Context-Aware Neural Model for Temporal Information Extraction

Yuanliang Meng
Text Machine Lab for NLP
Department of Computer Science
University of Massachusetts Lowell
ymeng@cs.uml.edu

Abstract

We propose a context-aware neural net-
work model for temporal information ex-
traction, with a uniform architecture for
event-event, event-timex and timex-timex
pairs. A Global Context Layer (GCL),
inspired by the Neural Turing Machine
(NTM), stores processed temporal rela-
tions in the narrative order, and retrieves
them for use when the relevant entities
are encountered. Relations are then clas-
sified in this larger context. The GCL
model uses long-term memory and atten-
tion mechanisms to resolve long-distance
dependencies that regular RNNs cannot
recognize. GCL does not use postprocess-
ing to resolve timegraph conflicts, outper-
forming previous approaches that do so.
To our knowledge, GCL is also the first
model to use an NTM-like architecture to
incorporate the information about global
context into discourse-scale processing of
natural text.

1 Introduction

Extracting information about the order and timing
of events from text is crucial to any system that
attempts an in-depth natural language understand-
ing, whether related to question answering, tempo-
ral inference, or other related tasks. Earlier tempo-
ral information extraction (TemporallE) systems
tended to rely on traditional statistical learning
with feature-engineered task-specific models, typ-
ically used in succession (Yoshikawa et al., 2009;
Ling and Weld, 2010; Sun et al., 2013; Chambers
et al., 2014; Mirza and Minard, 2015).

Recently, there have been some attempts to ex-
tract temporal relations with neural network mod-
els, particularly with recurrent neural networks

527

Anna Rumshisky
Text Machine Lab for NLP
Department of Computer Science
University of Massachusetts Lowell
arum@cs.uml.edu

(RNN) models (Meng et al., 2017; Cheng and
Miyao, 2017; Tourille et al., 2017) and convolu-
tional neural networks (CNN) (Lin et al., 2017).
These models predominantly use token embed-
dings as input, avoiding handcrafted features for
each task. Typically, neural network models out-
perform traditional statistical models. Some stud-
ies also try to combine neural network models with
rule-based information retrieval methods (Fries,
2016). These systems require different models
for different pair types, so several models must be
combined to fully process text.

A common disadvantage of all these models
is that they build relations from isolated pairs of
entities (events or temporal expressions). This
context-blind, pairwise classification often gener-
ates conflicts in the resulting timegraph. Common
ways of ameliorating the conflicts is to apply some
ad hoc constraints to account for basic properties
of relations (e.g. transitivity), often without con-
sidering the content of the text per se. For ex-
ample, Ling and Weld (2010) designed transitiv-
ity formulae, used with local features. Sun (2014)
proposed a strategy that “prefers the edges that can
be inferred by other edges in the graph and remove
the ones that are least so”. Another approach is to
use the results from separate classifiers to rank re-
sults according to their general confidence (Mani
et al., 2007; Chambers et al., 2014). High-ranking
results overwrite low-ranking ones. Meng et al.
(2017) used a greedy pruning algorithm to remove
weak edges from the timegraph until it is coherent.

When humans read text, we certainly do not
follow the procedure of interpreting interpret re-
lations only locally first, and later come up with a
compromise solution that involves all the entities.
Instead, if local information is insufficient, we
consider the relevant information from the wider
context, and resolve the ambiguity as soon as pos-
sible. The resolved relations are stored in our

Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Long Papers), pages 527-536
Melbourne, Australia, July 15 - 20, 2018. (©2018 Association for Computational Linguistics

memory as “context” for further processing. If
the later evidence suggests our early interpretation
was wrong, we can correct it.

This paper proposes a model to simulate such
mechanisms. Our model introduces a Global Con-
text Layer (GCL), inspired by the Neural Turing
Machine (NTM) architecture (Graves et al., 2014),
to store processed relations in narrative order, and
retrieve them for use when related entities are en-
countered. The stored information can also be up-
dated if necessary, allowing for self-correction.

This paper’s contributions are as follows. To
our knowledge, this is the first attempt to use neu-
ral network models with updateable external mem-
ory to incorporate global context information for
discourse-level processing of natural text in gen-
eral and for temporal relation extraction in par-
ticular. It gives a uniform treatment of all pairs
of temporally relevant entities. We obtain state-
of-the-art results on TimeBank-Dense, which is a
standard benchmark for TemporallE.

2 Dataset

We train and evaluate our model on TimeBank-
Dense' (Chambers et al., 2014). There are 6
classes of relations: SIMULTANEOUS, BEFORE,
AFTER, IS_INCLUDED, INCLUDES, and VAGUE
TimeBank-Dense annotation aims to approximate
a complete temporal relation graph by including
all intra-sentential relations, all relations between
adjacent sentences, and all relations with docu-
ment creation time. TimeBank-Dense is one of
the standard benchmarks for intrinsic evalution of
TemporallE systems. We follow the experimental
setup in Chambers et al. (2014), which splits the
corpus into training/validation/test sets of 22, 5,
and 9 documents, respectively. Previous publica-
tions often use the micro-averaged F1 score, which
is equivalent to accuracy in this case. We also rely
on the micro-averaged F1 score for model selec-
tion and evaluation.

Following Meng et al. (2017), we augment the
data by flipping all pairs, except for relations in-
volving document creation time (DCT). In other
words, if a pair (e;, e;) exists, we add (ej, e;) to
the dataset with the opposite label (e.g. BEFORE
becomes AFTER). The augmentation applies to the
validation and test sets also. In the final evaluation,
a double-checking technique picks one result from

'https://www.usna.edu/Users/cs/
nchamber/caevo/#corpus

528

the two-way classification, based on output scores.
The dataset is heavily imbalanced. The training
set has as much as 44.1% VAGUE labels, whereas
only 1.8% labels are SIMULTANEOUS. We did not
do any up-sampling or down-sampling.

3 System

Our system has two main components. The first
one is a pairwise relation classifier, and the other is
the Global Context Layer (GCL). The pairwise re-
lation classifier follows the architecture designed
by Meng et al. (2017), which used the dependency
paths to the least common ancestor (LCA) from
each entity as input. We train the first component
first, and then assemble them in a combined neu-
ral network to continue training. Fig. 1 gives an
overview of the system.

softmax

[Dense]

Concat

[Bi-LSTM l { Bi-LST™] ‘-;-IV-LSTM J 7_1 ;itLEﬁﬁ J

- ‘ Left Context

Value Left Branch

Right Branch

| vpe

Right Context | !

Figure 1: System overview. Originally, the pre-trained sys-
tem has one more dense layer and an output layer, but they
are truncated before combination. The max pooling layers on
top of each Bi-LSTM layers are omitted here.

3.1 Global Context Layer

The Global Context Layer (GCL) we propose is
inspired by the Neural Turing Machine (NTM) ar-
chitecture, which is an extension of a recurrent
neural network with external memory and an at-
tention mechanism for reading and writing to that
memory. NTM has been shown to perform ba-
sic tasks such as copying, sorting, and associative
recall (Graves et al., 2014). The external mem-
ory not only enables a large (theoretically infinite)
capacity for information storage, but also allows
flexible access based on attention mechanisms.
Essentially, GCL is a specialized form of NTM,
which eliminates some parameters to facilitate
training, and specializes some functions to impose
restrictions. While not as powerful as the canoni-

cal NTM, it is more suitable for the task of retain-
ing and updating global context information.

3.1.1 Motivation

Vanilla RNNs struggle with capturing long-
distance dependencies. Gated RNNs such as
LSTM have trainable gates to address the “van-
ishing and exploding gradient” problem (Hochre-
iter and Schmidhuber, 1997). At each time step, it
chooses what to memorize and forget, so patterns
over arbitrary time intervals can be recognized.
However, the memory in LSTM is still short-term.
No matter how long the cell states keep certain in-
formation, once it is forgotten, it gets lost forever.
Such a mechanism suffices for modeling contigu-
ous sequences. For example, sentences are nat-
urally fit units for such models, since a sentence
starts only after the preceding sentence is finished,
and LSTM may be an adequate tool to process sen-
tences. However, when the sequences are not con-
tiguous, as in temporal and other discourse-scale
relations, LSTM models do not have the capabil-
ity to look for input pieces across sequences.
When humans read text, discourse-level infor-
mation is often distributed across the full scope of
the text. To fully understand an article, we must be
able to organize the processed information across
sentences and paragraphs. In particular, to inter-
pret temporal relations between entities in a sen-
tence, sometimes we also look at relations with
other entities elsewhere in the text. Such entities
or relations form no regular sequences, and only
a system with long-term memory as well as atten-
tion mechanisms can process them. An NTM-like
architecture has an external memory with attention
mechanisms, so it is an ideal candidate for such
tasks. Furthermore, unlike the models that use at-
tention over inputs (Vinyals et al., 2015; Kumar
et al., 2016), NTM-like models are capable of up-
dating previously stored representations. We de-
scribe below the GCL architecture that we use to
store and update the global context information.

3.1.2 Reading

The input to the GCL layer is a concatenation
of three layers from the pairwise neural network.
Two of these are the entity context representation
layers, encoded by the two LSTM branches. The
other is the penultimate hidden layer before the
output layer, which encodes the relation. We can
write them as [e1, ez, x]. The context representa-
tions are used as “keys” to uniquely identify the

529

| Controlle output h W |

e e Keys Values
Input entities | € Bz | M, ‘
vector
W
rxn
fRead Head | s Eainz | M, ‘
+
= |
X r - —
‘ \ r=Y WoeadilM
Input content Context Nl

Representation

Figure 2: GCL computing attention weights. Input entity rep-
resentations are compared to the Key section of GCL mem-
ory. Slots with the same or similar entities get more attention.

entities. Note that we use flat context embeddings,
rather than dependency path embeddings, because
dependency paths tend to be short and will also
vary for the same entity, depending on the other
entity in the pair. As such, they do not provide a
unique way to represent an entity.

The original design of NTM has a complex
addressing mechanism for reading, which also
makes it difficult to train. An important difference
in GCL is that we separate the “key” component
from the “content” component of memory. Each
memory slot S[i] consists of [K[i]; M[i]], where
S is the whole memory with n slots, ¢ < n is the
index, K is the key and M is the content. Ad-
dressing is only performed on the key component.
The key component stores the representation of
two entities, provided by the layers encoding the
flat entity context.

K[i] = e [i] © emali] (1)

Here @ is the concatenation operator. In the GCL
model, the read head computes a reading weight
Wi x1 from the input entity representations ey, e2
and the entity representations engy, €pg2 in mem-
ory (i.e., the keys in each memory slot). The first
step is to compute the distance between current in-
put and the memory columns, as shown in Eq. 2.
DJi] is the Euclidean distance between the input
key and the memory key of slot M[i]. D’[i] is
computed after flipping the two entities. We do so
because the order of entities in a pair should not
affect their relevance.
. 1 . 112
D[i] =7 [ler ® ez — em [i] & ema[][[;

) 1 . .
D'[i} =;le2 ® e1 — enna[i] & ensalill3

2

where Z =). D[i] is the normalization factor,
and so is Z’ for the flipped case. The reading
weight is then calculated as in Eq. 3, where 1,,x1
is a vector of all 1’s.

Wi] = max(softmax(1 — D)[i],

softmax(1 — D’)[i]) ©)

Every element of W represents the relevance of
the corresponding memory slot (see Fig. 2). Often
it is still too blurred and needs to be further sharp-
ened as in Eq. 4. Here 3 is a positive number. W5
is a point-wise exponential function by power of
5. Alarge 3 allows “winner takes all”, so only the
most relevant memory slots are read.

W read = softmax(W7) (4)

Parameter S could be a constant, or could be train-
able. Our model computes it from the current in-
put x; and the previous output h;_1, and thus it
varies in each time step. Wpqrp and bgperp are
trainable weights and bias, cg is a constant, and
ReLU is the rectified linear function.

Bt = ReLU(WSharp[Xt7 htfl]‘*'bsharp)_‘_cﬁ (5)

With the sharpened reading weight vector, we are
able to obtain the read vector rqy,, from M as a
weighted sum, as in Eq. 6.

r= ZW’W [i] M [i] (6)

Generally speaking, the depth of memory M
should be large enough to allow sparse encoding,
so that crucial information is not lost after the sum-
mation. The read vector then contains contextual
information relevant to current input. Both the
read vector and the current input are fed to the con-
troller, yielding GCL output. Unlike the canonical
NTM, the CGL model does not have a trainable
gate interpolating the TW; computed at time ¢, with
W ;_1 computed at previous time ¢ —1. The weight
vector is not passed to next time step, so the atten-
tion has no “inertia”.

We tried two variants of the controller: (a) state-
tracking, with an LSTM layer, and (b) stateless,
with a dense layer. An LSTM controller has an
internal state, and also has gates to select input
and output. If the input data and/or the read vec-
tor from M have regular patterns with respect to
time steps, an LSTM controller would be a better
choice. For the specific task of temporal relation
extraction, we saw no difference in performance.

530

3.1.3 Writing

The controller produces an output h;, which is
sent to the next layer and also used to update M.
Similar to reading, the first step of writing pro-
cedure is to compute an attention weight vector
over the slots of M. As described above, the read-
ing procedure computes a weighted sum over slots
of M. The writing procedure writes a weighted
h: to each slot. The attention mechanism here is
de facto a soft addressing mechanism. The slots
with a higher attention value will be the addresses
which will get more of an update.

The same weight vector W computed as shown
in Eq. 3 is used for writing. However, an addi-
tional operation is introduced for writing. Recall
that the weights are computed from entity repre-
sentations. If the input entities are e; and eg, the
weight vector should have high values in the slots
corresponding to e; and/or e2. But we may not
always want relevant memory slots to be overwrit-
ten. Instead, additional information can be written
to a different slot. Additionally, when M is rela-
tively empty, as at the beginning, the addressing
mechanism may treat all slots equally, and uni-
formly update all slots in the same way. In this
case we want the weight vector to shift each time,
so M can diversify fast.

Therefore we use a shift function similar to the
canonical NTM. The idea is to compute a shifted
weight vector W by convolving W with a shift
kernel s which maps a shift distance to a probabil-
ity value. For example, s(—1) = 0.2, s(0) = 0.5,
s(1) = 0.3 means the probabilities of shifting left,
no shifting, and shifting right are 0.2, 0.5, 0.3, re-
spectively. Generally speaking, we want s to give
zeros for most shift distances, so the shifting oper-
ation is limited to a small range.

Wi = S Wiilsli - j @
§=0

At each time step, the shift kernel depends on cur-
rent input and output. If the allowed shift range is
[-s/2, +s/2], we train a weight W and bias bs to
calculate the shift weights Cs«1,

Cy = softmax(Wy[xy, hy] + by) (8

Then the weights are mapped to a circulant ker-
nel to perform the convolution in Eq. 7, the final
output is W.

Finally, the sharpening still needs to be applied.
For the writing procedure, both addressing and

shifting are “soft” in nature, and thus could yield
a blurred outcome. Again, we train the weights
to obtain a sharpening parameter ~y each time, and
perform softmax over W.

Tt = ReLU(Wshm‘p[Xta ht] + bsharp) + C'y (9)

W owrite = softmax(wv) (10)

W is the point-wise exponential function, over
the shifted weight vector. ¢, is a positive constant.

The original NTM model has gates for interpo-
lating W7 at the current time with the one com-
puted at the previous time step, but we omit this
operation. We also omit the erase vector and the
add vector, s0 W yrite fully controls what to over-
write in M and what to retain. As a result, the
writing operation can be expressed as:

My[i] = My—1[i]+Wwrite[i] (e — My [i]) (11)

The first term in Eq. 11 is the memory in the pre-
vious time step, and the second term is the update.
We update the keys in the same way. As we can
see, the keys come from entity representations, but
are not exactly the same, due to W, ie.

Kt[l] = thl[i] + erite[i] (61 ez — thl[i])
(12)

3.1.4 GCL vs. Canonical NTM

We highlight below some major differences be-
tween the canonical NTM and the GCL model.
Typically, NTM computes the keys from input and
output for accessing different memory addresses.
In GCL, the keys are simply the entity representa-
tions [e1, e2] from input, in either order. The key
function effectively involves slicing and flipping
the input. Further discussion of the differences be-
tween the GCL addressing mechanism and some
of the other NTM variations is provided in Sec. 5.

Another major difference is that we do not use
any gates to interpolate the attention vector at the
current time step with the one from the previous
time step. Instead, the previous attention vector is
totally ignored. Since we do not compute the erase
vector or the add vector, this allows the attention
vector to fully control memory updates.

In addition, we unified the trainable weights for
calculating 3 and ~ at each time step. We found
these parameters not to be crucial, and setting
them to be constant does not affect the results. We
also do not shift attention for reading. A possible

531

advantage of shifting attention is that neighboring
slots of the focus can also be accessed, providing
a way to simulate associative recall. This is based
on the fact that the writing procedure tends to write
similar memories close to each other. However, in
this study we want the reading procedure to be re-
stricted. Associative recall can be realized from
attention vector itself, without shifting.

3.2 Pairwise Classification Model

The pairwise model classifies individual entity
pairs, where entities are events and time expres-
sions (timexes). In other words, for each pair,
we only use the local context, and the relation of
one pair does not affect the classification results
for other pairs. We follow the architecture pro-
posed in Meng et al. (2017), but with the follow-
ing changes: (1) all three types of pairs are han-
dled by the same neural network, rather than by
three separately trained models; (2) the neighbor-
ing words (a flat context) of entity mentions are
used to generate input, in addition to words on
syntactic dependency paths; (3) all timex-timex
pairs are included as well, not only event-timex
and event-event pairs; (4) every pair is assigned
a 3-dimensional “time value”, to approximate the
rule-based approach when possible.

3.2.1 Event Pairs and Event-Timex Pairs

TimeBank-Dense dataset labels three types of
pairs: intra-sentence, cross-sentence and docu-
ment creation time (DCT). For intra-sentence pairs
and cross-sentence pairs, we follow Meng et al.
(2017). The shortest dependency path between the
two entities is identified, and the word embeddings
from the path to the least common ancestor for
each entity are processed by two LSTM branches,
with a separate max pooling layer for each branch.
Path to the root is used for cross-sentence rela-
tions. For relations with the DCT, we use a single
word now as a placeholder for the DCT branch.
Unlike Meng et al. (2017), we allow the model to
accept all three pair types, with a “pair type” fea-
ture as a component of input, defined as an integer
with the value 1, -1 or 0, respectively.

In addition to the shortest dependency path, our
model also uses a flat local context window, that
is, the words around each entity mention, regard-
less of syntactic structures. For an entity start-
ing with word w;, the local context window is
5 words to the left and 10 words to its right i.e.
Wi —5Wi—4... W;W;41...Wi+10. The windows are cut

short at the edge of a sentence, or when the sec-
ond entity in encountered. By using this context
window, the words between two entities are of-
ten used twice by the system, and thus given more
consideration. To inform the system of other en-
tity mentions, we also add special input tokens at
the locations where events and timexes are tagged.
The embeddings of the special tokens are uni-
formly initialized, and automatically tuned during
the training process.

3.2.2 Timex Pairs

The method described in Meng et al. (2017) clas-
sifies timex pairs by handcrafted rules and then
adds them to the final results prior to postprocess-
ing. Since timexes have concrete time values, a
rule-based method would seem appropriate. How-
ever, since our model uses global context to help
classify relations and timex-timex pairs enrich the
global context representation, we design a way for
a common classifier model to handle such pairs.

When DCT is not involved, timex pairs are cre-
ated the same way as cross-sentence pairs, that is,
path to the root is used for each entity. DCT is
represented by the placeholder word now. In ad-
dition to the word-based representations, another
input vector is used to simulate the rule-based ap-
proach, to be explained next.

3.2.3 Time Value Vectors

Every timex tag has a time value, following the

ISO-8601 standard. Every value can be mapped to

a 2D vector of real values (start, end). For a pair

we use the subtraction of the vectors to represent

the difference. Suppose we have timexes in below:

THE HAGUE, Netherlands (AP)_ The World Court

<TIMEX3 tid="t21" type="DATE" value="1998-02-27"
emporalFunction="true" functionInDocument="NONE"
nchorTimeID="t0">Friday</TIMEX3> rejected U.S.

and British objections to a Libyan World Court

case that has the trial of two Libyans suspected

of blowing up a Pan Am jumbo jet over Scotland in

<TIMEX37« id ‘"tTZZ‘i"\ ‘r; :ZDATE" value="1988"

‘Lt;r ;w‘:t;;,:f~,E:L5NE">1988</TIMEX3>.

The first timex can be represented as (1998 + 1/12

+ 26/365, 1998 + 1/12 + 26/365) = (1998.155,

1998.155), and the second one (1988, 1988 +

364/365) = (1988, 1988.997). The difference of

the values are put in the sign function, to ob-

tain the representation: (sign(1988 - 1998.155),

sign(1988.997 - 1998.155)) = (-1, -1). Vector (-1,

-1) clearly indicates the AFTER relation between

t21 and £22. We set the minimum interval to be a

day, which is generally sufficient for our data. The

DURATION timexes are not considered, and word-
based input vectors are used to represent them.

In order to make all the input data have the same
shape, we assign the time value vector to all pairs,
even if a timex is not involved. For non-timex
pairs, a vector (-1, 0, 0) is used. The first element
-1 to indicate a “pseudo” time value. Real timex
pairs have the first value of 1, so the example we
just discussed would be assigned a vector (1, -1, -
1). The time value vectors allow the model to take
advantage of rule-based information.

3.3 Combining Two Components

We tried training the two components in a com-
bined system, but found it slow to converge. In our
experiments, we trained the pairwise model first,
froze it, and then combined it with the GCL layer
to train the GCL. This method also helps us ob-
serve whether the GCL component alone improves
results, given the same input.

We tried combining the systems in two ways.
One is to connect the output layer of the pre-
trained model to GCL, and the other is to slice the
pre-trained model and connect its hidden layer to
GCL. All the GCL layers are bi-directional, aver-
aging forward and backward passes. By connect-
ing the output layer, which has a softmax activa-
tion, we hand the final decisions made by the pair-
wise model to GCL. On the other hand, the hid-
den layer provides higher layers with cruder but
richer information. We found that the latter per-
forms better. It is also possible to train the two
components together from scratch. In this case,
the learning rate has to be set much lower to as-
sure convergence, and the training requires more
epochs.

4 Experiments

For all the experiments, hyperparameters includ-
ing the number of epochs are tuned with the val-
idation set only. Training data is segmented into
chunks. Each chunk contains relation pairs in the
narrative order. The size of chunks is randomly
chosen from [40, 60, 80, 120, 160] at the begin-
ning of each epoch of training. The GCL main-
tains a memory for each chunk, and clears it at the
end of a chunk. The idea here is to train the model
on short paragraphs to avoid overfitting.

To introduce further randomness, the chunks are
rotated for each epoch. For a specific training file,
if chunk ¢ starts with pair n; in epoch 1, in epoch

532

2, chunk ¢ will start with pair n; +chunksize—+11.
11 is a prime number we chose to assure each
epoch observes different compositions of chunks.
By doing the rotation, some pairs in the final
chunk of epoch 1 will show up in the first chunk
in epoch 2 as well. However, within each chunk,
we do not randomize pairs, so narrative order is
preserved at this level. We also do not shuffle the
chunks, but only rotate them.

Evaluation on the test set uses only one chunk
for each file (chunk size is the number of pairs).
Each relation pair is only processed once, without
“multiple rounds of reading”. Thus, we essentially
train the model to read shorter paragraphs (varied
in length), but test it on long articles.

4.1 Pairwise Model

As described in Section 3.2, the pairwise classi-
fier has the following input vectors: left and right
shortest path branches, two flat context vectors, a
pair type flag, and a time value vector. Word em-
beddings are initialized with glove.840B.300d
word vectors?, and set to be trainable. The Bi-
LSTM layers are followed by max-pooling. The
two hidden layers have size 512 and 128, respec-
tively. We train this model for 40 epochs, us-
ing the RMSProp optimizer (Tieleman and Hin-
ton, 2012). The learning rate is scheduled as
Ir = 2 x 1073 x 275, where n is the number
of epochs.

The middle block of Table 1 shows the per-
formance of the pairwise model after applying
double-checking. Since all pairs are flipped,
double-checking combines results from (e;, e;)
and (ej, e;), picking the label with the higher prob-
ability score, which typically boosts performance.
The results without double-checking show similar
trends.

4.2 GCL model

After training the pairwise model, we combine it
with GCL. Unless otherwise indicated, the results
reported in this section use the model configura-
tion that connects the hidden layer (rather than the
output layer) of the pairwise model with a bidirec-
tional GCL layer. The bidirectional GCL is real-
ized as the average of a forward GCL and a back-
ward GCL, each producing a sequence. Then two
more hidden layers are put on top of it, followed

2https://nlp.stanford.edu/projects/glove/
3This result does not include timex-timex pairs, which is
3% of total test instances.

533

Model Micro-F1 | Macro-F1
CAEVO (not NN model) .507

CATENA (not NN model) S11

Cheng et al. 2017 520°

Meng et al. 2017 519
pairwise 535 528
Two more hidden layers .539 532
GCL w/ state-tracking controller .545 538
GCL w/ stateless controller 546 538
GCL w/ pre-trained output layer 541 .536

Table 1: Results on the test set. The GCL models use
the same hyperparameters, if possible. The two models on
the top do not use neural networks. The results in the two
lower blocks all use double-check. “Two more hidden lay-
ers” means adding two dense layers on top of the pre-trained
model without using GCL. The last row corresponds to con-
necting the output layer of a pre-trained model to GCL layers
with stateless controller.

by an output layer. All the layers in the pre-trained
pairwise model are set to be untrainable. The two
trainable hidden layers have sizes 512 and 128, re-
spectively, with ReLU activtion and 0.3 dropout
after each one. The GCLs have 128 memory slots.
Learning rate is scheduled as [r = 2x 1074 x 27 z.
In the experiments, we found the models converge
quite fast with respect to the number of epochs. It
is not surprising because the lower layers are al-
ready well trained, and frozen (no updating). Af-
ter the 5th epoch, the training accuracy typically
reaches 0.95. We stop training after 10 epochs.

The bottom block of Table 1 presents the re-
sults, showing that all models from the present pa-
per outperform existing models from the literature.
One may argue the combined system adds more
hidden layers over a pre-trained model, which con-
tributes to the improvement in performance. We
show a comparison to a baseline model which adds
two dense layers on top of the pairwise model,
without the GCL. The configuration of the two
layers is the same as we used for the GCL models.
The result shows that the performance is slightly
higher than what we get from the pairwise model,
but the difference is smaller than what we get from
GCL models — suggesting that the performance
improvement with GCL models is not just due to
more parameters. We also tried adding an LSTM
layer on top of the pre-trained model, and found
the system cannot converge. It again confirms that
GCL is more powerful than LSTM in handling ir-
regular time series.

We found no difference in performance be-
tween the stateless controller and state-tracking
controller. Connecting the output layer of the pre-

trained model to GCL seems to generate weaker
results than connecting the hidden layer, although
it also outperforms the pairwise model, and all pre-
vious models in literature.

We performed significance testing to compare
the pairwise model and the GCL-enabled model.
A paired one-tailed t-test shows the results from
the GCL model are significantly higher than re-
sults from pairwise model (p-value 0.0015). While
significant, the improvement is relatively small,
we believe due in part to the small size of
Timebank-Dense dataset.

4.3 Case Study

To illustrate the difference in performance of the
pairwise model and the GCL model, we created a
sample paragraph in which long-distance depen-
dencies and references to DCT are needed to re-
solve some of the temporal relations:

John met Mary in Massachusetts when they attended
the same university. They are gerting married in 2019,
2 years after their graduation. But this year, they have
relocated to New Hampshire.

We created the gold standard annotation for this
text with 5 events, 2 timexes, and 24 TLINKS (see
appendix)*. We set the DCT to an arbitrary date
“2018-04-01”. There are no VAGUE or SIMULTA-
NEOUS relations.

For this paragraph, the pairwise model yields an
accuracy (i.e. micro-averaged F1) of 0.292, while
the GCL-enabled model yields 0.417. Overall, the
GCL-enabled model assigns 6 VAGUE labels while
the pairwise assigns 11. It reflects the fact that
GCL tries to infer relations from otherwise vague
evidence. For example, it is difficult to infer the
relation between met and 2019 from the local con-
text (without DCT, particularly), so the pairwise
model labels it as VAGUE, while the GCL-enabled
model correctly assigns BEFORE.

Recall that the GCL is placed on top of a pre-
trained pairwise model, so the mistakes made by
the pairwise model propagate to GCL. For exam-
ple, the pairwise model incorrectly classifies 2079
as BEFORE graduation — perhaps, due to a some-
what unusual syntax. But the GCL-enabled sys-
tem assigns it a VAGUE label, probably as a way
to compromise. In the TimeBank-Dense test data,
VAGUE cases dominate, which may have made it
more difficult for GCL to assign proper labels. In
the future, we believe it may be better to omit

“Note that in TimeBank-Dense, no TLINKS are associated
DURATION timexes, so 2 years is not annotated

534

writing (and reading) the VAGUE relations to/from
GCL.

4.4 Error Analysis

Table 2 shows the overall performance for each
relation using the GCL system with the stateless
controller. Since we flip pairs and use double-
checking to pick one result for each pair, BE-
FORE/AFTER and IS_INCLUDED/INCLUDES are
actually treated in the same way, respectively.
Here we map the results to original pairs, in order
to compare to other systems.

Predicted labels
SIMUL BEF AFT ISINCL INCL VAG | Total

SIMUL 10 0 9 2 1 17 |39

BEF 0 327 27 15 5 215 | 589
AFT 1 26 208 4 5 184 | 428
IS INCL 1 27 3 59 2 67 | 159
INCL 0 16 9 2 19 70 | 116
VAG 1 171 87 28 17 596 | 900

Table 2: Overall results per relation.

As the table shows, the VAGUE relation causes
the most trouble. It is not only because VAGUE
is the largest class, but also because it is often
semantically ambiguous, so even human experts
have low inter-annotator agreement. If we allow
a relatively sparse labeling of data, and use other
evaluation methods (e.g. question answering), the
VAGUE class is not likely to have similar effects.

We also break down the results according to the
types of pairs. Compared to other systems, our
approach has a big advantage for event-event (E-
E) pairs, which is by far the most common (64%)
relation pairs for all data, and also requires more
complex natural language understanding. Com-

Systems E-D E-E E-T | Overall
Frequency 14% 64% 19% | 97%
CAEVO 553 494 494 | 502
CATENA 534 519 468 | 512
Chengetal. 2017 | .546 .529 471 | .520
GCL 489 570 487 | 542

Table 3: Results on the E-D, E-D and E-T pairs. GCL

stands for the GCL-enabled system with a stateless controller.
Frequencies are percentages in the test set. T-T pairs are
not shown here. CAEVO is from Chambers et al. (2014).
CATENA is from Mirza and Tonelli (2016)

paired to CAEVO, our performance on event-DCT
(E-D) and event-timex (E-T) pairs is not that great.
CAEVO uses engineered features such as entity at-
tributes, temporal signals, and semantic informa-
tion from WordNet, which seems to work well in
these two cases. We took a closer look at our E-D

results, and found that the relatively low perfor-
mance is mainly caused by misclassifying VAGUE
as AFTER. As Table 4 shows, among the 72

Predicted labels

SIMUL BEF AFT ISINCL INCL VAG
0 0 0 0 0 0
57 11 15 37
3 36 0 10
11 1 31 12
0 2 1 2
4 20 9 25

SIMUL
BEF
AFT
IS_INCL
INCL
VAG

W — O

0
0
0
0
0

1

S

Table 4: Test results from event and document creation time
(E-D) pairs. The rows are true labels and the columns are
predicted labels.

VAGUE relations in E-D pairs, 20 are labeled AF-
TER by our system. In a news article, most events
occur before the DCT i.e. the time when the arti-
cle was written. If the temporal relation is vague,
our system tends to guess that the event occurs af-
ter the DCT. It is interesting because AFTER only
accounts for 16% of all E-D pairs in test data (and
about the same in training data), behind BEFORE
(41%), VAGUE (21%), and IS_INCLUDED (18%).
However, E-D is a relatively small category with
only 311 instances in the test set, so it is difficult
to draw any a substantive conclusion in this case.

Recall that our model has a uniform architec-
ture for all input types and is trained on event-
event, event-timex and event-DCT pairs simulta-
neously. As aresult, its performance is not optimal
for some lower-frequency pair types. Tuning the
model for each pair type separately, as well as re-
sampling to deal with class imbalance would, per-
haps, improve performance. However, the point
of these experiments was not to get the largest im-
provement, but to show that the GCL mechanism
can replace heuristic-based timegraph conflict res-
olution, improving the performance of an other-
wise very similar model.

5 Related Work

While the GCL model is inspired by NTM, other
NTM variants have also been proposed recently.
Zhang et al. (2015) proposed structured memory
architectures for NTMs, and argue they could alle-
viate overfitting and increase predictive accuracy.
Graves et al. (2016) proposed a memory access
mechanism on top of NTM, which they call Differ-
entiable Neural Computer (DNC). DNC can store
the transitions between memory locations it ac-
cesses, and thus can model some structured data.
Giilcehre et al. (2016) proposed a Dynamic
Neural Turing Machine (D-NTM) model, which

535

allows discrete access to memory. Giilcehre et al.
(2017) further simplified the addressing algorithm,
so a single trainable matrix is used to get locations
for read and write. Both models separate the ad-
dress section from the content section of memory,
as do we. We came up with the idea indepen-
dently, noting that the content-based addressing in
the canonical NTM model is difficult to train. A
crucial difference between GCL and these mod-
els is that they use input “content” to compute
keys. In GCL, the addressing mechanism fully
depends on the entity representations, which are
provided by the context encoding layers and not
computed by the GCL controller. Addressing then
involves matching the input entities and the enti-
ties in memory.

Other than NTM-based approaches, there are
models that use an attention mechanism over ei-
ther input or external memory. For instance, the
Pointer Networks (Vinyals et al., 2015) uses at-
tention over input timesteps. However, it has
no power to rewrite information for later use,
since they have no “memory” except for the RNN
states. The Dynamic Memory Networks (Kumar
et al., 2016) has an “episodic memory” module
which can be updated at each timestep. However,
the memory there is a vector (“episode”) with-
out internal structure, and the attention mechanism
works on inputs, just as in Pointer Networks. Our
GCL model and other NTM-based models have a
memory with multiple slots, and the addressing
function (attention) dictates writing and reading
to/from certain slots in the memory.

6 Conclusion

We have proposed the first context-aware neural
model for temporal information extraction using
an external memory to represent global context.
Our model introduces a Global Context Layer
which is able to save and retrieve processed tem-
poral relations, and then use this global context to
infer new relations from new input. The memory
can be updated, allowing self-correction. Experi-
mental results show that the proposed model beats
previous results without resorting to ad-hoc reso-
lution of timegraph conflicts in postprocessing.

Acknowledgments

This project is funded in part by an NSF CAREER
award to Anna Rumshisky (I[S-1652742).

References

Nathanael Chambers, Taylor Cassidy, Bill McDowell,
and Steven Bethard. 2014. Dense event ordering
with a multi-pass architecture. Transactions of the
Association for Computational Linguistics, 2:273—
284.

Fei Cheng and Yusuke Miyao. 2017. Classifying tem-
poral relations by bidirectional Istm over depen-
dency paths. In ACL.

Jason Alan Fries. 2016. Brundlefly at semeval-2016
task 12: Recurrent neural networks vs. joint infer-
ence for clinical temporal information extraction.
CoRR, abs/1606.01433.

Alex Graves, Greg Wayne, and Ivo Danihelka. 2014.
Neural turing machines. CoRR, abs/1410.5401.

Alex Graves, Greg Wayne, Malcolm Reynolds,
Tim Harley, Ivo Danihelka, Agnieszka Grabska-
Barwinska, Sergio Gomez Colmenarejo, Edward
Grefenstette, Tiago Ramalho, John Agapiou,
Adria Puigdomenech Badia, Karl Moritz Hermann,
Yori Zwols, Georg Ostrovski, Adam Cain, Helen
King, Christopher Summerfield, Phil Blunsom,
Koray Kavukcuoglu, and Demis Hassabis. 2016.
Hybrid computing using a neural network with
dynamic external memory. Nature, 538(7626):471—
476.

Caglar Giilgehre, Sarath Chandar, and Yoshua Bengio.
2017. Memory augmented neural networks with
wormhole connections. CoRR, abs/1701.08718.

Caglar Giilcehre, Sarath Chandar, Kyunghyun Cho,
and Yoshua Bengio. 2016. Dynamic neural tur-
ing machine with soft and hard addressing schemes.
CoRR, abs/1607.00036.

Sepp Hochreiter and Jirgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735-1780.

Ankit Kumar, Ozan Irsoy, Peter Ondruska, Mohit
Iyyer, James Bradbury, Ishaan Gulrajani, Victor
Zhong, Romain Paulus, and Richard Socher. 2016.
Ask me anything: Dynamic memory networks for
natural language processing. In Proceedings of The
33rd International Conference on Machine Learn-
ing, volume 48 of Proceedings of Machine Learning
Research, pages 1378-1387, New York, New York,
USA. PMLR.

Chen Lin, Timothy A. Miller, Dmitriy Dligach, Steven
Bethard, and Guergana Savova. 2017. Representa-
tions of time expressions for temporal relation ex-
traction with convolutional neural networks. In
BioNLP 2017, Vancouver, Canada, August 4, 2017,
pages 322-327.

Xiao Ling and Daniel S. Weld. 2010. Temporal infor-
mation extraction. In Proceedings of the Twenty-
Fourth AAAI Conference on Artificial Intelligence,
AAAI 2010, Atlanta, Georgia, USA, July 11-15,
2010.

536

Inderjeet Mani, Ben Wellner, Marc Verhagen, and
James Pustejovsky. 2007. Three approaches to
learning tlinks in timeml. Technical Report CS-07—
268, Computer Science Department.

Yuanliang Meng, Anna Rumshisky, and Alexey Ro-
manov. 2017. Temporal information extraction for
question answering using syntactic dependencies in
an Istm-based architecture. In Proc. of the confer-
ence on empirical methods in natural language pro-
cessing (EMNLP).

P Mirza and S Tonelli. 2016. Catena: Causal and tem-
poral relation extraction from natural language texts.
In The 26th International Conference on Compu-
tational Linguistics, pages 64—75. Association for
Computational Linguistics.

Paramita Mirza and Anne-Lyse Minard. 2015. Hlt-fbk:
a complete temporal processing system for ga tem-
peval. In Proc. of the 9th International Workshop on
Semantic Evaluation (SemEval 2015), pages 801—
805. Association for Computational Linguistics.

Weiyi Sun. 2014. Time Well Tell: Temporal Reason-
ing in Clinical Narratives. PhD dissertation. Depart-
ment of Informatics, University at Albany, SUNY.

Weiyi Sun, Anna Rumshisky, and Ozlem Uzuner. 2013.
Evaluating temporal relations in clinical text: 2012
i2b2 challenge. Journal of the American Medical
Informatics Association, 20(5):806-813.

T Tieleman and G Hinton. 2012. Lecture 6.5-rmsprop:
Divide the gradient by a running average of its re-
cent magnitude. COURSERA: Neural networks for
machine learning, 4(2):26-31.

Julien Tourille, Olivier Ferret, Aurelie Neveol, and
Xavier Tannier. 2017. Neural architecture for tem-
poral relation extraction: A bi-lstm approach for de-
tecting narrative containers. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
224-230, Vancouver, Canada. Association for Com-
putational Linguistics.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. In C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett,
editors, Advances in Neural Information Processing
Systems 28, pages 2692-2700. Curran Associates,
Inc.

Katsumasa Yoshikawa, Sebastian Riedel, Masayuki
Asahara, and Yuji Matsumoto. 2009. Jointly identi-
fying temporal relations with markov logic. In Pro-
ceedings of the Joint Conference of the 47th Annual
Meeting of the ACL and the 4th International Joint
Conference on Natural Language Processing of the
AFNLP: Volume 1 - Volume 1, ACL °09, pages 405—
413, Stroudsburg, PA, USA. Association for Com-
putational Linguistics.

Wei Zhang, Yang Yu, and Bowen Zhou. 2015. Struc-
tured memory for neural turing machines. CoRR,
abs/1510.03931.

