
Neural Cache: Bit-Serial In-Cache Acceleration of Deep Neural Networks

Charles Eckert, Xiaowei Wang, Jingcheng Wang, Arun Subramaniyan,

Ravi Iyer†, Dennis Sylvester, David Blaauw, and Reetuparna Das

University of Michigan †Intel Corporation

{eckertch, xiaoweiw, jiwang, arunsub, dmcs, blaauw, reetudas}@umich.edu, ravishankar.iyer@intel.com

Abstract—This paper presents the Neural Cache architecture,
which re-purposes cache structures to transform them into
massively parallel compute units capable of running inferences
for Deep Neural Networks. Techniques to do in-situ arithmetic
in SRAM arrays, create efficient data mapping and reducing
data movement are proposed. The Neural Cache architecture
is capable of fully executing convolutional, fully connected,
and pooling layers in-cache. The proposed architecture also
supports quantization in-cache.

Our experimental results show that the proposed architec-
ture can improve inference latency by 18.3× over state-of-art
multi-core CPU (Xeon E5), 7.7× over server class GPU (Titan
Xp), for Inception v3 model. Neural Cache improves inference
throughput by 12.4× over CPU (2.2× over GPU), while reduc-
ing power consumption by 50% over CPU (53% over GPU).

Keywords-Cache, In-memory architecture, Convolution
Neural Network, Bit-serial architecture

I. INTRODUCTION

In the last two decades, the number of processor cores

per chip has steadily increased while memory latency has

remained relatively constant. This has lead to the so-called

memory wall [1] where memory bandwidth and memory

energy have come to dominate computation bandwidth

and energy. With the advent of data-intensive system, this

problem is further exacerbated and as a result, today a large

fraction of energy is spent in moving data back-and-forth

between memory and compute units. At the same time, neural

computing and other data intensive computing applications

have emerged as increasingly popular applications domains,

exposing much higher levels of data parallelism. In this paper,

we exploit both these synergistic trends by opportunistically

leveraging the huge caches present in modern processors to

perform massively parallel processing for neural computing.

Traditionally, researchers have attempted to address

the memory wall by building a deep memory hierarchy.

Another solution is to move compute closer to memory,

which is often referred to as processing-in-memory (PIM).

Past PIM [2]–[4] solutions tried to move computing logic

near DRAM by integrating DRAM with a logic die

using 3D stacking [5]–[7]. This helps reduce latency and

increase bandwidth, however, the functionality and design of

DRAM itself remains unchanged. Also, this approach adds

substantial cost to the overall system as each DRAM die

needs to be augmented with a separate logic die. Integrating

computation on the DRAM die itself is difficult since the

DRAM process is not optimized for logic computation.

In this paper, we instead completely eliminate the line

that distinguishes memory from compute units. Similar

to the human brain, which does not separate these two

functionalities distinctly, we perform computation directly

on the bit lines of the memory itself, keeping data in-place.

This eliminates data movement and hence significantly

improves energy efficiency and performance. Furthermore,

we take advantage of the fact that over 70% of silicon

in today’s processor dies simply stores and provides data

retrieval; harnessing this area by re-purposing it to perform

computation can lead to massively parallel processing.

The proposed approach builds on an earlier silicon test

chip implementation [8] and architectural prototype [9] that

shows how simple logic operations (AND/NOR) can be

performed directly on the bit lines in a standard SRAM array.

This is performed by enabling SRAM rows simultaneously

while leaving the operands in-place in memory. This paper

presents the Neural Cache architecture which leverages these

simple logic operations to perform arithmetic computation

(add, multiply, and reduction) directly in the SRAM array by

storing the data in transposed form and performing bit-serial

computation while incurring only an estimated 7.5% area

overhead (translates to less than 2% area overhead for the

processor die). Each column in an array performs a separate

calculation and the thousands of memory arrays in the cache

can operate concurrently.

The end result is that cache arrays morph into massive

vector compute units (up to 1,146,880 bit-serial ALU slots

in a Xeon E5 cache) that are one to two orders of magnitude

larger than modern graphics processor’s (GPU’s) aggregate

vector width. By avoiding data movement in and out of

memory arrays, we naturally save vast amounts of energy

that is typically spent in shuffling data between compute

units and on-chip memory units in modern processors.

Neural Cache leverages opportunistic in-cache computing

resources for accelerating Deep Neural Networks (DNNs).

There are two key challenges to harness a cache’s computing

resources. First, all the operands participating in an in-situ

operation must share bit-lines and be mapped to the same

memory array. Second, intrinsic data parallel operations

in DNNs have to be exposed to the underlying parallel

hardware and cache geometry. We propose a data layout

and execution model that solves these challenges, and

harnesses the full potential of in-cache compute capabilities.

Further, we find that thousands of in-cache compute units

can be utilized by replicating data and improving data reuse.

383

2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture

2575-713X/18/$31.00 ©2018 IEEE
DOI 10.1109/ISCA.2018.00040

384

simultaneously. Computation (and and nor) on the data

stored in the activated word-lines is performed in the analog

domain by sensing the shared bit-lines. Compute cache [9]

uses this basic circuit framework along with extensions to

support additional operations: copy, bulk zeroing, xor,

equality comparison, and search.

Data corruption due to multi-row access is prevented by

lowering the word-line voltage to bias against the write of the

SRAM array. Measurements across 20 fabricated 28nm test

chips (Figure 2a) demonstrate that data corruption does not

occur even when 64 word-lines are simultaneously activated

during such an in-place computation. Compute cache however

only needs two. Monte Carlo simulations also show a stability

of more than six sigma robustness, which is considered indus-

try standard for robustness against process variations. The ro-

bustness comes at the the cost of increase in delay during com-

pute operations. But, they have no effect on conventional array

read/write accesses. The increased delay is more than com-

pensated by massive parallelism exploited by Neural Cache.

C. Cache Geometry

We provide a brief overview of a cache’s geometry in a

modern processor. Figure 3 illustrates a multi-core processor

modeled loosely after Intel’s Xeon processors [14], [15].

Shared Last Level Cache (LLC) is distributed into many slices

(14 for Xeon E5 we modeled), which are accessible to the

cores through a shared ring interconnect (not shown in figure).

Figure 3 (b) shows a slice of the LLC. The slice has 80 32KB

banks organized into 20 ways. Each bank is connected by two

16KB sub-arrays. Figure 3 (c) shows the internal organization

of one 16KB sub-array, composed of 8KB SRAM arrays.

Figure 3 (d) shows one 8KB SRAM array. A SRAM array

is organized into multiple rows of data-storing bit-cells. Bit-

cells in the same row share one word line, whereas bit-cells

in the same column share one pair of bit lines.

Our proposal is to perform in-situ vector arithmetic

operations within the SRAM arrays (Figure 3 (d)). The

resulting architecture can have massive parallelism by

repurposing thousands of SRAM arrays (4480 arrays in

Xeon E5) into vector computational units.

We observe that LLC access latency is dominated by

wire delays inside a cache slice, accessing upper-level cache

control structures, and network-on-chip. Thus, while a typical

LLC access can take ∼30 cycles, an SRAM array access

is only 1 cycle (at 4 GHz clock [14]). Fortunately, in-situ

architectures such as Neural Cache require only SRAM array

accesses and do not incur the overheads of a traditional cache

access. Thus, vast amounts of energy and time spent on

wires and higher-levels of memory hierarchy can be saved.

III. NEURAL CACHE ARITHMETIC

Compute cache [9] supported several simple operations

(logical and copy). These operations are bit-parallel

and do not require interaction between bit lines. Neural

Cache requires support for more complex operations

(addition, multiplication, reduction). The critical challenge in

supporting these complex computing primitives is facilitating

interaction between bit lines. Consider supporting an addition

operation which requires carry propagation between bit lines.

We propose bit-serial implementation with transposed

data layout to address the above challenge.

A. Bit-Serial Arithmetic

Bit-serial computing architectures have been widely used

for digital signal processing [16], [17] because of their ability

to provide massive bit-level parallelism at low area costs. The

key idea is to process one bit of multiple data elements every

cycle. This model is particularly useful in scenarios where

the same operation is applied to the same bit of multiple data

elements. Consider the following example to compute the

element-wise sum of two arrays with 512 32-bit elements. A

conventional processor would process these arrays element-

by-element taking 512 steps to complete the operation. A bit-

serial processor, on the other hand, would complete the opera-

tion in 32 steps as it processes the arrays bit-slice by bit-slice

instead of element-by-element. Note that a bit-slice is com-

posed of bits from the same bit position, but corresponding to

different elements of the array. Since the number of elements

in arrays is typically much greater than the bit-precision for

each element stored in them, bit-serial computing architec-

tures can provide much higher throughput than bit-parallel

arithmetic. Note also that bit-serial operation allows for flex-

ible operand bit-width, which can be advantageous in DNNs

where the required bit width can vary from layer to layer.

Note that although bit-serial computation is expected to

have higher latency per operation, it is expected to have

significantly larger throughput, which compensates for higher

operation latency. For example, the 8KB SRAM array is com-

posed of 256 word lines and 256 bit lines and can operate at

a maximum frequency of 4 GHz for accessing data [14], [15].

Up to 256 elements can be processed in parallel in a single

array. A 2.5 MB LLC slice has 320 8KB arrays as shown

in Figure 3. Haswell server processor’s 35 MB LLC can

accommodate 4480 such 8KB arrays. Thus up to 1,146,880

elements can be processed in parallel, while operating at

frequency of 2.5 GHz when computing. By repurposing mem-

ory arrays, we gain the above throughput for near-zero cost.

Our circuit analysis estimates an area overhead of additional

bit line peripheral logic to be 7.5% for each 8KB array. This

translates to less than 2% area overhead for the processor die.

B. Addition

In conventional architectures, arrays are generated, stored,

accessed, and processed element-by-element in the vertical

direction along the bit lines. We refer to this data layout as

the bit-parallel or regular data layout. Bit-serial computing

in SRAM arrays can be realized by storing data elements

in a transpose data layout. Transposing ensures that all bits

of a data element are mapped to the same bit line, thereby

obviating the necessity for communication between bit

lines. Section III-F discusses techniques to store data in a

transpose layout. Figure 4 shows an example 12×4 SRAM

array with transpose layout. The array stores two vectors

385

��

����
�
�
�
	

�
�
�
	�
�

�
�
�
	�

�
�
�
	

���	������������	

����

����

���	��������

���

����	

������	

� �

��
�

��	
��
�

��	
���
��	
���

��	
��
�

��
����� ����

��������

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�������

��

 !"	

��#!����

�

���

���

$��	� %�	�����

%
�

&	%	!'	�

������

�!�(#
) *
+

,
�

� �

�!�

�
��	"

�#

$��%

�&'(

)�� �)�

�
%

�
%

�� ���

)

��*��!�!�

Figure 3: Neural Cache overview. (a) Multi-core processor with 8-24 LLC slices. (b) Cache geometry of a single

2.5MB LLC cache slice with 80 32KB banks. Each 32KB bank has two 16KB sub-arrays. (c) One 16KB sub-array

composed of two 8KB SRAM arrays. (d) One 8KB SRAM array re-purposed to store data and do bit line

computation on operand stored in rows (A and B). (e) Peripherals of the SRAM array to support computation.

�������	

�������

�
�
��
�

�
�
��
��

�
�
��
��

�
�
��
��

����� � � � �

�

���

�

�

� ���

���
�
�
��
�

�
�
��
��

�
�
��
��

�
�
��
��

����� � � � �

�

���

�

�

�

���

���

�
�
��
�

�
�
��
��

�
�
��
��

�
�
��
��

�����
 � � �

�

��� �

�

�

�

���

���

�
�
��
�

�
�
��
��

�
�
��
��

�
�
��
��

�����
 � � �

�

��� �

�

�

�

�

���

���

�
�
��
�

�
�
��
��

�
�
��
��

�
�
��
��

����� � � � �

�

���
�

�

�

�

�

Figure 4: Addition operation

������������ ������������ ����� ����� ����� ����� ���������

Figure 5: Reduction Operation

A and B, each with four 4-bit elements. Four word lines

are necessary to store all bit-slices of 4-bit elements.

We use the addition of two vectors of 4-bit numbers to

explain how addition works in the SRAM. The 2 words

that are going to be added together have to be put in the

same bit line. The vectors A and B should be aligned in the

array like Figure 4. Vector A occupies the first 4 rows of

the SRAM array and vector B the next 4 rows. Another 4

empty rows of storage are reserved for the results. There

is a row of latches inside the column peripheral for the

carry storage. The addition algorithm is carried out bit-by-bit

starting from the least significant bit (LSB) of the two words.

There are two phases in a single operation cycle. In the first

half of the cycle, two read word lines (RWL) are activated to

simultaneously sense and wire-and the value in cells on the

same bit line. To prevent the value in the bit cell from being

disturbed by the sensing phase, the RWL voltage should be

lower than the normal VDD. The sense amps and logic gates

in the column peripheral (Section III-E) use the 2 bit cells

as operands and carry latch as carry-in to generate sum and

carry-out. In the second half of the cycle, a write word line

(WWL) is activated to store back the sum bit. The carry-out

bit overwrites the data in the carry latch and becomes the

carry-in of the next cycle. As demonstrated in Figure 4, in

cycles 2, 3, and 4, we repeat the first cycle to add the second,

third, and fourth bit respectively. Addition takes n + 1, to

complete with the additional cycle to write a carry at the end.

386

�	
��
�	

�	
��
�

�
�

�
��

�
�

�
��

�
�

�
��

�
�

�
��

��

� � � � �

�

�

�

�

�

�

�

�

�

�

�

�

�������
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

��
 	 	 	 	

�
�
��
�

�
�
��
��

�
�
��
��

�
�
��
��

����� 	 	 	 	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

��
 	
 	

���
	
	

�
�
��
�

�
�
��
��

�
�
��
��

�
�
��
��

����� 	 	 	 	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

��
 	
 	

���

	
	

Cycle 1:
Load T

Initial Cycle 2:
Copy

	

���
			

�
�
��
�

�
�
��
��

�
�
��
��

�
�
��
��

����� 	 	 	 	

	

	

	

	

	

	

		

	

	

��
 	
 	

���

	
	

Cycle 3:
Copy

	

���

			

	
	

	

�
�
��
�

�
�
��
��

�
�
��
��

�
�
��
��

����� 	 	 	 	

	

	

	

	

	

		

	

��
 	 	

���

	
	

Cycle 4:
Load T

	

			

	
	

	

		

�
�
��
�

�
�
��
��

�
�
��
��

�
�
��
��

����� 	 	 	

	

	

	

	

	

	

		

	

	

��
 	 	

���

	
	

Cycle 5:
Copy

	

���

			

	

	

	

�
�
��
�

�
�
��
��

�
�
��
��

�
�
��
��

����� 	 	 	

	

				

	

��
 	 	

���

	
	

Cycle 6:
Copy

	

���

			

	

	

	

	
		

�
�
��
�

�
�
��
��

�
�
��
��

�
�
��
��

����� 	 	 	

		

��
 	 	

	
	

Cycle 7:
Store C

	

���

			

	

	

	

	
		

			

Figure 6: Multiplication Operation, each step is shown with four different sets of operands

C. Multiplication

We demonstrate how bit-serial multiplication is achieved

based on addition and predication using the example of a 2-

bit multiplication. In addition to the carry latch, an extra row

of storage, the tag latch, is added to bottom of the array. The

tag bit is used as an enable signal to the bit line driver. When

the tag is one, the addition result sum will be written back to

the array. If the tag is zero, the data in the array will remain.

Two vectors of 2-bit numbers, A and B, are stored in the

transposed fashion and aligned as shown in Figure 6. Another

4 empty rows are reserved for the product and initialized to

zero. Suppose A is a vector of multiplicands and B is a vector

of multipliers. First, we load the LSB of the multiplier to the

tag latch. If the tag equals one, the multiplicand in that bit

line will be copied to product in the next two cycles, as if it

is added to the partial product. Next, we load the second bit

of the multiplier to the tag. If tag equals 1, the multiplicand

in that bit line will be added to the second and third bit of

the product in the next two cycles, as if a shifted version

of A is added to the partial product. Finally, the data in the

carry latch is stored to the most significant bit of the product.

Including the initialization steps, it takes n2+5n−2 cycles

to finish an n-bit multiplication. Division can be supported

using a similar algorithm and takes 1.5n2+5.5n cycles.

D. Reduction

Reduction is a common operation for DNNs. Reducing

the elements stored on different bit lines to one sum can be

performed with a series of word line moves and additions.

Figure 5 shows an example that reduces 4 words, C1, C2,

C3, and C4. First words C3 and C4 are moved below C1
and C2 to different word lines. This is followed by addition.

Another set of move and addition reduces the four elements

to one word. Each reduction step increases the number of

word lines to move as we increase the bits for the partial

sum. The number of reduction steps needed is log
2

of the

words to be reduced. In column multiplexed SRAM arrays,

moves between word lines can be sped up using sense-amp

cycling techniques [18].

When the elements to be reduced do not fit in the same

SRAM array, reductions must be performed across arrays

which can be accomplished by inter-array moves. In DNNs,

reduction is typically performed across channels. In the

model we examined, our optimized data mapping is able to

fit all channels in the space of two arrays which sharing sense

amps. We employ a technique called packing that allows us to

reduce the number of channels in large layers (Section IV-A).

� �
�

�
�

���

���

�
��	

���

���

����

�������

����

�
	

�
	

�
�
�

�
��

���

�
�

�
�

� �

�
��
�

 ��!�"�
���

�

�
�

�	

�
� ���	

�����������������

Figure 7: Bit line peripheral design

E. SRAM Array Peripherals

The bit-line peripherals are shown in Figure 7. Two single-

ended sense amps sense the wire-and result from two cells,

A and B, in the same bitline. The sense amp in BL gives

result of A & B, while the sense amp in BLB gives

result of A′ & B′. The sense amps can use reconfigurable

sense amplifier design [12], which can combine into a large

differential SA for speed in normal SRAM mode and separate

into two single-ended SA for area efficiency in computation

mode. Through a NOR gate, we can get A⊕B which is then

used to generate the sum (A⊕B⊕Cin) and Carry ((A&B)

+ (A⊕B&Cin)). As described in the previous sections, C

387

and T are latches used to store carry and tag bit. A 4-to-1 mux

selects the data to be written back among Sum, Carryout,
Datain, and Tag. The Tag bit is used as the enable signal

for the bit line driver to decide whether to write back or not.

F. Transpose Gateway Units

The transpose data layout can be realized in the following

ways. First, leverage programmer support to store and access

data in the transpose format. This option is useful when

the data to be operated on does not change at runtime. We

utilize this for filter weights in neural networks. However, this

approach increases software complexity by requiring program-

mers to reason about a new data format and cache geometry.

������������	
�����

��
�
��
�
��
���

�
�
	

����

�

�
�
�
��
�
�
�
�
�
	

�
����

������

������

�
����

������

������

��� ���

��� ���

���

���

���

���

���

���

����������	

�
�

�
�

�
�

�
�

�
�

�
�

��
��

�
�

�
�

�
�

�
�

�
�

�
�

���

���

���

���

���

���

��� ���

��� ���

���

���

���

���

���

���

���

���

���

���

���

���

����	��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

�
����

������

������

�
����

������

������

��
��������������������

	�������������� ��

Figure 8: Transpose Memory Unit (TMU)

Second, design a few hardware transpose memory units

(TMUs) placed in the cache control box (C-BOX in Fig-

ure 3 (b)). A TMU takes data in the bit-parallel or regular lay-

out and converts it to the transpose layout before storing into

SRAM arrays or vice-versa while reading from SRAM arrays.

The second option is attractive because it supports dynamic

changes to data. TMUs can be built out of SRAM arrays with

multi-dimensional access (i.e., access data in both horizontal

and vertical direction). Figure 8 shows a possible TMU design

using an 8T SRAM array with sense-amps in both horizontal

and vertical directions. Compared to a baseline 6T SRAM,

the transposable SRAM requires a larger bitcell to enable

read/write in both directions. Note that only a few TMUs

are needed to saturate the available interconnect bandwidth

between cache arrays. In essence, the transpose unit serves

as a gateway to enable bit-serial computation in caches.

IV. NEURAL CACHE ARCHITECTURE

The Neural Cache architecture transforms SRAM

arrays in LLC to compute functional units. We describe

the computation of convolution layers first, followed by

other layers. Figure 9 shows the data layout and overall

architecture for one cache slice, modeled after Xeon

processors [14], [15]. The slice has twenty ways. The last

way (way-20) is reserved to enable normal processing for

CPU cores. The penultimate way (way-19) is reserved to

store inputs and outputs. The remaining ways are utilized

for storing filter weights and computing.

A typical DNN model consists of several layers, and each

layer consists of several hundred thousands of convolutions.

For example, Google’s Inception v3 has 20 layers, most

of which have several branches. Inception v3 has ≈ 0.5

million convolutions in each layer on average. Neural Cache

computes layers and each branches within a layer serially.

The convolutions within a branch are computed in parallel

to the extent possible. Each of the 8KB SRAM arrays

computes convolutions in parallel. The inputs are streamed

in from the reserved way-19. Filter weights are stationary

in compute arrays (way-1 to way-18).

Neural Cache assumes 8-bit precision and quantized

inputs and filter weights. Several works [19]–[21] have

shown that 8-bit precision has sufficient accuracy for DNN

inference. 8-bit precision was adopted by Google’s TPU [22].

Quantizing input data requires re-quantization after each

layer as discussed in Section IV-D.

A. Data Layout

This section first describes the data layout of one SRAM

array and execution of one convolution. Then we discuss

the data layout for the whole slice and parallel convolutions

across arrays and slices.

A single convolution consists of generating one of the

E × E × M output elements. This is accomplished by

multiplying R×S×C input filter weights with a same size

window from the input feature map across the channels.

Neural Cache exploits channel level parallelism in a single

convolution. For each convolution, an array executes R×S
Multiply and Accumulate (MAC) in parallel across channels.

This is followed by a reduction step across channels.

An example layout for a single array is shown in Figure 10

(a). Every bitline in the array has 256 bits and can store 32 1-

byte elements in transpose layout. Every bitline stores R×S
filter weights (green dots). The channels are stored across bit

lines. To perform MACs, space is reserved for accumulating

partial sums (lavender dots) and for scratch pad (pink dots).

Partial sums and scratch pad take 3×8 and 2×8 word lines.

Reduction requires an additional 8 × 8 word lines as

shown in Figure 10 (b). However the scratch pad and partial

sum can be overwritten for reduction as the values are no

longer needed. The maximum size for reducing all partial

sums is 4 bytes. So to perform reduction, we reserve two 4

byte segments. After adding the two segments, the resultant

can be written over the first segment again. The second

segment is then loaded with the next set of reduced data.

Each array may perform several convolutions in series,

thus we reserve some extra space for output elements (red

dots). The remaining word lines are used to store input

elements (blue dots). It is desirable to use as many word

lines as possible for inputs to maximize input reuse across

convolutions. For example in a 3× 3 convolution with a

stride of 1, 6 of the 9 bytes are reused across each set

of input loads. Storing many input elements allows us to

exploit this locality and reduce input streaming time.

The filter sizes (R×S) range from 1-25 bytes in Inception

v3. The common case is a 3×3 filter. Neural Cache data

mapping employs filter splitting for large filters. The filters

are split across bitlines when their size exceeds 9 bytes.

The other technique employed is filter packing. For 1× 1

388

389

390

input loading would function the same way as convolution

layers, except without any filters in the arrays.

Calculating the maximum value of two or more numbers

can be accomplished by designating a temporary maximum

value. The temporary maximum is then subtracted by the

next output value and the resultant is stored in a separate

set of word lines. The most significant bit of the result is

used as a mask for a selective copy. The next input is then

selectively copied to the maximum location based on the

value of the mask. This process is repeated for the rest of

the inputs in the array.

Quantization of the outputs is done by calculating the the

minimum and maximum value of all the outputs in the given

layer. The min can be computed using a similar set of oper-

ations described for max. For quantization, the min and max

will first be calculated within each array. Initially all outputs

in the array will be copied to allow performing the min and

max at the same time. After the first reduction, all subsequent

reductions of min/max are performed the same way as

channel reductions. Since quantization needs the min and

max of the entire cache, a series of bus transfers is needed to

reduce min and max to one value. This is slower than in-array

reductions, however unlike channel reduction, min/max reduc-

tion happens only once in a layer making the penalty small.

After calculating the min and max for the entire layer,

the result is then sent to the CPU. The CPU then performs

floating point operations on the min and max of the entire

layer and computes two unsigned integers. These operations

take too few cycles to show up in our profiling. Therefore,

it is assumed to be negligible. The two unsigned integers

sent back by the CPU are used for in-cache multiplications,

adds, and shifts to be performed on all the output elements

to finally quantize them.

Batch Normalization requires first quantizing to 32 bit

unsigned. This is accomplished by multiplying all values by a

scalar from the CPU and performing a shift. Afterwards scalar

integers are added to each output in the corresponding output

channel. These scalar integers are once again calculated in the

CPU. Afterwards, the data is re-quantized as described above.

In Inception v3, ReLU operates by replacing any negative

number with zero. We can write zero to every output

element with the MSB acting as an enable for the write.

Similar to max/min computations, ReLU relies on using a

mask to enable selective write.

Avg Pool is mapped in the same way as max pool. All

the inputs in a window are summed and then divided by

the window size. Division is slower than multiplication, but

the divisor is only 4 bits in Inception v3.

Fully Connected layers are converted into convolution

layers in TensorFlow. Thus, we are able to treat the fully

connected layer as another convolution layer.

E. Batching

We apply batching to increase the system throughput. Our

experiments show that loading filter weights takes up about

46% of the total execution time. Batching multiple input

images significantly amortizes the time for loading weights

and therefore increases system throughput. Neural Cache

performs batching in a straightforward way. The image batch

will be processed sequentially in the layer order. For each

layer, at first, the filter weights are loaded into the cache as

described in Section IV-A. Then, a batch of input images are

streamed into the cache and computation is performed in the

same way as without batching. For the whole batch, the filter

weights of the involved layer remain in the arrays, without

reloading. Note that for the layers with heavy-sized outputs,

after batching, the total output size may exceed the capacity

of the reserved way. In this case, the output data is dumped to

DRAM and then loaded again into the cache. In the Inception

v3, the first five requires dumping output data to DRAM.

F. ISA support and Execution Model

Neural Cache requires supporting a few new instructions:

in-cache addition, multiplication, reduction, and moves.

Since, at any given time only one layer in the network is

being operated on, all compute arrays execute the same

in-cache compute instruction. The compute instructions are

followed by move instructions for data management. The

intra-slice address bus is used to broadcast the instructions to

all banks. Each bank has a control FSM which orchestrates

the control signals to the SRAM arrays. The area of one

FSM is estimated to be 204 µm2, across 14 slices which

sums to 0.23 mm2. Given that each bank is executing the

same instruction, the control FSM can be shared across a

way or even a slice. We chose not to optimize this because

of the insignificant area overheads of the control FSM.

Neural Cache computation is carried out in 1-19 ways of

each slice. The remaining way (way-20) can be used by

other processes/VMs executing on the CPU cores for normal

background operation. Intel’s Cache Allocation Technology

(CAT) [25] can be leveraged to dynamically restrict the

ways accessed by CPU programs to the reserved way.

V. EVALUATION METHODOLOGY

Baseline Setup: For baseline, we use dual-socket Intel

Xeon E5-2697 v3 as CPU, and Nvidia Titan Xp as GPU. The

specifications of the baseline machine are in Table II. Note

that the CPU specs are per socket. Note that the baseline CPU

has the exact cache organization (35 MB L3 per socket) as

we used in Neural Cache modeling. The benchmark program

is the inference phase of the Inception v3 model [26]. We use

TensorFlow as the software framework to run NN inferences

on both baseline CPU and GPU. The default profiling tool of

TensorFlow is used for generating execution time breakdown

by network layers for both CPU and GPU. The reported base-

line results are based on the unquantized version of Inception

v3 model, because we observe that the 8-bit quantized version

has a higher latency on the baseline CPU due to lack of opti-

mized libraries for quantized operations (540 ms for quantized

/ 86 ms for unquantized). To measure execution power of the

baseline, we use RAPL [27] for CPU power measurement

and Nvidia-SMI [28] for GPU power measurement.

391

392

393

394

widely-used SRAM. The Tensor Processing Unit (TPU) [22]

is another ASIC for accelerating DNN inferences. The TPU

chip features a high-throughput systolic matrix multiply unit

for 8-bit MAC, as well as 28 MB on-chip memory.

In general, custom ASIC accelerator solutions achieve

high efficiency while requiring extra hardware and incurring

design costs. ASICs lack flexibility in that they cannot be

re-purposed for other domains. In contrast, our work is

based on the cache, which improves performance of many

other workloads when not functioning as a DNN accelerator.

Neural Cache aims to achieve high performance, while

allowing flexibility of general purpose processing. Further,

Neural Cache is limited by commercial SRAM technology

and general purpose processor’s interconnect architecture.

A custom SRAM accelerator ASIC can potentially achieve

significantly higher performance than Neural Cache. Being

a SRAM technology, we also expect the compute efficiency

of Neural Cache to improve with newer technology nodes.

The BrainWave project [38] builds an architecture

consisting of FPGAs connected with a custom network, for

providing accelerated DNN service at a datacenter scale. The

FPGA boards are placed between network switches and host

servers to increase utilization and reduce communication

latency between FPGA boards. The FPGA board features

a central matrix vector unit, and can be programmed with

a C model with ISA extensions. BrainWave with a network

of Stratix 10 280 FPGAs at 14 nm is expected to have 90

TOPs/s, while Neural Cache (Xeon E5 2-socket processor)

achieves 28 TOPs/s at 22 nm technology without requiring

any additional hardware. BrainWave with current generation

FPGAs achieves 4.7 TOPs/s.

Terasys presents a bit-serial arithmetic PIM architecture

[39]. Terasys reads the data out and performs the compute in

bit-serial ALU’s outside the array. Neural Cache differs by

performing partial compute along the bitlines and augments

it with a small periphery to perform arithmetic in an area

efficient architecture. Further Terasys performs software

transposes while Neural Cache has a dedicated hardware

transpose unit, the TMU.

Bit-serial computation exploits parallelism at the level of

numerical representation. Stripes [40] leverages bit-serial

computation for inner product calculation to accelerate

DNNs. Its execution time scales proportionally with the bit

length, and thus enables a direct trade-off between precision

and speed. Our work differs from Stripe in that Neural Cache

performs in-situ computation on SRAM cells, while Stripe

requires arithmetic functional units and dedicated eDRAM.

Sparsity in DNN models can be exploited by accelerators

[41], [42]. Utilizing sparsity in DNN models for Neural

Cache is a promising direction for future work.

VIII. CONCLUSION

Caches have traditionally served only as intermediate

low-latency storage units. Our work directly challenges this

conventional design paradigm, and proposes to impose a dual

responsibility on caches: store and compute data. By doing

so, we turn them into massively parallel vector units, and dras-

tically reduce on-chip data movement overhead. In this paper

we propose the Neural Cache architecture to allow massively

parallel compute for Deep Neural Networks. Our advance-

ments in compute cache arithmetic and neural network data

layout solutions allow us to provide competitive performance

comparably to modern GPUs with negligible area overheads.

Nearly three-fourth of a server class processor die area today

is devoted for caches. Even accelerators use large caches.

Why would one not want to turn them into compute units?

IX. ACKNOWLEDGEMENTS

We thank members of M-Bits research group for their

feedback. This work was supported in part by the NSF

CAREER-1652294 award, and Intel gift award.

REFERENCES

[1] W. A. Wulf and S. A. McKee, “Hitting the memory wall:
Implications of the obvious,” SIGARCH Comput. Archit.
News, vol. 23, no. 1, pp. 20–24, Mar. 1995.

[2] M. Gokhale, B. Holmes, and K. Iobst, “Processing in memory:
The terasys massively parallel pim array,” Computer, vol. 28,
no. 4, pp. 23–31, 1995.

[3] P. M. Kogge, “Execube-a new architecture for scaleable
mpps,” in Parallel Processing, 1994. Vol. 1. ICPP 1994.
International Conference on, vol. 1. IEEE, 1994, pp. 77–84.

[4] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton,
C. Kozyrakis, R. Thomas, and K. Yelick, “A case for intelligent
ram,” Micro, IEEE, vol. 17, no. 2, pp. 34–44, 1997.

[5] “Hybrid memory cube specification 2.0,” 2014.

[6] J. Ahn, S. Yoo, O. Mutlu, and K. Choi, “Pim-enabled
instructions: a low-overhead, locality-aware processing-in-
memory architecture,” in Computer Architecture (ISCA), 2015
ACM/IEEE 42nd Annual International Symposium on. IEEE,
2015, pp. 336–348.

[7] D. Kim, J. Kung, S. Chai, S. Yalamanchili, and
S. Mukhopadhyay, “Neurocube: A programmable digital
neuromorphic architecture with high-density 3d memory,” in
Proceedings of ISCA, vol. 43. IEEE, 2016, pp. 380–392.

[8] S. Jeloka, N. B. Akesh, D. Sylvester, and D. Blaauw, “A 28
nm configurable memory (tcam/bcam/sram) using push-rule
6t bit cell enabling logic-in-memory,” IEEE Journal of
Solid-State Circuits, vol. 51, no. 4, pp. 1009–1021, 2016.

[9] S. Aga, S. Jeloka, A. Subramaniyan, S. Narayanasamy,
D. Blaauw, and R. Das, “Compute caches,” in Proceedings
of the 23rd International Symposium on High Performance
Computer Architecture (HPCA-23). IEEE, 2017, pp. 481–492.

[10] J. Cong and B. Xiao, “Minimizing computation in
convolutional neural networks,” in International conference
on artificial neural networks. Springer, 2014, pp. 281–290.

[11] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial
architecture for energy-efficient dataflow for convolutional
neural networks,” in Computer Architecture (ISCA), 2016
ACM/IEEE 43rd Annual International Symposium on. IEEE,
2016, pp. 367–379.

[12] S. Jeloka, N. Akesh, D. Sylvester, and D. Blaauw, “A
configurable tcam / bcam / sram using 28nm push-rule 6t
bit cell,” ser. IEEE Symposium on VLSI Circuits. IEEE,
2015, pp. C272–C273.

[13] M. Kang, E. P. Kim, M. s. Keel, and N. R. Shanbhag, “Energy-
efficient and high throughput sparse distributed memory
architecture,” in 2015 IEEE International Symposium on
Circuits and Systems (ISCAS). IEEE, 2015, pp. 2505–2508.

[14] M. Huang, M. Mehalel, R. Arvapalli, and S. He, “An energy
efficient 32-nm 20-mb shared on-die L3 cache for intel®
xeon® processor E5 family,” J. Solid-State Circuits, vol. 48,
no. 8, pp. 1954–1962, 2013.

395

[15] W. Chen, S.-L. Chen, S. Chiu, R. Ganesan, V. Lukka, W. W.
Mar, and S. Rusu, “A 22nm 2.5 mb slice on-die l3 cache for
the next generation xeon® processor,” in VLSI Technology
(VLSIT), 2013 Symposium on. IEEE, 2013, pp. C132–C133.

[16] K. E. Batcher, “Bit-serial parallel processing systems,” IEEE
Transactions on Computers, vol. 31, no. 5, pp. 377–384, 1982.

[17] P. B. Denyer and D. Renshaw, VLSI signal processing: a
bit-serial approach, vol. 1.

[18] A. Subramaniyan, J. Wang, E. Balasubramanian, D. Blaauw,
D. Sylvester, and R. Das, “Cache automaton,” in Proceedings
of the 50th Annual IEEE/ACM International Symposium on
Microarchitecture. ACM, 2017, pp. 259–272.

[19] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan,
“Deep learning with limited numerical precision,” in
Proceedings of the 32nd International Conference on Machine
Learning (ICML-15), 2015, pp. 1737–1746.

[20] S. Han, H. Mao, and W. J. Dally, “Deep compression:
Compressing deep neural networks with pruning,
trained quantization and huffman coding,” arXiv preprint
arXiv:1510.00149, 2015.

[21] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou,
“Dorefa-net: Training low bitwidth convolutional neural
networks with low bitwidth gradients,” arXiv preprint
arXiv:1606.06160, 2016.

[22] N. P. Jouppi, C. Young, N. Patil, D. Patterson et al., “In-
datacenter performance analysis of a tensor processing unit,”
in Proceedings of the 44th Annual International Symposium
on Computer Architecture. ACM, 2017, pp. 1–12.

[23] “Parabix Transform.” http://parabix.costar.sfu.ca/wiki/
ParabixTransform, accessed: 2017-11-20.

[24] D. Lin, N. Medforth, K. S. Herdy, A. Shriraman, and
R. Cameron, “Parabix: Boosting the efficiency of text
processing on commodity processors,” in High Performance
Computer Architecture (HPCA), 2012 IEEE 18th International
Symposium on. IEEE, 2012, pp. 1–12.

[25] Intel Corporation, “Cache Allocation Technol-
ogy,” https://software.intel.com/en-us/articles/
introduction-to-cache-allocation-technology, accessed:
2017-11-20.

[26] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
“Rethinking the inception architecture for computer vision,”
in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 2818–2826.

[27] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and
C. Le, “Rapl: memory power estimation and capping,” in Low-
Power Electronics and Design (ISLPED), 2010 ACM/IEEE
International Symposium on. IEEE, 2010, pp. 189–194.

[28] Nvidia Corporation, “Nvidia system manage-
ment interface,” https://developer.nvidia.com/
nvidia-system-management-interface, accessed: 2017-11-18.

[29] Intel Corporation, “Intel vtune amplifier performance profiler,”
https://software.intel.com/en-us/intel-vtune-amplifier-xe,
accessed: 2017-11-18.

[30] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand,
J. Kim, M. A. Kozuch, O. Mutlu, P. B. Gibbons, and T. C.
Mowry, “Ambit: In-memory accelerator for bulk bitwise
operations using commodity dram technology,” in Proceedings
of the 50th Annual IEEE/ACM International Symposium on
Microarchitecture. ACM, 2017, pp. 273–287.

[31] S. Li, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and Y. Xie,
“Drisa: A dram-based reconfigurable in-situ accelerator,” in
Proceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture. ACM, 2017, pp. 288–301.

[32] Intel Corporation, 6th Generation Intel® Processor Datasheet
for S-Platforms, 2015.

[33] I. Skochinsky, “Secrets of intel management engine,” http:
//www.slideshare.net/codeblue jp/igor-skochinsky-enpub,
accessed: 2016-02-17.

[34] S. Gueron, “A memory encryption engine suitable for general
purpose processors.” IACR Cryptology ePrint Archive, vol.
2016, p. 204, 2016.

[35] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian,
J. P. Strachan, M. Hu, R. S. Williams, and V. Srikumar,
“Isaac: A convolutional neural network accelerator with in-situ
analog arithmetic in crossbars,” in Proceedings of the 43rd
International Symposium on Computer Architecture. IEEE
Press, 2016, pp. 14–26.

[36] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and
Y. Xie, “PRIME: A novel processing-in-memory architecture
for neural network computation in reram-based main memory,”
in 43rd ACM/IEEE Annual International Symposium on
Computer Architecture, ISCA 2016, Seoul, South Korea, June
18-22, 2016, 2016, pp. 27–39.

[37] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li,
T. Chen, Z. Xu, N. Sun, and O. Temam, “Dadiannao: A
machine-learning supercomputer,” in Proceedings of the 47th
Annual IEEE/ACM International Symposium on Microarchi-
tecture. IEEE Computer Society, 2014, pp. 609–622.

[38] E. Chung, J. Fowers, K. Ovtcharov, M. Papamichael,
A. Caulfield, T. Massengil, M. Liu, D. Lo, S. Alkalay,
M. Haselman, C. Boehn, A. Forin, K. S. Gatlin, M. Ghandi,
S. Heil, K. Holohan, T. Juhasz, R. K. Kovvuri, S. Lanka,
F. v. Megen, D. Mukhortov, P. Patel, S. Reinhardt, A. Sapek,
R. Seera, B. Sridharan, L. Woods, P. Yi-Xiao, R. Zhao,
and D. Burger, “Accelerating persistent neural networks at
datacenter scale,” 2017, hot Chips: A Symposium on High
Performance Chips.

[39] M. Gokhale, B. Holmes, and K. Iobst, “Processing in memory:
The terasys massively parallel pim array,” Computer, vol. 28,
no. 4, pp. 23–31, 1995.

[40] P. Judd, J. Albericio, T. Hetherington, T. M. Aamodt, and
A. Moshovos, “Stripes: Bit-serial deep neural network
computing,” in Microarchitecture (MICRO), 2016 49th Annual
IEEE/ACM International Symposium on. IEEE, 2016, pp.
1–12.

[41] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz,
and W. J. Dally, “Eie: efficient inference engine on compressed
deep neural network,” in Proceedings of the 43rd International
Symposium on Computer Architecture. IEEE Press, 2016,
pp. 243–254.

[42] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan,
B. Khailany, J. Emer, S. W. Keckler, and W. J. Dally, “Scnn:
An accelerator for compressed-sparse convolutional neural net-
works,” in Proceedings of the 44th Annual International Sym-
posium on Computer Architecture. ACM, 2017, pp. 27–40.

396

