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Abstract 

We introduce a new general framework for sign recognition from monocular video using limited quantities of annotated 
data. The novelty of the hybrid framework we describe here is that we exploit state-of-the art learning methods while also 
incorporating features based on what we know about the linguistic composition of lexical signs. In particular, we analyze 
hand shape, orientation, location, and motion trajectories, and then use CRFs to combine this linguistically significant in-
formation for purposes of sign recognition. Our robust modeling and recognition of these sub-components of sign produc-
tion allow an efficient parameterization of the sign recognition problem as compared with purely data-driven methods. 
This parameterization enables a scalable and extendable time-series learning approach that advances the state of the art in 
sign recognition, as shown by the results reported here for recognition of isolated, citation-form, lexical signs from Ameri-
can Sign Language (ASL). 
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1. Introduction 
Automatic  sign  recognition  is  a  difficult  problem  given 
the complexity of the linguistic structures in sign languag-
es and the challenges in modeling 3D configurations and 
movements  from  2D  video.  To  address  this  problem,  we 
use certain known linguistic properties of the language to 
structure the problem, and to inform, enhance, and correct 
visual recognition tasks. By combining these components 
into  a  unified  optimization  framework,  we  recognize 
isolated,  citation-form lexical signs  from  American  Sign 
Language (ASL) in a fully scalable manner.  

Whereas  prior  vision-based  approaches  to  sign  recogni-
tion by computer had focused on detection of linguistical-
ly  important  components,  such  as  handshape  and  motion 
trajectory,  neural  networks  have  recently  been  applied  to 
the  overall  problem  of  end-to-end  sign  recognition  with-
out  attending  to  linguistic  structure.  The  framework des-
cribed  here  (1)  exploits  recent  discriminative  neural  net-
based  learning  approaches,  coupled  with  generative 
model-based methods, to improve the detection and anal-
ysis  of  the  linguistically  relevant  components  and  fea-
tures; (2) integrates knowledge of linguistic structures and 
dependencies to derive additional parameters; and (3) uses 
CRF learning methods to integrate these features for sign 
recognition. This enhances visual recognition capabilities 
for  the  critical  sign  components  and  offers  a  unified 
framework  for  sign  recognition.  This  approach  is 
successful  working  with  limited quantities of  annotated 
data and is scalable. 

2. Previous Work 
Previous computer vision research on sign recognition has 
generally focused on aspects of sign production known to 
be  linguistically  important,  including  analysis  of  hand-
shapes, upper body pose, and movement trajectories. 

Prior  work  on  hand  pose  recognition  in  general  includes 
Heap  and  Hogg (1996),  Athitsos  and  Sclaroff (2001, 
2003)  and Tompson  et  al.  (2014). Lu  et  al.  (2003),  

Vogler  and  Metaxas (2004),  and  Isaacs  and  Foo (2004)  
focus specifically on the recognition of handshapes in sign 
languages.  Yuntao  and  Weng (2000),  Ding  and  Martinez 
(2007, 2009) , Ricco  and  Tomasi (2009),  Thangali  et  al. 
(2011),  Dilsizian  et  al. (2014),  and  Koller et  al. (2016) 
constrain  handshape  recognition  to  fit  those  handshapes 
that are used linguistically in the sign language. Koller et 
al. (2016)  is  notable  in  the  use  of  convolutional  neural 
nets to achieve state-of-the art handshape recognition on a 
large dataset. Thangali et al. (2011) and later Dilsizian et 
al. (2014)  leverage  phonological  constraints  on  start  and 
end  handshape  co-occurrence  to  improve  handshape  rec-
ognition accuracy. 

Other research has explored hand motion trajectories as an 
intermediate  step  towards  sign  recognition (Han,  Awad, 
and  Sutherland,  2009;  Dilsizian  et  al.,  2016;  Pu  et  al., 
2016).  Ding  and  Martinez  (2007,  2009)  combine  motion 
trajectories  with  face  and  hand  configuration  for  sign 
recognition.  Dilsizian et  al. (2016)  demonstrates  the 
importance of 3D motion trajectories for sign recognition. 

There have been some attempts to build full sign recogni-
tion  frameworks  for  isolated  signs,  which  have  had  lim-
ited  success. Cooper,  Holt,  and  Bowden  (2011) combine 
2D motion trajectories and handshape features to achieve 
71.4%  top-1  accuracy  on  984  signs  from  a  single  signer. 
Wang et al. (2016) achieve 70.9% accuracy on 1000 iso-
lated signs across multiple signers. Guo et al. (2016) pro-
pose  an  adaptive  Gaussian  Mixture  Model  HMM  frame-
work,  and from vocabulary  of  370  signs, they achieve  a 
top-1  accuracy  of  33.54%  and  a  top-5  accuracy  of 
59.79%. However,  they  rely  on  an  RGBD  sensor  for  3D 
information. 

More recently there have been several purely data-driven 
end-to-end  approaches  to  sign  recognition  from  continu-
ous signing based on Recurrent Neural Net (RNN) archi-
tectures (Cui, Liu, and Zhang, 2017; Koller, Zargaran, and 
Ney,  2017). However,  the  performance  of  these  image-
based approaches is held back by limitations in the data- 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Framework Overview 

sets  and  the  fact  that  they  do  not  integrate  linguistic 
knowledge and perform 3D analysis. They report limited 
success  in  sign  recognition,  and  these  methods  do  not 
generalize  well  across  multiple  signers. The  previous 
work  in  sign  language  recognition  clearly  demonstrates 
the need for a new computational approach.  

3. New Framework for Sign Recognition  
We  propose  a  learning-based  approach  with  three  sub-
components:  1)  new  discriminative  learning-based  com-
puter vision methods (based on advances in deep learning) 
coupled  with  generative  methods  for  hand  and  pose  fea-
ture extraction and related parameters (Section 3.1); 2) ad-
ditional  linguistically  driven  parameters  (Section  3.2), 
with  enhancement  of  parameters  from  known  linguistic 
dependencies  (Section  3.3);  and  machine  learning 
methods  for  sign  recognition  using  the  extracted  para-
meters (Section 3.4). 

This gives rise to a reduced parameterization and a signifi-
cantly  more  efficient  algorithm  capable  of  coping  with 
limited  quantities  of  annotated  data.  This  results  in  im-
proved sign recognition compared to previous approaches. 
See Figure 1 for an overview of our framework. 
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3.1 Summary of Features Used for Sign 
Recognition 

Using the methods to be described below, we estimated a 
comprehensive set of features (a total of 110), with regard 
to: a) handshapes, b) number of hands, c) 3D upper body 
locations, movements of the hands and arms, and distance 
between the hands, d) facial features and head movements 
(which  have  been  shown  to  improve  manual  sign 
recognition (von  Agris,  Knorr,  and  Kraiss,  2008;  Koller, 
Forster, and Ney, 2015)), and e) contact. The features for 
the  face  include  66  points  (visible  in Figure 2)  from  3D 
estimates  for  the  forehead,  ear,  eye,  nose,  and  mouth 
regions,  and  their  velocities  across  frames.  The  contact 
features are  extracted  from  our  3D  face  and  upper  body 
movement estimation, and relate to the possibilities of the 
hand  touching  specific  parts  of  the  head  or  body. The 
parameter extraction is described in the next section. 

3.2 Coupling of Discriminative and Generative 
Methods for Feature Extraction 

In order to build a robust and scalable framework for sign 
recognition, we model individual components of the sign 
recognition  problem.  In  this  section,  we  present  our  
methodology  for  upper  body  trajectory  and  handshape 
estimation, and related feature extraction. 



3.2.1 Upper  Body  and  Hand/Arm  Movement 
Trajectories 

Previous  work  has  shown  that  tracking  upper  body  pose, 
especially in 3D, is critical to sign recognition (Fillbrandt, 
Akyol,  and  Kraiss,  2003;  Vogler  and  Metaxas,  2004; 
Zafrulla  et  al.,  2011;  Dilsizian  et  al.,  2014).  In  our 
framework,  we  model  upper  body  pose  and  use  the  3D 
joint locations as features. 

To  develop  an  accurate  3D  pose  estimation  suitable  for 
ASL,  we  integrate  state-of-the-art  neural  net-based  2D 
and  3D  pose  estimation  (fine-tuned  on  ASL  upper  body 
videos)  and  a  generative,  deformable  model-based fitting 
approach  to  further  refine  the  3D  pose (Dilsizian,  2016). 
We start with a Convolutional Pose Machine (Wei et al., 
2016) trained  on  a  combination  of  the  MPII  human  pose 
dataset (Andriluka et al., 2014) and the Kinect-based data-
set for upper body pose in Dilsizian et al. (2016) to better 
match the 2D pose projection. Next, we use nearest neigh-
bor  matching  with  a  3D  Pose  library  that  includes  the 
Human 3.6M  dataset (Ionescu  et  al.,  2014) and  is  also 
combined with the Kinect-based dataset from Dilsizian et 
al. (2016). 

We  formulate  generative  human  pose  recognition  as  a 
search problem in 3D (Euclidean) space (Dilsizian, 2016); 
solving  this  problem  entails finding  optimal  pose  para-
meters of a human model whose learned part appearance 
representation  has  the  best  matching  score  based  on  the 
image.  Confidence  maps  returned  by  the  Convolutional 
Pose  Machine  are  used  as  the  cost  surface  and  inversely 
projected in 3D space along the tensor normal to the cam-
era. The neural-net based 3D prediction is then used as an 
initialization to our generative approach to search for 3D 
candidate locations for each part. 

In our novel 3D generative approach (Dilsizian, 2016), the 
global  3D  upper  body  pose  is  modeled  by  an I-node 
relational  graph  representing  I  human  skeleton parts  and 
joints.  Each  node  represents  a  part  center,  and  edges 
denote skeletal links. For image X, the function  

φλ : X × L → Rd  

extracts features for C candidate 2D image projections  

L = l1, l2, . . . , lC 

of each 3D candidate location  

Y = y1, y2, . . . , yC 

at the scale space associated with the depth parameter  

λ = λ1, λ2, . . . , λC. 

In order to conduct a local search for the jth part across 3D 
candidate locations Yj , we compute the corresponding 2D 
projections Lj = fc(Yj ) and the quantized depth parameters 
λj of the part. The local matching score makes use of the 
learned  part  templates tλj,mj and  the  local  mixture 
parameter bj

mj ; it is computed as: 

 

These  local  scores  are  optimized  efficiently  through  the 
use of a dynamic programming approach similar to those 
of Felzenszwalb and  Huttenlocher (2005) and Yang  and 
Ramanan (2011). The optimization includes the passing of 
a  message S from  child  to  parent  nodes.  The  optimal 

parameters  of  a  part i over  the  candidate  locations, 
mixtures, and scales are obtained by optimizing the local 
score and the sum over each message S passed from each 
child node j: 

Message Sj makes use of the learned pairwise mixture pa-
rameter bij , as well as the pairwise distance term w, which 
scores  the  relative  location  of  part j with  respect  to  its 
parent i. 

 

Equations 2 and 3 recursively compute the score of a part 
at each location and scale using the learned part templates. 
The global optimization is computed from the head node, 
which  has  index 1.  We find  the  joint  configuration  with 
the maximum score: 

 

 
Examples  of  3D upper  body pose  reconstructions 
projected onto the image and from an alternative view can 
be seen in Figure 2. 

 

 

Figure 2:  3D  upper  body  pose  reconstruction  and  hand 
bounding boxes during an example of the signs glossed as 
LOOK  (top  row)  and  SHELF/FLOOR  (bottom  row).  
[The pictures depict the full body reconstruction that our 
system  generates,  although  we  only  use  the  upper  body 
for this research.] 
  



Because  our  framework  is  capable  of  integrating  a  wide 
variety of disparate features, we can further mine the 3D 
trajectories  for  additional  discriminative  information. 
Another  relevant  set  of  features  is  extracted  from 
linguistically  recognized  events,  namely:  we  identify  1- 
vs.  2-handed  signs,  categorize  hand  touching  events,  and 
analyze  motion  trajectory.  These  additional  features  are 
particularly  discriminative  when  combined  with  features 
relating to handshape appearance. 

3.2.2 Handshape Parameters 

Our parameterization also includes feature extraction from 
hand images specifically. We focus on the handshapes at 
the start and end of each sign, because those are the most 
linguistically informative handshapes. 

We extract features derived from a neural net trained for 
handshape  recognition.  Additional  features  are  then  de-
rived based on the relationship between handshapes on the 
dominant and non-dominant hands, as well as at the start 
and  end  of  the  sign  (factoring  in  linguistic  dependencies 
derived from frequencies of co-occurrence in our dataset). 

In order to avoid overfitting and capture both the local and 
global appearance of the hand, we train Inception-ResNet- 
v2 (Szegedy et al., 2017) on hand images extracted from 
our upper body pose prediction. The handshape CNN re-
turns  top-1  accuracy  of  70.1%;  top-5  accuracy  reaches 
92.3%. However, we use the entire set of handshape prob-
abilities  from  the  output  of  the  neural  net  as  features  for 
sign recognition.  

3.3 Linguistic Structure 

Once  motion  trajectories  and  handshape  parameters  have 
been  extracted,  we  enhance  features  from  Section  3.1  by 
focusing  on  properties  known  to  be  linguistically  impor-
tant and by leveraging known linguistic dependencies. 

3.3.1 Upper Body Parameters Related to Contact 

Some  signs  involve  linguistically  significant  contact 
between the two hands, or hands contacting some specific 
part  of  the  head,  face,  or  body.  We  include  parameters 
extracted from recognizing when such contact occurs and 
classifying the types of contact. For present purposes, the 
face  and  body  were  divided  into  different  regions,  based 
on the linguistically significant distinctions. 

 

Figure 3: Visualization of Locations  
where Contact Occurs 

Contact  events  are  considered  relative  to  3D  keypoints 
identified on the face and body from our pose estimation. 
A  threshold  is  used  for  each  touch  event  that  is 
determined  empirically  based  on  what  leads  to 
improvement  to  sign  recognition  accuracy. Locations  for 
contact events are visualized in Figure 3.  

3.3.2 Number of Hands 

Whereas  some  signs  are  produced  using  only  one  hand, 
others are  normally  produced  using  two  hands  (and  in 
such  cases,  there  are  some  dependencies with  regard  to 
what  happens  on  the  two  hands,  as  discussed  in  Section 
3.4). Thus we introduce an additional parameter related to 
this  distinction.  Our  dataset  of  motion  trajectories  from 
citation-form  ASL  examples  is  used  to  train  an  HMM  to 
predict 1- vs. 2- handed sequences from the dataset. 

In  summary,  flags  for  signs  involving  contact  between 
hands, face, and body, and flags for 1- vs. 2-handed signs 
function  as  additional  parameters  in  our  sign  recognition 
feature vector.  

3.4 Linguistic Dependencies 

3.4.1 Dependencies  between  Start  &  End 
Handshapes 

Following  Thangali et  al. (2011),  Thangali  (2013), and 
Dilsizian et al. (2014), we enhance handshape recognition 
by leveraging phonological constraints that hold between 
start  and  end  handshapes  in  lexical  signs,  as  reflected  in 
the  co-occurrence  probabilities  from  our  data  set.  After 
extracting,  for  each  sign,  the  above  per-frame  start/end 
handshape  parameters,  we  adjust  those  parameters  based 
on  the  computation  of  the  probabilities  of  co-occurrence 
of specific start and end handshapes. These co-occurrence 
statistics  are  multiplied  by  the  joint  probabilities  of  one 
window  from  the  beginning  of  the  sequence,  which 
contains the start handshape, and one from the end, which 
contains the end handshape. The new start/end handshape 
priors  are  then  used  to  adjust  and improve  handshape 
parameters  for  each  frame  of  the  sequence  that  falls  in  a 
start or end window.  

3.4.2 Dependencies  between  Dominant  &  Non- 
dominant Handshapes in 2-handed Signs 

In  addition  to  enhancing  handshape  parameters  through 
use of start/end handshape co-occurrence statistics, we ex-
tract  another  relevant  parameter  from  comparing  left  and 
right  handshapes.  Many  2-handed  lexical  signs  are  pro-
duced  with  the  same  handshape  on  both  hands.  Further-
more, when the handshapes differ, the options for the non-
dominant hand are severely reduced to a small set of un-
marked handshapes. By computing the probability that the 
two hands are producing the same shape, the learning al-
gorithm  can  benefit  from  this  additional  parameter  with 
known discriminative value. 

To  compare  the  shapes,  we  compute  a  simple  Mahala-
nobis  distance  between  the  dominant  and  non-dominant 
hand probability sets for each frame. This distance, which 
captures the similarity between the two handshapes, is ad-
ded to our sign recognition feature vector. 

  



3.5 Summary of Feature Vector Extraction 

Based  on  our  previously  described  hybrid  approach,  we 
assemble  the  features  from  the  upper  body  and  the 
handshapes  into  a  feature  vector  to  be  used  for  sign 
recognition.  This  final  feature  vector  consists,  for  each 
frame of a sign, of the features outlined in 3.1.  

3.6 Sign Recognition 

Our current sign recognition approach combines detection 
of  upper  body  pose  and  hand  configurations,  the  latter 
leveraging  statistical  properties  resulting  from  linguistic 
constraints on sign formation, as just discussed. In doing 
this,  we  face  several  challenges.  First,  the  signal  for 
handshape recognition is noisy. Although for the training 
samples,  we  can  rely  on  human  annotations  of  start  and 
end frames of a given sign (and these are the handshapes 
that  are  most  important  for  sign  identification),  for  the 
testing  samples,  there  needs  to  be  estimation  of  the  start 
and end frames containing the handshapes to be taken as 
representative  for  the  given  sign.  Second,  the  motion 
trajectories for  a  sign  vary  spatially  and  temporally  from 
one instance to another of a given sign produced by same 
or different signers. 

To process the motion trajectories, we normalize all upper 
body locations to the sternum location. In order to capture 
dependencies  between  our  various  features  and  to 
explicitly model the structure of the language, we employ 
a  structured  CRF-based  method.  We  employ  Hidden 
Conditional  Ordinal  Random  Fields  (HCORF),  which 
explicitly  model  sequence  dynamics  as  the  dynamics  of 
ordinal categories (Walecki et al., 2015); in our case, the 
ordinal categories are start and end handshape labels. We 
modify  the HCORF  objective  function  to  include  an 
additional error term that compares handshape predictions 
to ground truth labels for the two ordinal states (start/end). 

Given  normalized  3D  body  part  locations (including  the 
face and the head) and handshape features for each frame 
of  a  sequence,  our  resulting  optimization  minimizes  the 
error  of  sign  recognition  while  locally  minimizing  the 
error  of  start/end  handshape  prediction.  As  demonstrated 
in  our  Experiments  section,  this  ordinal,  structured 
approach  is  flexible  and  robust  enough  to  overcome 
various  types  of  failures  in  the  different  components  of 
our framework. 

In  summary,  our  approach  to  sign  recognition  takes 
advantage  of  the  fact  that  ASL  has  structure,  and  we 
achieve  a  significant  reduction  in  the  parameters  used, 
which  results  in  more  efficient  and  robust  ASL  learning, 
as demonstrated in the next section. 

4. Experiments and Results 

4.1 Dataset 

This  research  exploits  the  publicly  accessible  American 
Sign  Language  Lexicon  Video  Dataset  (ASLLVD) 
(Neidle,  Thangali,  and  Sclaroff,  2012).1 This  includes 
over 8500 examples corresponding to almost 2800 mono-

                                                             
1 See http://www.bu.edu/av/asllrp/dai-asllvd.html. This dataset is also 
available  at http://secrets.rutgers.edu/dai/queryPages/search/search.php  
and forms the basis for our new Web-accessible ASLLRP Sign 
Bank, accessible at http://dai.cs.rutgers.edu/dai/s/signbank (Neidle et 
al., 2018).  

morphemic  lexical  signs  in  citation  form  from  6  native 
ASL  signers. Although  the  entire  ASLLVD  dataset 
contains between 1 and 6 signers for all signs, we chose to 
use  a  subset  of  350  signs,  from  among  those  with  the 
highest  numbers  of  signers  and  examples.  On  average, 
there were 4.7 signers and 6.9 total examples per sign for 
this set of 350 signs (a total of about 2400 examples). For 
each sign, 2 examples were randomly selected to be in the 
testing  set,  and  the  remaining  examples  were  used  for 
training. 

4.2 Experiments 

For each frame in each sequence, we extract a feature vec-
tor of dimension 110, which, as explained in Section 3.4, 
includes  features  for  handshape,  motion  trajectory,  and 
other  linguistically  motivated  features  discussed  above. 
Then  this  feature  vector  is  used  as  input  to  our  modified 
HCORD-based framework for sign recognition. We train-
ed on our data from 6 signers, using about 80% of the data 
for training and 20% for testing. We tested on vocabular-
ies of differing sizes (175 vs. 350 signs) as a first step in 
demonstrating the  efficiency  and  scalability  of  our  ap-
proach. The  set  of  175  was  chosen  randomly  from  the 
signs in the larger set of 350. 

We also performed a series of experiments to separate out 
the  contributions  of  the  different  parameters,  including 
those based on linguistically motivated features. This lin-
guistic parameterization is especially useful in the current 
context of sign recognition research, where large amounts 
of data with ground truth are not available. 

4.3 Results  

4.3.1 Recognition Accuracy 

As shown in Figure 4, from a vocabulary of 350 signs (in-
cluding both 1- and 2-handed signs), using all of our para-
meters, we achieve a top-1 accuracy of 93.3% and a top-5 
accuracy of 97.9%.  

  
Figure 4: ASL sign recognition accuracy for top-n 

predictions over a 350 sign vocabulary. 



 

 
Figure 4 demonstrates  the  importance  of  integrating  the 
different  features  computed  by  our  framework.  Sign 
recognition  based  solely  on  3D  upper  body  trajectories 
(violet)  achieves  reasonable  accuracy.  Although  the 
handshape features by themselves are not sufficient to rec-
ognize signs, when combined with 3D trajectories, a sig-
nificant boost in recognition accuracy is achieved (green). 
The addition of the contact events (shown in red) and lin-
guistic information (blue)  also  improves  recognition  ac-
curacy,  particularly  when  considering  top-5  accuracy, 
where it penalizes low probability observations that would 
result in impossible or improbable start/end combinations. 

In addition,  the  importance  of  3D  trajectories  over  2D  is 
demonstrated  here.  The  use  of  3D  motion  trajectories 
(green) results in a significant boost in performance over 
2D (yellow). This shows that there is significant discrim-
inatory information built into the depth component of the 
motion trajectories. This important dimension is captured 
through  the explicitly  modeling of upper  body  3D  pose, 
and would not be  captured by an end-to-end sign recog-
nition CNN that implicitly encodes 2D motion patterns. 
 

  
Figure 5: Comparing the Results on  
Vocabularies of 175 vs. 350 Signs 

 
When  increasing  the  vocabulary  size  from 175 to 350 
signs (Figure 5), accuracy declines by only 2.1% for top-
1, and by only 1.3% for top-5. This provides evidence for 
the scalability of the approach.  

4.3.2 Error Analysis 

An analysis of the errors in sign recognition revealed that 
some  of  the  confusion  involved  signs  with  strong 
similarities  in  handshapes  or  movement  trajectories.  For 
example,  there  was  one  case where  CAN  was  confused 
with COLD. Both signs involve closed fists in front of the 
body and have a similar movement pattern, but they differ 
critically  in  orientation  (with  the  palm/fist  facing 
downward for CAN but sideward, facing the center of the 
body (and shaking a bit from side to side), for COLD) as 
seen  in Figure 6.  Other  recognition  errors  similarly 
involved  orientation  of  the  hands  or  confused  locations 
relative to the body, or handshapes or movement patterns 
in some cases. 

In any case, the success rate already achieved through the 
reduction in the number of parameters offers promise for 
scalability  of  these  methods  to  large  databases.  We  will 
investigate  modifying  the  current  parameterizations  to 
better capture  certain  types  of  distinctions  that  are  lin-
guistically significant but that were not reliably exploited 
in  the current  set  of  results.  For  example,  we  expect  that 
further improvements  can  be  achieved  by  incorporating 
additional information  about  linguistic  dependencies 
related to movement patterns of the two hands. 

4.4 Discussion 

There is a limited number of previous studies on isolated 
sign  recognition  available  for  comparison.  In  addition, 
many of the reports in the literature are for different sign 
languages (e.g., (von Agris et al., 2006; von Agris, Knorr, 
and Kraiss, 2008; Cooper, Holt, and Bowden, 2011; Wang 
et  al.,  2016)).  Furthermore,  research  focused  on  ASL 
generally  uses  datasets  we  don’t  have  (which  in  many 
cases contain small numbers of signs (e.g., (Zahedi et al., 
2005; Zaki and Shaheen, 2011)), and/or the authors do not 
provide  enough  details  or  code  to  enable  direct 
comparisons).  

One relevant comparison is Guo et al. (2016), which uses 
a  dataset  of  a  size  comparable to ours  (370  signs) and a 
similar  number  of  signers  (5).  Despite  using  RGBD  data 
and  a  number  of  examples  for  training  about  4  times 
greater  than  in  our  experiments,  their  adaptive  
GMM-HMM  method  results  in  recognition  accuracy  of 
only 33.54% for top-1, 59.79% for top-5, and 69.41% for  
top-10.  

Conly (2016) is based on the same ASLLVD data we use, 
but he supplements  that  with  additional  data  that  he 

Figure 6: CAN on the left (hands move downward); COLD on the right (hands move side to side) 



collected that include depth information; and, despite that, 
and  even  taking  into  account  the  fact  that  he  is  working 
with  a  larger  set  of  signs,  he  still  gets  quite  a  bit  lower 
recognition  accuracy.  From  a  vocabulary  of  just  over 
1,100  signs,  Conly  reports  the  correct  sign  match  14.7% 
(top-1) of the time, and 36.0% for top-5. Although we use 
a smaller set of signs, 350 total, we get the correct match 
93.3% (top-1) and 97.6% (top-5) of the time. 

Thus,  our  recognition  accuracy  compares  favorably  with 
the  two  approaches  just  mentioned,  and  furthermore  has 
the advantage of being scalable.  

5. Conclusions 
We have established a framework for sign recognition that 
relies  on  combining  3D  modeling  of  start  and  end  hand-
shapes  as  distributions  based  on  a  few  initial  and  final 
frames  (enhanced  by  statistical  information  about  their 
linguistic dependencies) and of 3D movement patterns of 
the  hands,  arms,  and  upper  body  during  sign  production. 
In particular, we have developed a statistical approach that 
combines distributions of the initial and final hand shapes 
and  pose  coupled  with  the  spatiotemporal  patterning  of 
the arm and upper torso. Using this approach, we achieve 
high  accuracy  for  recognition  of ASL  signs.  This  statis-
tical parameterization of the linguistically important com-
ponents of lexical signs makes it possible to employ learn-
ing  methods  that  can  take  advantage  of  large  amounts  of 
data  relevan t  to  each  parameter,  without  requiring  large 
numbers  of  examples  of  each  individual  sign  in  the 
vocabulary. As a result of the use of a reduced parameter 
representation,  this  method  will  also  scale  to  larger  sign 
vocabularies.  To  improve  our  sign  recognition  results  in 
the  future,  we  intend  to  expand  the  proposed 
parameterization  to  incorporate  additional  linguistic 
information  about  location,  orientation,  and  movement 
patterns  that  are  relevant  to  discrimination  of  signs.  The 
ability  to  incorporate  such  improvements  represents  yet 
another advantage over purely data-driven approaches. 
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