
Triad-based Neural Network for Coreference Resolution

Yuanliang Meng

Text Machine Lab for NLP

Department of Computer Science

University of Massachusetts Lowell

ymeng@cs.uml.edu

Anna Rumshisky

Text Machine Lab for NLP

Department of Computer Science

University of Massachusetts Lowell

arum@cs.uml.edu

Abstract

We propose a triad-based neural network system that generates affinity scores between entity

mentions for coreference resolution. The system simultaneously accepts three mentions as input,

taking mutual dependency and logical constraints of all three mentions into account, and thus

makes more accurate predictions than the traditional pairwise approach. Depending on system

choices, the affinity scores can be further used in clustering or mention ranking. Our experiments

show that a standard hierarchical clustering using the scores produces state-of-art results with

gold mentions on the English portion of CoNLL 2012 Shared Task. The model does not rely on

many handcrafted features and is easy to train and use. The triads can also be easily extended

to polyads of higher orders. To our knowledge, this is the first neural network system to model

mutual dependency of more than two members at mention level.

1 Introduction

Entity coreference resolution aims to identify mentions that refer to the same entity. A mention is a

piece of text, usually a noun, a pronoun, or a nominal phrase. Resolving coreference often requires

understanding the full context, and sometimes also world knowledge not provided in the text. Generally

speaking, three types of models have been used for coreference resolution: pairwise models, mention

ranking models, and entity-mention models. The first two are more common in literature, and the third

one is somewhat less studied.

Pairwise models a.k.a. mention pair models build a binary classifier over pairs of mentions (Soon

et al., 2001; McCallum and Wellner, 2003). If all the pairs are classified correctly, then all coreferent

mentions are identified. The mention ranking models do not rely on the full pairwise classification, but

rather compare each mention to its possible antecedents in order to determine whether the mention might

refer to an existing antecedent or starts a new coreference chain (Durrett and Klein, 2013; Wiseman et

al., 2016; Clark and Manning, 2016). The entity-mention models try constructing representations of

discourse entities, and associating different mentions with the entity representations (Luo et al., 2004).

Recently, some neural network models combine mention detection and coreference resolution. They

design specific losses for each task, and train the components more or less jointly (Zhang et al., 2018;

Lee et al., 2017).

However, none of these model types consider more than two mentions together at the low level. By low

level here, we mean the processing of input mention features, as opposed to processing of constructed

representations. Pairwise models and mention ranking models make low-level decisions on mention

pairs only. Some further processing may be applied to reconcile global scope conflicts, but this process

no longer relies directly on mention features.

This paper proposes a neural network model which works on triads of mentions directly. Each time, the

system takes three mentions as input, and decisions on their coreference relations are made while taking

into account all mutual dependencies. Inferences drawn from three mentions, if correctly modeled,

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://

creativecommons.org/licenses/by/4.0/

ar
X

iv
:1

8
0
9
.0

6
4
9
1
v
1

[c

s.
IR

]
 1

8
 S

ep
 2

0
1
8

should be more reliable than those from two mentions, simply because entities in a text tend to have

multiple mutual dependencies. Firstly, coreference relation is transitive, and transitivity can be revealed

only by 3 or more participants. Secondly, mutual dependencies are not just at the level of transitivity,

but can occur among lexical items, syntactic structures, or discourse information. Modeling dependency

at these lower levels can therefore be helpful for coreference resolution. We believe it is also a closer

approximation of humans’ cognitive process. When we read text, we often look in two or more places

(including not only mentions, but also their context) to decide what a pronoun might refers to. Therefore

it is reasonable to account for it at an early stage of system design.

We show that the decisions made by the triad model are more accurate than those made by the dyad

model. Such decisions can be further used in mention ranking, or simply followed up by clustering or

graph partitioning as in the canonical mention pair models. The triad system can be easily extended to

higher order polyads, if necessary. In this paper, we only consider triads, and dyads (pairs) are used for

comparison. We use the English portion of CoNLL 2012 Shared Task dataset for training and evaluation.

The original task has two parts: mention detection and coreference resolution. Our current focus is

coreference, so we used the gold mentions provided in test data. Our experiments show that a standard

hierarchical clustering algorithm using the triad model output achieves state-of-art performance under

several evaluation measures, and it outperforms a pairwise (dyad) model. 1

2 Related Work

Before the neural network models became popular in coreference resolution tasks, graphical models

had often been used to capture dependencies. McCallum and Wellner (2003) described a system which

draws pairwise inferences but also accounts for transitivity constraints. Essentially, their model can be

summarized as in equation

P (y|x) =
1

Zx

exp


∑

i,j,l

λlfl(xi, xj , yij) +
∑

i,j,k,l′

λl′fl′(yij , yjk, yik)


 (1)

The first term describes the potential function of a mention pair xi, xj as well as their label yij . For

instance, yij = 1 if xi and xj belong to the same entity. The second term adds constraints on the labels to

assure logical consistency. A particular assignment of values to xi, xj does not only affect the potential

function involving these two nodes, but also other potential functions involving one of them. This makes

the variables (mentions, in this case) dependent on each other. Exact algorithms to solve such problems

are NP-hard, and some approximation techniques are often applied.

Our proposed model can be viewed as constructing potential functions over three variables xi, xj and

xk. However, we do not look to optimize the product of all the potential functions. Instead, we train

a neural network model to assign labels to all edges within a triad locally. Note that the label yij for a

given mention pair xi, xj may have different optimal values when different xk’s are used to construct

a triad. The final assignment is determined by computing the average of yij’s. Moreover, our input

features are mainly series of word embeddings and part of speech (POS) embeddings, encoding rich

context information. The conventional algorithms used in graphical models cannot deal with such high

dimensional features.

Graphical neural network (GNN) models have recently been used to process graphs (Duvenaud et

al., 2015; Santoro et al., 2017; Kipf et al., 2018). For example, the graph convolutional networks

(GCN) (Kipf and Welling, 2016; Defferrard et al., 2016) take graphs as input. Each node of the graph

contains features, and a matrix represents their mutual relations. The features and the relation matrix

are both used as input. Some filter layers, often shared by all nodes, process the features. The out-

put of the filters and the relation matrix are further processed by other layers. The final output is new

representations of nodes, which can be labels.

Our model shares some characteristics with GCNs. The triad input can be viewed as a basic graph:

triangle, and each node is a mention. The features we used (word embeddings, POS embeddings, speaker

1Our source code is freely available here: https://github.com/text-machine-lab/entity-coref

identity, mention distance) are all associated with a node or a pair of nodes (edges). The three nodes share

recurrent neural network layers. Because the output of such layers are used together, higher layers in the

system have access to information from all the nodes. The output is a 3 dimensional binary vector, which

can be considered a graphical representation too. However, our goal here is to find pairwise relations,

and the triangle graphs are employed only to model (partial) mutual dependency among three mentions.

In contrast, CGNs are capable of generating new complex representations for the nodes and they rely on

the structure of the input graph, both of which are not applicable in our case.

3 System

The system consists of two major parts: the triad-based neural network model to compute mutual dis-

tances and a model to perform clustering. These two stages are not clearly divided, since defining mutual

distances affects the clustering strategy. Generally speaking, any coreference system should have a com-

ponent for local coreference, in a relatively short context, as well as a component for global coreference.

We perform them in two stages, but it is also possible to build a system in which they are co-trained.

3.1 Input Features

Our input is triads of entity mentions. The triads have mutual (joint) features and individual features as

input. Speaker identity and mention distance are mutual features. The files in the CoNLL 2012 dataset

are largely transcripts of broadcast news and conversations, which typically involve several speakers. We

use a binary feature to indicate whether two mentions are from utterances of the same speaker (1) or not

(0). Mention distance indicates how far apart two mentions are in the text. It is the number of tokens

between the start positions of two mentions.

Individual features are word tokens and POS tokens for each entity mention. The word tokens include

the mentions themselves, as well as their 8 preceding tokens and 8 succeeding tokens. We also design

two special tokens to mark the beginning and end of each mention. Similarly, the POS tokens include

the POS tags of the mentions, as well as the POS tags of 8 preceding and 8 succeeding tokens. Two other

special tags are used to mark the beginning and end of the mentions for POS tokens too.

Each word token is represented by a 300-dimensional vector. We use glove.840B.300d word vectors2

to initialize them, and they are updated in the training process. Each POS token is represented by a one-

hot vector, and updated during training too. This enables the model to learn the similarities between

different POS tags (such as NNPS and NNS, for example). Table 1 gives a summary of input features.

Feature Description

Word tokens word embeddings of the mentions, and of 8 words before and after

POS tokens part-of-speech tag embeddings

Speaker identity whether two mentions are from the same speaker

Mention distance number of tokens between the mentions

Table 1: Input features

3.2 Triad Neural Network

Word embeddings are fed into a bidirectional LSTM layer, which generates a representation for each

mention. The three members of the triad share the same LSTM layer. Similarly, POS embeddings are

fed into a shared bidirectional LSTM layer.

hword
i = Word-LSTM(Xword

i) (2)

h
pos
i = POS-LSTM(Xpos

i) (3)

where i = 0, 1, 2 is the index of the three mentions, Xword
i is the sequence of word embeddings used

to represent mention i, and X
pos
i is the corresponding sequence of POS embeddings. Word-LSTM and

2https://nlp.stanford.edu/projects/glove/

POS-LSTM are both bidirectional, and shared by all input mentions. We further implement a “mutual

attention” mechanism, inspired by the alignment technique in machine translation model from Bahdanau

et al. (2014). An attention matrix Aij represents the attention weight from mention j to mention i at each

time step. It is computed as:

Aij = softmax
[
hi × hTj

]
(4)

where hi and hj are the outputs of LSTM layers for mention i and j. Word tokens and pos tag tokens are

treated the same way so we use a unified symbol here for simplicity. Aij is an Ti×Tj matrix. Ti denotes

the length of the sequence for mention i, and similarly Ti for mention j. In equation 4, hTj means the

transpose of hj . With this attention matrix, we can then obtain the “context” provided by mention j for

mention i:

Cij = Aij × hj (5)

Here Cij contains the information from mention j, needed by mention i. The context vector Cik can be

computed in the same way, and then we can compute h̃i, a richer representation of mention i:

h̃i = tanh [Wc[hi, Cij , Cik] + bc] (6)

Here Wc and bc are parameters to be trained. Similarly, h̃j and h̃k are obtained in the same way. For

each pair in the triad, the representations of two entities are concatenated with their joint features:

hij = f(Xspeaker
ij , Xdistance

ij , h̃i
word

, h̃j
word

, h̃i
pos

, h̃j
pos

) (7)

where X
speaker
ij is a binary speaker identity feature for the mentions i and j, Xdistance

ij is the positive

integer feature tracking the distance between them, and f represents several fully connected layer(s),

shared by the three pairs. Our implementation uses two layers, with dropout between them.

While hij represents the relation between i and j, the other triad member needs taken into account as

well. We achieve this by constructing a shared context hijk:

hijk = g(hij
⊕

hjk
⊕

hki) (8)

where g is another fully connected layer. Operator
⊕

means elementwise vector summation. Now, we

can have a decoder layer dij for each of the pairwise relations.

dij = fd(hij , hijk) (9)

Function fd is another fully connected layer. The three decoders work together to generate a 3D binary

vector, as in equation 10. Each element represents whether the mention pair refers to the same entity (0

or 1).

y = sigmoid(W (dij , djk, dki) + b) (10)

where W and b are the weights and bias to be trained. The output y is a 1 × 3 vector. As we can

see, the three decoders do not make decisions independently, but rather, “consult” with each other, as in

equation 10. Each decoder also uses the shared context hijk at a lower level, as seen in equation 9.

3.3 Triads Generation

For n mentions in the text, there can be
(N
3

)
triads. In most cases, we have dozens of mentions in an

article, which is not an issue. However, some long articles have hundreds of mentions, so generating all

triads is unpractical and unnecessary. For instance, for 100 mentions, the total number of triads would

be 161,700!

During the training process, we use only the mentions within the stretch of 15 or less. In other words,

we consider the pairs with 14 or fewer mentions between them. For testing, we consider the mentions

with stretches up to 40. However, this does not mean the long-distance coreference can never be detected.

Often, coreferent mentions in-between the distant ones may serve as bridges, and our clustering algorithm

is able to put them together. That being said, it is also true that long-distance mention pairs are less likely

to corefer than those in closer proximity. Training with triads that include very distant pairs could also

have the harmful effect of introducing too many negative samples.

3.4 Dyad Baseline System

To demonstrate that triads have advantages over a strictly pairwise approach, we also build a neural

network model which takes mention pairs as input, and make binary decisions on the pairs only. The

input features are the same as in the triad model, and the architecture can be considered a reduced triad

system. Now there is no context information shared by three entities. The pair representation is directly

connected to the output layer.

4 Entity Clustering

After the likelihood of pairwise coreference between all mentions has been determined, we use a clus-

tering algorithm to group them. At the end of this process, each entity is represented by a mention

cluster.

For every triad a, b and c, the system will produce three real values between [0,1] to represent the

“probability” of a coreference link. We will refer to them as affinity scores. The higher the score, the

more likely a pair of mentions refers to the same entity. The affinity score over a pair is computed as the

average of their scores in all triads, as shown in equation 11.

Φ(a, b) =
1

N

∑

c∈W (a,b)

Φ(a, b; c) (11)

Here, N is the total number of triads containing (a, b), Φ(a, b) is the affinity score of a and b, and

Φ(a, b; c) is the affinity score of a and b when another mention c is in the triad. W (a, b) represents the

set of mentions within the distance window of a or b. We have experimented with other methods besides

averaging, including taking the maximum, or the average of several top candidates. We found that the

average produces better results.

The mutual distance between a and b is defined as the reciprocal of the affinity score, except we set

the maximum value to be 10. Since the maximum value of Φ(a, b) is 1, the minimum value of d(a, b) is

also 1 according to equation 12. In principle, we would like distance metrics to have 0 as the minimum,

which can be achieved by subtracting 1. However, for the purpose of clustering, it is not necessary.

d(a, b) = min{
1

Φ(a, b)
, 10} (12)

Recall that our system does not consider mention pairs too far apart in the text. For evaluation, the

maximum distance for consideration is 40 (i.e. they may have up to 39 other mentions in between). We

set the mutual distance between out-of-window mentions as 3.7, slightly higher than the cut-off threshold

(to be explained soon). As mentioned before, this does not mean they can never be clustered together.

The result depends on the choice of linkage, and whether there is any coreferent entities in-between.

We use the hierarchical clustering function provided by SciPy library to build the sets of coreferent

entities. Other than the customized distance metric, we used the default settings, opting for the distance,

rather than inconsistent cutoff criterion. The choice of linkage has a major impact on the results. We

found the average linkage produces the best results. It is defined in equation 13, where u and v are two

clusters, d(u, v) is their distance, d(u[i], v[j]) is the distance between cluster members i and j, and | · |
represents cardinalities of clusters.

d(u, v) =
∑

ij

d(u[i], v[j])

|u| ∗ |v|
(13)

When the clusters are built hierarchically, those with distances lower than a threshold are joined. We

used t = 3.5.

5 Postprocessing

The main purpose of this study is to show a triad-based model works better than a pairwise, dyad-

based model. In each case, we want to keep the postprocessings minimal, and always use the same

postprocessing method for both models.

First of all, we assign a minimum distance between the same proper names. In the same file, mentions

of the same proper name are very likely to refer to the same entity. This may have been captured by

the neural network model too, but for mentions that are very far away in the text, such a process can

be useful. Secondly, we replace the pronouns “I” and “you” with the speaker identity, if it is available.

CoNLL dataset marks the speaker for each token, if a speaker is available. Finally, we discourage clusters

with pronouns only.

In a regular text, entities with pronouns only are very unlikely to occur. The neural network model

and the clustering method, however, do not have any specific technique to prevent it, although the neural

network should have learned to find antecedents for pronouns. After clustering is applied, we check

if there is any pronoun-only clusters. If so, we pick the first mention (pronoun) in this cluster as the

target pronoun, and try to find an antecedent for it. The candidates for antecedents are three non-pronoun

mentions before this mention, and three non-pronoun mentions after this mention, respectively. Among

all the candidates, the one with the highest affinity score with the target pronoun will be considered a

possible antecedent. Then the affinity score between this possible antecedent and the target is set to

1.0, the maximum, and clustering is performed again. This method does not guarantee all pronoun-only

clusters to be eliminated, because we do not want to force it. However, our analysis reveals that it does

reduce pronoun-only clusters.

6 Experiments

For all the experiments, hyperparameters were tuned with the development set only. We use Adam

optimizer with binary cross-entropy loss. The learning rate is initially set as 10−3, then 5 × 10−4 after

100 sub-epochs, and 10−4 after 100 sub-epochs. We use the term “sub-epoch” to refer to training on

50 files, rather than the whole training set. The training set is relatively big, so we implemented a data

generator with multiple subprocesses with a shared output queue. There are 1940 training files in total,

so roughly all training files can be consumed in 40 sub-epochs, although smaller files may be used more

frequently due to the nature of multiprocessing. The training completed in 300 sub-epochs. We use input

dropout ratio 0.5 for word embeddings and POS embeddings. The last layer of each pair representations

has dropout ratio 0.3.

For the baseline dyad model, the settings are similar, and the hyperparameters are as close as possible

too.

6.1 Results of Triad Model

Mention MUC B3 CEAFφ4

Rec. Rec. Prec. F1 Rec. Prec. F1 Rec. Prec. F1 Avg. F1

chang 100.00 83.16 88.48 85.74 75.36 79.69 77.46 75.38 62.71 68.46 77.22

chen 80.82 72.29 89.40 79.94 64.60 85.92 73.75 76.25 46.40 57.69 70.46

yuan 80.03 72.22 89.16 79.80 64.75 84.68 73.39 74.49 45.46 56.46 69.88

fernandes 100.00 70.69 91.21 79.65 65.46 85.61 74.19 74.71 42.55 54.22 69.35

stamborg 78.17 71.22 88.12 78.77 64.75 83.16 72.81 71.94 43.74 54.41 68.66

Dyad model 92.73 78.94 87.72 83.10 64.42 81.67 72.03 71.57 70.20 71.88 75.67

Triad model 93.12 81.68 89.78 85.54 67.48 83.09 74.47 73.91 73.65 73.78 77.93

Table 2: Results of coreference resolution systems on the ConLL 2012 English test data with gold

mentions. Our models are the last two rows. Others’ results are from Pradhan et al. (2012). After

clustering, we do not force singletons to be linked, so the mention recall is not 100.

Table 2 shows the results of our triad system, compared to results of other participants of the shared

task. All results are on the CoNLL 2012 English test data with gold mentions.

Our system performs by far the best with the CEAFφ4 evaluation metric, and is also near the best with

the MUC metric, measured with F1 score. As a result, the averaged F1 outperforms all the participants.

The top participant (chang) has a perfect mention recall, so most likely there is some mechanism to force

small entities, as shown by the left-most green bar. Note the y-axis there is in logarithmic scale, so the

difference is not proportionally visualized.

Different evaluation metrics help to diagnose different problems, and every system, as well as every

metric, would have its strength and weakness. In practice, what is needed depends on the purpose.

CoNLL 2012 Shared Task uses the average of the three metrics to rank systems.

As mentioned before, we did not perform mention detection but used the gold mentions provided in

test data. However, the Shared Task required participants to perform mention detection too, and the

official score is based on their detection. The top participant (fernandes) has the official average F1 score

63.7, but his average F1 on gold mentions is 69.35, not the best one. Recently, the best official score is

69.2, achieved by a combining-task neural network with 5-model ensemble (Zhang et al., 2018).

6.2 Results of Dyads Model

The results of the dyad system are shown in Table 3. The hyperparameters are chosen to be as close as

possible. As we can see, the triad system has a clear advantage over the dyad system. Postprocessing

also boosts the scores in either case.

MUC B3 CEAFφ4

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Avg. F1

Triad 90.38 80.19 84.98 83.86 64.53 72.94 72.01 73.36 72.68 76.87

Dyad 88.60 77.82 82.86 82.62 61.86 70.75 69.19 71.17 70.17 74.59

Triad + post 88.78 81.68 85.54 83.09 67.48 74.47 73.65 73.91 73.78 77.93

Dyad + post 87.72 78.94 83.10 81.67 64.42 72.03 70.20 71.57 70.88 75.34

Table 3: Results of the dyad model compared to the triad model. Results with postprocessing are repre-

sented with “+ post”.

The following example in Figure 2 illustrates the different results from the two systems. Saddam’s

and the second he should corefer. The dyad model assigns a relatively low affinity score 0.326, but the

triad model assigns a much higher score 0.580. As a result, the dyad model fails to build the coreference

relationship after clustering while the triad model succeeds. With a closer look, we find that the triad

Figure 2: The affinity scores from dyad and triad models.

with the other mention Saddam Hussein is the most helpful. With that mention as the third member in a

triad, the affinity score between Saddam’s and the second he reaches 0.830. Triads with other mentions,

i.e. the first he or the author name Bu Thari yield near-neutral scores for this pair, in the 0.4∼0.5 range.

Triad model can also support additional restrictions. For example, we can require at least one pair in a

triad to have a short distance in the text. The point of allowing longer distances between mentions is to

identify coreferent mentions that are far apart in text. However, it is typically fairly rare to have mentions

that are far away refer to the same entity. We do not have to allow all sides of a triangle to be big, and

imposing this restriction may improve the overall quality of the response entities.

Note that this system can be easily extended from triads to tetrads (union of four mentions) and higher

polyads. Sometimes we may want to look at two more other places to determine whether a coreference

relation is present. Ideally, the larger the polyad, the better we can capture mutual dependencies. How-

ever, since the number of polyads grows fast with the polyad order, the computation may quickly become

intractable for larger texts.

7 Conclusion

We developed a triad-based neural network model that assigns affinity scores to mention pairs. A stan-

dard clustering algorithm using the resulting scores produces state-of-art performance on gold mentions.

Particularly, our systems achieves much better CEAFφ4 F1 score. A dyad-based baseline model has

lower performance, suggesting that using triads plays an important role. Note that approaches other than

clustering, such as the mention ranking models, can easily be used with our output as well, and we expect

some of them would work better than the simple agglomerative clustering.

Mutual dependencies among multiple mentions are important in coreference resolution tasks, but it is

often ignored. Our triad-based model addresses this gap. This model can be additionally constrained to

improve performance, and if necessary, easily extended from triads to polyads with higher order.

Acknowledgments

This project is funded in part by an NSF CAREER award to Anna Rumshisky (IIS-1652742).

References

Amit Bagga and Breck Baldwin. 1998. Algorithms for scoring coreference chains. In In The First International
Conference on Language Resources and Evaluation Workshop on Linguistics Coreference, pages 563–566.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural machine translation by jointly learning to
align and translate. CoRR, abs/1409.0473.

Kevin Clark and Christopher D. Manning. 2016. Deep reinforcement learning for mention-ranking coreference
models. CoRR, abs/1609.08667.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolutional neural networks on graphs
with fast localized spectral filtering. CoRR, abs/1606.09375.

Greg Durrett and Dan Klein. 2013. Easy victories and uphill battles in coreference resolution. In Proceedings of
the Conference on Empirical Methods in Natural Language Processing, Seattle, Washington, October. Associ-
ation for Computational Linguistics.

David K. Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gómez-Bombarelli, Timothy Hirzel,
Alán Aspuru-Guzik, and Ryan P. Adams. 2015. Convolutional networks on graphs for learning molecular
fingerprints. CoRR, abs/1509.09292.

Thomas N. Kipf and Max Welling. 2016. Semi-supervised classification with graph convolutional networks.
CoRR, abs/1609.02907.

Thomas N. Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard S. Zemel. 2018. Neural relational
inference for interacting systems. CoRR, abs/1802.04687.

Kenton Lee, Luheng He, Mike Lewis, and Luke Zettlemoyer. 2017. End-to-end neural coreference resolution. In
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 188–197.
Association for Computational Linguistics.

Xiaoqiang Luo, Abe Ittycheriah, Hongyan Jing, Nanda Kambhatla, and Salim Roukos. 2004. A mention-
synchronous coreference resolution algorithm based on the bell tree. In Proceedings of the 42Nd Annual
Meeting on Association for Computational Linguistics, ACL ’04, Stroudsburg, PA, USA. Association for Com-
putational Linguistics.

Xiaoqiang Luo. 2005. On coreference resolution performance metrics. In Proceedings of the Conference on
Human Language Technology and Empirical Methods in Natural Language Processing, HLT ’05, pages 25–32,
Stroudsburg, PA, USA. Association for Computational Linguistics.

Andrew McCallum and Ben Wellner. 2003. Toward conditional models of identity uncertainty with application to
proper noun coreference. In Proceedings of the IJCAI-2003 Workshop on Information Integration on the Web,
pages 79–86, Acapulco, Mexico, August.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue, Olga Uryupina, and Yuchen Zhang. 2012. Conll-2012
shared task: Modeling multilingual unrestricted coreference in ontonotes. In Joint Conference on EMNLP and
CoNLL - Shared Task, pages 1–40. Association for Computational Linguistics.

Adam Santoro, David Raposo, David G. T. Barrett, Mateusz Malinowski, Razvan Pascanu, Peter Battaglia, and
Timothy P. Lillicrap. 2017. A simple neural network module for relational reasoning. CoRR, abs/1706.01427.

Wee Meng Soon, Hwee Tou Ng, and Daniel Chung Yong Lim. 2001. A machine learning approach to coreference
resolution of noun phrases. Comput. Linguist., 27(4):521–544, December.

Marc Vilain, John Burger, John Aberdeen, Dennis Connolly, and Lynette Hirschman. 1995. A model-theoretic
coreference scoring scheme. In Proceedings of the 6th Conference on Message Understanding, MUC6 ’95,
pages 45–52, Stroudsburg, PA, USA. Association for Computational Linguistics.

Sam Wiseman, Alexander M. Rush, and Stuart M. Shieber. 2016. Learning global features for coreference resolu-
tion. In HLT-NAACL, pages 994–1004. The Association for Computational Linguistics.

Rui Zhang, Cicero Nogueira dos Santos, Michihiro Yasunaga, Bing Xiang, and Dragomir Radev. 2018. Neural
coreference resolution with deep biaffine attention by joint mention detection and mention clustering. In Pro-
ceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers),
pages 102–107. Association for Computational Linguistics.

