
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Long Papers), pages 527–536

Melbourne, Australia, July 15 - 20, 2018. c©2018 Association for Computational Linguistics

527

Context-Aware Neural Model for Temporal Information Extraction

Yuanliang Meng

Text Machine Lab for NLP

Department of Computer Science

University of Massachusetts Lowell

ymeng@cs.uml.edu

Anna Rumshisky

Text Machine Lab for NLP

Department of Computer Science

University of Massachusetts Lowell

arum@cs.uml.edu

Abstract

We propose a context-aware neural net-

work model for temporal information ex-

traction, with a uniform architecture for

event-event, event-timex and timex-timex

pairs. A Global Context Layer (GCL),

inspired by the Neural Turing Machine

(NTM), stores processed temporal rela-

tions in the narrative order, and retrieves

them for use when the relevant entities

are encountered. Relations are then clas-

sified in this larger context. The GCL

model uses long-term memory and atten-

tion mechanisms to resolve long-distance

dependencies that regular RNNs cannot

recognize. GCL does not use postprocess-

ing to resolve timegraph conflicts, outper-

forming previous approaches that do so.

To our knowledge, GCL is also the first

model to use an NTM-like architecture to

incorporate the information about global

context into discourse-scale processing of

natural text.

1 Introduction

Extracting information about the order and timing

of events from text is crucial to any system that

attempts an in-depth natural language understand-

ing, whether related to question answering, tempo-

ral inference, or other related tasks. Earlier tempo-

ral information extraction (TemporalIE) systems

tended to rely on traditional statistical learning

with feature-engineered task-specific models, typ-

ically used in succession (Yoshikawa et al., 2009;

Ling and Weld, 2010; Sun et al., 2013; Chambers

et al., 2014; Mirza and Minard, 2015).

Recently, there have been some attempts to ex-

tract temporal relations with neural network mod-

els, particularly with recurrent neural networks

(RNN) models (Meng et al., 2017; Cheng and

Miyao, 2017; Tourille et al., 2017) and convolu-

tional neural networks (CNN) (Lin et al., 2017).

These models predominantly use token embed-

dings as input, avoiding handcrafted features for

each task. Typically, neural network models out-

perform traditional statistical models. Some stud-

ies also try to combine neural network models with

rule-based information retrieval methods (Fries,

2016). These systems require different models

for different pair types, so several models must be

combined to fully process text.

A common disadvantage of all these models

is that they build relations from isolated pairs of

entities (events or temporal expressions). This

context-blind, pairwise classification often gener-

ates conflicts in the resulting timegraph. Common

ways of ameliorating the conflicts is to apply some

ad hoc constraints to account for basic properties

of relations (e.g. transitivity), often without con-

sidering the content of the text per se. For ex-

ample, Ling and Weld (2010) designed transitiv-

ity formulae, used with local features. Sun (2014)

proposed a strategy that “prefers the edges that can

be inferred by other edges in the graph and remove

the ones that are least so”. Another approach is to

use the results from separate classifiers to rank re-

sults according to their general confidence (Mani

et al., 2007; Chambers et al., 2014). High-ranking

results overwrite low-ranking ones. Meng et al.

(2017) used a greedy pruning algorithm to remove

weak edges from the timegraph until it is coherent.

When humans read text, we certainly do not

follow the procedure of interpreting interpret re-

lations only locally first, and later come up with a

compromise solution that involves all the entities.

Instead, if local information is insufficient, we

consider the relevant information from the wider

context, and resolve the ambiguity as soon as pos-

sible. The resolved relations are stored in our

528

memory as “context” for further processing. If

the later evidence suggests our early interpretation

was wrong, we can correct it.

This paper proposes a model to simulate such

mechanisms. Our model introduces a Global Con-

text Layer (GCL), inspired by the Neural Turing

Machine (NTM) architecture (Graves et al., 2014),

to store processed relations in narrative order, and

retrieve them for use when related entities are en-

countered. The stored information can also be up-

dated if necessary, allowing for self-correction.

This paper’s contributions are as follows. To

our knowledge, this is the first attempt to use neu-

ral network models with updateable external mem-

ory to incorporate global context information for

discourse-level processing of natural text in gen-

eral and for temporal relation extraction in par-

ticular. It gives a uniform treatment of all pairs

of temporally relevant entities. We obtain state-

of-the-art results on TimeBank-Dense, which is a

standard benchmark for TemporalIE.

2 Dataset

We train and evaluate our model on TimeBank-

Dense1 (Chambers et al., 2014). There are 6

classes of relations: SIMULTANEOUS, BEFORE,

AFTER, IS INCLUDED, INCLUDES, and VAGUE

TimeBank-Dense annotation aims to approximate

a complete temporal relation graph by including

all intra-sentential relations, all relations between

adjacent sentences, and all relations with docu-

ment creation time. TimeBank-Dense is one of

the standard benchmarks for intrinsic evalution of

TemporalIE systems. We follow the experimental

setup in Chambers et al. (2014), which splits the

corpus into training/validation/test sets of 22, 5,

and 9 documents, respectively. Previous publica-

tions often use the micro-averaged F1 score, which

is equivalent to accuracy in this case. We also rely

on the micro-averaged F1 score for model selec-

tion and evaluation.

Following Meng et al. (2017), we augment the

data by flipping all pairs, except for relations in-

volving document creation time (DCT). In other

words, if a pair (ei, ej) exists, we add (ej , ei) to

the dataset with the opposite label (e.g. BEFORE

becomes AFTER). The augmentation applies to the

validation and test sets also. In the final evaluation,

a double-checking technique picks one result from

1https://www.usna.edu/Users/cs/

nchamber/caevo/#corpus

the two-way classification, based on output scores.

The dataset is heavily imbalanced. The training

set has as much as 44.1% VAGUE labels, whereas

only 1.8% labels are SIMULTANEOUS. We did not

do any up-sampling or down-sampling.

3 System

Our system has two main components. The first

one is a pairwise relation classifier, and the other is

the Global Context Layer (GCL). The pairwise re-

lation classifier follows the architecture designed

by Meng et al. (2017), which used the dependency

paths to the least common ancestor (LCA) from

each entity as input. We train the first component

first, and then assemble them in a combined neu-

ral network to continue training. Fig. 1 gives an

overview of the system.

Figure 1: System overview. Originally, the pre-trained sys-
tem has one more dense layer and an output layer, but they
are truncated before combination. The max pooling layers on
top of each Bi-LSTM layers are omitted here.

3.1 Global Context Layer

The Global Context Layer (GCL) we propose is

inspired by the Neural Turing Machine (NTM) ar-

chitecture, which is an extension of a recurrent

neural network with external memory and an at-

tention mechanism for reading and writing to that

memory. NTM has been shown to perform ba-

sic tasks such as copying, sorting, and associative

recall (Graves et al., 2014). The external mem-

ory not only enables a large (theoretically infinite)

capacity for information storage, but also allows

flexible access based on attention mechanisms.

Essentially, GCL is a specialized form of NTM,

which eliminates some parameters to facilitate

training, and specializes some functions to impose

restrictions. While not as powerful as the canoni-

529

cal NTM, it is more suitable for the task of retain-

ing and updating global context information.

3.1.1 Motivation

Vanilla RNNs struggle with capturing long-

distance dependencies. Gated RNNs such as

LSTM have trainable gates to address the “van-

ishing and exploding gradient” problem (Hochre-

iter and Schmidhuber, 1997). At each time step, it

chooses what to memorize and forget, so patterns

over arbitrary time intervals can be recognized.

However, the memory in LSTM is still short-term.

No matter how long the cell states keep certain in-

formation, once it is forgotten, it gets lost forever.

Such a mechanism suffices for modeling contigu-

ous sequences. For example, sentences are nat-

urally fit units for such models, since a sentence

starts only after the preceding sentence is finished,

and LSTM may be an adequate tool to process sen-

tences. However, when the sequences are not con-

tiguous, as in temporal and other discourse-scale

relations, LSTM models do not have the capabil-

ity to look for input pieces across sequences.

When humans read text, discourse-level infor-

mation is often distributed across the full scope of

the text. To fully understand an article, we must be

able to organize the processed information across

sentences and paragraphs. In particular, to inter-

pret temporal relations between entities in a sen-

tence, sometimes we also look at relations with

other entities elsewhere in the text. Such entities

or relations form no regular sequences, and only

a system with long-term memory as well as atten-

tion mechanisms can process them. An NTM-like

architecture has an external memory with attention

mechanisms, so it is an ideal candidate for such

tasks. Furthermore, unlike the models that use at-

tention over inputs (Vinyals et al., 2015; Kumar

et al., 2016), NTM-like models are capable of up-

dating previously stored representations. We de-

scribe below the GCL architecture that we use to

store and update the global context information.

3.1.2 Reading

The input to the GCL layer is a concatenation

of three layers from the pairwise neural network.

Two of these are the entity context representation

layers, encoded by the two LSTM branches. The

other is the penultimate hidden layer before the

output layer, which encodes the relation. We can

write them as [e1, e2,x]. The context representa-

tions are used as “keys” to uniquely identify the

Figure 2: GCL computing attention weights. Input entity rep-
resentations are compared to the Key section of GCL mem-
ory. Slots with the same or similar entities get more attention.

entities. Note that we use flat context embeddings,

rather than dependency path embeddings, because

dependency paths tend to be short and will also

vary for the same entity, depending on the other

entity in the pair. As such, they do not provide a

unique way to represent an entity.

The original design of NTM has a complex

addressing mechanism for reading, which also

makes it difficult to train. An important difference

in GCL is that we separate the “key” component

from the “content” component of memory. Each

memory slot S[i] consists of [K[i];M [i]], where

S is the whole memory with n slots, i ≤ n is the

index, K is the key and M is the content. Ad-

dressing is only performed on the key component.

The key component stores the representation of

two entities, provided by the layers encoding the

flat entity context.

K[i] = eM1[i]⊕ eM2[i] (1)

Here ⊕ is the concatenation operator. In the GCL

model, the read head computes a reading weight

Wn×1 from the input entity representations e1, e2
and the entity representations eM1, eM2 in mem-

ory (i.e., the keys in each memory slot). The first

step is to compute the distance between current in-

put and the memory columns, as shown in Eq. 2.

D[i] is the Euclidean distance between the input

key and the memory key of slot M [i]. D′[i] is

computed after flipping the two entities. We do so

because the order of entities in a pair should not

affect their relevance.

D[i] =
1

Z
||e1 ⊕ e2 − eM1[i]⊕ eM2[i]||

2
2

D′[i] =
1

Z ′
||e2 ⊕ e1 − eM1[i]⊕ eM2[i]||

2
2

(2)

530

where Z =
∑

iD[i] is the normalization factor,

and so is Z ′ for the flipped case. The reading

weight is then calculated as in Eq. 3, where 1n×1

is a vector of all 1’s.

W [i] = max(softmax(1−D)[i],

softmax(1−D
′)[i])

(3)

Every element of W represents the relevance of

the corresponding memory slot (see Fig. 2). Often

it is still too blurred and needs to be further sharp-

ened as in Eq. 4. Here β is a positive number. W β

is a point-wise exponential function by power of

β. A large β allows “winner takes all”, so only the

most relevant memory slots are read.

W read = softmax(W β) (4)

Parameter β could be a constant, or could be train-

able. Our model computes it from the current in-

put xt and the previous output ht−1, and thus it

varies in each time step. Wsharp and bsharp are

trainable weights and bias, cβ is a constant, and

ReLU is the rectified linear function.

βt = ReLU(Wsharp[xt,ht−1]+bsharp)+cβ (5)

With the sharpened reading weight vector, we are

able to obtain the read vector r1×m from M as a

weighted sum, as in Eq. 6.

r =
∑

i

W read[i]M [i] (6)

Generally speaking, the depth of memory M

should be large enough to allow sparse encoding,

so that crucial information is not lost after the sum-

mation. The read vector then contains contextual

information relevant to current input. Both the

read vector and the current input are fed to the con-

troller, yielding GCL output. Unlike the canonical

NTM, the CGL model does not have a trainable

gate interpolating the W t computed at time t, with

W t−1 computed at previous time t−1. The weight

vector is not passed to next time step, so the atten-

tion has no “inertia”.

We tried two variants of the controller: (a) state-

tracking, with an LSTM layer, and (b) stateless,

with a dense layer. An LSTM controller has an

internal state, and also has gates to select input

and output. If the input data and/or the read vec-

tor from M have regular patterns with respect to

time steps, an LSTM controller would be a better

choice. For the specific task of temporal relation

extraction, we saw no difference in performance.

3.1.3 Writing

The controller produces an output ht, which is

sent to the next layer and also used to update M .

Similar to reading, the first step of writing pro-

cedure is to compute an attention weight vector

over the slots of M . As described above, the read-

ing procedure computes a weighted sum over slots

of M . The writing procedure writes a weighted

ht to each slot. The attention mechanism here is

de facto a soft addressing mechanism. The slots

with a higher attention value will be the addresses

which will get more of an update.

The same weight vector W computed as shown

in Eq. 3 is used for writing. However, an addi-

tional operation is introduced for writing. Recall

that the weights are computed from entity repre-

sentations. If the input entities are e1 and e2, the

weight vector should have high values in the slots

corresponding to e1 and/or e2. But we may not

always want relevant memory slots to be overwrit-

ten. Instead, additional information can be written

to a different slot. Additionally, when M is rela-

tively empty, as at the beginning, the addressing

mechanism may treat all slots equally, and uni-

formly update all slots in the same way. In this

case we want the weight vector to shift each time,

so M can diversify fast.

Therefore we use a shift function similar to the

canonical NTM. The idea is to compute a shifted

weight vector W̃ by convolving W with a shift

kernel s which maps a shift distance to a probabil-

ity value. For example, s(−1) = 0.2, s(0) = 0.5,

s(1) = 0.3 means the probabilities of shifting left,

no shifting, and shifting right are 0.2, 0.5, 0.3, re-

spectively. Generally speaking, we want s to give

zeros for most shift distances, so the shifting oper-

ation is limited to a small range.

W̃ [i] =
n−1∑

j=0

W [j]s[i− j] (7)

At each time step, the shift kernel depends on cur-

rent input and output. If the allowed shift range is

[-s/2, +s/2], we train a weight Ws and bias bs to

calculate the shift weights Cs×1,

Ct = softmax(Ws[xt,ht] + bs) (8)

Then the weights are mapped to a circulant ker-

nel to perform the convolution in Eq. 7, the final

output is W̃ .

Finally, the sharpening still needs to be applied.

For the writing procedure, both addressing and

531

shifting are “soft” in nature, and thus could yield

a blurred outcome. Again, we train the weights

to obtain a sharpening parameter γ each time, and

perform softmax over W̃ .

γt = ReLU(Wsharp[xt,ht] + bsharp) + cγ (9)

Wwrite = softmax(W̃ γ) (10)

W̃ γ is the point-wise exponential function, over

the shifted weight vector. cγ is a positive constant.

The original NTM model has gates for interpo-

lating W̃ γ at the current time with the one com-

puted at the previous time step, but we omit this

operation. We also omit the erase vector and the

add vector, so Wwrite fully controls what to over-

write in M and what to retain. As a result, the

writing operation can be expressed as:

Mt[i] = Mt−1[i]+Wwrite[i](ht−Mt−1[i]) (11)

The first term in Eq. 11 is the memory in the pre-

vious time step, and the second term is the update.

We update the keys in the same way. As we can

see, the keys come from entity representations, but

are not exactly the same, due to Wwrite.

Kt[i] = Kt−1[i] +Wwrite[i](e1 ⊕ e2 −Kt−1[i])
(12)

3.1.4 GCL vs. Canonical NTM

We highlight below some major differences be-

tween the canonical NTM and the GCL model.

Typically, NTM computes the keys from input and

output for accessing different memory addresses.

In GCL, the keys are simply the entity representa-

tions [e1, e2] from input, in either order. The key

function effectively involves slicing and flipping

the input. Further discussion of the differences be-

tween the GCL addressing mechanism and some

of the other NTM variations is provided in Sec. 5.

Another major difference is that we do not use

any gates to interpolate the attention vector at the

current time step with the one from the previous

time step. Instead, the previous attention vector is

totally ignored. Since we do not compute the erase

vector or the add vector, this allows the attention

vector to fully control memory updates.

In addition, we unified the trainable weights for

calculating β and γ at each time step. We found

these parameters not to be crucial, and setting

them to be constant does not affect the results. We

also do not shift attention for reading. A possible

advantage of shifting attention is that neighboring

slots of the focus can also be accessed, providing

a way to simulate associative recall. This is based

on the fact that the writing procedure tends to write

similar memories close to each other. However, in

this study we want the reading procedure to be re-

stricted. Associative recall can be realized from

attention vector itself, without shifting.

3.2 Pairwise Classification Model

The pairwise model classifies individual entity

pairs, where entities are events and time expres-

sions (timexes). In other words, for each pair,

we only use the local context, and the relation of

one pair does not affect the classification results

for other pairs. We follow the architecture pro-

posed in Meng et al. (2017), but with the follow-

ing changes: (1) all three types of pairs are han-

dled by the same neural network, rather than by

three separately trained models; (2) the neighbor-

ing words (a flat context) of entity mentions are

used to generate input, in addition to words on

syntactic dependency paths; (3) all timex-timex

pairs are included as well, not only event-timex

and event-event pairs; (4) every pair is assigned

a 3-dimensional “time value”, to approximate the

rule-based approach when possible.

3.2.1 Event Pairs and Event-Timex Pairs

TimeBank-Dense dataset labels three types of

pairs: intra-sentence, cross-sentence and docu-

ment creation time (DCT). For intra-sentence pairs

and cross-sentence pairs, we follow Meng et al.

(2017). The shortest dependency path between the

two entities is identified, and the word embeddings

from the path to the least common ancestor for

each entity are processed by two LSTM branches,

with a separate max pooling layer for each branch.

Path to the root is used for cross-sentence rela-

tions. For relations with the DCT, we use a single

word now as a placeholder for the DCT branch.

Unlike Meng et al. (2017), we allow the model to

accept all three pair types, with a “pair type” fea-

ture as a component of input, defined as an integer

with the value 1, -1 or 0, respectively.

In addition to the shortest dependency path, our

model also uses a flat local context window, that

is, the words around each entity mention, regard-

less of syntactic structures. For an entity start-

ing with word wi, the local context window is

5 words to the left and 10 words to its right i.e.

wi−5wi−4...wiwi+1...wi+10. The windows are cut

532

short at the edge of a sentence, or when the sec-

ond entity in encountered. By using this context

window, the words between two entities are of-

ten used twice by the system, and thus given more

consideration. To inform the system of other en-

tity mentions, we also add special input tokens at

the locations where events and timexes are tagged.

The embeddings of the special tokens are uni-

formly initialized, and automatically tuned during

the training process.

3.2.2 Timex Pairs

The method described in Meng et al. (2017) clas-

sifies timex pairs by handcrafted rules and then

adds them to the final results prior to postprocess-

ing. Since timexes have concrete time values, a

rule-based method would seem appropriate. How-

ever, since our model uses global context to help

classify relations and timex-timex pairs enrich the

global context representation, we design a way for

a common classifier model to handle such pairs.

When DCT is not involved, timex pairs are cre-

ated the same way as cross-sentence pairs, that is,

path to the root is used for each entity. DCT is

represented by the placeholder word now. In ad-

dition to the word-based representations, another

input vector is used to simulate the rule-based ap-

proach, to be explained next.

3.2.3 Time Value Vectors

Every timex tag has a time value, following the

ISO-8601 standard. Every value can be mapped to

a 2D vector of real values (start, end). For a pair

we use the subtraction of the vectors to represent

the difference. Suppose we have timexes in below:

THE HAGUE, Netherlands (AP)_ The World Court

<TIMEX3 tid="t21" type="DATE" value="1998-02-27"

temporalFunction="true" functionInDocument="NONE"

anchorTimeID="t0">Friday</TIMEX3> rejected U.S.

and British objections to a Libyan World Court

case that has the trial of two Libyans suspected

of blowing up a Pan Am jumbo jet over Scotland in

<TIMEX3 tid="t22" type="DATE" value="1988"

temporalFunction="false"

functionInDocument="NONE">1988</TIMEX3>.

The first timex can be represented as (1998 + 1/12

+ 26/365, 1998 + 1/12 + 26/365) = (1998.155,

1998.155), and the second one (1988, 1988 +

364/365) = (1988, 1988.997). The difference of

the values are put in the sign function, to ob-

tain the representation: (sign(1988 - 1998.155),

sign(1988.997 - 1998.155)) = (-1, -1). Vector (-1,

-1) clearly indicates the AFTER relation between

t21 and t22. We set the minimum interval to be a

day, which is generally sufficient for our data. The

DURATION timexes are not considered, and word-

based input vectors are used to represent them.

In order to make all the input data have the same

shape, we assign the time value vector to all pairs,

even if a timex is not involved. For non-timex

pairs, a vector (-1, 0, 0) is used. The first element

-1 to indicate a “pseudo” time value. Real timex

pairs have the first value of 1, so the example we

just discussed would be assigned a vector (1, -1, -

1). The time value vectors allow the model to take

advantage of rule-based information.

3.3 Combining Two Components

We tried training the two components in a com-

bined system, but found it slow to converge. In our

experiments, we trained the pairwise model first,

froze it, and then combined it with the GCL layer

to train the GCL. This method also helps us ob-

serve whether the GCL component alone improves

results, given the same input.

We tried combining the systems in two ways.

One is to connect the output layer of the pre-

trained model to GCL, and the other is to slice the

pre-trained model and connect its hidden layer to

GCL. All the GCL layers are bi-directional, aver-

aging forward and backward passes. By connect-

ing the output layer, which has a softmax activa-

tion, we hand the final decisions made by the pair-

wise model to GCL. On the other hand, the hid-

den layer provides higher layers with cruder but

richer information. We found that the latter per-

forms better. It is also possible to train the two

components together from scratch. In this case,

the learning rate has to be set much lower to as-

sure convergence, and the training requires more

epochs.

4 Experiments

For all the experiments, hyperparameters includ-

ing the number of epochs are tuned with the val-

idation set only. Training data is segmented into

chunks. Each chunk contains relation pairs in the

narrative order. The size of chunks is randomly

chosen from [40, 60, 80, 120, 160] at the begin-

ning of each epoch of training. The GCL main-

tains a memory for each chunk, and clears it at the

end of a chunk. The idea here is to train the model

on short paragraphs to avoid overfitting.

To introduce further randomness, the chunks are

rotated for each epoch. For a specific training file,

if chunk i starts with pair ni in epoch 1, in epoch

533

2, chunk i will start with pair ni+chunksize+11.

11 is a prime number we chose to assure each

epoch observes different compositions of chunks.

By doing the rotation, some pairs in the final

chunk of epoch 1 will show up in the first chunk

in epoch 2 as well. However, within each chunk,

we do not randomize pairs, so narrative order is

preserved at this level. We also do not shuffle the

chunks, but only rotate them.

Evaluation on the test set uses only one chunk

for each file (chunk size is the number of pairs).

Each relation pair is only processed once, without

“multiple rounds of reading”. Thus, we essentially

train the model to read shorter paragraphs (varied

in length), but test it on long articles.

4.1 Pairwise Model

As described in Section 3.2, the pairwise classi-

fier has the following input vectors: left and right

shortest path branches, two flat context vectors, a

pair type flag, and a time value vector. Word em-

beddings are initialized with glove.840B.300d

word vectors2, and set to be trainable. The Bi-

LSTM layers are followed by max-pooling. The

two hidden layers have size 512 and 128, respec-

tively. We train this model for 40 epochs, us-

ing the RMSProp optimizer (Tieleman and Hin-

ton, 2012). The learning rate is scheduled as

lr = 2 × 10−3 × 2−
n

5 , where n is the number

of epochs.

The middle block of Table 1 shows the per-

formance of the pairwise model after applying

double-checking. Since all pairs are flipped,

double-checking combines results from (ei, ej)

and (ej , ei), picking the label with the higher prob-

ability score, which typically boosts performance.

The results without double-checking show similar

trends.

4.2 GCL model

After training the pairwise model, we combine it

with GCL. Unless otherwise indicated, the results

reported in this section use the model configura-

tion that connects the hidden layer (rather than the

output layer) of the pairwise model with a bidirec-

tional GCL layer. The bidirectional GCL is real-

ized as the average of a forward GCL and a back-

ward GCL, each producing a sequence. Then two

more hidden layers are put on top of it, followed

2https://nlp.stanford.edu/projects/glove/
3This result does not include timex-timex pairs, which is

3% of total test instances.

Model Micro-F1 Macro-F1

CAEVO (not NN model) .507

CATENA (not NN model) .511

Cheng et al. 2017 .5203

Meng et al. 2017 .519

pairwise .535 .528

Two more hidden layers .539 .532

GCL w/ state-tracking controller .545 .538

GCL w/ stateless controller .546 .538

GCL w/ pre-trained output layer .541 .536

Table 1: Results on the test set. The GCL models use
the same hyperparameters, if possible. The two models on
the top do not use neural networks. The results in the two
lower blocks all use double-check. “Two more hidden lay-
ers” means adding two dense layers on top of the pre-trained
model without using GCL. The last row corresponds to con-
necting the output layer of a pre-trained model to GCL layers
with stateless controller.

by an output layer. All the layers in the pre-trained

pairwise model are set to be untrainable. The two

trainable hidden layers have sizes 512 and 128, re-

spectively, with ReLU activtion and 0.3 dropout

after each one. The GCLs have 128 memory slots.

Learning rate is scheduled as lr = 2×10−4×2−
n

2 .

In the experiments, we found the models converge

quite fast with respect to the number of epochs. It

is not surprising because the lower layers are al-

ready well trained, and frozen (no updating). Af-

ter the 5th epoch, the training accuracy typically

reaches 0.95. We stop training after 10 epochs.

The bottom block of Table 1 presents the re-

sults, showing that all models from the present pa-

per outperform existing models from the literature.

One may argue the combined system adds more

hidden layers over a pre-trained model, which con-

tributes to the improvement in performance. We

show a comparison to a baseline model which adds

two dense layers on top of the pairwise model,

without the GCL. The configuration of the two

layers is the same as we used for the GCL models.

The result shows that the performance is slightly

higher than what we get from the pairwise model,

but the difference is smaller than what we get from

GCL models – suggesting that the performance

improvement with GCL models is not just due to

more parameters. We also tried adding an LSTM

layer on top of the pre-trained model, and found

the system cannot converge. It again confirms that

GCL is more powerful than LSTM in handling ir-

regular time series.

We found no difference in performance be-

tween the stateless controller and state-tracking

controller. Connecting the output layer of the pre-

534

trained model to GCL seems to generate weaker

results than connecting the hidden layer, although

it also outperforms the pairwise model, and all pre-

vious models in literature.

We performed significance testing to compare

the pairwise model and the GCL-enabled model.

A paired one-tailed t-test shows the results from

the GCL model are significantly higher than re-

sults from pairwise model (p-value 0.0015). While

significant, the improvement is relatively small,

we believe due in part to the small size of

Timebank-Dense dataset.

4.3 Case Study

To illustrate the difference in performance of the

pairwise model and the GCL model, we created a

sample paragraph in which long-distance depen-

dencies and references to DCT are needed to re-

solve some of the temporal relations:

John met Mary in Massachusetts when they attended
the same university. They are getting married in 2019,
2 years after their graduation. But this year, they have
relocated to New Hampshire.

We created the gold standard annotation for this

text with 5 events, 2 timexes, and 24 TLINKs (see

appendix)4. We set the DCT to an arbitrary date

“2018-04-01”. There are no VAGUE or SIMULTA-

NEOUS relations.

For this paragraph, the pairwise model yields an

accuracy (i.e. micro-averaged F1) of 0.292, while

the GCL-enabled model yields 0.417. Overall, the

GCL-enabled model assigns 6 VAGUE labels while

the pairwise assigns 11. It reflects the fact that

GCL tries to infer relations from otherwise vague

evidence. For example, it is difficult to infer the

relation between met and 2019 from the local con-

text (without DCT, particularly), so the pairwise

model labels it as VAGUE, while the GCL-enabled

model correctly assigns BEFORE.

Recall that the GCL is placed on top of a pre-

trained pairwise model, so the mistakes made by

the pairwise model propagate to GCL. For exam-

ple, the pairwise model incorrectly classifies 2019

as BEFORE graduation – perhaps, due to a some-

what unusual syntax. But the GCL-enabled sys-

tem assigns it a VAGUE label, probably as a way

to compromise. In the TimeBank-Dense test data,

VAGUE cases dominate, which may have made it

more difficult for GCL to assign proper labels. In

the future, we believe it may be better to omit

4Note that in TimeBank-Dense, no TLINKS are associated
DURATION timexes, so 2 years is not annotated

writing (and reading) the VAGUE relations to/from

GCL.

4.4 Error Analysis

Table 2 shows the overall performance for each

relation using the GCL system with the stateless

controller. Since we flip pairs and use double-

checking to pick one result for each pair, BE-

FORE/AFTER and IS INCLUDED/INCLUDES are

actually treated in the same way, respectively.

Here we map the results to original pairs, in order

to compare to other systems.

Predicted labels

SIMUL BEF AFT IS INCL INCL VAG Total

SIMUL 10 0 9 2 1 17 39

BEF 0 327 27 15 5 215 589

AFT 1 26 208 4 5 184 428

IS INCL 1 27 3 59 2 67 159

INCL 0 16 9 2 19 70 116

VAG 1 171 87 28 17 596 900

Table 2: Overall results per relation.

As the table shows, the VAGUE relation causes

the most trouble. It is not only because VAGUE

is the largest class, but also because it is often

semantically ambiguous, so even human experts

have low inter-annotator agreement. If we allow

a relatively sparse labeling of data, and use other

evaluation methods (e.g. question answering), the

VAGUE class is not likely to have similar effects.

We also break down the results according to the

types of pairs. Compared to other systems, our

approach has a big advantage for event-event (E-

E) pairs, which is by far the most common (64%)

relation pairs for all data, and also requires more

complex natural language understanding. Com-

Systems E-D E-E E-T Overall

Frequency 14% 64% 19% 97%

CAEVO .553 .494 .494 .502

CATENA .534 .519 .468 .512

Cheng et al. 2017 .546 .529 .471 .520

GCL .489 .570 .487 .542

Table 3: Results on the E-D, E-D and E-T pairs. GCL
stands for the GCL-enabled system with a stateless controller.
Frequencies are percentages in the test set. T-T pairs are
not shown here. CAEVO is from Chambers et al. (2014).
CATENA is from Mirza and Tonelli (2016)

paired to CAEVO, our performance on event-DCT

(E-D) and event-timex (E-T) pairs is not that great.

CAEVO uses engineered features such as entity at-

tributes, temporal signals, and semantic informa-

tion from WordNet, which seems to work well in

these two cases. We took a closer look at our E-D

535

results, and found that the relatively low perfor-

mance is mainly caused by misclassifying VAGUE

as AFTER. As Table 4 shows, among the 72

Predicted labels

SIMUL BEF AFT IS INCL INCL VAG

SIMUL 0 0 0 0 0 0

BEF 0 57 11 15 6 37

AFT 0 3 36 0 0 10

IS INCL 0 11 1 31 1 12

INCL 0 0 2 1 3 2

VAG 0 4 20 9 14 25

Table 4: Test results from event and document creation time
(E-D) pairs. The rows are true labels and the columns are
predicted labels.

VAGUE relations in E-D pairs, 20 are labeled AF-

TER by our system. In a news article, most events

occur before the DCT i.e. the time when the arti-

cle was written. If the temporal relation is vague,

our system tends to guess that the event occurs af-

ter the DCT. It is interesting because AFTER only

accounts for 16% of all E-D pairs in test data (and

about the same in training data), behind BEFORE

(41%), VAGUE (21%), and IS INCLUDED (18%).

However, E-D is a relatively small category with

only 311 instances in the test set, so it is difficult

to draw any a substantive conclusion in this case.

Recall that our model has a uniform architec-

ture for all input types and is trained on event-

event, event-timex and event-DCT pairs simulta-

neously. As a result, its performance is not optimal

for some lower-frequency pair types. Tuning the

model for each pair type separately, as well as re-

sampling to deal with class imbalance would, per-

haps, improve performance. However, the point

of these experiments was not to get the largest im-

provement, but to show that the GCL mechanism

can replace heuristic-based timegraph conflict res-

olution, improving the performance of an other-

wise very similar model.

5 Related Work

While the GCL model is inspired by NTM, other

NTM variants have also been proposed recently.

Zhang et al. (2015) proposed structured memory

architectures for NTMs, and argue they could alle-

viate overfitting and increase predictive accuracy.

Graves et al. (2016) proposed a memory access

mechanism on top of NTM, which they call Differ-

entiable Neural Computer (DNC). DNC can store

the transitions between memory locations it ac-

cesses, and thus can model some structured data.

Gülçehre et al. (2016) proposed a Dynamic

Neural Turing Machine (D-NTM) model, which

allows discrete access to memory. Gülçehre et al.

(2017) further simplified the addressing algorithm,

so a single trainable matrix is used to get locations

for read and write. Both models separate the ad-

dress section from the content section of memory,

as do we. We came up with the idea indepen-

dently, noting that the content-based addressing in

the canonical NTM model is difficult to train. A

crucial difference between GCL and these mod-

els is that they use input “content” to compute

keys. In GCL, the addressing mechanism fully

depends on the entity representations, which are

provided by the context encoding layers and not

computed by the GCL controller. Addressing then

involves matching the input entities and the enti-

ties in memory.

Other than NTM-based approaches, there are

models that use an attention mechanism over ei-

ther input or external memory. For instance, the

Pointer Networks (Vinyals et al., 2015) uses at-

tention over input timesteps. However, it has

no power to rewrite information for later use,

since they have no “memory” except for the RNN

states. The Dynamic Memory Networks (Kumar

et al., 2016) has an “episodic memory” module

which can be updated at each timestep. However,

the memory there is a vector (“episode”) with-

out internal structure, and the attention mechanism

works on inputs, just as in Pointer Networks. Our

GCL model and other NTM-based models have a

memory with multiple slots, and the addressing

function (attention) dictates writing and reading

to/from certain slots in the memory.

6 Conclusion

We have proposed the first context-aware neural

model for temporal information extraction using

an external memory to represent global context.

Our model introduces a Global Context Layer

which is able to save and retrieve processed tem-

poral relations, and then use this global context to

infer new relations from new input. The memory

can be updated, allowing self-correction. Experi-

mental results show that the proposed model beats

previous results without resorting to ad-hoc reso-

lution of timegraph conflicts in postprocessing.

Acknowledgments

This project is funded in part by an NSF CAREER

award to Anna Rumshisky (IIS-1652742).

536

References

Nathanael Chambers, Taylor Cassidy, Bill McDowell,
and Steven Bethard. 2014. Dense event ordering
with a multi-pass architecture. Transactions of the
Association for Computational Linguistics, 2:273–
284.

Fei Cheng and Yusuke Miyao. 2017. Classifying tem-
poral relations by bidirectional lstm over depen-
dency paths. In ACL.

Jason Alan Fries. 2016. Brundlefly at semeval-2016
task 12: Recurrent neural networks vs. joint infer-
ence for clinical temporal information extraction.
CoRR, abs/1606.01433.

Alex Graves, Greg Wayne, and Ivo Danihelka. 2014.
Neural turing machines. CoRR, abs/1410.5401.

Alex Graves, Greg Wayne, Malcolm Reynolds,
Tim Harley, Ivo Danihelka, Agnieszka Grabska-
Barwinska, Sergio Gomez Colmenarejo, Edward
Grefenstette, Tiago Ramalho, John Agapiou,
Adrià Puigdomènech Badia, Karl Moritz Hermann,
Yori Zwols, Georg Ostrovski, Adam Cain, Helen
King, Christopher Summerfield, Phil Blunsom,
Koray Kavukcuoglu, and Demis Hassabis. 2016.
Hybrid computing using a neural network with
dynamic external memory. Nature, 538(7626):471–
476.

Çaglar Gülçehre, Sarath Chandar, and Yoshua Bengio.
2017. Memory augmented neural networks with
wormhole connections. CoRR, abs/1701.08718.

Çaglar Gülçehre, Sarath Chandar, Kyunghyun Cho,
and Yoshua Bengio. 2016. Dynamic neural tur-
ing machine with soft and hard addressing schemes.
CoRR, abs/1607.00036.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Ankit Kumar, Ozan Irsoy, Peter Ondruska, Mohit
Iyyer, James Bradbury, Ishaan Gulrajani, Victor
Zhong, Romain Paulus, and Richard Socher. 2016.
Ask me anything: Dynamic memory networks for
natural language processing. In Proceedings of The
33rd International Conference on Machine Learn-
ing, volume 48 of Proceedings of Machine Learning
Research, pages 1378–1387, New York, New York,
USA. PMLR.

Chen Lin, Timothy A. Miller, Dmitriy Dligach, Steven
Bethard, and Guergana Savova. 2017. Representa-
tions of time expressions for temporal relation ex-
traction with convolutional neural networks. In
BioNLP 2017, Vancouver, Canada, August 4, 2017,
pages 322–327.

Xiao Ling and Daniel S. Weld. 2010. Temporal infor-
mation extraction. In Proceedings of the Twenty-
Fourth AAAI Conference on Artificial Intelligence,
AAAI 2010, Atlanta, Georgia, USA, July 11-15,
2010.

Inderjeet Mani, Ben Wellner, Marc Verhagen, and
James Pustejovsky. 2007. Three approaches to
learning tlinks in timeml. Technical Report CS-07–
268, Computer Science Department.

Yuanliang Meng, Anna Rumshisky, and Alexey Ro-
manov. 2017. Temporal information extraction for
question answering using syntactic dependencies in
an lstm-based architecture. In Proc. of the confer-
ence on empirical methods in natural language pro-
cessing (EMNLP).

P Mirza and S Tonelli. 2016. Catena: Causal and tem-
poral relation extraction from natural language texts.
In The 26th International Conference on Compu-
tational Linguistics, pages 64–75. Association for
Computational Linguistics.

Paramita Mirza and Anne-Lyse Minard. 2015. Hlt-fbk:
a complete temporal processing system for qa tem-
peval. In Proc. of the 9th International Workshop on
Semantic Evaluation (SemEval 2015), pages 801–
805. Association for Computational Linguistics.

Weiyi Sun. 2014. Time Well Tell: Temporal Reason-
ing in Clinical Narratives. PhD dissertation. Depart-
ment of Informatics, University at Albany, SUNY.

Weiyi Sun, Anna Rumshisky, and Ozlem Uzuner. 2013.
Evaluating temporal relations in clinical text: 2012
i2b2 challenge. Journal of the American Medical
Informatics Association, 20(5):806–813.

T Tieleman and G Hinton. 2012. Lecture 6.5-rmsprop:
Divide the gradient by a running average of its re-
cent magnitude. COURSERA: Neural networks for
machine learning, 4(2):26–31.

Julien Tourille, Olivier Ferret, Aurelie Neveol, and
Xavier Tannier. 2017. Neural architecture for tem-
poral relation extraction: A bi-lstm approach for de-
tecting narrative containers. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
224–230, Vancouver, Canada. Association for Com-
putational Linguistics.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. In C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett,
editors, Advances in Neural Information Processing
Systems 28, pages 2692–2700. Curran Associates,
Inc.

Katsumasa Yoshikawa, Sebastian Riedel, Masayuki
Asahara, and Yuji Matsumoto. 2009. Jointly identi-
fying temporal relations with markov logic. In Pro-
ceedings of the Joint Conference of the 47th Annual
Meeting of the ACL and the 4th International Joint
Conference on Natural Language Processing of the
AFNLP: Volume 1 - Volume 1, ACL ’09, pages 405–
413, Stroudsburg, PA, USA. Association for Com-
putational Linguistics.

Wei Zhang, Yang Yu, and Bowen Zhou. 2015. Struc-
tured memory for neural turing machines. CoRR,
abs/1510.03931.

