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Abstract

Recent developments in Non-Volatile Memories (NVMs) have
opened up a new horizon for in-memory computing. Despite
the significant performance gain offered by computational
NVMs, previous works have relied on manual mapping of
specialized kernels to the memory arrays, making it infea-
sible to execute more general workloads. We combat this
problem by proposing a programmable in-memory proces-
sor architecture and data-parallel programming framework.
The efficiency of the proposed in-memory processor comes
from two sources: massive parallelism and reduction in data
movement. A compact instruction set provides generalized
computation capabilities for the memory array. The pro-
posed programming framework seeks to leverage the under-
lying parallelism in the hardware by merging the concepts
of data-flow and vector processing. To facilitate in-memory
programming, we develop a compilation framework that
takes a TensorFlow input and generates code for our in-
memory processor. Our results demonstrate 7.5% speedup
over a multi-core CPU server for a set of applications from
Parsec and 763X speedup over a server-class GPU for a set
of Rodinia benchmarks.
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1 Introduction

Non-Volatile Memories (NVMs) create oppportunities for
advanced in-memory computing. By re-purposing memory
structures, certain NVMs have been shown to have in-situ

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ASPLOS’18, March 24-28, 2018, Williamsburg, VA, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed
to the Association for Computing Machinery.

ACM ISBN ISBN 978-1-4503-4911-6/18/03...$15.00
https://doi.org/10.1145/3173162.3173171

Scott Mahlke
University of Michigan
mahlke@umich.edu

Reetuparna Das
University of Michigan
reetudas@umich.edu

analog computation capabilities. For example, resistive mem-
ories (ReRAMs) store the data in the form of resistance of tita-
nium oxides, and by injecting voltage into the word line and
sensing the resultant current on the bit-line, the dot-product
of the input voltages and cell conductances is obtained using
Ohm’s and Kirchhoff’s laws.

Recent works have explored the design space of ReRAM-
based accelerators for machine learning algorithms by lever-
aging this dot-product functionality [13, 39]. These ReRAM-
based accelerators exploit the massive parallelism and re-
laxed precision requirements, to provide orders of magnitude
improvement when compared to current CPU/GPU archi-
tectures and custom ASICs, in-spite of their high read/write
latency. In this paper, we seek to answer the question, to what
extent is resistive memory useful for more general-purpose
computation?

Despite the significant performance gain offered by com-
putational NVMs, previous works have relied on manual
mapping of convolution kernels to the memory arrays, mak-
ing it difficult to configure it for diverse applications. We com-
bat this problem by proposing a programmable in-memory
processor architecture and programming framework. A gen-
eral purpose in-memory processor has the potential to im-
prove performance of data-parallel application kernels by an
order of magnitude or more.

The efficiency of an in-memory processor comes from
two sources. The first is massive data parallelism. NVMs
are composed of several thousands of arrays. Each of these
arrays are transformed into a single instruction multiple data
(SIMD) processing unit that can compute concurrently. The
second source is a reduction in data movement, by avoiding
shuffling of data between memory and processor cores. Our
goal is to design an architecture, establish the programming
semantics and execution models, and develop a compiler, to
expose the above benefits of ReRAM computing to general
purpose data parallel programs.

The in-memory processor architecture consists of memory
arrays and several digital components grouped in tiles, and
a custom interconnect to facilitate communication between
the arrays and instruction supply. Each array acts as a unit
of storage as well as a vector processing unit. The proposed
architecture extends the ReRAM array to support in-situ
operations beyond dot product (i.e., addition, element-wise
multiplication, and subtraction). We adopt a SIMD execution
model, where every cycle an instruction is multi-casted to
a set of arrays in a tile and executed in lock-step. The In-
struction Set Architecture (ISA) for in-memory computation
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consists of 13 instructions. The key challenge is develop-
ing a simple yet powerful ISA and programming framework
that can allow diverse data-parallel programs to leverage the
underlying massive computational efficiency.

The proposed programming model seeks to utilize the un-
derling parallelism in the hardware by merging the concepts
of data-flow and vector processing (or SIMD). Data-flow ex-
plicitly exposes the Instruction Level Parallelism (ILP) in the
program, while vector processing exposes the Data Level
Parallelism (DLP). Google’s TensorFlow [1] is a popular pro-
gramming model for machine learning. We observe that
TensorFlow’s programming semantics is a perfect marriage
of data-flow and vector-processing that can be applied to
more general applications. Thus, our proposed programming
framework uses TensorFlow as the input.

We develop a TensorFlow compiler that generates binary
code for our in-memory data-parallel processor. The Tensor-
Flow (TF) programs are essentially Data-Flow Graphs (DFG)
where each operator node can have multi-dimensional vec-
tors, or tensors, as operands. A DFG that operates on one
element of a vector is referred to as a module by the compiler.
The compiler transforms the input DFG into a collection
of data-parallel modules with identical machine code. Our
execution model is coarse-grain SIMD. At runtime, a code
module is instantiated many times and processes indepen-
dent data elements. The programming model and compiler
support restricted communication between modules: reduce,
scatter and gather. Our compiler explores several interesting
optimizations such as unrolling of high-dimensional tensors,
merging of DFG nodes to utilize n-ary ReRAM operations,
pipelining compute and write-backs, maximizing ILP within
a module using VLIW style scheduling, and minimizing com-
munication between arrays.

For general purpose computation, we need to support
a variety of compute operations (e.g., division, exponent,
square root). These operations can be directly expressed as
nodes in TensorFlow’s DFG. Unfortunately, ReRAM arrays
cannot support them natively due to their limited analog
computation capability. Our compiler performs an instruc-
tion lowering step in the code-generation phase to trans-
late higher-level TensorFlow operations to the in-memory
compute ISA. We discuss how the compiler can efficiently
support complex operations (e.g., division) using techniques
such as the Newton-Raphson method which iteratively ap-
plies a set of simple instructions (add/multiply) to an initial
seed from the look-up table and refines the result. The com-
piler also transforms other non-arithmetic primitives (e.g.,
square and convolution) to the native memory SIMD ISA.

In summary, this paper offers the following contributions:

e We design a processor architecture that re-purposes
resistive memory to support data-parallel in-memory
computation. In the proposed architecture, memory
arrays store data and act as vector processing units.
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We extend the ReRAM memory array to support in-
situ operations beyond the dot product and design a
simple ISA with limited compute capability.
We develop a compiler that transforms DFGs in Google’s
TensorFlow to a set of data-parallel modules and gener-
ates module code in the native memory ISA. The com-
piler implements several optimizations to exploit un-
derlying hardware parallelism and unique features/con-
straints of ReRAM-based computation.
Although the in-memory compute ISA is simple and
limited in functionality, we demonstrate that with a
good programming model and compiler, it is possible
to off-load a large fraction of general-purpose compu-
tation to memory. For instance, we are able to execute
in memory an average of 87% of the PARSEC applica-
tions studied.
e Our experimental results show that the proposed ar-
chitecture can provide overall speedup of 7.5x over
a state-of-art multicore CPU for the PARSEC applica-
tions evaluated. It also provides a speedup of 763 over
state-of-art GPU for the Rodinia kernel benchmarks
evaluated. The proposed architecture operates with a
thermal design power (TDP) of 415 W, improves the
energy efficiency of benchmarks by 230x and reduces
the average power by 1.26x.

2 Processor Architecture

We propose an in-memory data-parallel processor on ReRAM
substrate. This section discusses the proposed microarchi-
tecture, ISA, and implementation of the ISA.

2.1 Micro-architecture

The proposed in-memory processor adopts a tiled architec-
ture as shown in Figure 1. A tile is composed of clusters of
memory nodes, few instruction buffers and a router. Each
cluster consists of a few memory arrays, a small register
file, and look-up table (LUT). Each memory array is shown
in Figure 1 (b). Internally, a memory array in the proposed
architecture consists of multiple rows of resistive bit-cells,
a set of digital-analog converters (DACs) feeding both the
word-lines and bit-lines, sample and hold circuit (S+H), shift
and adder (S+A) and analog-digital converters (ADCs). The
process of reading and writing to ReRAM memory arrays
remains unchanged. We refer the reader to ReRAM litera-
ture for details [39, 42]. The memory arrays are capable of
both data storage and computation. We explain the com-
pute capabilities of the memory arrays and the role of digital
components (e.g. register file, S+A, LUT) in Section 2.2.
The tiles are connected by an H-Tree router network. The
H-Tree network is chosen to suit communication patterns
typical in our programming model (Section 3) and it also
provides high-bandwidth communication for external I/O.
The clusters inside a tile are connected by a router or a
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Figure 2. In-situ ReRAM array operations.

crossbar topology. A shared bus facilitates communication
inside a cluster. A hierarchical topology inside the tile limits
the network power consumption, while providing sufficient
bandwidth for infrequent communication typical in data-
parallel applications.

Each memory array can be thought of as a vector process-
ing unit with few SIMD lanes. The processor adopts a SIMD
execution model. Each array is mapped to a specific instruc-
tion buffer. All arrays mapped to the same instruction buffer
execute the same instruction. Every cycle, one instruction
is read out of the each instruction buffer and multi-casted
to the memory arrays in the tile. The execution model is
discussed in detail in Section 4.

The processor evaluated in this paper consists of 4,096
tiles, 8 clusters per tile, and 8 memory arrays per cluster.
Each array can store 4KB of data and has 8 SIMD lanes of 32
bits each. Consequently, the processor has aggregate SIMD
width of two million lanes, aggregate memory capacity of
1GB and 494 mm? area. The resolution of ADC and DAC is
set to 5 and 2 bits.

2.2 Instruction Set Architecture

The proposed Instruction Set Architecture (ISA) is simple and
compact. Compared to a standard SIMD ISA, In-memory ISA
does not support complex (e.g. division) and specialized (e.g.

shuffle) instructions because these are hard to do in-situ in-
memory. Instead, compiler transforms complex instructions
to a set of lut, add and mul instructions as discussed later.
The ISA consists of 13 instructions as shown in Table 1. Each
ReRAM arrays executes the instruction locally, hence the
operand addressing modes reference rows inside the array
or local registers. The instructions can have a size of up to 34
bytes. Now we discuss the functionality and implementation
of individual instructions.

1) add The add instruction is an n-ary operation that adds
the data in rows specified by <mask>. The <mask> is a 128-bit
mask which is set for each row in the array that participates
in addition. Figure 2 (a) shows an add operation. The mask
is fed to word-line DACs, which is used to apply a Vdd ('11’)
or Vdd/2 ('10’) to the word-lines. A ’1’ in the mask activates
a row. Each bit-cell in a ReRAM array can be abstractly
thought of as variable resistor. Addition is performed inside
the array by summing up currents generated by conductance
(=resistance™) of each bit-cell. A sample and hold (S + H)
circuit receives the bit-line current and feeds it the ADC
unit which outputs the digital value for the current. The
result from each bit-line represents the partial sum for bits
stored in that bit-line. A word or data element is stored across
multiple bit-lines. An external digital shifter and adder (S +
A) combines the partial sums from bit-lines. The final result
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l Opcode Format Cycles
add <mask><dst> 3
dot <mask><reg_mask><dst> | 18
mul <src><sre><dst> 18
sub <mask><mask><dst> 3
shift{ljr} <src><dst><imm> 3
mask <sre><dst><imm> 3
mov <src><dst> 3
movs <src><dst><mask> 3
movi <dst><imm> 1
movg <gaddr><gaddr> Variable
lut <src><dst> 4
reduce_sum | <src><gaddr> Variable

Table 1. In-Memory Compute ISA. The instructions use
operand addresses specified by either <src>, <dst> or
<gaddr>. The <src> and <dst> is a 8-bit local address (1-
bit indicates memory/register + 7-bit row number/register
number). The <gaddr> is a 4 byte global address (12-bit tile
# + 6-bit array # + 7-bit row # + reserved bits). The <imm>
field is a 16 byte immediate value.

is written back to <dst> memory row or register. Each of
ReRAM crossbar (XB), ADC and S+A takes 1 cycle, resulting
in 3 cycles in total.

2)dot The dot instruction is also an n-ary operation which
emulates a dot product over the data in rows specified by
<mask>. A dot product is a sum of products. The sum is done
using current summation over the bit-line as explained ear-
lier. Each row computes a product by streaming in the multi-
plicand via the word-line DAC in a serial manner as shown
in Figure 2 (b). The multiplicands are stored in register file
and the individual registers are specified using <reg_mask>
field.

Robust current summation over ReRAM bit-lines has been
demonstrated in prior works [20, 43]. We adapt the dot prod-
uct architecture from ISAAC [39] for our add and dot in-
structions. We refer the reader to these works for further
implementation details.

3) mul The mul instruction is 2-ary operation that per-
forms element-wise multiplication over elements stored in
the two <src> memory rows and stores the result in <dst>.
To implement this instruction we utilize the row of DACs
at the top of the array feeding the bit-lines (Figure 1 (c)).
The multiplicand is streamed in through the DACs serially
2-bits at time and the product is accumulated over bit-lines
as shown in Figure 2 (c). The word-line DACs are set to Vdd
C11).

Note that element-wise multiplication was not supported
in prior works on memristor-based accelerators, and is a
new feature we designed for supporting general purpose
data-parallel computation. Since dot product uses the same
multiplicand for all elements stored in a row, it can not be
utilized for element-by-element multiplication. We solve this
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problem by using an additional set of DACs for feeding bit-
lines. As in ISAAC, the operation is pipelined into 3 stages:
XB, ADC and S+A, processing 2 bits per cycle, resulting in
18 cycles in total for 32 bit data.

4) sub The sub instruction performs element-wise subtrac-
tion over elements stored in the two set of memory rows
(minuends and subtrahends) specified by <mask>s and stores
the result in <dst>. Subtraction in ReRAM arrays has not
been explored before. We support this operation by draining
the current via word-line as shown in Figure 2 (d). The out-
put voltage for word-line DAC of the subtrahend row is set
to ground allowing for current drain. Hence the remaining
current over the bit-line represents the difference between
minuend and subtrahend. For this operation we reverse the
voltage across memristor bit-cell. Fortunately, several re-
ports on fabricated ReRAM demonstrate the symmetric V/I
properties of memristor with reverse voltage across termi-
nals [36, 44].

5) lut The lut instruction sends the value stored in <src>
as an address to the lookup table (LUT), and write back
the data read from the LUT to <dst>. The multi-purpose
LUT is implemented for supporting high-level instructions.
LUT is utilized for nonlinear functions such as sigmoid, and
initial seeding of division and transcendental functions (Sec-
tion 5.1). The LUT has 512 entries of 8-bit numbers to suffice
the precision requirement of the arithmetic algorithms imple-
mented [16]. LUT is a small SRAM structure which operates
at much higher frequency than ReRAM arrays and hence
shared by multiple arrays. Its contents are initialized by the
host at runtime. lut takes 4 cycles, adding 1 cycle on top of
the basic XB, ADC, S+A pipeline.

6) mov, movi, movg, movs The mov family of instructions
facilitates movement of data between memory rows of an
array, registers, and even across arrays via global addressing
(<gaddr>). The global addresses are handled by the network,
hence the latency of gobal moves (movg) is variable. Imme-
diate values can be stored to <dst> as well via movi instruc-
tion. These instructions are implemented using traditional
memristor read/write operations. The selective mov (movs)
instruction selectively moves data to elements in <dst> based
on an 8-bit mask. Recall that any <dst> row can store 8 32-bit
elements in the prototype architecture.

7) reduce_sum The reduce_sum instruction sums up the
values in the <src> row of different arrays. The reduction is
executed outside the arrays. This instruction utilizes the H-
tree network and the adders in the routers to reduce values
across the tiles.

8) shift / mask The shift instruction shifts each of the
vector element in <src> by <imm> bits. The mask instruction
logically ANDs each of the vector element in <src> with
<imm>. These instructions utilize the digital shift and adder
(S+A) outside the arrays.
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Discussion Our goal is two-fold. First, keep the instruc-
tion set as simple as possible to reduce design complexity
and retain area efficiency (hence memory density). Second,
expose all compute primitives which can be done in-situ
inside the memory array without reading the data out. The
proposed ISA does not include any instructions for looping,
branch or jump instructions. We rely on the compiler to
unroll loops wherever necessary. Our SIMD programming
model ensures small code size, in spite of unrolling. Control
flow is facilitated via condition computation and selective
moves (Section 3). The compute instructions in the ISA are
restricted to add, sub, dot, mul. Our programming model
based on TensorFlow, supports a rich set of compute opera-
tions. Our compiler transforms them to a combination of ISA
instructions (Section 5.1) and hence enables general purpose
computation.

2.3 Precision and Signed Arithmetic

Floating point operations need normalization based on expo-
nent, hence in-memory computation for the floating point
operands encumbers huge complexity. We adopt a fixed point
representation. We give the flexibility for deciding the po-
sition of the decimal point to trade-off between precision
and range. But the responsibility to prevent bit overflow and
underflow is left to the programmers. We developed a testing
tool that can calculate the dynamic range of the input that
assures the required precision. Note that under the condi-
tion that overflow/underflow does not happen, fixed point
representation gives better accuracy compared to floating
point. Section 6 discusses the impact on application output.

For general purpose computation, it is important to sup-
port negative values. Prior work [39] uses a biased repre-
sentation for numbers, and then normalizes the bias via
subtraction outside the memory arrays. This approach is
perhaps reasonable for CNN dot products, because the over-
head of subtraction outside the array for normalizing the
bias, is compensated by multi-row addition within the array.
In general, data-parallel programs’ additions need not span
multiple rows (often 2 rows are sufficient). In such a sce-
nario, subtraction outside the array needs additional array
read which offsets the benefit of biased addition inside the
array.

We observe that for b-bit bit-cells (i.e. 2° resistance levels),
current summation followed by shift+adder across bit-lines
outputs the correct results as long as negative numbers are
stored in 2%’s complement notation. In our prototype de-
sign, arrays have 2-bit bit-cell, hence addition over negative
numbers stored as 4’complement will yield correct results.
Furthermore it can be mathematically proved that 4’s comple-
ment is exactly equal to 2’s complement in base-4 representa-
tion. Thus there is no need for conversion between number
formats. The same principle holds true for multiplication as
long as the DAC used for streaming in the multiplicand has
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same resolution as resistance level of ReRAM bit-cells. In
our design, 2-bit DACs are required.

3 Programming Model

We choose Google’s TensorFlow [1] as the programming
front-end for proposed in-memory processor. By using Ten-
sorFlow, programmers write the kernels which will be of-
floaded to the memory. TensorFlow expresses the kernel as a
Data Flow Graph (DFG). Since TensorFlow is available for va-
riety of programming languages (e.g. Python, C++, Java, Go),
programmers can easily plug in the TensorFlow kernels in
their code. Also, since TensorFlow supports variety of target
hardware systems (e.g. CPU, GPU, distributed system), pro-
grammers can easily validate the functionality of the kernel
and scale the system depending on the input size.

TensorFlow (TF) offers a suitable programming paradigm
for data parallel in-memory computing. First, nodes in TF’s
DFGs can operate on multi-dimensional matrices. This fea-
ture embeds the SIMD programming model and facilitates
easy exposure of Data Level Parallelism (DLP) to the com-
piler. Second, irregular memory accesses are restricted by
not allowing subscript notation. This feature benefits both
programmers and compilers. Programmers do not have to
convert high-level data processing operations (e.g., vector
addition) into low-level procedural representations (e.g., for-
loop with memory access). The compiler can fully under-
stand the memory access pattern. Third, the DFG naturally
exposes Instruction Level Parallelism (ILP). This can be di-
rectly used by a compiler for Very Long Instruction Word
(VLIW) style scheduling to further utilize underlying paral-
lelism in the hardware without implementing complex out-
of-order execution support. Finally, TensorFlow supports
a persistent memory context in nodes of the DFG. This is
useful in our merged memory and compute architecture for
storing persistent data across kernel invocations.

Our programming model and compilation framework sup-
port the following TensorFlow primitives (See Table 2 for
the list of supported TF nodes.):

Input nodes The proposed system supports three kinds
of input: Placeholder, Const, and Variable. Placeholder is a
non-persistent input and will not be used for future module
invocations. Const is used to pass constants whose values
are known at compile time. Scalar constants are included in
ISA, and vector constants are stored in either the register file
or an array based on the type of their consumer node in the
DFG. Variable is the input with persistent memory context,
of which data can be used and updated in the future kernel
invocations. Variables are initialized at kernel launch time.

Operations The framework supports a variety of complex
operation nodes including transcendental functions. We dis-
cuss the process of lowering these operation nodes into na-
tive memory ISA in Section 5.1.
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Input nodes Const  Placeholder ~ Variable
Arithmetic Operations Abs Add ArgMin Div Exp FloorDiv Less Mul RealDiv Sigmoid
Sqrt Square Sub Sum Conv2D*  ExpandDims*  MatMul*  Reshape*  Tensordot™
Control Flow etc. Assign  AssignAdd ~ Gather  Identity Pack Select Stack NoOp

Table 2. Supported TensorFlow Nodes. (* has restrictions on function/data dimension.)

I Input matrix A

I Input matrix B

Data Flow
Graphs
Modules
1B, l 1B,
..-:';1 MMy *°° ReRAM
i8] 184183 arrays

Figure 3. Execution Model.

Control Flow Control flow is supported by a select instruc-
tion. A select instruction takes three operands and generates
output as follows:

Oli] = Cond[i] ? A[i] : B[i].
A select instruction is converted into multiple selective move
(movs) instructions. The Condition variable is precomputed
and used to generate the mask for the selective moves.

Reduction, Scatter, Gather A reduction node is supported
by the compiler and natively in the micro-architecture. Scat-
ter and gather operations are used to implement an indirect
reference to the memory address given in the operand. These
operations generate irregular memory accesses and require
synchronizations to guarantee consistency. Because of the
non-negligible overhead, these operations should be used
rarely. We observe in many cases that these operations can be
eliminated before offloading the kernel by sending gathered
data from CPU.

4 Execution Model

The proposed architecture processes data in a SIMD execu-
tion model at the granularity of module. At runtime, different
instances of a module execute the same instructions on dif-
ferent elements of input vectors in a lock-step manner. Our
compiler generates a module by unrolling a single dimen-
sion of multi-dimensional input vectors as shown in Figure 3.

Intuitively, a DFG generated by TensorFlow can represent
one module. At kernel launch time, the number of module
instances are dynamically created in accordance with the
input vector length.

The proposed execution model allows restricted communi-
cation between instances of modules. Such communication is
only allowed using scatter/gather nodes or reduction nodes
in the DFG. We find these communication primitives are
sufficient to express most TensorFlow kernels.

Each module is composed of one or more Instruction
Blocks (IB) as shown in Figure 3. An IB consists of a list
of instructions which will be executed sequentially. Concep-
tually, an IB is responsible for executing a group of nodes in
the DFG. Multiple IBs in a module may execute in parallel
to expose ILP. The compiler explores several optimizations
to increase the number of concurrent IBs in a module and
thereby exposes the ILP inside a module.

We view rows in the ReRAM array as a SIMD vector unit
with multiple lanes or SIMD slots. Each IB is mapped to
a single lane or one slot. To ensure full utilization of all
SIMD lanes in the array, the runtime maps identical IBs from
different instances of the same module to an individual array
as shown in the last row of Figure 3. This mapping results in
correct execution because all instances of a module have the
same set of IBs. Furthermore, IBs of a module are greedily
assigned to nearby arrays so that the communication latency
between IBs is minimized.

5 Compiler

The overall compilation flow is shown in Figure 4. Our com-
piler takes Google’s TensorFlow DFG in the protocol buffer
format as an input, optimizes it to leverage parallelism that
the in-memory architecture offers, and generates executable
code for the in-memory processor ISA. The compiler first an-
alyzes the semantics of input DFG which has vector/matrix
operands and creates a module with a single IB with required
control flow. Several optimizations detailed later expand a
module to expose intra-module parallelism by decomposing
and replicating the instructions in the single IB into multiple
IBs and merging redundant nodes. This is followed by in-
struction lowering, scheduling of IBs in a module, and code
generation. Instruction lowering transforms complex DFG
nodes into simpler instructions supported by in-memory
processor ISA. Instruction lowering is also done by promot-
ing the specific instructions (e.g. ABS) to general ones (e.g.,
MASK) and expanding the instruction into a set of native
memory ISA instructions.
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The compiler tool-chain is developed using Python 3.6 and
C++. The compiler front-end uses TensorFlow’s core frame-
work to parse the TensorFlow Graph. TensorFlow nodes
supported at this time are listed in Table 2.

5.1 Supporting Complex Operations

The target memory ISA is quite simple and supports limited
number of compute instructions as described in Section 2.2.
Natively, the arrays can execute dot product, addition, multi-
plication and subtraction. However, general purpose compu-
tation requires supporting a diverse set of operations ranging
from division, exponents, transcendental functions, etc. We
support these complex operations by converting them into
a set of LUT, addition and multiplication instructions based
on algorithms used in Intel [A-64 processors [14, 19].

The compiler uses either Newton-Raphson or Maclaurin-
Goldschmidt methods that iteratively apply a set of instruc-
tions to an initial seed from the look-up table and refine
the result. Our implementation chooses the best algorithms
based on the precision requirement. We could have used sim-
pler algorithms (e.g., SRT division), but we employ iterative
algorithms because (1) bit shift cannot be supported in the
array, so for each bit shift operation the values need to be
read out and written back, (2) supporting bit-wise logical
operations (and, or) are challenging because of multi-level re-
sistive bit-cells, and (3) simple algorithms often require more
space, which is challenging for the data carefully aligned in
the array.

Finally, the compiler also lowers convolution nodes in
the DFG to the native memory ISA. Prior works [39] have
mapped convolution filter weights to the array and per-
formed dot product computation by streaming in the input
features. Because filters used for general-purpose programs

Input Nodes Input Nodes

1[51 }Unpack
—_—
[2+4]=[6] *» . [3+5]=[8]
(6,8] Pack

Reduce Reduce)
[6+8]=[14] [6+8]=[14]

Figure 6. IB Expansion.

[2+4,3+5]=[6,8]

are typically small (e.g. 3x3 for HotSpot and Sobel filter), we
map the input data to the array and stream in the filter. This
approach reduces buffering for the input data and improves
array utilization. Furthermore, the compiler decomposes the
convolution into a series of matrix-vector dot-products done
simultaneously on different input matrix slices, thereby re-
ducing the convolution time significantly.

5.2 Compiler Optimizations

Node Merging A node merging pass is introduced to fill
the gap between the capabilities of the target in-memory
architecture and the expressibility of the programming lan-
guage. The proposed in-memory ISA can support compute
operations over n-operands. A node merging pass promotes
a series of 2-operand compute nodes in the DFG of a module,
to a single compute node with many operands as shown in
Figure 5. The maximum number of operands n is limited
by the number of array rows and the resolution of ADCs.
ADCs consume a significant fraction of chip power, and their
power consumption is proportional to their resolution. Our
compiler can generate code for an arbitrary resolution n
and the chip architects can choose a suitable n based on the
power budget.

The node merging pass also combines certain combina-
tions of nodes to reduce intermediate writes to memory
arrays. For example, a node which feeds its results to a mul-
tiplication node need not write back the results to memory.
This is because multiplicand is directly streamed into the
array from registers.

Instruction Block Scheduler Independent Instruction Blo-
cks (IBs) inside a module can be co-scheduled to maximize
ILP as shown in the third row of Figure 3. Our compiler
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adapts the Bottom-Up-Greedy (BUG) algorithm [15] for sched-
uling IBs. BUG was first used in the Bulldog VLIW com-
piler [15] and has been adapted in various schedulers for
VLIW/data-flow architecture, e.g. Multiflow compiler [29]
and compiler for the tiled data-flow architecture, WaveScalar
[30]. Our implementation of the BUG algorithm first tra-
verses the DFG through a bottom-up path, collecting candi-
date assignments of the instructions. Once the traversal path
reaches the input (define) node, it traverses a top-down path
to make a final assignment, minimizing the data transfer
latency by taking both the operand location and successor
location into consideration. We modify the original BUG
algorithm to introduce the notion of in-memory computing,
where a functional unit is identical to the data location. We
also modified the algorithm to take into account read/write
latency, network resource collision latency, and operation
latency.

Instruction Block (IB) Expansion Instruction Blocks that
use multi-dimensional vectors as operands can be expanded
into several instruction blocks with lower-dimension vec-
tors to further exploit ILP and DLP. For example, consider a
program that processes 2D matrices of dimension sizes [2,
1024]. The compiler will first convert the program to a mod-
ule which will be instantiated 1,024 times and executed in
parallel. Each module will have an IB that processes 2D vec-
tors. The expansion pass will further decompose the module
into 2 IBs that process 1D scalar value.

The expansion pass traverses the nodes in a module’s DFG
in a bottom-up/breath-first order and detects the subtrees
that process multi-dimensional vectors of the same size. The
subtree regions detected are expanded. To ensure the dimen-
sions are consistent between the sub-tree regions, pack and
unpack pseudo operations are inserted between these re-
gions. Pack and unpack operations are later converted to
mov instructions. A simplified example is shown in Figure 6.

Pipelining A significant fraction of the compute instruc-
tions goes through two phases: compute and write-back.
Unfortunately, these two phases are serialized, since an ar-
ray cannot compute and write simultaneously. Our compiler
breaks this bottleneck by pipelining these phases and en-
suring the destination address for the write-backs are in a
separate array. By using two arrays, one array computes
while writing back the previous result to the other array. In
the worst case, this optimization lowers the utilization of
arrays by half. Thus, this optimization is beneficial when the
number of modules needed for the input data is lower than
the aggregate SIMD capacity of the memory chip.

Balancing Inter-Module and Intra-Module Parallelism
Some of the optimizations discussed above attempt to im-
prove performance by exposing parallelism inside a module.
Because of Amdahl’s law, increasing the number of IBs in
a module will not result in linear speedup. Depending on
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l Benchmark ‘ Input data shape ‘ # IB insts.
) Blackscholes [4, 10000000] 163
& Canneal [2, 600, 4096] 6
Eg Fluidanimate [3, 17, 229900] 294
R« Streamcluster [2, 128, 1000000] 6
,5:{ Backprop [16, 65536] 117
‘& Hotspot (1024, 1024] 26
T Kmeans [34, 494020] 91
& StreamclusterGPU [2, 256, 65536] 6

Table 3. Evaluated workloads. Numbers in bracket indicates
size of respective x,y,z dimensions

the data characteristics, the SIMD slots assigned to a module
may not be fully utilized in every cycle. In fact, expanding
a module could slow down the total execution time when
the number of IBs across all module instances exceeds the
aggregate SIMD slots in the memory chip. In such a scenario,
multiple iterations may be needed to process all module
instances, resulting in a performance loss.

Our compiler can generate code for arbitrary upper bounds
on the number of IBs per module, and can flexibly tune the
intra-module parallelism with respect to inter-module par-
allelism. We develop a simple analytical model to compute
the approximate execution time given the number of IBs
per module and number of module instances. The number
of module instances is dependent on input data size, and is
only known at runtime. Thus, the optimal code is chosen at
runtime based on the analytical model and streamed in to
the memory chip from host.

6 Methodology

Benchmarks We use a subset of benchmarks from PAR-
SEC multi-threaded CPU benchmark suite [8] and Rodinia
GPU benchmark suite [11] as listed in Table 3. We re-write
the kernels of the benchmarks in TensorFlow code and then
generate in-memory ISA code using our compiler. We choose
to port the applications which could be easily transformed
to Structure of Array (SoA) code for the ease of porting to
TensorFlow and a data-parallel architecture. We leave the
remaining benchmarks to future work. For the benchmarks
which use floating point numbers in the kernel, we assess the
effect of converting it into fixed point numbers. By tuning
the decimal point placement, we ensure that the input data
is in the dynamic range of fixed point numbers. We ensure
that the quality of result requirement defined by the bench-
mark is met. We use the native dataset for each benchmark
and compare it with the native execution on the CPU and
GPU baseline systems. The size of the input for each kernel
invocation ranges from 8MB to 2GB.

Area and Power Model All power/area parameters are
summarized in Table 4. We use CACTI to model energy and
area for registers and LUTs. The energy and area model for
ReRAM processing unit, including ReRAM crossbar array,
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Component H Params ‘ Spec ‘ Power ‘ Area(mm?) ‘ l Parameter H CPU (2-sockets) ‘ GPU (1-card) ‘ IMP
ADC resolution 5 bits 64 mW 0.0753 SIMD slots 448 3840 2097152
frequency | 1.2 GSps Frequency 3.6 GHz 1.58 GHz 20 MHz
number | 64X 2 Area 912.24 mm? 471 mm? | 494 mm?
DAC resolution 2 bits | 0.82 mW 0.0026 TDP 290 W 250 W 416 W
number | 64 X 256 Memor 7MB L2; 70MB L3 3MB L2 1GB
S+H number 64 X 128 | 0.16 mW 0.00025 y 64GB DRAM 12GB DRAM RRAM
ReRAM number 64 19.2mW 0.0016 Table 5. Comparison of CPU, GPU, and IMP Parameters
Array
S+A nu@ber o4 L4 mW 0.0015 server as CPU baseline and Nvidia Titan XP as the GPU base-
IR size 2KB 1.09 mW 0.0016 R K X
OR size 9KB 1.09 mW 0.0016 line. The IMP configuration (shown in Table 4) evaluated has
Register size 3KB 1.63 mW 0.0024 4,096 tiles and 64 128x128 ReRAM arrays in each tile.
XB bus width 16B 151 mW 0.0105 Table 5 compares important system parameters of the
size 10 % 10 three configurations analyzed. IMP has significantly higher
LUT number 8 6.8 MW 0.0056 degree of parallelism. IMP enjoys 546X (4681X) more SIMD
Inst. Buf size 8 x 2KB | 5.83 mW 0.0129 slots than GPU (CPU). The massive parallelism comes at
Router flit size 16 0.82mW | 000434 lower frequency, IMP is 80% (180X) slower than GPU (CPU)
num_port 9 in terms of clock cycle period. IMP is approximately area
S+A number 1 0.05mW | 0.000004 neutral compared to GPU, and about 2X lower area than the
1 Tile Total 101 mW 0.12 2-socket CPU system. The TDP of IMP is significantly higher,
Inter-Tile number 584 0.81W 250 however we will show that IMP has lower average power
Routers consumption and energy consumption (Section 7.3).
| Chip total || \ | 416 W [ 494mm* |

Table 4. In-Memory Processor Parameters

sample-and-hold circuits, shift-and-add circuits are adapted
from the ISAAC [39]. We employ energy and power model
in [2] for the on-chip interconnects and assume an activity
factor of 5% for TDP (given that the network operates at
2 GHz and memory at 20 MHz). The benchmarks show an
order of magnitude lower utilization of network. ADC/DAC
energy and power are scaled for 5-bit and 2-bit precision [27].
While the state-of-the art ReRAM device supports 4 to 6 re-
sistance levels [6], strong non-uniform analog resistance due
to process variation makes it challenging to program ReRAM
for analog convolution, resulting in convolution errors [12].
We conservatively limit the number of cell levels to two and
use multiple cells in a row to represent one data.

Performance Model For determining the IMP performance,
we develop a cycle accurate simulator which uses an inte-
grated network simulator [22]. Note ReRAM array executes
instructions in order, instruction latency is deterministic,
network communication is rare, and compiler schedules in-
struction statically after accounting for network delay. Thus
estimated performance for IMP is highly accurate.

7 Results
7.1 Configurations Studied

In this section we evaluate the proposed In-Memory Pro-
cessor (IMP), and compare it to state-of-art CPU and GPU
baselines. We use an Intel Xeon E5-2697 v3 multi-socket

7.2 Operation Study

Figure 7 presents the operation throughput of CPU, GPU,
and IMP, measured by profiling microbenchmarks of add,
multiply, divide, sqrt and exponential operations. We com-
pile the microbenchmarks with -O3 option and parallelize it
using OpenMP for the CPU. We find IMP achieves orders of
magnitude improvement over the conventional architectures.
The reason is two fold: massive parallelism and reduction
in data movement. The proposed architecture IMP has 546X
(4681x) more SIMD slots compared to GPU (CPU) as shown
in Table 5. Although IMP has lower frequency, it more than
compensates this disadvantage by avoiding data movement.
CPU and GPU have to pay a significant penalty for reading
the data out of off-chip memory and passing it along the
on-chip memory hierarchy to compute units.

IMP speedup is especially higher for the simple operations.
The largest operation throughput is achieved by addition
(2,460x over CPU and 374X over GPU), which has smallest
latency in IMP. On the other hand, division and transcenden-
tal functions take many cycles to produce the results. For
example, it takes 62 cycles for division and 115 cycles for ex-
ponential, while addition takes only 3 cycles. Therefore, the
throughput gain becomes smaller for complex operations.
While CPU and IMP per-operation throughput reduces for
higher latency operations, GPU throughput increases. This is
because the GPU performance is bounded by the memory ac-
cess time, and unary operators (exponential and square root)
have less amount of data transfer from the GPU memory.

Figure 8 and 9 show the operation latency of addition and
multiplication for different input size. We compare the ex-
ecution time of single-threaded CPU, multi-threaded CPU
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Figure 10. Operation energy.

(OpenMP), and GPU. IMP offers the highest operations per-
formance among the three architectures, even for the small-
est input size (4KB).

Figure 10 shows the energy consumption for each oper-
ation. Because of the high operation latency and the large
energy consumption of ADC, we observe higher energy con-
sumption for the complex operations relative to GPU. Ulti-
mately, the instruction mix of the application will determine
the energy efficiency of the IMP architecture.

7.3 Application Study

In this section we study the application performance. First,
we analyze kernel performance shown in Figure 11. For CPU
benchmarks, the figure shows performance for hot kernels
in PARSEC benchmarks. We assume that non-kernel code of
PARSEC benchmarks are executed in the CPU. Note that this
data transfer overhead is taken into account in the results of
IMP. The GPU benchmarks from Rodinia are relatively small,
hence we regard them as application kernels. We observe a
41x speedup for CPU benchmarks and 763x speedups for
GPU benchmarks.

GPU benchmarks obtain higher performance improve-
ment in IMP because of the opportunity to use dot product
operations and higher data level parallelism. On the other
hand, the speedup for kmeans is limited to 23X. kmeans
deals with Euclidean distance calculation of 34 dimensional
vectors, and this incurs many element-wise multiplications.
Although kmeans shows significant DLP available in the dis-
tance calculations, we could not fully utilize the DLP of the
application because of the capacity limitation of the IMP’s

Streamcluster

CPU Benchmarks

Figure 11. Kernel speedup.
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Streamcluster

Streamcluster
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Blackscholes | Fluidanimate

GPU Benchmarks

Figure 12. CPU Application performance.

SIMD slots. This series of multiplications of distance calcu-
lation increases its critical latency and limits the speedup.
As suggested in the operation throughput evaluation on Fig-
ure 7, IMP achieves higher performance especially when the
kernel has significant DLP and many simple operations. We
observe in general mul, add, and movl instructions are most
common, while movg, reduce_sum and lut are less frequent.
For example, a blackscholes kernel has 14% add, 21% mul,
and 58% local move instructions. The rest are mask and lut.

The performance results for the overall PARSEC applica-
tion are presented in Figure 12. For this result, we assume
two scenarios: (1) IMP (memory) assumes IMP is integrated
into the memory hierarchy and the memory region for the
kernel is allocated in IMP. (2) IMP (accelerator) is a configu-
ration when IMP is used as an accelerator and requires data
copy as GPUs do. While we believe IMP (memory) is the
correct configuration, IMP (accelerator) is a near-term easier
configuration which can be a first step towards integrating
IMP in host servers.

On average, IMP (accelerator) yields a 5.55% speedup and
IMP (memory) provides 7.54X for the Region of Interest (ROI).
We observe that 41X kernel speedup does not translate to
similar application speedup due to Amdahl’s law. Figure 12
also shows the breakdown of the execution time, which is
divided into kernel, data loading, communication on NoC,
and the non-kernel part of the ROI. The non-kernel part
is mainly composed of time for barrier and unparalleled
parts of the program. It can be seen that 88% of execution
time can be off-loaded to IMP. We also observe that large
fraction of the execution time on ReRAM is used for data
loading (4X of the kernel at maximum). Thus, as suggested
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Figure 15. Compiler optimizations.

[ Config [ Blackscholes [ Fluidanimate [ Canneal [ Streamcluster [ Backprop [ Hotspot [ Kmeans [ Streamcluster ]
MaxDLP 665/ 1 1015/ 1 7220/ 1 2698 / 1 1028 /1 1081893 /1 | 3623 /1 5386/ 1
MaxILP 377/5 437/9 1216 / 1212 159/ 129 184 /32 3125/1024 | 134/38 287/ 257

MaxArrayUtil 665/ 1 437/ 4 1228 / 444 2698 /1 171/ 27 1024 /3125 | 1584/3 1169/ 6
[ Lifetime (years) | 8.89 [ 20.1 [ 322 ] 22.1 [ 157 [ 250 | 588 ] 12.8 |

Table 6. (1) IB latency (cycles) and # of IBs for different optimization targets. (2) Lifetime

before, in-memory accelerator is better coupled with the
existing memory hierarchy to avoid data loading overhead.
We also find the NoC time is not the bottleneck, because of
the efficient reduction scheme supported by the reduction
tree network integrated in the NoC.

Figure 13 shows the total energy consumption of the entire
application (thus includes both kernel and non-kernel energy
for PARSEC). We find 7.5x and 440x energy efficiency for
CPU benchmarks and GPU benchmarks, respectively. This
energy reduction is partly due to energy efficiency of IMP for
kernel’s instruction mix and partly due to reduced execution
time.

Figure 14 shows the average power consumption of the
benchmarks. The TDP of IMP is high when compared to
GPU and CPU (Table 5). ADCs are the largest contributer
to peak power. The required resolution for ADCs is a func-
tion of maximum number of operands supported for n-ary
instructions in our ISA. To contain the TDP, we limit the
ADC resolution to 5-bits and thereby limiting the number of
operands for n-ary instructions (add, dot). While this may
affect the performance of a customized dot-product based
machine learning accelerator significantly, it is not a serious
limitation for general purpose computation. Although IMP’s
TDP is high due to the ADC power consumption, the aver-
age power consumption is dependent on the instruction’s
requirement for ADC resolution. For example, the ADCs con-
sume less power for instructions with fewer operands. We
find that the average resolution for ADC is 2.07 bit (maximum
resolution is 5-bit). Overall, the average power consumption
for IMP is estimated to be 70.1 W. The average power con-
sumption measured for the benchmarks in the baseline is
81.3 W.

7.4 Effect of Compiler Optimizations

We introduce three optimization targets to the compiler and
evaluate how each optimization affects the results. The first
optimization target is MaxDLP, which creates one IB per

1

module to maximize DLP. This policy is useful when the data
size is larger than the SIMD slots IMP offers. However, the
module does not have an opportunity to exploit ILP in the
program. Also, IB expansion is not applied for this policy.

The second optimization target is MaxILP, which fully uti-
lizes the ILP and lets IB expansion expand all multi-dimensio-
nal data in the module. This will create largest number of IBs
per module and shortest execution time for single module.
However, because of the sequential part of the IB, array uti-
lization becomes lower. This policy can increase the overall
execution time when the kernel is invoked multiple times
due to insufficient SIMD slots in IMP.

The third optimization target, MaxArrayUtil, maximizes
the array utilization considering the number of SIMD slots
needed by input data. For example, if the incoming data
consumes 30% of the total SIMD slots in IMP, each module
can use 3 IBs to fully utilize all the arrays while avoiding
multiple kernel invocations. The compiler optimizes under
the constraint of maximum IBs available per module

Table 6 shows the maximum IB latency and the number
of IBs per module. Figure 15 presents the execution time
of different optimization policies normalized to MaxDLP
(baseline). MaxArrayUtil represents the best possible per-
formance provided by the compiler optimizations under re-
source constraints imposed by IMP. Overall it provides an
average speedup of 2.3X.

Two other optimizations not captured by above graph
are node merging and pipelining. On average, the module
latency is reduced by 13.8% with node merging and 20.8%
with pipelining.

7.5 Memory Lifetime

We evaluate the memory lifetime by calculating the write
intensity of the benchmarks (last row in Table 6). Based on
the assumption in [26], we consider the ReRAM cells to wear
out beyond 10!! writes. The compiler balances the writes to
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the arrays by assigning and using ReRAM rows in a round-
robin manner. Assuming the arrays are continuously used
for kernel computation (but not while the host is processing),
the median of expected lifetime is 17.9 years.

8 Related Work

To the best of our knowledge this is the first work that
demonstrates the feasibility of general purpose computing
in ReRAM based memory. Below we discuss some of the
closely related works.

ReRAM Computing Since ReRAMs have been introduced
in [42], several works have leveraged its dot-product com-
putation functionality for neuromorphic computing [25, 34].
Recently, ISAAC [39] and PRIME [13] use ReRAMs to acceler-
ate several Convolutional Neural Networks (CNNs). ISAAC
proposes a full-fledged CNN accelerator with carefully de-
signed pipelining and precision handling scheme. PRIME
studies a morphable ReRAM based main memory architec-
ture for CNN acceleration. PipeLayer [41] further supports
training and testing of CNN by introducing efficient pipelin-
ing scheme. Aside from CNN acceleration, ReRAM arrays
have been used for accelerating Boltzmann machine [9] and
perception network [45]. While it has been shown analog
computation in ReRAM can substantially accelerate the ma-
chine learning workloads, none have targeted general pur-
pose computing exploiting the analog computation function-
ality of ReRAM. Another interesting work, Pinatubo [28], has
modified peripheral sense-amplifier circuitry to accomplish
logical operations like AND and OR. While this approach
appears promising to build complex arithmetic operations,
doing arithmetic on multi-bit ReRAM cells using bitwise op-
erations comes with several challenges. Orthogonal to this
work, we extend the set of supported operations at low cost.

ReRAM has also been explored to implement logic using
Majority-Inverter Graph (MIG) logic [7, 32, 40]. In this ap-
proach each ReRAM bit-cell acts as a majority gate. Since
resistive bit-cell is acting as a logic gate, it cannot store
data during computation. Let us refer to this approach as
ReRAM bit-cell as logic. A critical difference between this
approach and ours is that we leverage in-situ operations
where operations are performed in memory over the bit-
lines without reading data out. The ReRAM bit-cell as logic
approach is a flavor of near-memory computing technique
where input data is read out of memory and fed to another
memory location which acts as a logic unit, thus requiring
data-movement.

Furthermore, operations using majority gates can be ex-
tremely slow, requiring huge number of memory accesses
to implement even simple functions. For example, a multi-
ply is implemented using 56000 majority-gate operations
(majority-gate operation requires one memory cycle) and
419 ReRAM cells [40]. Our approach implements a multi-
ply in 18 memory cycles without requiring any additional
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ReRAM cells. While we demonstrated that IMP architec-
ture/programming framework can work with large real-
world general purpose data-parallel applications, ReRAM as
logic approach [7] has been demonstrated for only sequen-
tial micro-kernels (e.g. hamming, sqrt, square etc) with no
comparison to CPU or GPU systems.

Near-Memory Computing Past processing-in-memory
(PIM) solutions move compute near the memory [4, 5, 10, 17,
18, 24, 31, 33, 35, 38, 46, 47]. The proposed architecture lever-
ages an emerging style of in-memory computing referred
to as bit-line computing [3]. Since, bit-line computing re-
purposes memory structures to perform computation in-situ,
it is intrinsically more efficient than near-memory comput-
ing which augments logic near memory. More importantly,
it unlocks massive parallelism at near-zero silicon cost.
Recent works have leveraged bit-line computing in SRAM [3,

21, 23] and DRAM [37, 38]. These works have demonstrated
only a handful of compute operations (bit-wise logical, match
and copy) making them limited in applicability for general
purpose computing. Furthermore this work is the first to
develop a programming framework and compiler for in-
memory bit-line computing. Our software stack can be uti-
lized for leveraging bit-line computing in other memory
technologies.

9 Conclusion

This paper proposed novel general-purpose ReRAM-based In-
Memory Processor architecture (IMP), and its programming
framework. IMP substantially improves the performance and
energy efficiency for general-purpose data parallel programs.
IMP implements simple but powerful ISA that can lever-
age the underlying computational efficiency. We propose
the programming model and the compilation framework,
in which users use TensorFlow to develop a program and
maximize the parallelism using the compiler’s toolchain. Our
experimental results show IMP can achieve 7.5X over PAR-
SEC CPU benchmarks and 763x speedup over Rodinia GPU
benchmarks.
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