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Geometry, packing, and evolutionary paths to increased multicellular size
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The evolutionary transition to multicellularity transformed life on earth, heralding the evolution of large,
complex organisms. Recent experiments demonstrated that laboratory-evolved multicellular “snowflake yeast”
readily overcome the physical barriers that limit cluster size by modifying cellular geometry [Jacobeen et al.,
Nat. Phys. 14, 286 (2018)]. However, it is unclear why this route to large size is observed, rather than an evolved
increase in intercellular bond strength. Here, we use a geometric model of the snowflake yeast growth form
to examine the geometric efficiency of increasing size by modifying geometry and bond strength. We find that
changing geometry is a far more efficient route to large size than evolving increased intercellular adhesion. In fact,
increasing cellular aspect ratio is on average ∼13 times more effective than increasing bond strength at increasing
the number of cells in a cluster. Modifying other geometric parameters, such as the geometric arrangement of
mother and daughter cells, also had larger effects on cluster size than increasing bond strength. Simulations reveal
that as cells reproduce, internal stress in the cluster increases rapidly; thus, increasing bond strength provides
diminishing returns in cluster size. Conversely, as cells become more elongated, cellular packing density within
the cluster decreases, which substantially decreases the rate of internal stress accumulation. This suggests that
geometrically imposed physical constraints may have been a key early selective force guiding the emergence of
multicellular complexity.
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I. INTRODUCTION

The evolution of multicellular organisms from single-celled
ancestors set the stage for unprecedented increases in com-
plexity, especially in plants and animals [1,2]. In nascent
multicellular organisms, size and complexity are strongly
related [1,3]; recent work has highlighted the potential for a
size-complexity evolutionary feedback loop [2]. However, it
is unclear how early, simple multicellular organisms evolved
to be larger. Newly multicellular organisms lack genetically
regulated development, growing instead through the stochastic
replication of physically attached individual cells. At high cell
densities, stochastic growth can result in large intercellular
forces [4], fragmenting groups and limiting multicellular size
[5]. Thus, mitigating internal mechanical stress is one of the
first evolutionary challenges faced by nascent multicellular
organisms. Although the transition to multicellularity occurred
independently in at least 25 separate lineages [6,7], we know
little about the physical properties of early multicellular lin-
eages due to their ancient origins and limitations of the fossil
record.

Nonetheless, there are two clear routes to increased size in
nascent multicellular clusters of cells whose size is limited
by the accumulation of internal stress: an organism could
evolve to withstand larger intercellular stresses, or, it could
evolve to accumulate intercellular stresses at a slower rate
during growth. The former strategy would likely involve
evolving stronger intercellular bonds, while the latter would
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involve changes to structural geometry. Geometrically im-
posed physical constraints play key roles in the organization
of numerous microbial systems, including growing biofilms
and swarming or swimming communities [8–11]. Separating
geometric effects from biological processes is nontrivial [12],
however, and little is known about how simple multicellular
systems respond to selection for increased size.

Recently, model systems of simple multicellularity have
allowed the early steps of this transition to be studied in
the laboratory with unprecedented precision [13–16]. In the
case of “snowflake yeast” [13], simple multicellular clusters
of Saccharomyces cerevisiae are subjected to daily selection
for large size; they rapidly evolve to double their maximum
number of cells per cluster in just 7 weeks [5]. Snowflake
yeast cluster size is limited by the fracturing of intercellular
bonds under growth-induced stresses [Fig. 1(a)]. Larger size
at fracture is accomplished primarily by a simple change
to cluster geometry: over ∼291 generations, snowflake yeast
evolved to have more elongated cells. This increase in cellular
aspect ratio decreases the cellular packing fraction, slowing
the accumulation of internal stress and delaying fracture [5]
[Fig. 1(b)]. Cellular elongation is a parallel evolutionary
trait, evolving independently in replicate populations [5,17].
However, it remains unclear why this evolutionary route to
large size is repeatedly observed: do snowflake yeast clusters
modify geometry because it is more effective than increasing
the strength of cell-cell bonds, or for proximate reasons relating
to the model system (e.g., it may be easier to modify geometry
than bond strength)?

To investigate the roles of geometry and bond strength in the
evolution of nascent multicellularity, we employ a geometric
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FIG. 1. (a) Two-dimensional schematic of snowflake yeast
growth morphology, showing fracture due to cellular crowding. Inset:
Three-dimensional confocal image of a snowflake yeast cluster. (b)
Changes over 7 weeks of experimental evolution in mean values of
snowflake yeast cluster size, cellular aspect ratio, and cluster volume
fraction. (c)–(e) describe the geometric simulation of cluster growth;
(c) new cells are added on the surface of their parent at an attachment
site (yellow star) defined by the polar angle θ from the major axis
of the cell; this angle is referred to as the “angle of attachment.” (d)
Rotating θ around the major axis of the cell defines a ring on its
surface along which daughter cells may be randomly placed (dashed
line); this ring is termed the “budding ring.” (e) The length of the
double line illustrates the linear overlap between two cells.

model of experimentally evolved snowflake yeast [13,17,18],
introduced and experimentally validated by Jacobeen et. al. [5].
We find that modifying packing geometry, and thus slowing
the accumulation of internal stresses, is a far more efficient
route to large size than increasing intercellular bond strength.
This result is likely general, as cells are capable of imparting
tremendous forces during growth [4], and the resulting cell-cell
forces increase rapidly in jammed aggregates. Thus, evolving
physical robustness by modifying multicellular geometry may

have been a key early selective force guiding the emergence of
multicellular complexity.

II. BACKGROUND

We simulate the growth of snowflake yeast clusters with
a simple, three-dimensional geometric model [5] based on
their fractal-like growth pattern [13]. The model is purely
structural, i.e., it lacks dynamics, yet it accurately reproduces
many relevant experimentally measured structural properties
of snowflake yeast [5] (for more details on experimental
validation of the model, please see the Supplemental Material
[19]).

Model

Snowflake yeast cells reproduce via budding [13]; daughter
cells remain attached to their mothers, creating a biologically
and physically tractable multicellular cluster [Fig. 1(a)]. In our
simulation, cells are modeled as prolate spheroids (ellipsoids
in which two “equatorial” radii are equal and less than the polar
radius), with major-minor axis aspect ratio α. Each generation,
all cells in the cluster attempt to reproduce by adding a daughter
cell of identical volume on their surface. Daughter cells are
placed at a specified angle from the polar axis, called the
angle of attachment, θ , where θ is the acute angle between
the parent cell’s major axis and a vector that originates at
the geometric center of the cell and passes through the point
on its surface at which the daughter cell attaches [Fig. 1(c)].
Thus, daughter cells are randomly placed along a “budding
ring” on their parent’s surface [Fig. 1(d)]. Additionally, cells
other than the basal cell have an 80% chance of spawning
at the pole opposite their parent (i.e., with θ = 0) on their
initial reproduction attempt. Cellular bodies may overlap [Fig.
1(e)], but the center-to-center separation may not be less than
50% of their small diameter; this constraint is analogous to
disallowing the overlap of bud scars (i.e., attachment sites). If
the randomly selected attachment site would cause too much
(>50%) overlap, the daughter cell is not created and the parent
cell misses their chance to reproduce that generation.

Varying θ and α facilitate changes to cluster geometry. To
vary bond strength, we first calculate the deformation energy
(u) between the bodies of neighboring cells. That is,

uij = (d − ri − rj )2, (1)

where d is the center-to-center distance between overlapping
cells, and ri and rj are the equatorial radii of two neighboring
cells. uij = 0 for nonoverlapping cells, and the total “defor-
mation energy” (U ) in a cluster is the sum of individual uij :

U =
N∑

i=1

N∑

j �=i

uij , (2)

where N is the number of cells in the cluster. In a real cluster,
cells would bend at their cell-cell bonds rather than overlap,
so linear overlap acts as a proxy for deformation and squared
overlap is a proxy for deformation energy, or internal stress
within the cluster (using a Hertzian, rather than a harmonic
model for deformation energy does not qualitatively change
the results of this simulation [5]). As clusters fracture due to
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an asymmetric accumulation of internal stress concentrated in
the core of the cluster [5] [Supplemental Material Fig. S1(d)],
we use a U threshold (Uc) to limit cluster size. Snowflake
clusters fracture when their internal stress exceeds the ultimate
strength of the cell-cell bonds; thus, changing Uc is analogous
to changing bond strength.

As previously reported in Jacobeen et al. [5], this geometric
model recapitulates many key structural features observed in
experiments. Experimentally evolved isolates were modeled
by randomly picking each new cell’s α from experimentally
measured distributions. These simulations revealed that as
mean cellular α increases, cluster volume fraction decreases. In
fact, simulations closely replicate experimental observations:
simulated and experimentally measured packing fractions are
within 5% of each other for all four genotypes studied (the
validation of the model via comparison with experimental
results is detailed in [5] and in the Supplemental Material here).
As internal stress limits cluster size by fracturing intercellular
bonds, the decrease in volume fraction due to cellular geometry
modification likely plays a large role in the evolved increase
in cluster volume over 7 weeks [5] [Fig. 1(b)].

III. RESULTS

To directly compare the efficiency of increasing cluster size
via cellular elongation and increased bond strength, we first
simulated clusters with a wide range of α and Uc values (we set
θ = 54◦, as cluster size is maximized for this value). We varied
α and Uc between 1.0 and 2.0 in steps of 0.1, and simulated
100 clusters for each pair of parameters [Fig. 2(a)]. The mean
number of cells per cluster increases rapidly with increasing α

for any value of Uc [Figs. 2(a) and 2(b)]. In contrast, the mean
number of cells increases much more slowly with increasing
Uc [Figs. 2(a) and 2(c)]. Thus increasing α is a more efficient
path to large size than increasing Uc.

While increasing α always increases cluster size more than
increasing Uc, the size of this disparity varies. For example,
the smaller α is, the more beneficial it is to increase α than
Uc. In fact, for clusters of spherical cells (α = 1.0), it is on
average ∼59 times more effective to increase α than to increase

Uc (i.e., for small α, there is almost no discernible gradient
along the Uc axis [Fig. 2(a)]. Thus, there is an especially
large incentive to increase aspect ratio at least a little above
1.0. Further, increasing Uc always enlarges the incentive for
increasing α; this is visible in Fig. 2(a) as the strength of
the vertical gradient increases with Uc. Although the relative
superiority of increasing α over Uc varies over the studied
range of parameters—generally decreasing significantly with
increasing α and increasing with Uc—it is always at least 2.5
times more effective to increase α, and on average ∼13 times
more cells are added for an increase of 0.1 in α than for an
increase of the same magnitude in Uc.

Why is increasing aspect ratio a more efficient route
to large size than increasing bond strength? To investigate,
we measured the deformation energy in simulated clusters
as a function of the mean number of cells. U increases
approximately quadratically with N for any value of α

[Fig. 3(a)]. Thus, increasing Uc yields sublinear returns (N ∼√
Uc). However, increasing α causes U to increase at a slower

rate, allowing more cells to be added before Uc is reached.
The linear relationship between N and α [Fig. 2(b)] further
demonstrates the superior returns on increasing α rather than
Uc.

To understand how cellular aspect ratio affects internal
stress accumulation, we calculated the linear packing fraction
(i.e., the occupied fraction of the budding ring) of five nonover-
lapping daughter cells on a parent cell for θ = 54◦ (five cells
was chosen because it is the maximum number that can be
placed at θ = 54◦ for all values of α between 1 and 2) [Fig.
3(b)]. Considering that daughter cells maximize their available
space when they are oriented perpendicular to the long axis of
their parent, linear packing fraction φ, is

φ = nrmin

π (rθ + αrmin)
, (3)

where n is the number of daughter cells, rmin is the minor
radius, and rθ is the radius at θ . Larger α daughter cells have
smaller widths; smaller widths make it less likely for any two
cells to overlap. Thus, more cells must be added to clusters
with large α to obtain the same packing fraction—and U—as
clusters with small α.
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FIG. 2. (a) Interpolated heat map of the mean number of cells in a cluster as a function of cellular aspect ratio (α) and deformation energy
threshold (Uc). (b) Mean number of cells per cluster versus α for Uc (dark orange, bottom), 1.5Uc (medium orange, middle), and 2Uc (light
orange, top). (c) Mean number of cells per cluster versus Uc for α = 1.0 (dark-gray, bottom), α = 1.5 (medium-gray, middle), and α = 2.0
(light-gray, top). Each data point is the average of 100 independent simulations. Error bars indicate standard deviation.
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FIG. 3. (a) As a cluster grows, total deformation energy, U ,
increases as well. This increase is rapid when α = 1 (dark-gray, left),
moderate for α = 1.5 (medium-gray, middle), and slowest for α = 2
(light-gray, right). Each overlapping data point is the average of 100
independent simulations. (b) Linear packing fraction for five daughter
cells on a single mother cell as a function of aspect ratio for θ = 54◦.

We also investigated other geometric parameters, to deter-
mine if the effects of α represented an isolated case. We varied
θ between 30◦ and 90◦ in increments of 12◦ and again varied
Uc from 1.0 to 2.0 in steps of 0.1. For each pair of parameters,
100 independent simulations were conducted with α = 1.5,
and the resulting mean values are shown in the interpolated
heat map in Fig. 4(a). As previously mentioned, cluster size is
maximized when θ = 54◦ for all values of Uc (note, θ = 54◦
is within the experimentally observed range [5]). This is due
to a trade-off between local and global packing effects. The
number of cells that can pack on a single parent increases
with θ—up to θ = 90◦—because the circumference around
which daughters are packed is largest at θ = 90◦. However,
branches within a cluster interfere with each other less for
smaller values of θ ; 54◦ is the angle where the trade-off between
these competing affects is maximized. Additionally, changing
θ (moving it closer to θ = 54◦) is generally a more efficient
route to increase cluster size than increasing Uc, especially
if θ is far from θ = 54◦. However, since an optimal value of
θ exists (unlike with α), when θ is close to 54◦, increasing
Uc is more beneficial. Note, the optimum angle is near the
so-called “magic angle,” θ = 54.7◦ [20], suggesting that the
snowflake yeast structure is analogous to packing cells in cones
(see Supplemental Material for more details).

Finally, we investigated the effect of heterogeneity in geo-
metric parameters. Along with providing another geometric
parameter to check, monodisperse values of α and θ are
biologically unrealistic, as real snowflake yeast clusters feature
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FIG. 4. (a) Interpolated heat map of the mean number of cells
in a cluster as a function of angle of attachment (θ ) and deformation
energy threshold (Uc). (b) Effect of variance in the angle of attachment
(θ ) and cellular aspect ratio (α) on cluster size. The number of cells
in a cluster versus the standard deviation of the truncated Gaussian
distribution for θ (blue, upper) and α (orange, lower). Each data point
is the average of 100 independent simulations. Error bars indicate
standard deviation.

polydispersity in both parameters [5]. First, a single pair of α

and θ parameters was chosen; we selected α = 1.5 because
it is in the center of the range of values studied and is within
the experimentally observed range, and θ = 54◦ because it is
the optimum value of θ . Variance is introduced in the form
of a truncated Gaussian distribution centered on each selected
parameter. For every cell added, the value of each parameter
is chosen from a self-centered Gaussian distribution; however,
if the value selected lies outside the relevant range (1.0–2.0
for α, 30◦–90◦ for θ ), another value is randomly selected.
We simulated 100 independent clusters for Gaussians with
standard deviations of 0.05, 0.10, and 0.20 of the mean θ or α.

We find that variance in both α and θ has little effect on
cluster size when it is relatively small (standard deviation/mean
�0.1); larger variances, however, (>0.1) decrease cluster size
[Fig. 4(b)]. The inverse relationship between size and large
variance is expected for θ ; any deviation from the optimal value
naturally leads to smaller clusters. However, the relationship
between N and α is highly linear [Fig. 2(b)], meaning that
the detriments of smaller aspect ratio cells must outweigh the
benefits of longer aspect ratio cells within these disordered
clusters. If the standard deviation in α decreases from 0.2 to 0.1,
the resulting increase in cluster size is the same as that caused
by an increase in α of ∼0.04 or an increase in Uc of ∼0.26,
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again supporting the idea that modifying geometry provides a
larger return to the cluster size than modifying bond strength.

IV. DISCUSSION

Evolutionary benefits stemming from size are thought to be
a key driver of early multicellularity [2,6], affording protec-
tion from common threats to microbial life (e.g., predation
and toxin exposure [21–23]). However, how large physical
size could be achieved by newly multicellular organisms
has remained poorly understood. Recent work revealed that
snowflake yeast evolve increased size via modifications to
cellular geometry [5]; here, we offer evidence for why this route
was observed. Geometric modeling reveals that modifying
geometry—via three different parameters—is a significantly
more effective means to achieve larger cluster size than
increasing bond strength. Internal stress increases rapidly with
cellular reproduction, so investing in bond strength produces
diminishing returns. Conversely, modifying cell shape, bud-
ding angle, or the variance of these quantities changes how
cells pack, slowing the accumulation of internal stress.

Our results highlight the absolute limit of spatial con-
straints. Two cells cannot overlap, so at high cell density
the addition of new cells rapidly increases internal stress.
The optimal strategy is not to increase bond strength in the
face of vanishing free space, but to pack more efficiently so
free space remains available longer. The rapid increase in
internal stress with increasing cell number is reminiscent of
the jamming transition of athermal grains, for which pressure
increases with increasing packing fraction [24,25]. Previously
reported experiments on unicellular yeast demonstrated that
reproduction in dense cellular packings can exert pressures
on the order of 1 MPa [4]. Thus, an ∼3 μm diameter bud
scar may experience forces on the order of 10 μN. This is

orders of magnitude larger than the ∼100 pN force necessary
to break mammalian intercellular bonds [26,27] or tear bacteria
from a biofilm [28]. Thus, resisting forces from growth at
high cell density would require major innovations on known
intercellular adhesion mechanisms.

While snowflake yeast is a laboratory-evolved model sys-
tem, it possesses a number of features generally agreed
to be common to naturally occurring nascent multicellular
organisms. Snowflakes develop clonally, growing through
mother-daughter cell adhesion with regular genetic bottlenecks
[13,18]. This facilitates multicellular adaptation, as it limits the
potential for within-organism genetic conflict and promotes
the emergence of novel, heritable multicellular traits [29].
Snowflake yeast readily adapt as multicellular individuals,
evolving to be more complex by gaining novel multicellular
traits [13,17,30]. Indeed, complex multicelluarity (i.e., meta-
zoans, land plants, red algae, brown algae, and fungi) has
only evolved in organisms that develop clonally [31]. Our
geometric arguments are easily generalized to other organisms
with fixed-geometry morphology. Interestingly, this appears to
be the dominant path to complexity: all independent transitions
to complex multicellularity, with the exception of animals,
grow with rigidly connected cells in a fixed-geometry body
plan. Taken together, our results demonstrate that biophysical
interactions play a critical role in the evolutionary transition to
multicellularity.
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