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Abstract

Climate warming can result in both abiotic (e.g., permafrost thaw) and biotic (e.g.,
microbial functional genes) changes in Arctic tundra. Recent research has incorpo-
rated dynamic permafrost thaw in Earth system models (ESMs) and indicates that
Arctic tundra could be a significant future carbon (C) source due to the enhanced
decomposition of thawed deep soil C. However, warming-induced biotic changes
may influence biologically related parameters and the consequent projections in
ESMs. How model parameters associated with biotic responses will change under
warming and to what extent these changes affect projected C budgets have not
been carefully examined. In this study, we synthesized six data sets over 5 years
from a soil warming experiment at the Eight Mile Lake, Alaska, into the Terrestrial
ECOsystem (TECO) model with a probabilistic inversion approach. The TECO model

used multiple soil layers to track dynamics of thawed soil under different
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permafrost regions.
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1 | INTRODUCTION

The enormous quantity of soil organic carbon (SOC) in Arctic
ecosystems has long been protected due to low temperatures. As
the climate warms, this SOC can become vulnerable, potentially
releasing a large amount of carbon (C) to the atmosphere, thus
acting as an important C source (Hicks Pries, Schuur, Natali, &
Crummer, 2016; Koven et al.,, 2011; Macdougall, Avis, & Weaver,
2012; Schuur et al., 2009, 2015). However, the magnitude of
these potential C losses remains uncertain due to a poor under-
standing of the underlying mechanisms that control the soil C bal-
ance in these Arctic ecosystems (Koven, Riley, & Stern, 2013;
Mcguire et al., 2012, 2016).

Climate warming can influence the soil C balance in Arctic
ecosystems through various mechanisms. First, temperature
increases can directly stimulate soil C release due to the thermal
kinetic behavior of microbial-mediated processes (Bracho et al.,
2016; Davidson & Janssens, 2006; Liang et al., 2015). Second, per-
mafrost thaw can increase SOC accessibility for decomposers by lift-
ing temperature and moisture constraints (i.e., thawing permafrost
and increasing soil drainage), potentially resulting in more C release
from Arctic ecosystems to the atmosphere (Hicks Pries et al., 2016;
Koven et al., 2011; Schuur et al, 2009). In Earth system models
(ESMs), the direct impact of a temperature increase on SOC decom-
position is usually reflected by temperature sensitivity (e.g., Oleson
et al., 2013). Recently, permafrost thaw has also been incorporated
into the model by using a multilayer soil structure (e.g., Koven et al.,
2011). The inclusion of permafrost thaw into these models results in
the availability of additional previously frozen SOC for decomposi-
tion and therefore predict that Arctic ecosystems may become sig-
nificant C sources by the end of this century and beyond (Koven,
Lawrence, & Riley, 2015; Koven et al., 2011; Schuur et al., 2015).

However, the current generation of models generally does not

account for biological adjustments when ecosystems are exposed to
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treatments. Our results show that warming increased light use efficiency of vegeta-
tion photosynthesis but decreased baseline (i.e., environment-corrected) turnover
rates of SOC in both the fast and slow pools in comparison with those under con-
trol. Moreover, the parameter changes generally amplified over time, suggesting pro-
cesses of gradual physiological acclimation and functional gene shifts of both plants
and microbes. The TECO model predicted that field warming from 2009 to 2013
resulted in cumulative C losses of 224 or 87 g/mz, respectively, without or with
changes in those parameters. Thus, warming-induced parameter changes reduced
predicted soil C loss by 61%. Our study suggests that it is critical to incorporate bio-

tic changes in ESMs to improve the model performance in predicting C dynamics in

acclimation, biotic responses, carbon modeling, climate warming, data assimilation, permafrost,

different environmental conditions. ESMs usually use scenario-invar-
iant constants as parameters to represent processes at multiple
scales. For example, the turnover rate of a SOC pool is a representa-
tion of many processes related to decomposing the SOC pool. Some
of the processes, such as the lability of the SOC pool, can be explic-
itly represented by model structure of multiple pools at the resolved
scales. However, other processes, such as the composition of micro-
bial taxa, microbial richness, and microbial activity, which collectively
represent the ability of microbial community to decompose SOC,
have not been explicitly represented in models yet. Those biological
processes that operate on unresolved scales need to be implicitly
represented in models by parameterization for their interactions with
processes at the resolved scales (Bauer, Thorpe, & Brunet, 2015; Shi
et al., 2015; Xu, White, Hui, & Luo, 2006).

Recent observational studies have shown that warming and per-
mafrost thaw can influence microbial community composition and
activity in Arctic ecosystems (Hultman et al., 2015; Manzoni, Taylor,
Richter, Porporato, & Agren, 2012; Xue et al., 2016). These changes
may lead to alterations in SOC pool turnover rates but have not
been well explored by ESMs. Before we develop the capability to
explicitly represent those microbial changes at the resolved scales,
they usually can be represented by changes in parameter values.
Such environment-induced parameter changes have been found in
other ecosystems (Shi et al., 2015; Xu et al., 2006). However, how
biological properties may be influenced by increases in temperature
and permafrost thaw, and the consequent influences on the predic-
tion of C pools and flux, are still not clear in the vulnerable Arctic
ecosystems.

Data assimilation, which allows incorporating multisourced data
into models, has increasingly been used to estimate model parameter
values (Keenan, Davidson, Munger, & Richardson, 2013; Luo et al,,
2016; Shi et al., 2015; Williams et al., 2009; Xu et al., 2006). Data
assimilation may help understand the C cycle and its feedback to cli-
mate change in at least two ways. First, models usually perform
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better after data assimilation, exhibiting a higher degree of fit
between observations and model output (Bauer et al., 2015; Shi
et al., 2015; Williams et al., 2009; Xu et al., 2006). Second, detected
changes in model parameters under different scenarios may be used
to reveal changes in processes at the unresolved scales, which are
difficult to either directly measure using experimental techniques or
explicitly represented in model structure or both (Luo et al., 2011,
2016).

A long-term field warming manipulative experiment has been
conducted in an Arctic tundra (Natali, Schuur, & Rubin, 2012; Natali,
Schuur, Webb, Pries, & Crummer, 2014; Natali et al., 2011). In the
current study, we attempted to quantify warming-induced changes
in model parameters associated with biological properties in the Arc-
tic tundra by integrating data from the experiment and a process-
based model. In addition to revealing the dependence of the param-
eter changes on treatment year, we explored how the altered param-

eters influence the estimation of soil C loss in the Arctic tundra.

2 | MATERIALS AND METHODS

2.1 | Experimental design

The Carbon in Permafrost Experimental Heating Research (CiPEHR)
experiment was established at a moist acidic tundra in the region of
Eight Mile Lake (EML), Alaska, USA (63°52'59"N, 149°13'32"W) in
2008 (Natali et al., 2011). Site information, experimental design and
field observations are described in detail in previous publications
(Mauritz et al., 2017; Natali et al., 2011, 2012, 2014). Briefly, the
site lies within the area of discontinuous permafrost, with an active
layer depth of approximately 50 cm at the beginning of the experi-
ment. Mean annual temperature and precipitation are —1.0°C and
378 mm, respectively. The lowest and highest mean monthly tem-
peratures are —16°C in December and 15°C in July (Schuur et al.,
2009).

In the experiment, soil was warmed by six replicate snow fences
in three blocks that accumulate snow during the winter months, thus
serving as an insulator. The excess snow and fences were removed
from the warming plots before snow melt in early spring to ensure
comparable melt out dates and snow water input across treatments.
The experimental treatment started in September 2008, and contin-
ued every winter. During 2009-2013, the experimental treatment
increased soil temperatures by ~0.9°C across the layers of 0-40 cm,
increased soil moisture by 4.2% (V/V), and increased thaw depth by
12.5% (Salmon et al., 2016). Gross Primary Production (GPP),
Ecosystem Respiration (ER), Net Ecosystem CO, Exchange (NEE), soil
C stocks, and aboveground and belowground biomass in both the
ambient and warming treatments were used for parameter estima-

tion in the model as described below.

2.2 | Model

The Terrestrial ECOsystem (TECO) model was used in this study. In
the model, GPP was simulated by

GPP(t) = PAR(t) x FAPAR(t) x LUE x 1(t)

where PAR is photosynthetic active radiation (uE m~2 s™2), which
is derived from a weather station located approximately 100 m
from the experiment. FAPAR is the fraction of absorbed PAR by
plants, which is Moderate Resolution Imaging Spectroradiometer
(MODIS) Normalized Difference Vegetation Index (NDVI) in the
grid cell which the experiment site is in. In situ measurements
showed that warming increased NDVI by 6.8% (Natali et al., 2012).
Thus, a factor of 1.068 was applied to FAPAR in the warming
treatment. LUE is light use efficiency (g C (uE m~2 s~%)~%), which
was determined by data assimilation described below. 7 is environ-
mental scaler.

Carbon dynamics within the ecosystem were modeled according
to Luo, Wan, Hui, and Wallace (2001), Luo et al. (2017) as:

%:BxGPP(t)—{—éxAxKxX(t),

where X(t) is a 15 x 1 vector describing C pool sizes (i.e., two plant
pools, one litter pool, four soil layers with three soil pools in each
layer) at time t. B = [behoot Prost 00 0000000000 0] is a vector
describing GPP allocations to the C pools. GPP only directly allocates
to shoots (bshoot), roots broo: and autotrophic respiration (1-bghoot—
broot)- A is a square matrix representing C transfers between individual
C pools (black arrows in Figure 1). All the diagonal elements in the
matrix A are —1. K is a diagonal matrix representing pool turnover
rates (the amount of C per unit mass leaving each of the pools per
time step). ¢ is environmental scaler. A detailed description on the
matrix presentation of the terrestrial C dynamics model can be found
in Luo et al. (2017). In the model, the C dynamic is dependent on
active layer thickness (ALT; Figure 1). Only pools in the active layer

are involved at each time step.

2.3 | Gap-filling ALT

To obtain daily values of ALT for this analysis, we fit a linear func-
tion between ALT and a metric of air temperature during the thaw-
ing period. This metric, cumulative air temperature (T.ym), is defined
as accumulated degree-days above 0°C. In each spring, when the air
temperature over seven continuous days was >0°C, the first day of
the 7 days was marked as the start of the thawing period. In each
fall, when air temperatures over seven continuous days were below
0°C, the day before the first day of the 7 days was marked as the
end of the thawing period. T.,n was calculated during the thawing
period from monitored air temperature. With the calculated T ym,

ALT is computed by
ALT = aTeum + b,

where a and b are parameters, and were determined using linear
regression. During the freeze-up period, we adopted the seasonal
pattern of the simulated ALT in both the control and warming sce-
narios in the Community Land Model version 4.5 (CLM 4.5) in the
grid where the CiPEHR site is, and modified it based on the mea-
sured maximum ALT by multiplying a factor between 1/5 and 1/3.5
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FIGURE 1 Model structure with two plant pools, one litter pool, and four soil layers with three soil pools in each layer. Active layer
thickness varies over time. Only pools in the active layer are involved at each time step

depending on the treatment and year. A minimum ALT of 0.5 cm
was set to represent soil C availability during the winters.

2.4 | Parameters to be constrained

Previous studies have shown that in transient systems, data
assimilation can provide more reasonable model initial conditions,
compared to prescribed inputs (Carvalhais et al.,, 2008; Williams
et al., 2009). In this study, the initial pool sizes of plant shoots,
roots, litter, fast soil, slow soil, and passive soil pools, were con-
strained using data in the ambient treatment. The constrained ini-
tial pools in the ambient treatment were also used in the
warming treatment, assuming that no significant difference
existed between the ambient and warming treatment before the
treatment started.

With these identical initial conditions, 16 parameters were esti-
mated twice, respectively, in the ambient and warming treatments,
using the data assimilation described below. These parameters
include (1) light use efficiency (LUE) in the GPP model; GPP alloca-
tions to (2) shoots (bshoot) and (3) roots (breot) in the vector B; turn-
over rates of (4) shoots (kshoot), (5) roots (broot), (6) litter (Kiitter), (7)
fast soil C (kfast), (8) slow soil C (ksiow), and (9) passive soil C (kpassive)
in matrix K; C transfer coefficient from (10) litter to fast soil C (dfas,
jitter), (11) from litter to slow soil C (dgjowjitter), (12) from fast soil C to
slow soil Cldgowfast) (13) from fast soil C to passive soil C

(@passive fast), (14) from slow soil C to fast soil C (afastsiow), (15) from

slow soil C to passive soil C (dpassivejitter); and (16) from passive soil
C to fast soil C (dfast passive)-

2.5 | Data assimilation

A probabilistic inversion approach, based on Bayes' theorem, was
used to constrain the model parameters (Xu et al., 2006):

P(0|Z) < P(Z|0)P(0),

where P(0) is priori probability density function (PDF). P(Z|0) is a like-
lihood function with the assumption that the model error follows a

multivariate Gaussian distribution:

< Zi(t) — Xi(t))?
P(Z|0) oceXD{ ; tg;s(m 252(t) }7
where Zj(t) and Xi(t) are the observed and modeled values at time
t, and o¢{(t) is the standard deviation of measurements. The value
of i from 1 to 6 denotes GPP, ER, NEE, aboveground and below-
ground biomass, and soil C, respectively (Table 1). P(0|Z) is the
posterior PDF, which is constrained by using adaptive Metropolis
(AM) algorithm, a Markov Chain Monte Carlo (MCMC) technique
(Haario, Saksman, & Tamminen, 2001; Hararuk, Xia, & Luo, 2014).
In the AM algorithm, the proposal distribution at each iteration is
estimated depending on the past iterations by setting a covariance

matrix
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TABLE 1 Data used for the parameterization

Time
Data Year Period step
Growing season NEE 20092013 May-September  Daily?
Growing season GPP  2009-2013 May-September  Daily?
Growing season ER 2009-2013 May-September  Daily?
Aboveground biomass 2009-2013 Yearly
Belowground biomass 2011 Yearly
Soil C 2009-2011, 2013 Yearly

Notes. ER, Ecosystem Respiration; GPP, Gross Primary Production; NEE,
Net Ecosystem CO, Exchange.

?Daily data were calculated from half-hourly measurements to match the
time step of the model.

. C07 i§i07
"7 sqcov(Bo, - - 0-1) <o,

where s; is a parameter calculated based on dimension d (i.e.,
sq = 2.38/V/d, and d = 16 in this study) (Gelman, Roberts, & Gilks,
1996; Hararuk et al., 2014). An arbitrary initial covariance Cy is
required in the AM algorithm when iteration is not greater than ig
(io = 4,000 in this study). Cq is constructed by a test run in which
the new parameter is selected by a random move from the
previous one within a uniform distributed range (Hararuk et al.,
2014; Liang et al., 2015; Xu et al., 2006). The boundaries of the
uniform distribution are selected based on observations at the
study site (Mauritz et al., 2017; Natali et al., 2011, 2012, 2014;
Salmon et al, 2016; Webb et al, 2016) and published data
assimilation papers (Shi et al., 2015; Weng & Luo, 2011) (Table 2).

The AM algorithm was run repeatedly for 50,000 iterations to

derive the posterior PDF. The initial set of parameters was randomly

selected within the priori parameter ranges. At each iteration, a set
of parameters (0"°") is proposed based on the accepted parameters
in the previous iteration (0°%) and C;. Then the acceptance probabil-

ity is calculated by

o = min 177P(Z‘0neW)P(0neW) .
P(Z|(‘)O|d)P(90|d)

The acceptance probability is compared with a random number
u between 0 and 1. If « > u, the new set of parameters 0"V is
accepted. Otherwise, 0™Y is set to 0°. The data assimilation was
first applied to synthesizing all 5-year data to explore the overall
effect of warming on parameters. Data of each year were used to
estimate parameters respectively to reveal how the effect of
warming on parameters may change with exposure time.

The model performance was tested by comparing the model
simulations and observations. For GPP, ER, and NEE, the coeffi-
cient of determination (R?) was used to evaluate the goodness-of-
fit. Because R? is not suitable for assessing the goodness-of-fit
regarding a small amount of data, we used the mean absolute per-
centage error (MAPE) to evaluate the model simulated biomass-C:

100 ¢

MAPE :TZ

i=1

Yobs(i) = Ysim (’)
Yobs (')

where Y,,s and Y, are observed and simulated values, respectively.

A smaller MAPE means a better model simulation.

2.6 | Modeling experiments

With all the accepted parameter sets, the model was used to explore

impacts of biotic responses on SOC loss at the permafrost site. We

TABLE 2 The boundaries of priori uniform distributions and the maximum likelihood estimates (MLEs) of the posterior probability functions

of the focused 16 parameters

Parameter Symbol
Light use efficiency (x107 g C (uE m™2s73)7Y) LUE
GPP allocation to shoots bshoot
GPP allocation to roots broot
Turnover rate of shoots (x10~2 day™?) Kshoot
Turnover rate of roots (x10~2 day™?) Kroot
Turnover rate of litter (x10~2 day™?) Kiitter
Turnover rate of fast soil (x 1072 day™%) Keast
Turnover rate of show soil (x10~* day™?) Ksiow
Turnover rate of passive soil (x10~7 day™?) Kpassive
C transfer from litter to fast soil Qfast litter
C transfer from litter to slow soil Asjow litter
C transfer from fast to slow soil Asjow,fast

C transfer from fast to passive soil Opassive fast

C transfer from slow to fast soil Ofast,slow

C transfer from slow to passive soil Apassive slow

C transfer from passive to fast soil Ofast passive

Priori MLE

Minimum Maximum Ambient Warming
0.01 0.10 0.68 0.85
0.00 0.50 0.39 0.39
0.00 0.50 0.24 0.23
0.01 5.00 3.55 3.50
0.10 5.00 4.70 4.80
1.00 10.00 7.70 7.60
0.10 5.00 1.45 1.25
0.00 2.00 1.06 0.82
0.00 1.00 0.54 0.53
0.10 0.50 0.12 0.12
0.05 0.15 0.07 0.07
0.10 0.50 0.31 0.31
0.00 0.15 0.08 0.08
0.10 0.50 0.32 0.32
0.00 0.10 0.05 0.05
0.10 0.50 0.29 0.29
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FIGURE 2 Gap-filled (lines) and
observed (dots) active layer thickness in
the ambient (a) and warming treatment (b)

2009

acknowledge that the biotic responses as reflected in estimated param-
eter changes may be model-specific. The very parameters whose values
were estimated to change under the warming treatments may be
different when a different model was used. No matter which model
would be used in data assimilation, it is very likely that parameter
values have to adjust to match model with data well when the
environment changes. It is because it is pervasive that the parame-
ters have to be adjusted again in order to fit data well so as to
reflect biotic properties in the new environment (Li et al., 2016).

In this study, the model was run forward in three scenarios. The
first scenario was the control with physical forcings to influence
temperature, ALT, and other physical processes in the ambient treat-
ment with parameter sets constrained by data in the ambient treat-
ment. The second scenario was for physical change without biotic
responses to warming. In this scenario, we used physical forcings in
the warming treatment with parameter sets constrained by data in
the ambient treatment. The third scenario was to explore both phys-
ical change and biotic responses to soil warming. We used physical
forcings in the warming treatment with parameter sets constrained
by data in the warming treatment. By comparing the three scenarios,
we explored how changes in parameters representing biological pro-

cesses influence the C dynamic in the permafrost site.

3 | RESULTS

The fitted empirical function was able to simulate the ALT from

cumulative air temperature, with an R? of 0.97 and 0.96 in the

2010 2011 2012 2013

Year

ambient and the warming treatments, respectively (Figure 2). The
values of the slope (a) and intercept (b) of the linear function were
3.58 x 107* and 0.035 in ambient, and 3.65 x 10~* and 0.056 in
warming, respectively. The modified ALT during the freeze-up
showed longer zero-curtain period in the warming treatment than
that in the ambient treatment (Figure 2). The calculated daily ALT
(Figure 2) was input to drive the model.

In addition to the simulated ALT, we used observed soil tem-
perature and soil moisture in both the control and warming treat-
ments to drive the TECO model for both data assimilation and
forward simulation. In this way, the abiotic changes were
accounted for in this study. Out of the 16 parameters we explored,
three were significantly changed by the warming treatment
(Table 2, Figure 3). LUE, which represents the efficiency of energy
transfer from absorbed PAR to GPP in the vegetation canopy,
increased by 28.6% (Figure 3a) under warming in comparison with
the control. Warming significantly reduced the baseline (i.e., envi-
ronment-corrected) turnover rates of the fast and slow SOC pools
(Figure 3b, c). Additionally, changes in those parameters were
dependent on treatment year (Figure 4). The warming effect on
LUE increased gradually in the five experimental years, with small
(Figure 4a). Additionally, the

decreased magnitude of the baseline turnover rate of the fast and

fluctuations observed in 2013

slow SOC pools was amplified (Figure 4b, c). The warming effect
on the baseline turnover rate of the fast SOC pool changed from
—2.9% to —60.7% during 2009-2013 (Figure 4b), while the warm-
ing effect on the baseline turnover rate of the slow SOC pool
decreased from 9.8% to —31.0% (Figure 4c).
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FIGURE 4 Dependence of the warming-induced parameter change on treatment time. (a) Light use efficiency (LUE); (b) baseline turnover
rate of the fast SOC pool (ks.st); (c) baseline turnover rate of the slow SOC pool (ksjow)

The parameter changes significantly affected the goodness-of-fit
of the model simulations (Figures 5-7). By using the adjusted
parameters derived from data assimilation, the simulated GPP, ER,
and NEE matched observations well (R?> from 0.64 to 0.89; Fig-
ure 5a-f). Without parameter adjustment, the model performance
in the warming treatment was not as good, showing R? smaller
than 0.6 (Figure 5g—i). Similarly, the model with parameter adjust-
ment showed smaller MAPE in simulating biomass-C (16.9%) than
that without parameter adjustment (18.6%) (Figure 6). The MAPE
value of SOC was not affected by parameter adjustments (Fig-
ure 7).

The altered parameters significantly altered the predicted soil C
loss in the Arctic ecosystem (Figure 8). Soil is a C source even
under ambient conditions with a cumulative C loss of 69.9 g/m?
(Figure 8a, d). Without parameter adjustments, warming increased
C loss by 321%, reaching a cumulative C loss of 294.2 g/m? (Fig-
ure 8¢, d). With the parameter adjustments from data assimilation,
the warming-induced in C
156.4 g/m? (Figure 8b, d). In summary, the increased C loss with
warming was 224.3 and 86.5 g/m? without and with parameter

increase loss cumulatively reached

adjustments, respectively. In other words, parameter adjustments
resulted in a decrease in the warming-accelerated soil C loss by
61% (Figure 8b, d).

4 | DISCUSSION
4.1 | Biotic responses to warming and changes in
model parameters

It has been well-documented that environmental changes can induce
a suite of biotic responses, ranging from short-term physiological
adjustments (i.e., acclimation) to evolutionary adaptations via
changes in the abundances of individual organisms and community
assemblages. For example, photosynthesis acclimation to growth
temperature has been observed across different species (Berry &
Bjorkman, 1980). Acclimation of soil respiration to field warming has
also been reported in a tallgrass prairie (Luo et al., 2001). Recent
studies have also shown that warming can alter microbial community
and functional genes composition in Arctic ecosystems (Hultman

et al., 2015; Manzoni et al., 2012).
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Physiological acclimation and genetic adaptation fundamentally
alter process rates. For example, the optimal temperature of photo-
synthetic rate (Top) is adjusted when photosynthesis acclimation
occurs under different temperature treatments. Warming-induced
increases in the abundance of microbial functional genes for C
decomposition also correspond to increases in ecosystem respiration
(Natali et al., 2014; Xue et al., 2016). Thus, biotic responses to envi-
ronmental changes are quantitatively reflected in changes in process
rates and, thus in the corresponding model parameter values.

In this study, we used a data assimilation technique to estimate
changes of key parameters under soil warming in comparison with
those under control conditions at the Eight Mile Lake experimental
site of Alaska. Our analyses indicated that the warming treatment sig-
nificantly increased LUE and decreased the baseline (i.e., environ-
ment-corrected) rates of SOC decomposition in both the fast and
slow pools (Table 1; Figure 3b, c). In the model, LUE is the efficiency
of vegetation in converting the absorbed sunlight to biochemical
energy. It is an integrated representation of multiple photosynthetic
processes from light-harvesting to C-fixation reactions. Those photo-
synthetic processes are largely dependent on leaf nitrogen (N) content
because of the important roles of N in RuBP carboxylase and chloro-
phyll (Evans, 1989). Kergoat, Lafont, Arneth, Le Dantec, and Saugier
(2008) found that N content controls canopy LUE in a variety of
ecosystems. At the CiPEHR site, previous studies have shown that
warming and permafrost thaw promotes soil N availability and foliar N
pools (Natali et al., 2012; Salmon et al., 2016). Thus, the increased
LUE is likely the result of increased plant N acquisition from the soil.

In the model, the baseline turnover rates of the fast and slow

pools are the ability of microbial community in decomposing the

two SOC pools. They are integrated representations of multiple

components and processes, such as the composition of microbial

taxa, microbial richness, and microbial activity. Our results showed

that warming significantly decreased the baseline rates of SOC

decomposition in both the fast and slow pools, possibly due to the

microbial acclimation to warming (Bradford et al., 2008; Luo et al.,

2001). Consistent with acclimation of the microbial pool to warm-

ing, changes in microbial community and functional gene composi-

tion have been observed in this study site (Penton et al., 2013; Xue

et al, 2016), as well as in other Arctic ecosystems (Deng et al.,
2015; Hultman et al., 2015; Manzoni et al., 2012; Yuan et al,,

2018). These compositional changes likely have an impact in the

decomposition of SOC.

In addition, we explored how other parameters would change if

holding baseline turnover rates constant. Results showed that carbon

transfer coefficient (a;;, defined as the proportion of carbon from

pool j to pool i) among litter and SOC pools increased (Supporting

Information Figure S1). In other words, the proportion of carbon

from those pools to be respired toward CO, release decreased (i.e.,

increased carbon use efficiency). The results indicate that if baseline

turnover rates do not change under warming, the model would

increase carbon use efficiency to match data. The increase in carbon

use efficiency under warming is another mechanism of acclimation

when the baseline turnover rates are constant (Bradford et al.,

2008).
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Other studies have also demonstrated that global climate change
can alter parameter values. For example, assimilation of six data sets
into a seven-pool TECO model constrained parameter estimates of
the transfer coefficient from the nonwoody biomass pool (i.e., leaf
and fine root), resulting in higher coefficients in the elevated than
the ambient CO, treatment in the Duke Forest Free-Air CO, enrich-
ment study (Xu et al, 2006). In another study, 9-year warming
decreased the allocation coefficient of GPP to plant shoots as well
as the turnover rates of the live C pools (i.e., shoot and root C), but
increased the turnover rates of the litter and fast soil C pools in
comparison with those under the control treatment in a tallgrass
prairie (Shi et al., 2015). Indeed, estimated parameter values related
to canopy photosynthesis and ecosystem respiration varied across
12 eddy flux sites and with ecosystem types, and were further cor-
related with climate variables (Li et al., 2016). Key parameters
related to C cycle, such as plant C allocation coefficients have been
found to vary spatially across the globe (Bloom, Exbrayat, Van Der
Velde, Feng, & Williams, 2016). Thus, regardless of what models are
used for data assimilation, it is ubiquitous that model parameters
have to adjust in order to fit data well as to reflect biotic responses.
In contrast, estimated values do not change much for parameters

related to physical processes (Huang et al., 2018).

The variation of biological parameters with global change factors,
ecosystem types, and environmental variables reflects a fundamental
issue in simulation modeling. A traditional view on simulation model-
ing is that parameters are constants to represent fundamental proper-
ties of a system to be simulated. This definition of parameter may
work for physical systems, whereas biological systems constantly
evolve over time and with the environment. Thus, parameters to rep-
resent biological properties change over time, across space, and with
the environment. For example, the optimum temperature has been
found to linearly respond to growth temperature for both the maxi-
mum rate of carboxylation (Vcna,) and the maximum rate of electron
transport (Jiax) (Kattge & Knorr, 2007). However, it has not been
explicitly examined in the literature how a varying parameter, e.g.,
VCmax Can be distinguished from a variable, e.g., canopy photosyn-
thetic rate, for biological systems. This is a critical issue for developing

ESMs that can more precisely represent evolutionary processes.

4.2 | Modeled SOC dynamics under changing biotic
parameters

Our results showed that warming significantly increased SOC loss to

the atmosphere, consistent with previous observational and
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modeling studies in permafrost regions (Koven et al., 2011; Mauritz
et al., 2017; Natali et al., 2014; Schuur et al., 2015). However, previ-
ous modeling studies did not consider warming-induced biotic
changes by using fixed model parameters, while field studies usually
observe differences between treatments and control and do not sep-
arate the respective effects of abiotic versus biotic changes on SOC
dynamics. In this study, parameter adjustments significantly
improved the model simulated GPP, ER, NEE, and biomass (Figures 5
and 6). This is consistent with previous studies which show
improved model performance after parameter adjustments, exhibiting
a higher degree of fit between observations and model simulations
(Bauer et al., 2015; Shi et al., 2015; Williams et al., 2009; Xu et al.,
2006). However, the mean absolute percentage error was not chan-
ged for SOC after parameter adjustments (Figure 7). This may be

because that the SOC stock in this study site was large and had

__ . 4955
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relatively wide range of \variation due to heterogeneity
(29762.2 + 18505.0 g/m?; mean =+ SD across treatments and years).
The modeled SOC stock, with or without parameter adjustments, fell
within the wide observed range (Figure 7). In comparison to the total
SOC stock, the magnitude of SOC changes induced by parameter
adjustments (11.8, 37.0, 58.5, and 137.8 g/m2 for 2009, 2010, 2011,
and 2013, respectively) was much smaller for the 5-year experiment.
Thus, when looking at the total SOC stocks, the modeled values were
similar with or without parameter adjustments. As a result, the calcu-
lated mean absolute percentage error was not changed for total SOC
stock by the parameter adjustments. The simulation of SOC stock
may be further improved by increasing its weight in the cost function.

Although the SOC change induced by parameter adjustments
was not very large in comparison with the total stock, it may have
remarkable impacts on the land-atmosphere C balance and climate
change on long-term scales. In this study, parameter adjustments
resulted in a 61% reduction of warming-induced CO, emission from
SOC to the atmosphere, indicating that the current generation of
ESMs, which primarily utilize fixed model parameters, may overesti-
mate SOC loss in Arctic ecosystems. In addition, the impact of
parameter adjustments on SOC may be observed with longer term
experiments. For example, parameter adjustments significantly
improved the simulation of SOC in a 10-year experiment in a tall-
grass prairie (Shi et al., 2015).

Process-based land models have been widely implemented to
help understand ecosystem responses to climate warming (Cox,
Betts, Jones, Spall, & Totterdell, 2000; Eliasson et al., 2005; Knorr,
Prentice, House, & Holland, 2005). The majority of the models
include processes related to plant physiology, phenology, and soil C
dynamics. Parameterization of the physiological responses to warm-
ing usually implements some temperature response functions with
an optimum temperature ranging from 20 to 40°C for most models,
e.g., CLM4.5 (Oleson et al., 2013), LPJ (Sitch et al., 2003), LPJ-
GUESS (Smith et al., 2014), JULES (Clark et al., 2011), ORCHIDEE
(Krinner et al, 2005), TECO (Weng & Luo, 2008), and CABLE
(Kowalczyk et al., 2006). In the permafrost region where the mean
annual growing season temperature is much lower than 20°C, those
models are likely to exhibit an increased photosynthetic rate under
warming conditions. Phenological responses to warming, such as
changes in leaf onset dates, are parameterized with an accumulated
temperature, e.g., growing degree days (GDDs), for most models,
including CLM4.5, G'DAY (Botta, Viovy, Ciais, Friedlingstein, & Mon-
fray, 2000), ISAM (Song, Jain, & Mcisaac, 2013), LPJ (Sitch et al,,
2003), LPJ-GUESS (Smith et al., 2014), O-CN (Krinner et al., 2005),
ORCHIDEE (Krinner et al., 2005), SDGVM (Woodward & Lomas,
2004), and TECO (Weng & Luo, 2008). Warming usually has leaf
onset earlier and extends the growing season length. Accordingly,
most models likely simulate a positive warming response on vegeta-
tion productivity in the permafrost region. The positive responses
simulated by those processes-based models may partially translate to
the increased LUE in this study. This elevated LUE can increase plant
CO, assimilation, partially alleviating the positive feedback of Arctic
C cycling to climate change (Mauritz et al., 2017; Natali et al., 2012).
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However, the estimated changes in SOC pool baseline turnover
rates in this study may not be reproducible by many of the land
models that follow a similar structure of first-order kinetics of C
transfer among multiple pools, as in the CENTURY model (Parton,
Schimel, Cole, & Ojima, 1987; Parton, Stewart, & Cole, 1988). In the
current generation of ESMs with fixed parameters, the responses of
soil respiration to warming are mostly controlled by temperature
response functions such as, the Q9 exponential temperature or
Arrhenius functions (Lloyd & Taylor, 1994). Thus, modeled warming
effects on the decomposition of SOC pools do not include biotic
responses. The data assimilation result from this study, which is the
warming-induced decrease in baseline soil C turnover rates, can be
hardly represented by the current generation of ESMs no matter
how complex those models are. As a consequence, without

considering warming-induced changes in soil C turnover rates, ESMs

may overestimate the loss of soil C.

4.3 | Incorporation of biotic responses into ESMs

Biotic responses to global change have been recognized to strongly
influence modeling results (Atkin et al., 2008; Friend, 2010; Lombar-
dozzi, Bonan, Smith, Dukes, & Fisher, 2015; Ziehn, Kattge, Knorr, &
Scholze, 2011). Studies have been performed that incorporate differ-
ent types of biotic responses into models. For example, plant photo-
synthetic and respiratory acclimation to temperature has been
integrated into an ecosystem model (Friend, 2010). This model
allowed the optimum temperature for J,.. to respond to changes in

plant growth temperature by assuming the optimum leaf
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temperature linearly decays toward an equilibrium temperature. In
addition, several other studies have also been performed to incorpo-
rate plant photosynthetic and/or respiratory acclimation into ESMs
(Atkin et al., 2008; Lombardozzi et al., 2015; Ziehn et al., 2011).

However, it is much more difficult to incorporate microbial accli-
mation and adaptation than plant acclimation into ESMs since esti-
mated shifts in rates of SOC decomposition in response to warming
may involve multiple mechanisms such as the thermal acclimation of
microbial respiration (enzyme conformation and isozyme production)
and adaptations due to changes in microbial community composition.
Most of those microbial processes are not very well resolved at the
scales of explicit model structure representation. Nevertheless,
recent studies have attempted to add explicit microbial pools in
models (Allison, Wallenstein, & Bradford, 2010; Wang, Post, &
Mayes, 2013; Wieder, Bonan, & Allison, 2013). Models with explicit
microbial pools usually use Michaelis-Menten or reverse Michaelis—
Menten equations to represent microbial substrate assimilation and
decomposition. Although some of the microbial models were initially
intended to represent microbial acclimation, it is not yet clear how
well the models can achieve it. Moreover, these nonlinear microbial
models behave unrealistically when simulating soil C dynamics
(Wang et al., 2014) and still lack empirical evidence for support.

Alternatively, those unresolved microbial processes are repre-
sented by changes in parameter values in association with physiolog-
ical acclimation and genetic adaptation using data assimilation
techniques. The estimated shifts in model parameters are at least
grounded in observations. In this study, we show that three key
parameters shifted under the warming treatment in comparison with
the control. Parameter changes also strongly depend on treatment
time, indicating that warming-induced biological changes are gradual
instead of step changes (Figure 4), as exposure time to environmen-
tal stimuli can affect the extent to which acclimation occurs (Smith
& Dukes, 2013). The gradual shifts in parameter values are likely due
to time-dependent adjustments in physiological processes and micro-
bial composition. Additionally, it is reasonable to assume that model
parameter changes are also dependent on the magnitudes of envi-
ronmental stimuli (temperature increase and permafrost thaw). Thus,
model parameters need to be updated frequently to represent bio-
logical changes such as the acclimation of photosynthesis, auto-
trophic respiration and heterotrophic respiration to warming.

While this study estimated site- and treatment-specific changes
in parameters, general patterns of parameter changes across differ-
ent environmental conditions and ecosystem types has been recently
explored (Li et al., 2016). Searching for general patterns of parameter
changes certainly needs more research in the future. Nevertheless,
the concept of adjusting parameters to match model with data well

is generally applicable to all model-data integration studies.
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