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Abstract

We report on the high success rates of our new, scalable, computational approach for sign recognition from monocular video,
exploiting linguistically annotated ASL datasets with multiple signers. We recognize signs using a hybrid framework combining
state-of-the-art learning methods with features based on what is known about the linguistic composition of lexical signs. We model
and recognize the sub-components of sign production, with attention to hand shape, orientation, location, motion trajectories, plus
non-manual features, and we combine these within a CRF framework. The effect is to make the sign recognition problem robust,
scalable, and feasible with relatively smaller datasets than are required for purely data-driven methods. From a 350-sign vocabulary
of isolated, citation-form lexical signs from the American Sign Language Lexicon Video Dataset (ASLLVD), including both 1- and
2-handed signs, we achieve a top-1 accuracy of 93.3% and a top-5 accuracy of 97.9%. The high probability with which we can
produce 5 sign candidates that contain the correct result opens the door to potential applications, as it is reasonable to provide a sign
lookup functionality that offers the user 5 possible signs, in decreasing order of likelihood, with the user then asked to select the

desired sign.
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1. Introduction

Whereas many older approaches to computer-based sign
recognition from video had focused on a selection of fea-
tures known to be linguistically relevant to sign produc-
tion, more recent research that has exploited neural nets
has generally not attended to what is known about lin-
guistic structure. The latter approaches do not work well,
however, in the absence of large quantities of annotated
data, quantities that exceed what is generally available for
sign languages currently. Furthermore, they fail to provide
insights into cases where the recognition fails.

To address the linguistic and computer vision complexi-
ties associated with automatic sign recognition, we have
developed a novel hybrid approach that utilizes a set of
known linguistic properties of the language to optimize
the parameterization for state-of-the-art machine learning
methods. These methods also rely on linguistically annot-
ated data for citation-form signs from our American Sign
Language Lexicon Video Dataset (ASLLVD) (Neidle,
Thangali, and Sclaroff, 2012).1

Our 3-step approach differs from most other methods
since it uses parameters related to upper body and hand
and face configuration, coupled with linguistic constraints
(as reflected in the statistics from the dataset).

1) We first use neural networks to automatically extract
the 2D upper body and facial features from a signer’s
video sequence. These features are then used to estimate
the 2D pose of the signer, and then, using dynamic
programming, to fit a 3D model to estimate the related
parameters. We also extract hand features using another
neural net trained for handshape recognition.

' See http://www.bu.edu/av/aslirp/dai-asllvd.html. This dataset is also
available at http://secrets.rutgers.edu/dai/queryPages/search/search.php
and forms the basis for our new Web-accessible ASLLRP Sign
Bank, accessible at http://dai.cs.rutgers.edu/dai/s/signbank (Neidle et
al., 2018). The Sign Bank examples that were recorded as isolat-
ed signs, in citation form, are taken from the ASLLVD; the Sign
Bank also includes additional examples taken from continuous
signing.

2) We then introduce linguistic dependencies to adjust
the probabilities of estimated start and end handshapes;
these are based on precomputed co-occurrence probability
priors for start/end handshape combinations. We also add
a parameter related to the possible relationships between
handshapes on the 2 hands in 2-handed signs.

3) The previously estimated parameters related to the
upper body and handshape probabilities, modified with
linguistically based information, are then used in a
modified Hidden Conditional Ordinal Random Field
(HCORF) for sign recognition.

This unified hybrid framework for sign recognition offers
impressive sign recognition results in a fully scalable
manner. Using a 350-sign vocabulary of isolated, citation-
form lexical signs, we achieve a top-1 accuracy of 93.3%
and a top-5 accuracy of 97.9%.

Section 2 briefly situates our current approach in the
context of previous attempts at sign recognition. Section 3
presents our framework; the experiments and results are
summarized in Section 4. In Section 5, we discuss
possible applications of this technology.

2. Previous Achievements in
Sign Recognition

In the early 2000’s, isolated sign recognition from video
or RGBD sensors, often using features of the signing
known to be linguistically significant (e.g., Bowden et al.,
2004), demonstrated some success on small vocabularies.

Signer independence poses additional challenges. Von A-
gris et al. (2006), using extracted image features, achieved
96.9% signer-independent recognition of 153 signs from 4
native signers of British Sign Language. Later, von Agris,
Knorr, and Kraiss (2008), by combining 2D motion trajec-
tories, facial features, and a hand model, achieved 88.3%,
84.5%, and 80.2% respectively for signer-independent
recognition of vocabularies of 150, 300, and 450 signs
from 25 native signers of German Sign Language. These
results indicate that scalability is an issue.

Zaki and Shaheen (2011), using hand-crafted features
describing handshape and orientation, place of articula-



tion, and hand motion, report 89.9% success in recogniz-
ing 30 ASL signs from 3 signers from the RWTH-
BOSTON-50 database (Zahedi et al., 2005; that database
is, in fact, comprised of a subset of 50 signs taken from
the ASL data we had made publicly available and which
are now shared through our Data Access Interface (DAI,
and the new DAI 2); see Footnote 1).

For larger vocabularies, Cooper et al. (2011) attained
71.4% top-1 accuracy on a set of 984 signs from British
Sign Language, but all from a single signer. Wang et al.
(2016) achieved 70.9% accuracy on 1,000 isolated signs
in Chinese Sign Language across multiple signers. How-
ever, they relied on an RGBD sensor for 3D information.

More recent approaches to sign language recognition, al-
though focused on continuous signing rather than isolated
signs, have been spurred by advances in neural nets. Such
purely data-driven end-to-end approaches have been bas-
ed on Recurrent Neural Net (RNN) architectures (e.g.,
Cui, Liu, and Zhang, 2017). Koller, Zargarin, and Ney
(2017) use such an architecture, incorporating HMMs and
2D motion trajectories (but without integration of linguis-
tic knowledge) to achieve 45.1% accuracy. Their multi-
signer performance (27.1%) demonstrates that such
methods do not generalize easily.

It is difficult to make direct comparisons with other sign
recognition results because of vast differences in the na-
ture of the data and conditions for research reported in the
literature. In general, however, as the size of the dataset
increases, the accuracy of isolated sign recognition has
decreased. Methods used have not proved to be scalable.
Our methods achieve both high accuracy in sign
recognition on sizable vocabularies and scalability.

3. Overview of our Sign
Recognition Framework

Our hybrid approach uses 1) discriminative neural net
based computer vision methods coupled with generative
methods for hand and pose feature extraction and related
parameters, 2) additional linguistically driven parameters
(Sections 3.1, 3.2), with enhancement of parameters from
known linguistic dependencies (Section 3.3); and
3) scalable machine learning methods for sign recognition
using the extracted parameters (Section 3.4).

This results in improved sign recognition compared to
previous approaches, because of the reduced parameteriz-
ation and the efficiency of the algorithms, which are cap-
able of coping with limited quantities of annotated data.

3.1 Summary of Features

Using the framework just described, we estimate a com-
prehensive set of features, with regard to: a) handshapes,
b) number of hands, ¢) 3D upper body locations,
movements of the hands and arms, and distance between
the hands, d) facial features, and e) contact.

a) Features related to handshape are extracted from a
neural net.

b) Signs are categorized based on the number of hands
(1 vs. 2 hands) and the degree of similarity of the
handshapes on the 2 hands for 2-handed signs.

c) The upper body parameters include 3D joint loca-
tions for the shoulders, arms, and wrists; velocities;

and the distance between the hands.

d) The features for the face include 66 points (visible in
Figure 1) from 3D estimates for the forehead, ear,
eye, nose, and mouth regions, and their velocities
across frames.

e) The contact parameters are extracted from our 3D
face and upper body movement estimation, and relate
to the possibilities of the hand touching specific parts
of the body, e.g., the forehead or other parts of the
face, arms, upper body, or the other hand.

The initial parameter values will, in some cases, be
subsequently modified based on linguistic considerations,
to be discussed in Section 3.3. This comprehensive set of
parameters is then used within our CRF-based machine
learning framework for purposes of sign recognition.

3.2 Feature Parameter Extraction
Next we describe how these parameters are extracted.

3.21

We model upper body pose and use the 3D joint locations
as features. We use Convolutional Neural Nets (CNNs)
for initial estimation of 2D pose. We then apply a nearest
neighbor matching coupled with a dynamic programming
approach to search for the optimal 3D pose and part
confidence maps (Dilsizian et al., 2016).

Upper Body, Hands, and Arms

Using this 3D approach, we also extract linguistically
important parameters, such as 3D motion trajectories,
information about the number of hands (1- vs. 2-hand-
ed) and events involving contact between the 2 hands
or contact with the face or body, as shown in Figure 1.

Figure 1. Locations where contact occurs

3.2.2

Our parameterization also includes feature extraction from
hand images specifically. We focus on the handshapes at
the start and end of each sign, because those are the most
linguistically informative handshapes.

Handshape

We extract features derived from a neural net trained for
handshape recognition. Additional features are then deriv-
ed based on the relationship between handshapes on the
dominant and non-dominant hands, as well as at the start
and end of the sign (factoring in linguistic dependencies
derived from frequencies of co-occurrence in our dataset;
see Section 3.3).

3.23 Face and Head

Non-manual features have been shown to improve
recognition of manual signs (von Agris, Knorr, and
Kraiss, 2008; Koller, Forster, and Ney, 2015). Thus we
estimate the 3D locations of 66 points on the face, as well



as head movement, to include all possible informative
non-manual information.

3.3 Incorporation of Linguistic Modeling for
Enhancement of Parameter Estimates

The initial estimates of several of the above parameters
can be refined based on known linguistic dependencies.

3.3.1 Dependencies between Start & End Handshapes

We exploit phonological constraints that hold between
start and end handshapes in lexical signs to refine the
handshape estimates for start and end handshapes
(Thangali et al., 2011; Thangali 2013; Dilsizian et al.,
2014). These dependences are reflected in the co-
occurrence probabilities from our dataset.

3.3.2 Dependencies between Dominant & Non-

dominant Handshapes in 2-handed Signs

We distinguish 2-handed signs that have essentially the
same handshape on both hands from those that involve
different handshapes, based in part on the handshape
similarity parameter mentioned earlier. In the former case,
handshape accuracy can be boosted by combining
information from the independent handshape estimates for
the 2 hands. In the latter case, handshape possibilities for
the non-dominant hand are significantly constrained.

3.4 Sign Recognition

We use the above extracted parameters as input to a struc-
tured Conditional Random Field (CRF) method—a modi-
fied Hidden Conditional Ordinal Random Field (HCORF)
(Walecki et al., 2015)—to recognize signs. In addition, for
each sequence, our modified HCORF includes an
additional error term that measures the error between
start/end handshape predictions and ground truth labels.

The advantages of our linguistically motivated, reduced
parameter approach are demonstrated in the next section.

4. Sign Recognition Experiments
and Results

4.1 Dataset

In this research we focus on lexical signs, the largest mor-
phological class of signs. For training, we used the most
comprehensive publicly accessible, linguistically annotat-
ed, video collection of isolated ASL signs, the American
Sign Language Lexicon Video Dataset (ASLLVD)
(Neidle, Thangali, and Sclaroff, 2012); see also
Footnote 1. The ASLLVD itself includes over 8500
examples corresponding to almost 2800 monomorphemic
lexical signs in citation form from 6 native signers.
However, for these experiments, we selected a set of 350
signs from among those that had the greatest number of
examples and signers per sign. On average, there were 4.7
signers and 6.9 total examples per sign for this set of 350
signs (a total of about 2400 examples). This was sufficient
to train our neural nets.

4.2 Experiments

For each frame in each video sequence, we extract a
feature vector of dimension 110, which includes the
previously discussed features (handshape, motion
trajectory, and other linguistically motivated features).
This feature vector is used as input to our machine

learning framework for sign recognition. We trained on
our dataset, which generally contained 4-6 signers per
example, using 80% of the data for training and 20% for
testing. For each sign, 2 examples were randomly selected
to be in the testing set, and the remaining examples were
used for training. We tested on vocabularies of differing
sizes (175 vs. 350 signs) to test the efficiency and
scalability of our approach. We also performed a series of
experiments to separate out the contributions of the
different parameters.

4.3 Results

As shown in Figure 2, from a vocabulary of 350 signs (in-
cluding both 1- and 2-handed signs), using all of our para-
meters, we achieve a top-1 accuracy of 93.3% and a top-5
accuracy of 97.9%. Figure 3 demonstrates the advantage
of': 3D pose over 2D (green vs. amber); the addition of
contact parameters (red); and the inclusion of all linguistic
parameters and constraints in our framework (blue).

Comparing the results of vocabularies of 175 vs. 350
signs (Figure 3), accuracy declines by only 2.1% for top 1,
and by only 1.3% for top 5 with the larger vocabulary.
This provides evidence for the scalability of the approach.
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5. Significance for Potential
Future Applications

There are many possible practical applications of
technology for sign identification from video. For
example, sign lookup capability would present significant
benefits to Deaf communities, and to others wanting
access to sign language resources such as dictionaries.
Sign language dictionaries are currently often accessed by
means of the written language, e.g., looking up a sign in
an ASL resource by searching for a possible English
translation of that sign. This has obvious drawbacks, as
the user (whether Deaf or hearing) may not know the
corresponding word from the spoken/written language.
Available alternatives, which are in use for some sign
language resources, generally involve laboriously having
the user specify multiple features of the sign, such as
handshape, etc.; this constitutes a very inefficient and
unsatisfying lookup mechanism.

Our goal is to develop a lookup functionality that would
enable users to search through our own electronic
resources (Neidle et al., 2018), or to use our lookup
interface to access other resources, through one of two
input methods: either by producing the target in front of a
webcam, or by identifying the start and end frames of the
sign of interest from a video with continuous signing.

Although additional research will be required before such
a lookup mechanism can be provided, the fact that we
currently achieve about 98% success, using scalable
methods, in identifying five candidate signs that include
the target sign is extremely encouraging. It would be
practically reasonable to offer the user 5 choices, in
decreasing order of likelihood, as part of the lookup
process, with the user able to view those sign videos and
choose among the signs before confirming the selection
and proceeding with the lookup, as sketched in Figure 4.
Final design of such an interface will also involve
consultation with prospective users of such tools.

6. Conclusions

We have demonstrated a general framework for
recognition of isolated signs produced by multiple signers.
Our framework leverages linguistic structure and
dependencies, thereby enabling it to work from limited
quantities of annotated data and to outperform previous
methods. Our parameter extraction methods are based on
state-of-the-art 3D handshape, face, and upper body
parameter estimation, as well as integration of linguistic
properties and constraints. The resulting modified
parameter vector allows for a scalable and efficient
approach to sign recognition.

In the future, we plan to expand the corpus and associated
annotation sets to further improve the performance of our
methods. We also intend to refine/augment the
linguistically motivated features to enhance recognition
accuracy, which would not be possible with purely data-
driven methods. Furthermore, the methods being
developed will, we hope, have beneficial practical
applications, which we intend to pursue.

Play Sign Video
Play Combined Video

Play Sign Video
Play Combined Video

Play Sign Video
Play Combined Video

Play Sign Video
Play Combined Video

Play Sign Video
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Figure 4. Example of Choices to be Offered to a User before
Confirmation of a Lookup Selection — Based on the Interface for
our Current ASLLRP Sign Bank
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