various choices of noise
strength, the accuracy over the w − N parameter space
for all-to-all networks with sigmoidal and binary gain
functions, respectively. Similarly, in Figs. 17 and 18, we

Fig. 15 Impact of noise on accuracy for networks with sigmoidal
gain and hard difficulty tasks. Numerically computed accuracy
dependence on number of alternatives, N , and lateral inhibition
strength, w, for a fully-connected network with sigmoidal gain and

noise of strength: a σ = 2−8, b σ = 2−7, c σ = 2−6, d σ = 2−5, e
σ = 2−4, f σ = 2−3, g σ = 2−2, and h σ = 2−1. Each plot depicts
the accuracy averaged over 100 fair initial conditions and tasks of hard
difficulty
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Fig. 16 Impact of noise on accuracy for networks with binary gain
and hard difficulty tasks. Numerically computed accuracy depen-
dence on number of alternatives, N , and lateral inhibition strength, w,
for a fully-connected network with binary gain and noise of strength:

a σ = 2−8, b σ = 2−7, c σ = 2−6, d σ = 2−5, e σ = 2−4, f σ = 2−3,
g σ = 2−2, and h σ = 2−1. Each plot depicts the accuracy averaged
over 100 fair initial conditions and tasks of hard difficulty
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Fig. 17 Impact of connection removal on accuracy for networks
with sigmoidal gain and hard difficulty tasks. Numerically com-
puted accuracy dependence on number of alternatives, N , and lateral
inhibition strength, w, for a fully-connected network with sigmoidal

gain and connection removal of probability: a 0.003, b 0.01, c 0.1, d
0.2, e 0.4, and f 0.8. Each plot depicts the accuracy averaged over 100
fair initial conditions and tasks of hard difficulty
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Fig. 18 Impact of connection removal on accuracy for networks
with binary gain and hard difficulty tasks. Numerically computed
accuracy dependence on number of alternatives, N , and lateral inhibi-
tion strength, w, for a fully-connected network with binary gain and

connection removal of probability: a 0.003, b 0.01, c 0.1, d 0.2, e 0.4,
and f 0.8. Each plot depicts the accuracy averaged over 100 fair initial
conditions and tasks of hard difficulty

compare the decision-making performance upon randomly
removing connections with increasing probability. The
resultant dynamics are analogous to those evoked in the
medium difficulty case discussed in detail in Section 3.4.
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