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Abstract

We introduce a new general framework for sign recognition from monocular video using limited quantities of annotated

data. The
incorporating features
hand shape, orientation, location,

novelty of the hybrid framework we describe here is that we exploit state-of-the art learning methods while also
based on what we know about the linguistic composition of lexical signs. In particular, we analyze
and motion trajectories, and then use CRFs to combine this linguistically significant in-

formation for purposes of sign recognition. OQur robust modeling and recognition of these sub-components of sign produc-

tion allow an efficient parameterization of the sign

recognition problem as compared with purely data-driven methods.

This parameterization enables a scalable and extendable time-series learning approach that advances the state of the art in
sign recognition, as shown by the results reported here for recognition of isolated, citation-form, lexical signs from Ameri-

can Sign Language (ASL).
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1. Introduction

Automatic sign recognition is a difficult problem given
the complexity of the linguistic structures in sign languag-
es and the challenges in modeling 3D configurations and
movements from 2D video. To address this problem, we
use certain known linguistic properties of the language to
structure the problem, and to inform, enhance, and correct
visual recognition tasks. By combining these components
into a unified optimization framework, we recognize
isolated, citation-form lexical signs from American Sign
Language (ASL) in a fully scalable manner.

Whereas prior vision-based approaches to sign recogni-
tion by computer had focused on detection of linguistical-
ly important components, such as handshape and motion
trajectory, neural networks have recently been applied to
the overall problem of end-to-end sign recognition with-
out attending to linguistic structure. The framework des-
cribed here (1) exploits recent discriminative neural net-
based learning approaches, coupled with generative
model-based methods, to improve the detection and anal-
ysis of the linguistically relevant components and fea-
tures; (2) integrates knowledge of linguistic structures and
dependencies to derive additional parameters; and (3) uses
CRF learning methods to integrate these features for sign
recognition. This enhances visual recognition capabilities
for the critical sign components and offers a unified
framework for sign recognition. This approach is
successful working with limited quantities of annotated
data and is scalable.

2. Previous Work

Previous computer vision research on sign recognition has
generally focused on aspects of sign production known to
be linguistically important, including analysis of hand-
shapes, upper body pose, and movement trajectories.

Prior work on hand pose recognition in general includes
Heap and Hogg (1996), Athitsos and Sclaroff (2001,
2003) and Tompson et al. (2014). Lu et al. (2003),

Vogler and Metaxas (2004), and Isaacs and Foo (2004)
focus specifically on the recognition of handshapes in sign
languages. Yuntao and Weng (2000), Ding and Martinez
(2007, 2009) ., Ricco and Tomasi (2009), Thangali et al.
(2011), Dilsizian et al. (2014), and Koller et al. (2016)
constrain handshape recognition to fit those handshapes
that are used linguistically in the sign language. Koller et
al. (2016) is notable in the use of convolutional neural
nets to achieve state-of-the art handshape recognition on a
large dataset. Thangali et al. (2011) and later Dilsizian et
al. (2014) leverage phonological constraints on start and
end handshape co-occurrence to improve handshape rec-
ognition accuracy.

Other research has explored hand motion trajectories as an
intermediate step towards sign recognition (Han, Awad,
and Sutherland, 2009; Dilsizian et al., 2016; Pu et al.,
2016). Ding and Martinez (2007, 2009) combine motion
trajectories with face and hand configuration for sign
recognition. Dilsizian et al. (2016) demonstrates the
importance of 3D motion trajectories for sign recognition.

There have been some attempts to build full sign recogni-
tion frameworks for isolated signs, which have had lim-
ited success. Cooper, Holt, and Bowden (2011) combine
2D motion trajectories and handshape features to achieve
71.4% top-1 accuracy on 984 signs from a single signer.
Wang et al. (2016) achieve 70.9% accuracy on 1000 iso-
lated signs across multiple signers. Guo et al. (2016) pro-
pose an adaptive Gaussian Mixture Model HMM frame-
work, and from vocabulary of 370 signs, they achieve a
top-1 accuracy of 33.54% and a top-5 accuracy of
59.79%. However, they rely on an RGBD sensor for 3D
information.

More recently there have been several purely data-driven
end-to-end approaches to sign recognition from continu-
ous signing based on Recurrent Neural Net (RNN) archi-
tectures (Cui, Liu, and Zhang, 2017; Koller, Zargaran, and
Ney, 2017). However, the performance of these image-
based approaches is held back by limitations in the data-
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Figure 1: Framework Overview

sets and the fact that they do not integrate linguistic
knowledge and perform 3D analysis. They report limited
success in sign recognition, and these methods do not
generalize well across multiple signers. The previous
work in sign language recognition clearly demonstrates
the need for a new computational approach.

3. New Framework for Sign Recognition

We propose a learning-based approach with three sub-
components: 1) new discriminative learning-based com-
puter vision methods (based on advances in deep learning)
coupled with generative methods for hand and pose fea-
ture extraction and related parameters (Section 3.1); 2) ad-
ditional linguistically driven parameters (Section 3.2),
with enhancement of parameters from known linguistic
dependencies (Section 3.3); and machine learning
methods for sign recognition using the extracted para-
meters (Section 3.4).

This gives rise to a reduced parameterization and a signifi-
cantly more efficient algorithm capable of coping with
limited quantities of annotated data. This results in im-
proved sign recognition compared to previous approaches.
See Figure 1 for an overview of our framework.
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3.1 Summary of Features Used for Sign
Recognition

Using the methods to be described below, we estimated a
comprehensive set of features (a total of 110), with regard
to: a) handshapes, b) number of hands, ¢) 3D upper body
locations, movements of the hands and arms. and distance
between the hands, d) facial features and head movements
(which have been shown to improve manual sign
recognition (von Agris, Knorr, and Kraiss, 2008; Koller,
Forster, and Ney, 2015)), and e) contact. The features for
the face include 66 points (visible in Figure 2) from 3D
estimates for the forehead, ear, eye, nose, and mouth
regions, and their velocities across frames. The contact
features are extracted from our 3D face and upper body
movement estimation, and relate to the possibilities of the
hand touching specific parts of the head or body. The
parameter extraction is described in the next section.

3.2 Coupling of Discriminative and Generative
Methods for Feature Extraction

In order to build a robust and scalable framework for sign
recognition, we model individual components of the sign
recognition problem. In this section, we present our
methodology for upper body trajectory and handshape
estimation, and related feature extraction.



3.21 Upper Body and Hand/Arm Movement
Trajectories

Previous work has shown that tracking upper body pose,

especially in 3D, is critical to sign recognition (Fillbrandt,

Akyol, and Kraiss, 2003; Vogler and Metaxas, 2004;

Zafrulla et al., 2011; Dilsizian et al., 2014). In our

framework, we model upper body pose and use the 3D

joint locations as features.

To develop an accurate 3D pose estimation suitable for
ASL, we integrate state-of-the-art neural net-based 2D
and 3D pose estimation (fine-tuned on ASL upper body
videos) and a generative, deformable model-based fitting
approach to further refine the 3D pose (Dilsizian, 2016).
We start with a Convolutional Pose Machine (Wei et al.,
2016) trained on a combination of the MPII human pose
dataset (Andriluka et al., 2014) and the Kinect-based data-
set for upper body pose in Dilsizian et al. (2016) to better
match the 2D pose projection. Next, we use nearest neigh-
bor matching with a 3D Pose library that includes the
Human 3.6M dataset (Ionescu et al., 2014) and is also
combined with the Kinect-based dataset from Dilsizian et
al. (2016).

We formulate generative human pose recognition as a
search problem in 3D (Euclidean) space (Dilsizian, 2016);
solving this problem entails finding optimal pose para-
meters of a human model whose learned part appearance
representation has the best matching score based on the
image. Confidence maps returned by the Convolutional
Pose Machine are used as the cost surface and inversely
projected in 3D space along the tensor normal to the cam-
era. The neural-net based 3D prediction is then used as an
initialization to our generative approach to search for 3D
candidate locations for each part.

In our novel 3D generative approach (Dilsizian, 2016), the
global 3D upper body pose is modeled by an I-node
relational graph representing I human skeleton parts and
joints. Each node represents a part center, and edges
denote skeletal links. For image X, the function

¢ XxL—R*
extracts features for C candidate 2D image projections
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of each 3D candidate location

at the scale space associated with the depth parameter
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In order to conduct a local search for the jr'h part across 3D
candidate locations ¥j , we compute the corresponding 2D
projections L; = f(¥; ) and the quantized depth parameters
4; of the part. The local matching score makes use of the
learned part templates ™ and the local mixture
parameter b;" ; it is computed as:

P, (Ymy) =t w g (X, fu(Y;) + BT (1)
These local scores are optimized efficiently through the
use of a dynamic programming approach similar to those
of Felzenszwalb and Huttenlocher (2005) and Yang and
Ramanan (2011). The optimization includes the passing of
a message S from child to parent nodes. The optimal

parameters of a part i/ over the candidate locations,
mixtures, and scales are obtained by optimizing the local
score and the sum over each message S passed from each
child node j:

(Y. m) = ¢i(Yiom) + Y 8(Yim) ()
jechild(7)
Message §j makes use of the learned pairwise mixture pa-
rameter by . as well as the pairwise distance term w, which
scores the relative location of part j with respect to its
parent 7.
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Equations 2 and 3 recursively compute the score of a part
at each location and scale using the learned part templates.
The global optimization is computed from the head node,
which has index 1. We find the joint configuration with
the maximum score:

Yy1,my = argmax W(y;,mq) “4)

Y1 €Y1, m1Emy

Starting with ¢, and m; , we backtrack through location
and mixture indices to find all the part locations Y of the
optimal configuration.

Examples of 3D upper body pose reconstructions

projected onto the image and from an alternative view can

be seen in Figure 2.
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Figure 2: 3D upper body pose reconstruction and hand
bounding boxes during an example of the signs glossed as
LOOK (top row) and SHELF/FLOOR (bottom row).
[The pictures depict the full body reconstruction that our
system generates, although we only use the upper body
for this research.]



Because our framework is capable of integrating a wide
variety of disparate features, we can further mine the 3D
trajectories for additional discriminative information.
Another relevant set of features is extracted from
linguistically recognized events, namely: we identify 1-
vs. 2-handed signs, categorize hand touching events, and
analyze motion trajectory. These additional features are
particularly discriminative when combined with features
relating to handshape appearance.

3.2.2

Our parameterization also includes feature extraction from
hand images specifically. We focus on the handshapes at
the start and end of each sign, because those are the most
linguistically informative handshapes.

Handshape Parameters

We extract features derived from a neural net trained for
handshape recognition. Additional features are then de-
rived based on the relationship between handshapes on the
dominant and non-dominant hands, as well as at the start
and end of the sign (factoring in linguistic dependencies
derived from frequencies of co-occurrence in our dataset).

In order to avoid overfitting and capture both the local and
global appearance of the hand, we train Inception-ResNet-
v2 (Szegedy et al., 2017) on hand images extracted from
our upper body pose prediction. The handshape CNN re-
turns top-1 accuracy of 70.1%; top-5 accuracy reaches
92.3%. However, we use the entire set of handshape prob-
abilities from the output of the neural net as features for
sign recognition.

3.3 Linguistic Structure

Once motion trajectories and handshape parameters have
been extracted, we enhance features from Section 3.1 by
focusing on properties known to be linguistically impor-
tant and by leveraging known linguistic dependencies.

3.3.1

Some signs involve linguistically significant contact
between the two hands, or hands contacting some specific
part of the head, face, or body. We include parameters
extracted from recognizing when such contact occurs and
classifying the types of contact. For present purposes, the
face and body were divided into different regions, based
on the linguistically significant distinctions.

Upper Body Parameters Related to Contact

Figure 3: Visualization of Locations
where Contact Occurs

Contact events are considered relative to 3D keypoints
identified on the face and body from our pose estimation.
A threshold is used for each touch event that is
determined empirically based on what leads to
improvement to sign recognition accuracy. Locations for
contact events are visualized in Figure 3.

3.3.2 Number of Hands

Whereas some signs are produced using only one hand,
others are normally produced using two hands (and in
such cases, there are some dependencies with regard to
what happens on the two hands, as discussed in Section
3.4). Thus we introduce an additional parameter related to
this distinction. Our dataset of motion trajectories from
citation-form ASL examples is used to train an HMM to
predict 1- vs. 2- handed sequences from the dataset.

In summary, flags for signs involving contact between
hands, face, and body, and flags for 1- vs. 2-handed signs
function as additional parameters in our sign recognition
feature vector.

3.4 Linguistic Dependencies

3.4.1 Dependencies between Start & End

Handshapes

Following Thangali et al. (2011), Thangali (2013), and
Dilsizian et al. (2014), we enhance handshape recognition
by leveraging phonological constraints that hold between
start and end handshapes in lexical signs, as reflected in
the co-occurrence probabilities from our data set. After
extracting, for each sign, the above per-frame start/end
handshape parameters, we adjust those parameters based
on the computation of the probabilities of co-occurrence
of specific start and end handshapes. These co-occurrence
statistics are multiplied by the joint probabilities of one
window from the beginning of the sequence, which
contains the start handshape, and one from the end, which
contains the end handshape. The new start/end handshape
priors are then used to adjust and improve handshape
parameters for each frame of the sequence that falls in a
start or end window.

3.4.2 Dependencies between Dominant & Non-

dominant Handshapes in 2-handed Signs

In addition to enhancing handshape parameters through
use of start/end handshape co-occurrence statistics, we ex-
tract another relevant parameter from comparing left and
right handshapes. Many 2-handed lexical signs are pro-
duced with the same handshape on both hands. Further-
more, when the handshapes differ, the options for the non-
dominant hand are severely reduced to a small set of un-
marked handshapes. By computing the probability that the
two hands are producing the same shape, the learning al-
gorithm can benefit from this additional parameter with
known discriminative value.

To compare the shapes, we compute a simple Mahala-
nobis distance between the dominant and non-dominant
hand probability sets for each frame. This distance, which
captures the similarity between the two handshapes, is ad-
ded to our sign recognition feature vector.



3.5 Summary of Feature Vector Extraction

Based on our previously described hybrid approach, we
assemble the features from the upper body and the
handshapes into a feature vector to be used for sign
recognition. This final feature vector consists, for each
frame of a sign, of the features outlined in 3.1.

3.6 Sign Recognition

Our current sign recognition approach combines detection
of upper body pose and hand configurations, the latter
leveraging statistical properties resulting from linguistic
constraints on sign formation, as just discussed. In doing
this, we face several challenges. First, the signal for
handshape recognition is noisy. Although for the training
samples, we can rely on human annotations of start and
end frames of a given sign (and these are the handshapes
that are most important for sign identification), for the
testing samples, there needs to be estimation of the start
and end frames containing the handshapes to be taken as
representative for the given sign. Second, the motion
trajectories for a sign vary spatially and temporally from
one instance to another of a given sign produced by same
or different signers.

To process the motion trajectories, we normalize all upper
body locations to the sternum location. In order to capture
dependencies between our various features and to
explicitly model the structure of the language, we employ
a structured CRF-based method. We employ Hidden
Conditional Ordinal Random Fields (HCORF), which
explicitly model sequence dynamics as the dynamics of
ordinal categories (Walecki et al., 2015); in our case, the
ordinal categories are start and end handshape labels. We
modify the HCORF objective function to include an
additional error term that compares handshape predictions
to ground truth labels for the two ordinal states (start/end).

Given normalized 3D body part locations (including the
face and the head) and handshape features for each frame
of a sequence, our resulting optimization minimizes the
error of sign recognition while locally minimizing the
error of start/end handshape prediction. As demonstrated
in our Experiments section, this ordinal, structured
approach is flexible and robust enough to overcome
various types of failures in the different components of
our framework.

In summary, our approach to sign recognition takes
advantage of the fact that ASL has structure, and we
achieve a significant reduction in the parameters used,
which results in more efficient and robust ASL learning,
as demonstrated in the next section.

4. Experiments and Results
4.1 Dataset

This research exploits the publicly accessible American
Sign Language Lexicon Video Dataset (ASLLVD)
(Neidle, Thangali, and Sclaroff, 2012).1 This includes
over 8500 examples corresponding to almost 2800 mono-

! See http://www bu.edu/av/asllrp/dai-asllvd html. This dataset is also
available at http://secrets rutgers edu/dai/queryPages/search/search php
and forms the basis for our new Web-accessible ASLLRP Sign
Bank, accessible at http://dai.cs rutgers.edu/dai/s/signbank (Neidle et
al., 2018).

morphemic lexical signs in citation form from 6 native
ASL signers. Although the entire ASLLVD dataset
contains between 1 and 6 signers for all signs, we chose to
use a subset of 350 signs, from among those with the
highest numbers of signers and examples. On average,
there were 4.7 signers and 6.9 total examples per sign for
this set of 350 signs (a total of about 2400 examples). For
each sign, 2 examples were randomly selected to be in the
testing set, and the remaining examples were used for
training.

4.2 Experiments

For each frame in each sequence, we extract a feature vec-
tor of dimension 110, which, as explained in Section 3.4,
includes features for handshape, motion trajectory, and
other linguistically motivated features discussed above.
Then this feature vector is used as input to our modified
HCORD-based framework for sign recognition. We train-
ed on our data from 6 signers, using about 80% of the data
for training and 20% for testing. We tested on vocabular-
ies of differing sizes (175 vs. 350 signs) as a first step in
demonstrating the efficiency and scalability of our ap-
proach. The set of 175 was chosen randomly from the
signs in the larger set of 350.

We also performed a series of experiments to separate out
the contributions of the different parameters, including
those based on linguistically motivated features. This lin-
guistic parameterization is especially useful in the current
context of sign recognition research, where large amounts
of data with ground truth are not available.

4.3 Results

4.3.1

As shown in Figure 4, from a vocabulary of 350 signs (in-
cluding both 1- and 2-handed signs), using all of our para-
meters, we achieve a top-1 accuracy of 93.3% and a top-5
accuracy of 97.9%.

Recognition Accuracy
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Figure 4: ASL sign recognition accuracy for top-n
predictions over a 350 sign vocabulary.



Figure 4 demonstrates the importance of integrating the
different features computed by our framework. Sign
recognition based solely on 3D upper body trajectories
(violet) achieves reasonable accuracy. Although the
handshape features by themselves are not sufficient to rec-
ognize signs, when combined with 3D trajectories, a sig-
nificant boost in recognition accuracy is achieved (green).
The addition of the contact events (shown in red) and lin-
guistic information (blue) also improves recognition ac-
curacy, particularly when considering top-5 accuracy,
where it penalizes low probability observations that would
result in impossible or improbable start/end combinations.

In addition, the importance of 3D trajectories over 2D is
demonstrated here. The use of 3D motion trajectories
(green) results in a significant boost in performance over
2D (yellow). This shows that there is significant discrim-
inatory information built into the depth component of the
motion trajectories. This important dimension is captured
through the explicitly modeling of upper body 3D pose,
and would not be captured by an end-to-end sign recog-
nition CNN that implicitly encodes 2D motion patterns.
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Figure 5: Comparing the Results on
Vocabularies of 175 vs. 350 Signs

When increasing the vocabulary size from 175 to 350
signs (Figure 5), accuracy declines by only 2.1% for top-
1, and by only 1.3% for top-5. This provides evidence for
the scalability of the approach.

4.3.2

An analysis of the errors in sign recognition revealed that
some of the confusion involved signs with strong
similarities in handshapes or movement trajectories. For
example, there was one case where CAN was confused
with COLD. Both signs involve closed fists in front of the
body and have a similar movement pattern, but they differ
critically in orientation (with the palm/fist facing
downward for CAN but sideward, facing the center of the
body (and shaking a bit from side to side), for COLD) as
seen in Figure 6. Other recognition errors similarly
involved orientation of the hands or confused locations
relative to the body, or handshapes or movement patterns
in some cases.

Error Analysis

In any case, the success rate already achieved through the
reduction in the number of parameters offers promise for
scalability of these methods to large databases. We will
investigate modifying the current parameterizations to
better capture certain types of distinctions that are lin-
guistically significant but that were not reliably exploited
in the current set of results. For example, we expect that
further improvements can be achieved by incorporating
additional information about linguistic dependencies
related to movement patterns of the two hands.

4.4 Discussion

There is a limited number of previous studies on isolated
sign recognition available for comparison. In addition,
many of the reports in the literature are for different sign
languages (e.g., (von Agris et al., 2006; von Agris, Knorr,
and Kraiss, 2008; Cooper, Holt, and Bowden, 2011; Wang
et al., 2016)). Furthermore, research focused on ASL
generally uses datasets we don’t have (which in many
cases contain small numbers of signs (e.g., (Zahedi et al.,
2005; Zaki and Shaheen, 2011)), and/or the authors do not
provide enough details or code to enable direct
comparisons).

One relevant comparison is Guo et al. (2016), which uses
a dataset of a size comparable to ours (370 signs) and a
similar number of signers (5). Despite using RGBD data
and a number of examples for training about 4 times
greater than in our experiments, their adaptive
GMM-HMM method results in recognition accuracy of
only 33.54% for top-1, 59.79% for top-5, and 69.41% for
top-10.

Conly (2016) is based on the same ASLLVD data we use,
but he supplements that with additional data that he

Figure 6: CAN on the left (hands move downward); COLD on the right (hands move side to side)



collected that include depth information; and, despite that,
and even taking into account the fact that he is working
with a larger set of signs, he still gets quite a bit lower
recognition accuracy. From a vocabulary of just over
1,100 signs, Conly reports the correct sign match 14.7%
(top-1) of the time, and 36.0% for top-5. Although we use
a smaller set of signs, 350 total, we get the correct match
93.3% (top-1) and 97.6% (top-5) of the time.

Thus, our recognition accuracy compares favorably with
the two approaches just mentioned, and furthermore has
the advantage of being scalable.

5. Conclusions

We have established a framework for sign recognition that
relies on combining 3D modeling of start and end hand-
shapes as distributions based on a few initial and final
frames (enhanced by statistical information about their
linguistic dependencies) and of 3D movement patterns of
the hands, arms, and upper body during sign production.
In particular, we have developed a statistical approach that
combines distributions of the initial and final hand shapes
and pose coupled with the spatiotemporal patterning of
the arm and upper torso. Using this approach, we achieve
high accuracy for recognition of ASL signs. This statis-
tical parameterization of the linguistically important com-
ponents of lexical signs makes it possible to employ learn-
ing methods that can take advantage of large amounts of
data relevan t to each parameter, without requiring large
numbers of examples of each individual sign in the
vocabulary. As a result of the use of a reduced parameter
representation, this method will also scale to larger sign
vocabularies. To improve our sign recognition results in
the future, we intend to expand the proposed
parameterization to incorporate additional linguistic
information about location, orientation, and movement
patterns that are relevant to discrimination of signs. The
ability to incorporate such improvements represents yet
another advantage over purely data-driven approaches.
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