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1. Introduction

Compatible Circuit Decomposition (CCD) Problem. Let G be a 2-connected eulerian 
graph with δ(G) ≥ 4, and for each v ∈ V (G) let T (v) be a set of edge-disjoint edge-pairs
(called transitions) of E(v) (in the case of a loop l we allow {l, l} to be a transition). Can 
we find a circuit decomposition C of G such that, for every C ∈ C and every v ∈ V (G)
and every P ∈ T (v), |E(C) ∩ P | ≤ 1 (unless C is a loop and P = {l, l}, in which case 
there is no CCD)?

Such C is called compatible with the transition system T =
⋃

v∈V (G) T (v) (see also 
Definition 2.2).

The compatible circuit decomposition (CCD) problem is closely related to the famous 
circuit double cover conjecture, [12,14,16,17], and to the Sabidussi conjecture [7,8,9].

It is well known that not every eulerian graph associated with a transition system 
has a compatible circuit decomposition. For example, an undecomposable K5 (or, a bad 
K5 to use a more colloquial expression) is the complete graph K5 associated with the 
transition system

T5 = {{vivi+μ, vivi−μ} : i ∈ Z5, μ ∈ {1, 2}}

where V (K5) = {v0, v1, . . . , v4} (see Fig. 1).
The compatible circuit decomposition problem has been verified for planar graphs by 

Fleischner [7], and for K5-minor-free graphs by Fan and Zhang [6]. Fleischner further 
asked implicitly the following question [10] which is beyond a graph-minor problem. In 
what follows we restrict ourselves to 2-connected graphs.

Problem 1 (Fleischner [10]). If (G, T ) does not have a compatible circuit decomposi-
tion, does (G, T ) contain either an undecomposable K5-transition-minor or one of its 
generalized transition-minors?

A transition-minor is not only a graph-minor that preserves some topological structure 
of G but also inherits the original transition system T (see Definitions 2.8 and 2.10 for 
definitions of transition-minor and SUD-K5). Problem 1 is completely solved in this 
paper.

Theorem 1. Let (G, T ) be a 2-connected eulerian graph with the minimum degree δ ≥ 4
associated with a transition system. If (G, T ) is SUD-K5-minor-free, then it has a com-
patible circuit decomposition.
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Fig. 1. K5 with T5 = {{vi−1vi, vivi+1}, {vi−2vi, vivi+2} : i ∈ Z5}.

We observe that if T = ∅, then any circuit decomposition of (G, T ) is in accor-
dance with Theorem 1. Thus, we assume that our point of departure is a (G, T ) with 
T �= ∅.

In the study of circuit cover and circuit decomposition problems, one of the funda-
mental steps is to determine the structure of two adjacent circuits (i.e., two circuits 
having at least one vertex in common). The Hamilton weight problem ([13,19]) is one 
of such approaches for faithful cover problem. Its corresponding version for circuit de-
composition is the Hamilton transition problem. That is, if (G, T ) has some compatible 
circuit decomposition and every such decomposition consists of a pair of hamiltonian 
circuits, then (G, T ) must be constructed recursively from two loops (2L) via a series of 
(X ↔ O)-operations (the operation extending a vertex to a digon); see Definition 2.15
and Conjecture A. The family of transitioned graphs constructed in such a way is de-
noted by 〈2L〉. This problem is solved in this paper for SUD-K5-minor-free graphs, as 
stated in Theorem 2 below.

Theorem 2. Let (G, T ) be a 4-regular fully transitioned graph such that it has some 
compatible circuit decomposition and every such decomposition consists of a pair of hamil-
tonian circuits. If (G, T ) is SUD-K5-minor-free, then (G, T ) ∈ 〈2L〉.

This result plays a key role in the determination of a UD-K5-transition-minor in 
Theorem 1. It is important to point out that both Theorems 1 and 2 are proved simul-
taneously because one provides the structures of extreme cases, while the other assures 
the existence of a compatible circuit decomposition for any proper minor of a smallest 
counterexample.

The rest of the paper is organized as follows. Some notation and terminology are 
recalled and introduced in Section 2. Main results, Theorems 1 and 2 are further sum-
marized in Section 3. In Section 4, some preliminary lemmas for Theorem 1 are proved 
in Subsection 4.1 before its simultaneous proof with Theorem 2 (in Section 5). There are 
other important results (Lemmas 4.15 and 4.16) in Subsection 4.2 that determine the 
specific structure of UD-K5 and is used in the simultaneous proof of Theorems 1 and 2.
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2. Preliminary discussions

2.1. Basic definitions

For terminology and notation not defined here we follow [3,4,18], and the papers listed 
in the References.

A circuit is a 2-regular connected subgraph of a given graph G. A subgraph H of G is
even if degH(v) is even for every vertex v ∈ V (H).

Let v be a degree two vertex of a given graph G. Suppressing v is the operation of 
removing v and adding an edge between the two neighbours of v in G.

Definition 2.1. A vertex subset U is a separator of G separating G to G1, G2 if E(G) =
E(G1) ∪ E(G2) and V (G1) ∩ V (G2) = U and E(G1) ∩ E(G2) = ∅. U is a t-separator if 
|U | = t. We say a separator U separating subgraphs X1, X2 of G if U is a separator of G
separating G to G1, G2 with Xi ⊆ Gi, i = 1, 2.

2.2. Transition system and CCD

Definition 2.2. Let G be an eulerian graph, and, for each v ∈ V (G) with deg(v) ≥ 4, 
let T (v) be a set of edge-disjoint edge-pairs of E(v). The set T =

⋃
v∈V (G) T (v) is 

called a transition system of G and each member of T is called a transition. A non-trivial
vertex is a vertex with some transition (that is, T (v) �= ∅); otherwise, we called v a
trivial vertex. The graph G with a transition system T is called a transitioned graph and 
denoted by (G, T ); (possibly T = ∅). A fully transitioned graph is a transitioned graph 
without trivial vertex. For every subgraph H of G, T |H = {P ∈ T |P ⊂ E(H)}. In the 
case of multiple edges e, f at u, v ∈ V (G), we distinguish between the transition {e, f}
at u and the transition {e, f} at v.

Definition 2.3. Let (G, T ) be a transitioned graph.

(1) A 1-separator {v} separating G to G1, G2 is a bad cut-vertex if E(v) ∩ E(Gi) ∈ T
for at least one i ∈ {1, 2}.

(2) (G, T ) is admissible if it does not have a bad cut-vertex.

Definition 2.4. Let (G, T ) be a transitioned graph. Let C = v0v1 . . . vr−1v0 be a circuit. 
Let ei be the edge of C joining vi and vi+1 for every i ∈ Zr.

(1) vi is an inner vertex of C if {ei−1, ei} ∈ T (vi) or E(vi)\{ei−1, ei} ∈ T (vi), and we 
call {ei−1, ei} an inner transition of C at vi. C is compatible at vi if it is not an inner 
vertex of C.

(2) C is a compatible circuit of (G, T ) if C is compatible at every vertex of C.
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Definition 2.5. A family F of circuits of G is a compatible circuit decomposition (abbre-
viated CCD) of (G, T ) if F is a circuit decomposition of G and every member of F is a 
compatible circuit.

It is obvious that the absence of bad cut-vertices (see Definition 2.3) is a necessary 
condition for a transitioned graph admitting a CCD.

Observation 2.6. Consider a non-trivial vertex v of degree 4 in (G, T ). Let E(v) =
{e1, . . . , e4} and P = {e1, e2} ∈ T (v). Then every circuit of a CCD of (G, T ) covers 
at most one edge of {e3, e4}. This means in a natural way and without loss of generality, 
we can assume that if P ∈ T (v), then E(v) \ P ∈ T (v), for every vertex v of degree 4. 
Thus every vertex v of degree 4 is either a trivial vertex, or |T (v)| = 2.

Definition 2.7. A circuit C is a removable circuit of (G, T ) if it is compatible and 
(G \ E(C), T |G\E(C)) remains admissible (that is, (G \ E(C), T |G\E(C)) has no bad 
cut-vertex).

Definition 2.8. Let (G, T ) be a transitioned eulerian graph, and, G′ = (G \ Fd)/Fc be an
eulerian minor of G obtained by deleting Fd and contracting Fc where Fd, Fc ⊆ E(G). 
The resulting transition system T ′ = T |G′ on G′ is defined as follows.

(1) Delete the edges of (Fd ∪ Fc). The resulting transition system T ′ contains all tran-
sitions P ∈ T for which P ⊆ E(G \ (Fd ∪ Fc)).

(2) For each edge e = v′
ev′′

e ∈ Fc, identify the end-vertices v′
e and v′′

e as a new vertex ve.
(3) Since we do not define a transition at any vertex v of degree 2, T ′(v) = ∅ if 

degG′(v) = 2. And we apply Observation 2.6 to extend T ′(z) if degG′(z) = 4.

The resulting transitioned graph (G′, T ′) is called a transition-minor of (G, T ).

Definition 2.9. (G, T ) is called the undecomposable K5 (UD-K5 for short) if G = K5, and 
the transition system T is defined as follows.

T (vi) = {{vivi+μ, vivi−μ} : μ ∈ {1, 2} (mod 5)}

for every vi ∈ V (K5) = {v0, v1, . . . , v4}; see Fig. 1.

Definition 2.10. The transitioned graph (G, T ) is a sup-undecomposable K5 (SUD-K5 for 
short) if the graph G can be decomposed into 15 connected edge-disjoint subgraphs

{Pi,j : {i, j} ⊂ Z5, i < j} ∪ {Qi : i ∈ Z5}

as follows (see Fig. 2).
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Fig. 2. A sup-undecomposable K5.

(1) Each Pi,j is a path joining V (Qi) and V (Qj) (i < j), and the different Pi,j’s are 
internally disjoint;

(2) {Qi : i ∈ Z5} are disjoint connected subgraphs;
(3) Let Q+

i be the subgraph of H induced by E(Qi) and the four adjacent paths Pi,j

(for every pair j �= i). Then each subgraph Q+
i has a bad cut-vertex ui separating 

Pi,(i+1) ∪ Pi,(i−1) and Pi,(i+2) ∪ Pi,(i−2), where ui ∈ V (Qi).

Note that a UD-K5 is a special case of a SUD-K5 where |Qi| = 1 for every i ∈ Z5.

Definition 2.11. (G, T ) is sup-undecomposable K5-transition-minor free (or, SUD-K5-
minor-free for short) if it does not have any eulerian minor H such that (H, T |H) is a
SUD-K5.

The following is a straightforward observation.

Observation 2.12. Let G′ be an eulerian minor of G. If (G, T ) is SUD-K5-minor-free, 
then (G′, T ′) remains SUD-K5-minor-free (where T ′ is described in Definition 2.8).

Example 2.1. In [11], an infinite family of snarks {Hn} has been constructed, which has 
a 2-factor Fn such that Fn is not contained in any circuit double cover of Hn. Let Hn

be the 4-regular graph obtained from Hn by contracting the 1-factor Hn \ Fn and Tn

be the transition system of Hn such that each circuit of Fn has all its vertices as inner 
vertices (see Definition 2.4-(1)). Clearly, (Hn, Tn) has no CCD. Otherwise we can get 
a circuit double cover by taking Fn together with the CCD of (Hn, Tn) (after a proper 
adjustment by adding edges of Hn\Fn). The 4-regular graph illustrated in Fig. 3-(a) is the 
contracted graph H0 where the 2-factor F0 is a pair of edge-disjoint hamiltonian circuits 
(illustrated by thin lines and thick lines). A study in [11] reveals that each member 
(Hn, Tn) in this family contains a UD-K5-minor due to the structure of (Hn, Tn). For 
example, the resulting transition graph by deleting some edges H0 is a subdivision of a 
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(a) (b)

Fig. 3. (a) (H0, T0) has no CCD. (b) A UD-K5-minor in (H0, T0).

Fig. 4. Digons of type 0, 1, and 2, respectively.

UD-K5 (illustrated in Fig. 3-(b)). Therefore, every transitioned 4-regular graph (Hn, Tn)
in this family contains a SUD-K5-minor and does not have a CCD.

2.3. Hamiltonian circuit decomposition, (X ↔ O)-operation, 〈2L〉-graphs

Definition 2.13. Let (G, T ) be a fully transitioned 4-regular graph. If every CCD of (G, T )
is a pair of hamiltonian circuits, then (G, T ) is called a Hamilton transitioned graph.

Definition 2.14. Let D = v0v1v0 be a digon. D is of type λ where λ is the number of 
inner vertices of D (see Fig. 4).

Definition 2.15. Let v be a non-trivial degree 4 vertex of a transitioned graph (G, T ). 
The (X ↔ O)-operation at v with T (v) = {{e1, e2}, {e3, e4}} is defined as follows (see 
Fig. 5). Split v with {e1, e2} becoming incident to a new vertex v1 and {e3, e4} incident 
to another new vertex v2, and add a pair of parallel edges {e5, e6} between v1 and v2, 
and define a new transition system by replacing T (v) with T (v2) = {{e3, e4}, {e5, e6}}
and with either T (v1) = {{e1, e5}, {e2, e6}} or T (v1) = {{e1, e2}, {e5, e6}}. In fact, we 
have created a digon of type > 0 between v1 and v2.

Definition 2.16. Denote by 〈2L〉 the family of all transitioned 4-regular graphs ob-
tained from (2L, T2) (which appears on the top left of Fig. 6) by a sequence of 
(X ↔ O)-operations; it is called the 2L-family and its members are called 〈2L〉-elements.



32 H. Fleischner et al. / Journal of Combinatorial Theory, Series B 137 (2019) 25–54

Fig. 5. (X ↔ O)-operations.

Fig. 6. 〈2L〉-elements of order ≤ 3.

Lemma 2.17. Let (G, T ) ∈ 〈2L〉 be of order at least 3. Then (G, T ) has either two vertex-
disjoint digons of type ≥ 1, or two edge-disjoint digons of type ≥ 1 with at least one 
inner transition in the common vertex.

Proof. Note that the order of (G, T ) ∈ 〈2L〉 being at least 3 implies that G does not 
contain an edge with multiplicity more than 2 (this is straightforward from the definition 
of 〈2L〉). The family 〈2L〉 has precisely three members of order 3 (see Fig. 6); in this 
case, every (G, T ) ∈ 〈2L〉 has two edge-disjoint digons of type > 0 sharing a common 
inner vertex.

Thus, the statement of the lemma is true for (G, T ) ∈ 〈2L〉 of order 3. Hence suppose 
that G is of order greater than 3.

Since (X ↔ O)-operations create a new digon of type > 0, every member of 〈2L〉
except 2L contains at least one digon of type > 0. Let D be a digon of type λ > 0 in 
(G, T ) and let (G′, T ′) ∈ 〈2L〉 be the graph obtained from (G, T ) by contracting D. By 
induction on |V (G)|, (G′, T ′) has either two vertex-disjoint digons of type > 0 or two 
edge-disjoint digons of type > 0 with an inner transition in a common vertex in each of 
these two digons. In all cases at least one of these digons of type > 0 and D are either 
two vertex-disjoint digons of type > 0 or two edge-disjoint digons of type > 0 with inner 
transitions in the common vertex in (G, T ). �
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3. Main results

3.1. Compatible circuit decomposition problem and Theorem 1

Given Definition 2.3, Theorem 1 is restated as a stronger version below.

Theorem 1’. Let (G, T ) be an eulerian graph associated with an admissible transition 
system. If (G, T ) is SUD-K5-minor-free, then it has a CCD.

Theorem 1’ is not only a graph minor problem, but also a transition minor problem. It 
was originally proposed by Fleischner [10]. Its weak version for graph minors was solved 
by Fleischner [7] for planar graphs, and by Fan and Zhang [6] for K5-minor-free graphs.

Note that Theorem 1’ is stronger than the following theorem which is only a graph-
minor-free result (not a transition-minor-free result).

Theorem A. [6] Let T be an admissible transition system of an eulerian graph G. Then 
(G, T ) has a CCD if G is K5-minor-free.

3.2. Hamiltonian circuit decomposition problem and Theorem 2

In the studies of circuit covering problems or circuit decomposition problems, one 
of the critical steps is to determine the structure of the subgraph induced by a pair of 
incident circuits ([20,21], etc.). The structure of a graph that is covered by or decomposed 
into a pair of hamiltonian circuits provides a local structure of a possible counterexample 
to many open problems (such as the circuit double cover conjecture). Its structure for the 
faithful circuit covering problem was conjectured in [19]; the following is an equivalent 
version for the corresponding compatible circuit decomposition problem.

Conjecture A. [19] Let (G, T ) be a fully transitioned 4-regular graph such that it has 
some CCD and every such decomposition consists of a pair of hamiltonian circuits. 
Then (G, T ) ∈ 〈2L〉.

Theorem 2 solves Conjecture A for SUD-K5-minor-free graphs. This result generalizes 
an early result by Lai and Zhang [13] which is a graph minor result for the faithful 
covering problem.

Note that, in this paper, Theorems 1’ and 2 are proved simultaneously, which indicates 
the technical importance of Hamilton transitioned results (such as, Theorem 2) in the 
studies of this area.
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4. Primary lemmas

4.1. For the proof of Theorem 1’

We consider a counterexample (G, T ) to Theorem 1’, such that

(1) |E(G)| is as small as possible;
(2) subject to (1), the number of transitions is as small as possible.

(G, T ) is called a smallest counterexample to Theorem 1’. It follows from the choice of 
(G, T ) that (G, T ) has no removable circuit.

Definition 4.1. Let v be a non-trivial vertex in a transitioned 4-regular graph (G, T ). 
A circuit decomposition of (G, T ) is called an almost compatible circuit decomposition
with respect to v, if it is compatible in every vertex except v.

A sequence of edge-disjoint circuits {C1, . . . , Ck} (k ≥ 2) of (G, T ) is called an almost 
compatible circuit chain decomposition with respect to v (ACCCD(v) for short), if

(1) it is an almost compatible circuit decomposition with respect to v;
(2) v ∈ V (C1) ∩ V (Ck), and v /∈ V (Ci) ∀i ∈ {2, . . . , k − 1}.
(3) for each i, j ∈ {1, . . . , k} with i �= j, [V (Ci) ∩V (Cj)] \{v} �= ∅ if and only if |j−i| = 1.

The integer k is called the length of the chain {C1, . . . , Ck} (see Fig. 7).

By an approach similar to the one in [2], [1] and [6], we obtain the following structural 
results. For the purpose of being self-contained, proofs are therefore included.

Lemma 4.2. [6] Let (G, T ) be a smallest counterexample to Theorem 1’ and let Fv =
{C1, . . . , Ck} be an ACCCD of (G, T ) with respect to a non-trivial vertex v. If k ≥ 3, 
then V (C1) ∩ V (Ck) = {v}.

Proof. By Definition 4.1, v ∈ V (C1) ∩ V (Ck). Let H be the subgraph induced by 
E(C1) ∪ E(Ck). If |V (C1) ∩ V (Ck)| ≥ 2, then (H, T |H) is 2-connected. So each Ci, 
1 < i < k, is a removable circuit, which is a contradiction. �
Lemma 4.3. [6] Any smallest counterexample (G, T ) to Theorem 1’ is 4-regular, 
2-connected, and for every non-trivial vertex v of (G, T ), there exists an ACCCD(v). 
Furthermore, every almost CCD with respect to v is an ACCCD(v).

Proof. Let (G, T ) be a smallest counterexample to Theorem 1’. Since T is admissible, 
(G, T ) has no bad cut-vertex. If {v} is a 1-separator of G separating G to G1, G2, then 
(G1, T |G1) and (G2, T |G2) have CCD’s C1 and C2, respectively, Thus, C1 ∪ C2 is a CCD
of (G, T ), a contradiction. Therefore, G is 2-connected.
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Fig. 7. An ACCCD(v) of (G, T ).

Let v be a non-trivial vertex in G and let (G′, T ′) be a transitioned graph obtained 
from (G, T ) by removing one transition in vertex v, if deg(v) > 4, or by removing all 
transitions of T (v), if deg(v) = 4.

By the choice of (G, T ), the new graph (G′, T ′), which has a smaller number of 
transitions, has a CCD, Fv. Let Cv be the circuit of Fv containing the vertex v and one 
of the removed transitions and let A = {C ∈ Fv \ {Cv}| C contains v.}.

By the choice of (G, T ), Fv is an almost compatible circuit decomposition with respect 
to v.

Construct an auxiliary graph I with the vertex set V (I) = Fv and two vertices of I are 
adjacent to each other if and only if their corresponding circuits of Fv have a non-empty 
intersection in G \ {v}. Since G is 2-connected, I is connected. Let S = C1 . . . Ck be a 
shortest path in I from C1 = Cv to A (Ck ∈ A). Obviously, S is a circuit chain of G
closed at v.

Let G′′ be the subgraph induced by edges of ∪k
i=1E(Ci). The transitioned graph 

(G′′, T |G′′) is 2-connected, so it has no bad cut-vertex. Thus, every circuit C ∈ Fv \
{C1, . . . , Ck} is a removable circuit. This is impossible. Therefore, Fv = {C1, . . . , Ck} is 
an ACCCD(v) of (G, T ) and G is 4-regular. �
Lemma 4.4. Any smallest counterexample to Theorem 1’ has no digon of type λ > 0.

Proof. Let (G, T ) be a smallest counterexample to Theorem 1’. Suppose (G, T ) has a 
digon of type λ > 0, D. The smaller graph (G′, T ′) obtained from (G, T ) by contracting 
D remains SUD-K5-minor-free, because (G, T ) has this property. Thus it has a CCD. It 
is easily seen that every CCD of (G′, T ′) induces a CCD on (G, T ), which is a contra-
diction. �
Lemma 4.5. Any smallest counterexample to Theorem 1’ is 4-edge-connected.

Proof. Let (G, T ) be a smallest counterexample to Theorem 1’. Assume that {e1, e2} is 
a 2-edge-cut of (G, T ) and G1, G2 are the components of G \ {e1, e2}. By Lemma 4.3, 



36 H. Fleischner et al. / Journal of Combinatorial Theory, Series B 137 (2019) 25–54

Fig. 8. 2-vertex-cut {u, v}.

G is 2-connected, so e1 and e2 are vertex disjoint. Let e1 = u1u2 and e2 = v1v2 where 
{ui, vi} ⊂ V (Gi), i = 1, 2.

Let Hi = G/G3−i for each i = 1, 2. It is easy to check that (Hi, Si), i = 1, 2, is 
SUD-K5-minor-free, Si = T |Gi

. So there exists a CCD Ci of (Hi, Si) and a circuit 
Ci ∈ Ci covering uivi, i = 1, 2. Let C = (C1 ∪ C2 ∪ {u1u2, v1v2}) \ {u1v1, u2v2}. Thus, 
C = (C1 ∪ C2 ∪ {C}) \ {C1, C2} is a CCD of (G, T ), a contradiction.

Since no eulerian graph has an edge-cut of odd size, (G, T ) is 4-edge-connected. �
Lemma 4.6. Any smallest counterexample to Theorem 1’ is 3-connected.

Proof. Let (G, T ) be a smallest counterexample to Theorem 1’. By Lemma 4.3, G is 
a 2-connected 4-regular graph. By Lemma 4.5, G \ X has exactly two components, for 
every 2-vertex-cut X.

Suppose {u, v} is a 2-vertex-cut of G such that G1, G2 are the components of G \{u, v}. 
Every edge-cut in an eulerian graph has an even number of edges. It follows that u, v
can be chosen such that for i = 1, 2, both u and v have the same degrees in G \ V (Gi). 
By Lemma 4.5, uv /∈ E(G) and degG\V (Gi)(u) = degG\V (Gi)(v) = 2, i = 1, 2. We have 
two cases (see Fig. 8).

Case 1. E(G \ V (Gi)) ∩ E(u) ∈ T (u).
In this case, let (G′

i, T ′
i ) be a transitioned 4-regular graph obtained from 

(G, T ) by contracting all edges of G \ V (Gi). Then, (G′
i, T ′

i ) has no SUD-K5-
minor. It follows from the minimality of (G, T ) that (G′

i, T ′
i ) has a CCD. Then 

by adapting the circuits containing edges of E(u) ∪ E(v) in these two CCD’s, 
we may obtain a CCD of (G, T ), which is a contradiction.

Case 2. {u1u, uu2} ∈ T (u), {v1v, vv2} ∈ T (v), where ui, vi are neighbours of u and v in 
Gi, i = 1, 2, respectively.

In this case, we set G′
i = G \V (Gi+1), and define T ′

i as the set of transitions in 
G′

i induced by T |G′
i
. Observe that (G′

1, T ′
1 ) and (G′

2, T ′
2 ) have no bad cut-vertex; 

otherwise, the bad cut-vertex and vertex u is a 2-vertex-cut yielding Case 1. 
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Therefore, (G′
i, T ′

i ) has a CCD, i = 1, 2. The union of these two CCD’s is a CCD
of (G, T ), which is a contradiction.

Lemma 4.6 now follows. �
Corollary 4.7. Any smallest counterexample to Theorem 1’ has no digon.

Proof. Let (G, T ) be a smallest counterexample to Theorem 1’. Suppose (G, T ) has a 
digon, D. By Lemma 4.4, D is a digon of type 0. Then by Lemma 4.6, G \ E(D) is 
2-connected. Thus, D is a removable circuit, which is a contradiction. �
Definition 4.8. An even subgraph H of (G, T ) is compatible if |E(H) ∩ P | ≤ 1, for every 
P ∈ T . An almost compatible 2-even subgraph decomposition {U1, U2} with respect to v
is a decomposition into two even subgraphs in such a way that both Ui’s are compatible 
at every w ∈ V (G) \ {v}, and Ui is not compatible at v for at least one i.

Definition 4.9. Let (G, T ) be a transitioned 4-regular graph. Let v be a non-trivial vertex 
of degree 4 in (G, T ) and let {e, f} ∈ T (v). By splitting v (with respect to T ) we mean 
that v is split into two degree 2 vertices such that e and f are incident with the same 
vertex. The split graph of (G, T ), denoted by SP (G, T ), is the graph obtained from (G, T )
by splitting every non-trivial vertex.

The following lemma appeared in [1,6] as part of proofs of some theorems (not as an 
independent lemma). For the purpose of smoothness of the paper and possible applica-
tions in the future, Lemma 4.10 is stated in this paper as an independent lemma. The 
proof is also included here for the purpose of not only the consistency of notation and 
terminology but also for the self-completeness of the paper.

Lemma 4.10. [1,6] Let (G, T ) be a smallest counterexample to Theorem 1’. Then

(1) SP (G, T ) has exactly two components;
(2) for each non-trivial vertex v, if x and y are the two vertices in SP (G, T ) which result 

by splitting v, then they are contained in different components of SP (G, T );
(3) each component of SP (G, T ) is a circuit of odd length.

Proof. Let (G, T ) be a smallest counterexample to Theorem 1’. By Lemma 4.3, G is 
4-regular and for every non-trivial vertex v ∈ V (G), there exists an ACCCD(v), say 
Fv = {C1, . . . , Ck}.

Let

S1 = ∪� k
2 	

μ=1E(C2μ−1) and S2 = ∪
 k
2 �

μ=1E(C2μ).
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Then, {S1, S2} is an almost compatible 2-even subgraph decomposition with respect to v. 
Note that depending on the parity of k, v ∈ V (S2) if and only if k is even. If k is odd 
then S2 is a set of compatible circuits.

Next, to establish the validity of the Lemma we prove a sequence of claims.

Claim 4.10.1. For every almost compatible 2-even subgraph decomposition {U1, U2} with 
respect to v, for every vertex w �= v, degUi

(w) = 2, i = 1, 2.

Assume that {U1, U2} is an almost compatible 2-even subgraph decomposition with 
respect to v and that there exists a vertex w �= v, degU1(w) = 4. By Definition 4.8, a 
non-trivial vertex of G other than v cannot be of degree 4 in Ui, i = 1, 2. Thus, w is a 
trivial vertex and E(w) ⊆ E(U1).

Let Fi be a circuit decomposition of Ui for each i = 1, 2. The union F1 ∪ F2 forms an 
almost compatible circuit decomposition with respect to v, by the choice of (G, T ). By 
Lemma 4.3, every almost CCD with respect to a non-trivial vertex is a circuit chain, hence 
F1 ∪ F2 is a circuit chain {D1, . . . , Dr}. Since G[U1] has a vertex of degree 4, it follows 
that r ≥ 3. By Lemma 4.2, we have V (D1) ∩ V (Dr) = {v}. Let w ∈ V (Dj) ∩ V (Dj+1). 
Note that Dj and Dj+1 are edge-disjoint and both are subsets of U1. So, every vertex 
of the induced subgraph G[Dj ∪ Dj+1] is of degree 2 or 4. If w is the only vertex of 
V (Dj) ∩ V (Dj+1), then {v, w} is a 2-vertex-cut of G (since G has no digon by Corol-
lary 4.7). This contradicts Lemma 4.6.

Thus the induced subgraph G[Dj ∪ Dj+1] is 2-connected. Let uj ∈ V (Dj) ∩ V (Dj−1)
(or uj = v if j = 1), and let uj+1 ∈ V (Dj+1) ∩ V (Dj+2) (or uj+1 = v if j + 1 = r). Let 
D ⊂ G[Dj ∪Dj+1] be a circuit containing the vertices uj and uj+1. Then G[Dj ∪Dj+1] \D

is a removable even subgraph of (G, T ). This is a contradiction. Thus, degUi
(w) = 2, for 

every w �= v, i = 1, 2, and thus Claim 4.10.1 is true.
The following claim is obvious.

Claim 4.10.2. For each circuit C of SP (G, T ), {S1ΔC, S2ΔC} is also an almost com-
patible 2-even subgraph decomposition with respect to v.

Claim 4.10.3. For each trivial vertex w with {e′, e′′} = E(w) ∩S1, no circuit of SP (G, T )
contains both edges e′ and e′′.

Suppose that C is a circuit of SP (G, T ) containing both edges e′ and e′′. By 
Claim 4.10.2, {S1ΔC, S2ΔC} is also an almost compatible 2-even subgraph decomposi-
tion with respect to v. Note that degS2ΔC(w) = 4. This contradicts Claim 4.10.1. Thus 
Claim 4.10.3 now follows.

Therefore, by Claim 4.10.3, we have the following immediate conclusions about SP (G, T ).
Let w be a trivial vertex of (G, T ).

Claim 4.10.4. For each pair {e′, e′′} = E(w) ∩ Si (i = 1, 2), the edges e′ and e′′ must be 
in different blocks of SP (G, T ).
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From Claim 4.10.4, we conclude

Claim 4.10.5. The trivial vertex w must be a cut-vertex of some component of SP (G, T ).

This also implies

Claim 4.10.6. The circuit decomposition of SP (G, T ) is unique.

Notation. Let R1, . . . , Rh be the components of the split graph SP (G, T ), and let 
{X1, . . . , Xt} be the unique circuit decomposition of SP (G, T ), which is also the block 
decomposition of SP (G, T ).

Claim 4.10.7. Let x and y be the two vertices in SP (G, T ) which result from by splitting v. 
Then x and y are contained in different components of SP (G, T ).

Proceeding by contradiction, suppose that x and y are contained in the same compo-
nent R1, of SP (G, T ). Let P be a path of R1 joining x and y. Let C be the even subgraph 
induced by E(P ) in G. Note that C is not compatible in its vertices except at v. S1 and 
S2 are compatible at every vertex u �= v, and S1 is not compatible at vertex v. Therefore, 
{S1ΔC, S2ΔC} is a compatible 2-even subgraph decomposition which is a contradiction 
to the choice of G and thus proves the claim.

By Claim 4.10.7 assume without loss of generality that x ∈ X1 and y ∈ X2 where Xj

is a block of Rj , j = 1, 2.

Claim 4.10.8. The circuits X1 and X2 are of odd lengths, while all other Xi(i > 2) are 
of even lengths.

Colour the edges of S1 with blue, and the edges of S2 with red. By Claim 4.10.4, each 
circuit Xi is of even length if i �= 1, 2 since its edges are alternately coloured with red 
and blue, while X1 and X2 are of odd length since each of x, y is incident with two edges 
of the same colour. Claim 4.10.8 now follows.

The following is the final claim and concludes the proof of the lemma.

Claim 4.10.9. h = t = 2. That is, the split graph SP (G, T ) has precisely components 
R1 = X1 and R2 = X2 each of which is a circuit of odd length.

Since the non-trivial vertex v was selected arbitrarily, all conclusions we have had 
above can be applied to every non-trivial vertex; that is, for every non-trivial vertex v
and the vertices x and y resulting by splitting v, it follows that x ∈ X1 and y ∈ X2.

If R1 has more than one block, then R1 must have a block Q3 other than X1 that 
contains precisely one cut-vertex z of R1 (note that Q3 corresponds to a leaf in the 
block-cut-vertex graph of R1). By Claims 4.10.7 and 4.10.8, every vertex of Q3 is trivial. 
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So by Claim 4.10.5, every vertex of Q3 is a cut-vertex of SP (G, T ). This contradicts the 
supposed existence of Q3.

Furthermore, no edge of Ri with i > 2 is incident with a non-trivial vertex. By the 
definition of SP (G, T ), each Ri with i > 2 also corresponds to a component of G whose 
vertices are all trivial. This contradicts G being connected.

Therefore, SP (G, T ) consists of two vertex disjoint circuits of odd length X1 = R1

and X2 = R2. Lemma 4.10 now follows. �
Since in the proof of Lemma 4.10, it is shown that any smallest counterexample to 

Theorem 1’ has no trivial vertex, we have the following corollary.

Corollary 4.11. Any smallest counterexample to Theorem 1’ is a fully transitioned graph.

Lemma 4.12. [6] Let (G, T ) be a smallest counterexample to Theorem 1’ and let Fv =
{C1, . . . , Ck} be an ACCCD of (G, T ) with respect to a non-trivial vertex v with k = |Fv|
maximum. Then k ≥ 3.

Proof. Since v is of degree 4, k > 1 where Fv = {C1, . . . , Ck}. Assume that k = 2. Let R1

and R2 be the components of SP (G, T ) (see Lemma 4.10 (1)). By Lemma 4.10 and Defini-
tion 4.9, without loss of generality, let E(v) ∩E(C1) ⊆ E(R1) and E(v) ∩ E(C2) ⊆ E(R2). 
Consider {C1ΔR1, C2ΔR1}. It is easy to check that {C1ΔR1, C2ΔR1} is an almost 
compatible decomposition into even subgraphs of (G, T ) with respect to v. Note that 
E(v) ⊆ E(C2ΔR1). Therefore, the maximum degree of C2ΔR1 is four and hence any 
of its circuit decomposition consists of at least two circuits. Since SP (G, T ) has two 
components and G is 2-connected, (G, T ) has at least a second non-trivial vertex u �= v. 
Because C1 is compatible in u, C1ΔR1 is not empty. Therefore, the union of circuit 
decompositions of C1ΔR1 and C2ΔR1 has at least three elements. This contradicts the 
maximality of |Fv|. �
4.2. Cornered triangle extension property: key lemmas for the determination of UD-K5

There are few results in graph theory that tell us the existence of the Petersen-minor 
(for example, [5,15], etc.). The main lemmas in this section provide a new approach to 
identify the precise structure of a transitioned UD-K5 (their corresponding versions for 
the faithful circuit covering problem identify the Petersen graph). These lemmas are 
applied in the final steps of the proofs of Theorems 1’ and 2.

Definition 4.13. Let C0 = xy1y2x be a non-compatible circuit of length 3.

(1) The corner of C0 is a given inner vertex, say x, of the triangle. If yj is a compatible 
vertex of C0, then the opposite edge xyi is called a leg of C0 (i �= j).

(2) For μ = 1, 2, a triangle C0 with the corner x is called μ-legged if E(x) ∩ E(C0)
contains at least μ legs.
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Fig. 9. A cornered triangle C0 = xy1y2x, and its extension C1 = w1xy1w1.

(3) Let C0 = xy1y2x be a triangle with the corner x. Given xyi a leg of C0, an extension
of C0 along the leg xyi is another triangle Ci = wixyiwi with the corner wi where 
wi /∈ V (C0) (note that yiwi is a leg of Ci).

(4) A μ-legged triangle C0 = xy1y2x with the corner x is μ-extendable if every leg xyi

has an extension which is also μ-legged (a μ-legged extension; see Fig. 9).

Definition 4.14. For a given integer μ ∈ {1, 2}, a graph G has the the μ-legged-triangle-
extension property (abbreviated as μ-LTEP) if G contains some μ-legged triangle and 
each of them is μ-extendable (see Definition 4.13(4)).

The following two lemmas play an important role in the proofs of the main theorems. 
These lemmas identify the structure of the UD-K5 based on the extension property.

In the proofs of the main theorems, the 1-LTEP or 2-LTEP will be verified for smallest 
counterexamples to the theorems. We wish to point out that although Lemma 4.15 and 
Lemma 4.16 look very similar, neither of them is an immediate corollary of the other.

Lemma 4.15. Let (G, T ) be a 4-regular, fully transitioned, simple graph. If (G, T ) has the 
2-LTEP, then it is exactly the UD-K5.

Proof. By the 2-LTEP, there exists a 2-legged triangle in (G, T ), say S0 = vv1v2v, with 
corner v and two legs vv1 and vv2. Since S0 has the 2-LTEP, each leg vvi (i = 1, 2), 
has a 2-legged extension Si = vi+2vvivi+2 which is also a 2-legged triangle with the 
corner vi+2.

Since G is simple, it can be seen that v3 �= v4, for otherwise, by looking at the 
transitions contained in E(v3), the edge vv3 would be contained in two distinct transitions 
{v3v, v3v1} and {v3v, v3v2} (see Fig. 10-(ii)).

Since Si has the 2-LTEP (i = 1, 2), each leg vvi+2 has a 2-legged extension Si+2 =
wivvi+2wi. Since G is 4-regular, w1 ∈ {v2, v4} and w2 ∈ {v1, v3}. Since the transition 
{v4v, v4v2} ∈ T (v4) and w1 is an inner vertex of S3, we have that w1 �= v4. Hence, 
w1 = v2. Symmetrically, w2 = v1.

Since S1 has the 2-LTEP, the leg v1v3, has a 2-legged extension S5 = w3v1v3w3 with 
corner w3. By the 4-regularity of G, w3 ∈ {v, v2, v4}. Since w3 is an inner vertex of S5, 



42 H. Fleischner et al. / Journal of Combinatorial Theory, Series B 137 (2019) 25–54

Fig. 10. Proof of Lemma 4.15.

Fig. 11. Case A (w0 = v1).

one has w3 = v4 by looking at the transitions at v and v2. Thus, {v4v1, v4v3} ∈ T (v4), 
and {v3v2, v3v4} ∈ T (v3) (see Fig. 10-(iii)).

It is now easy to check that (G, T ) is exactly the UD-K5. �
Lemma 4.16. Let (G, T ) be a 4-regular, 4-edge-connected, fully transitioned, simple graph. 
If (G, T ) has the 1-LTEP, then either it is the UD-K5 or it has a CCD of size 3.

Proof. Let S1 = v0v1v2v0 be a 1-legged triangle with the corner v2 and a leg v0v2. By 
using the 1-LTEP of S1 at the leg v0v2, we have a new vertex v3 such that S2 = v0v2v3v0

is a 1-legged triangle with the corner v3 and a leg v0v3.
By using the 1-LTEP of S2 at the leg v0v3, there is a 1-legged triangle S3 = v0v3w0v0

with the corner w0 and a leg v0w0. Since S3 �= S2 and G is simple, there are two 
possibilities for w0: w0 = v1 or w0 /∈ {v0, . . . , v3}.

Case A: w0 = v1 (see Fig. 11).
We will show that this case cannot happen.
Since (G, T ) is fully transitioned, there exists a transition of v0 contained in the edge 

set {v0v1, v0v2, v0v3}. By rotational symmetry, we may assume that {v0v1, v0v2} ∈ T (v0). 
Thus v2v3 is another leg of the 2-legged triangle S2. By using the 1-LTEP of S2 at the 
leg v2v3, there exists a 1-legged triangle S4 = v2v3w1v2 with the corner w1 and a leg 
v2w1. It is obvious that w1 /∈ {v0, v2, v3}. If w1 = v1, then the edge v1v3 will be contained 
two distinct transitions, which is impossible.
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By using the 1-LTEP of S4 at the leg v2w1, there exists a 1-legged triangle 
S5 = v2w1w2v2 with the corner w2 and a leg v2w2. Since G is 4-regular and simple, 
w2 ∈ {v0, v1}. If the corner w2 = v0, then {w2w1, w2v2} = {v0w1, v0v2} ∈ T (v0). But 
the edge v0v2 is already contained in another transition {v0v1, v0v2}. This is a contrac-
tion, and therefore, w2 = v1.

Let e′ ∈ E(v0) − {v0v1, v0v2, v0v3} and e′′ ∈ E(w1) − {w1v1, w1v2, w1v3}. Since G is 
4-regular and 4-edge-connected, we have that e′ = e′′ for otherwise {e′, e′′} is a 2-edge-cut 
of G. That is, e′ = e′′ = w1v0, and V (G) = {v0, v1, v2, v3, w1}.

Consider the 2-legged triangle v0w1v3v0 with corner v0. By using the 1-LTEP at the 
leg v0w1, there exists a 1-legged triangle v0w1w3v0 with the corner w3. By the 4-regularity 
of G, one must have w3 = v1 or w3 = v2. However, none of them can happen as can be 
seen by checking the transitions around v1 and v2.

Case B: w0 /∈ {v0, . . . , v3}; denote w0 = v4 (see Fig. 12).
By using the 1-LTEP of S3 at the leg v0v4, there exists a 1-legged triangle 

S6 = v0v4w3v0 with the corner w3 and a leg v0w3. Since G is 4-regular and sim-
ple, w3 ∈ {v1, v2}. If w3 = v2, then the edge v0v2 is contained in the two transitions 
{v2v0, v2v1} and {v2v0, v2v4} of v2. This is a contradiction. Therefore, w3 = v1.

Note there is no information yet about the transitions around the vertex v0. By 
symmetry, there are two cases for further analysis:

{v0v1, v0v2} ∈ T (v0) or {v0v1, v0v3} ∈ T (v0). (1)

In either case, we can assume that v0 is compatible in the triangle S2 = v0v2v3v0. 
That is, the edge v2v3 is another leg of the triangle S2. By using the 1-LTEP of S2 at 
the leg v2v3, we have an extension S7 = v2v3w4v2 with the corner w4 and a leg v2w4. 
Proceeding similarly to the above, by looking at the transitions around v4, we have that 
w4 �= v4. Hence, there are two possibilities for w4: w4 /∈ {v0, . . . , v4} or w4 = v1 (see 
Fig. 12).

Subcase B-1. w4 /∈ {v0, . . . , v4}; denote w4 = v5 (see Fig. 13).
For this subcase, we will find a CCD of size 3. By using the 1-LTEP of S7 at the 

leg v2v5 = v2w4, there exists an extension v2v5w5v2 with the corner w5 and a leg v2w5. 
Since G is 4-regular and simple and w5 ∈ [N(v2) ∩ N(v5)] − V (S7), we have w5 = v1 (see 
Fig. 13). Arguing similarly as above, we then get v4v5 ∈ E(G) by the 4-edge connectivity 
and 4-regularity. Therefore V (G) = {v0, . . . , v5}.

By (1), if {v0v1, v0v3} ∈ T (v0), then consider the 2-legged triangle S1 = v2v1v0v2 with 
the corner v2. The leg v1v2 cannot be extended by checking at the transitions around v5

and the neighbourhood of v3, v4. This is a contradiction.
So, by (1), we must have {v0v1, v0v2} ∈ T (v0), and thus the set

{v1v2v3v4v1, v0v1v5v3v0, v0v2v5v4v0}

is a CCD of (G, T ) of size 3.
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Fig. 12. Case B (w0 = v4): S7 = v2v3w4v2 and subcase B-1 (w4 = v5), subcase B-2 (w4 = v1).

Fig. 13. Subcase B-1 (w4 = v5).

Fig. 14. Subcase B-2 (v1 = w4): (G, T ) is the UD-K5.

Subcase B-2. w4 = v1 (see Fig. 14).
It is obvious that v2v4 ∈ E(G) by the 4-edge connectivity and 4-regularity of G

(see Fig. 14). By (1), we may first assume that {v0v1, v0v2} ∈ T (v0). Then consider 
the 2-legged triangle v4v2v1v4 with the corner v4. The leg v2v4 cannot be extended by 
checking at the transitions around v0 and v3. This is a contradiction.

So, by (1), we must have {v0v1, v0v3} ∈ T (v0). It is easy to check that (G, T ) is the 
UD-K5 (see Fig. 14). �
5. Simultaneous proof of Theorems 1’ and 2

Suppose at least one of these two theorems is false. Let (G, T ) be a counterexample to 
either Theorem 1’ or Theorem 2 with |E(G)| being as small as possible. Therefore, every 
admissible transitioned 4-regular graph without SUD-K5-minor and smaller than (G, T )
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has a CCD; and for every Hamilton transitioned graph (H, S) smaller than (G, T ), if 
(H, S) is SUD-K5-minor-free, then (H, S) ∈ 〈2L〉.

For our considerations we introduce an extra definition.

Definition 5.1. Let G′ be a graph obtained from G by some operations. A digon D′ of 
G′ is virtual if its corresponding subgraph D in G is a circuit of length > 2 such that at 
least one edge of D′ corresponds to a path of length > 1 in D; otherwise we speak of D′

as a real digon.

Now we consider two cases with respect to the assumed counterexample.

Case I. (G, T ) is a counterexample to Theorem 1’.
Case II. (G, T ) is a counterexample to Theorem 2.

5.1. Case I. (G, T ) is a counterexample to Theorem 1’

The goal of our first step is to show that (G, T ) has a kind of extension property for 
a type of cornered triangle, which is to be proved in Lemma 5.5.

Definition 5.2. A circuit C = v1v2 . . . vkv1 is called an almost removable circuit with 
respect to v1 (ARC(v1), for short) if it is compatible at every vertex except v1 such that 
(G \ E(C), T |G\E(C)) has no bad cut-vertex.

Note that, for an almost removable circuit Cv1 with respect to v1, if d(v1) = 4 and 
v1 is incident with two transitions, say P1 and P2, then P1 is contained in Cv1 and P2

remains in G \E(Cv1). If this case happens, the remaining transition P2 is removed from 
T |G\E(Cv1 ) by Definition 2.8-(3).

Lemma 5.3. Let (G, T ) be a smallest counterexample to Theorem 1’, and let Cv1 be 
a circuit of G containing v1. Then Cv1 is an ARC(v1) if and only if there exists an 
ACCCD(v1) Fv1 containing Cv1 .

Proof. Sufficiency is trivially true. Let Cv1 be an ARC(v1). Since (G, T ) is a smallest 
counterexample to Theorem 1’, the transitioned graph (G \ E(Cv1), T |G\E(Cv1 )) has 
a CCD, say C1. Note that C1 ∪ {Cv1} is an ACCCD(v1) because of Lemma 4.3. �
Lemma 5.4. Let (G, T ) be a smallest counterexample to Theorem 1’, and let Cv1 be a 
triangle of G containing v1. If Cv1 is compatible at every vertex except v1, then Cv1 is 
an ARC(v1).

Proof. Let Cv1 = v1v2v3v1 be compatible at every vertex except v1. By Definition 5.2, 
we need to show (G \ E(Cv1), T |G\E(Cv1 )) has no bad cut-vertex. Assume there exists 
a cut-vertex x �= v1 in G such that G has two blocks Q1 and Q2 incident with x
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Fig. 15. An ACCCD(v) of (G, T ), and, (G′, T ′).

and Q1 ∩ E(x) ∈ T (x). If V (Q1) ∩ V (Cv1) = {v2}, then {x, v2} is a 2-vertex-cut. If 
V (Q1) ∩ V (Cv1) = {v1, v2}, then {x, v3} is a 2-vertex-cut. In both cases we obtain a 
contradiction to Lemma 4.6. �
Lemma 5.5. Let (G, T ) be a smallest counterexample to Theorem 1’. Then (G, T ) has 
the following properties.

(i) ARC(v) exists for every vertex v;
(ii) a shortest ARC is of length 3, and
(iii) for every ARC(v1) = v1v2v3v1 and for the edge v1v2, there exists an ARC(w) =

wv1v2w, w �= v3.

Proof. By Lemma 4.3, for every vertex v ∈ V (G), there exists an ACCCD(v) (see Corol-
lary 4.11), and, for every v ∈ V (G), by Lemma 5.3, (G, T ) contains an ARC(v).

Choose ACR(v) with the smallest length among all ARC’s in (G, T ) and choose 
ACCCD(v), Fv = {C1, . . . , Ck} with maximum length involving this shortest ACR(v), 
Ck say (see the left side of Fig. 15).

Let (G′, T ′) be obtained from (G, T ) by deleting all edges of Ck except uv where u
is a neighbour of v on Ck, contracting uv to a new vertex v∗ and suppressing vertices of 
degree two.

For every C ′ ∈ G′, assume that C is the subgraph of (G, T ) induced by E(C ′) and 
vice versa.

Clearly, (G′, T ′) has no SUD-K5-minor (see the right side of Fig. 15), and because 
of the choice of (G, T ), we may consider F ′ to be a CCD of (G′, T ′). There exist two 
circuits H ′

1 and H ′
2 of F each of which contains the new vertex v∗.

Claim 5.5.1. F ′ = {H ′
1, H ′

2}.
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Proof of Claim 5.5.1. Assume that |F ′| ≥ 3. Then we have to show that, for every C ′ ∈
F ′ \ {H ′

1, H ′
2}, the corresponding circuit C in G is a removable circuit of (G, T ). It is 

evident that C is compatible in (G, T ) since v∗ /∈ V (C ′). We thus want to show that 
(G \ E(C), T |G\E(C)) has no bad cut-vertex.

To this end, it is sufficient to show that J is 2-connected where J is the subgraph of 
G induced by the edges of H ′

1 and H ′
2 and the circuit Ck. Note that H ′

1 ∪H ′
2 corresponds 

in G the H1 ∪H2 which is a pair of paths with the common end-vertices u and v. Adding 
the circuit Ck, the resulting graph J is therefore 2-connected (because H1 ∪ H2 ∪ {uv}
is already 2-connected). �

It now follows that every CCD of (G′, T ′) is a pair of hamiltonian circuits. By the 
minimality of (G, T ), the smaller transitioned graph (G′, T ′) is not a counterexample to 
Theorem 2. Thus, we can draw the following conclusion.

Claim 5.5.2.

(G′, T ′) ∈ 〈2L〉.

By Lemma 4.4, (G, T ) has no digon of type λ > 0. However, by Claim 5.5.2 and 
Lemma 2.17, (G′, T ′) contains at least two digons of type λ > 0. Let D′ be a digon of 
type λ > 0 in (G′, T ′). Because of Lemma 4.4, there can only be two kinds of digons in 
(G′, T ′); either

E(D′) ∩ E(C ′
k−1) �= ∅ �= E(D′) ∩ E(C ′

k−2)

(which is a virtual digon), or D′ contains the vertex v∗ and some edges of C ′
1 and C ′

k−1, 
where k = 3 (which is a real digon).

Let D′
1 be a virtual digon in (G′, T ′). Let D1 denote the circuit in G corresponding to 

D′
1. Observe that C ′

k−2 ∩ D′
1 = Ck−2 ∩ D1 is an edge of G and Ck−1 ∩ D1 contains some 

vertices of Ck. Let V (D′
1) = {y, z} and let z be an inner vertex of D′

1. If D′
1 is of type 

2, then it can be easily seen that the circuit Ck−1ΔD1 is a removable circuit in (G, T ). 
Thus, D′

1 is of type 1.

Claim 5.5.3. D1 is an ARC(z).

Proof of Claim 5.5.3. Since D′
1 is of type 1, it is sufficient to show that G \E(D1) remains 

2-connected.
Suppose G∗ = G \ E(D1) has a cut-vertex, x say. Then x ∈ V (Ck−1) ∩ V (Ck−2), 

since, for every i ∈ {1, . . . , k} \ {k − 2, k − 1}, Ci is also as a circuit in G∗. For, if x /∈
V (Ck−1) ∩ V (Ck−2) would hold, then {v, x} would be a 2-vertex-cut in G, contradicting 
Lemma 4.6. Note that J = (Ck−2 ∪ Ck−1) \ E(D1) is a pair of edge-disjoint paths with 
common end-vertices y and z implying that y and z are not cut-vertices of G∗. Thus, 
x �= y, z and x is a cut-vertex of J separating y and z. Let G∗

1, G∗
2 be components 
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of G∗ \ {x} with y ∈ V (G∗
1), z ∈ V (G∗

2). Let K be the subgraph of G∗ induced by 
the set of circuits {C1, . . . , Ck} \ {Ck−2, Ck−1}, which is a connected subgraph of G∗

since v ∈ V (C1) ∩ V (Ck). Then it is easy to see that either V (K) ⊆ V (G∗
1) ∪ {x} or 

V (K) ⊆ V (G∗
2) ∪ {x}, but not both. Assume that V (K) ⊆ V (G∗

1) ∪ {x}. Then {x, z} is 
a 2-vertex-cut of G. This contradicts Lemma 4.6 and finishes the proof of the claim. �

By the choice of Ck, the length of D1 is not smaller than the length of Ck. Thus, by 
Claim 5.5.3, we have the following immediate corollary.

Claim 5.5.4.

V (Ck) \ {v, u} ⊆ V (Ck−1) ∩ V (D1).

Claim 5.5.5. k = 3.

Proof of Claim 5.5.5. By Lemma 2.17, (G′, T ′) has at least two edge-disjoint digons of 
types 1 or 2. If k ≥ 4, then every digon of (G′, T ′) is virtual. But, by Claim 5.5.4, at least 
one of them is a digon of type > 0 in (G, T ), contrary to Lemma 4.4. Hence k = 3. �

Since k = 3, (G′, T ′) has at most one virtual digon. Let D′
2 be a real digon in (G′, T ′)

and let D2 = uvwu correspond to D′
2 in G.

Claim 5.5.6. D2 is an ARC(w) for some w ∈ V (C1) ∩ V (C2).

Proof of Claim 5.5.6. Denote D′
2 = 〈w, v∗〉 with one edge in C ′

1 and the other edge in 
C ′

k−1 = C ′
2. By the definition of T ′(v∗), D′

2 is compatible at v∗. So w is an inner vertex 
of D2 since D′

2 is of type λ > 0. D′
2 is extended to D2 in G which is the triangle vwuv. If 

u is also an inner vertex of D2, then it is easy to see that C2ΔD2 is a removable circuit 
in (G, T ). Now by Lemma 5.4, D2 is an ARC(w). �

In the general case, by the analogous argument as we did for C3 and uv, for every 
ARC(v1), say Cv1 = v1v2v3v1 and the edge v1v2, for some v1 ∈ V (G), there exists a 
vertex w ∈ (NG(v1) ∩ NG(v2)) \ {v3} such that Cw = wv1v2w is an ARC(w). This 
completes the proof of the lemma. �
Proof of Theorem 1’. We first claim that every shortest ARC is a 2-legged cornered 
triangle. Note that, by Definition 5.2, each ARC contains precisely one inner vertex. 
By Lemma 5.5(ii), every shortest ARC is a triangle. That is, every shortest ARC is a 
2-legged cornered triangle.

In order to apply Lemma 4.15, we further claim that (G, T ) has the 2-LTEP. By 
Lemma 5.5(i) and (ii) again, (G, T ) contains some 2-legged cornered triangles. By 
Lemma 5.5(iii), each shortest ARC has an extension at every leg.

Thus, by Lemma 4.15, (G, T ) is exactly the UD-K5, which is a contradiction. �
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5.2. Case II. (G, T ) is a counterexample to Theorem 2

Lemma 5.6. (G, T ) has no non-hamiltonian removable circuit.

Proof. Let C be a non-hamiltonian removable circuit of (G, T ). Then the SUD-K5-minor-
free transitioned graph (G \ E(C), T |G\E(C)) has a CCD C. Thus, C ∪ {C} is a CCD of 
(G, T ) with at least three circuits, which is a contradiction. �
Lemma 5.7. (G, T ) has no digon of any type.

Proof. Suppose that D is a digon of type ≥ 1 in (G, T ). Let (G′, T ′) = (G/D, T |G/D). 
It is obvious that every CCD of (G, T ) induces a CCD on the smaller graph (G′, T ′)
because edges of D of are contained in different members of any CCD. By the same 
token, every CCD of (G′, T ′) also induces a CCD of (G, T ). Note that (G′, T ′) re-
mains SUD-K5-minor-free. Therefore, by the minimality of (G, T ), the reduced graph 
(G′, T ′) ∈ 〈2L〉. Then, by the definition of the family 〈2L〉 of graphs and by the choice 
of D, we have (G, T ) ∈ 〈2L〉, which is a contradiction.

Assume that D = 〈v1, v2〉 is a digon of type 0 in (G, T ) with E(D) = {e1, e2}. 
D is a compatible circuit, but not a removable circuit (by Lemma 5.6). Hence, 
(G \ E(D), T |G\E(D)) has a bad cut-vertex w. That is, {w} is a 1-separator of G \ E(D)
separating G \ E(D) into two subgraphs G1 and G2.

Let Hi = G/Gj for i �= j and let wi be the contracted vertex of Gi, for i = 1, 2. As 
an eulerian minor of G, each Hi is SUD-K5-minor free. And every CCD Fi of (Hi, T |Hi

)
has exactly two members for otherwise, a third member of Fi not passing through the 
contracted vertex wi is a removable circuit of (G, T ), for i = 1, 2. This contradicts 
Lemma 5.6. Hence, (Gi, T |Hi

) remains a Hamilton transitioned graph, and therefore, a 
member of 〈2L〉. By Lemma 2.17, each (Gi, T |Hi

) has at least two edge-disjoint digons of 
type ≥ 1, one of which is different from D and must be a digon of the original graph G. 
This contradicts the first part of the proof that (G, T ) contains no digon of type ≥ 1. �
Definition 5.8. Let {H1, H2} be a CCD of the Hamilton transitioned graph (G, T ). 
A circuit C = v1v2 . . . vkv1 is called an Hi-Segment-Chord Circuit with respect to v1

(Hi-SgCC(v1) for short) if v1vk is a chord of Hi and C \ {v1vk} is a segment of Hi and 
v1 is an inner vertex of C (See Fig. 16).

Obviously, for every compatible hamiltonian circuit Hi, every transition P at a 
non-trivial vertex v and every chord e contained in P , there exists an Hi-SgCC(v) con-
taining e.

Lemma 5.9. For any given decomposition {H1, H2} into hamiltonian compatible circuits 
in (G, T ) a shortest Hi-SgCC is of length 3.
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Fig. 16. H1-SgCC(v1) C0 = v1v2 . . . vkv1.

Proof. For i ∈ {1, 2}, among all Hi-SgCC’s, let C0 = v1 . . . vkv1 be a shortest one. 
Without loss of generality C0 is an H1-SgCC(v1) (see Fig. 16). By Lemma 5.7, k ≥ 3.

The new 4-regular graph (G′, T ′) is obtained from (G, T ) by deleting all edges of C0

except v1vk, contracting v1vk to a new vertex v∗ and suppressing vertices of degree two. 
(G′, T ′) remains SUD-K5-minor-free. Hence, (G′, T ′) does have a CCD.

Claim 5.9.1. Every CCD of (G′, T ′) is a pair of hamiltonian circuits.

Let F ′ be an arbitrary CCD of (G′, T ′). There exist two circuits C ′
1 and C ′

2 in F ′ each 
of which contains the new vertex v∗.

For every circuit C ′ ∈ F ′, let C denote the subgraph of G induced by the edges 
of C ′. Note that C3 = C ′

3 is also a compatible circuit of (G, T ), for every circuit C ′
3 ∈

F ′ \ {C ′
1, C ′

2} if such C ′
3 exists. We show that C3 is removable in (G, T ) by showing that 

the subgraph of G induced by E(C0) ∪ E(C1) ∪ E(C2) is 2-connected.
Set H = G[C1 ∪ C2 ∪ (C0 \ {v1vk})]; this is the union of three edge-disjoint paths 

with the common end-vertices v1 and vk. If H has a cut-vertex x, it must separate v1

and vk. Hence, H ∪ {v1vk} = C0 ∪ C1 ∪ C2 does not have any cut-vertex. Thus, C3

is a removable circuit of (G, T ), for every circuit C ′
3 ∈ F ′ \ {C ′

1, C ′
2}. This contradicts 

Lemma 5.6. Therefore, F ′ = {C ′
1, C ′

2}.
Since (G′, T ′) has no SUD-K5-minor, by the minimality of (G, T ), we draw the fol-

lowing conclusion.

Claim 5.9.2. (G′, T ′) ∈ 〈2L〉.

Note that v∗ is the only contracted vertex of G′ and v2, . . . , vk−1 are the only sup-
pressed vertices of G′. Since G has no digon of type λ > 0 (see Lemma 5.7), for each digon 
D′ of G′, the corresponding circuit D of G must contain either some of {v2, . . . , vk−1}
or the edge v1vk. And if D contains v1vk, then D′ must contain the contracted vertex 
v∗ and be compatible at v∗.

Claim 5.9.3. Let D′ be a digon of type λ > 0 in G′. Then the corresponding circuit in G
is an H2-SgCC.
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If x is an inner vertex of D′ = 〈x, y〉, then one edge of D′ is an H1-edge, another one 
is an H2-segment. So it is an H2-SgCC(x).

Assume that k ≥ 4.

Claim 5.9.4. There is no real digon in G′.

Suppose to the contrary that there is a real digon D′ in G′. Let D be the circuit in 
G corresponding to D′. Since D is not a digon in G and does not contain any vertex of 
{v2, . . . , vk−1}, it corresponds to a H2-SgCC(x) of length 3. This contradicts k ≥ 4.

Claim 5.9.5. Every virtual digon uses v∗.

Let D′
1, D′

2 be a pair of edge-disjoint digons of G′; both are virtual (by Claim 5.9.4).
Suppose that v∗ /∈ V (D′

1) and x is an inner vertex of D′
1. By Claim 5.9.3, D1 is an 

H2-SgCC(x). By the choice of C0 (that it is shortest), D1 must contain all vertices of 
{v2, . . . , vk−1}. Thus D2 contains no other suppressed vertices and, therefore, D′

2 is a 
real digon contradicting Claim 5.9.4.

Claim 5.9.6. Every virtual digon is compatible at v∗.

Suppose that v∗ is an inner vertex of the digon D′
1. Thus, D1 is an H2-SgCC(v1). We 

will show that D1 is shorter than C0. Since D′
1 and D′

2 are edge-disjoint, each of D′
1, D′

2
contains one transition of T ′(v∗). Hence, v∗ must be an inner vertex of both D′

1 and D′
2. 

Furthermore, the corresponding circuits D1, D2 in G do not contain the chord v1vk, and 
contain some vertex of {v2, . . . , vk−1}. That is, D1 contains at most (k − 3) vertices of 
{v2, . . . , vk−1}. Thus, D1 is shorter than C0. This contradicts the choice of C0.

Claim 5.9.7. k ≤ 4. Furthermore, each Di contains precisely one vertex of {v2, v3} if 
k = 4.

Let D′
1, D′

2 be two edge-disjoint digons of G′. Both are virtual, use v∗ and are com-
patible at v∗. And it is obvious that if D′

1 traverses vn and then D′
2 traverses vk+1. The 

corresponding circuits Di in G contain an H2-segment each passing through at least k−3
vertices of {v2, . . . , vk−1}, i = 1, 2; for otherwise, it would be shorter than C0. Since G is 
4-regular, (k − 3) + (k − 3) ≤ k − 2. Thus, k ≤ 4 and {v2, . . . , vk−1} = {v2, v3} implying 
the validity of the remainder of the claim.

Claim 5.9.8. k = 3.

If k = 4, then, by Claim 5.9.7, let D1 = v1v4vμvnv1 with an inner vertex vn where 
μ = 2 or 3 (see Fig. 17). Furthermore, the segment v4vμvn is an H2-segment. If μ = 2, 
then there is a triangle vnv2v1vn inner at vn, which is an H1-SgCC(vn) shorter than C0. 
If μ = 3, then D∗ = 〈v3, v4〉 induces a digon of G. This contradicts Lemma 5.7. Thus, 
k = 3 and Lemma 5.9 now follows. �
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Fig. 17. k = 4 : D1 = v1v4vμvnv1, μ = 2, 3.

Since k = 3 and by Claim 5.9.2, at least one digon of (G′, T ′) is a real digon, with 
the circuit corresponding to this digon in (G, T ) is a 1-legged triangle v1v3wv1 with the 
corner w and a leg either v1w or v3w.

In Lemma 5.9, we proved the existence of 1-legged triangles. In the next lemma 
(Lemma 5.10), we show that every 1-legged triangle has the 1-LTEP. Note that the 
proof of this lemma is similar to the proof of Claims 5.9.1 and 5.9.2 for Lemma 5.9.

Lemma 5.10. (G, T ) has the 1-LTEP.

Proof. Assume that S1 = u1u2u3u1 is a 1-legged triangle with the corner u1 and a leg 
u1u3. Let (G′′, T ′′) be a new 4-regular graph obtaining from (G, T ) as follows. Remove 
u1u2 and u2u3, contract u1u3 to a new vertex u∗ and then suppress vertices of degree 
two. (G′′, T ′′) remains SUD-K5-minor-free.

Claim 5.10.1. (G′′, T ′′) has no bad cut-vertex.

Proof of Claim 5.10.1. Suppose that p is a bad cut-vertex in (G′′, T ′′) (p �= u3, otherwise 
u1 is a cut-vertex of G contrary to G is 2-connected). Thus, {u2, p} is a 2-vertex-cut in 
(G, T ). Let G′′

1 and G′′
2 be the components of G \ {u2, p} such that {u1, u3} ⊆ V (G′′

1).
Remove V (G′′

2) and identify u2 and p to a new vertex q to obtain a new transitioned 
4-regular graph (G′′′, T ′′′) which is admissible (since u1u3 ∈ E(G),) and SUD-K5-minor-
free. Thus (G′′′, T ′′′) has a CCD. It is easily seen that every CCD of (G′′′, T ′′′) is a 
pair of hamiltonian circuits (a removable circuit in (G′′′, T ′′′) not containing q is also a 
removable circuit in (G, T )). By the choice of (G, T ), (G′′′, T ′′′) ∈ 〈2L〉. By Lemma 2.17, 
(G′′′, T ′′′) has two edge-disjoint digons of type > 0. Since (G, T ) has no digon of any 
type, {u1u2, u1p} ∈ T (u1). However, {u1u2, u1u3} ∈ T (u1) (see definition of a 1-legged 
triangle with corner u1); this contradicts p �= u3. Now Claim 5.10.1 follows. �

Hence, (G′′, T ′′) does have a CCD.

Claim 5.10.2. (G′′, T ′′) ∈ 〈2L〉.

Let F ′′ be an arbitrary CCD of (G′′, T ′′). There exist two circuits C ′′
1 and C ′′

2 in F ′′

each of which contains the new vertex u∗.
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For every circuit C ′′ ∈ F ′′, denote bz C the subgraph of G induced by the edges 
of a circuit C ′′. Note that C3 is also a compatible circuit of (G, T ), for every circuit 
C ′′

3 ∈ F ′′ \ {C ′′
1 , C ′′

2 }.
Let H be the subgraph of G induced by the edges contained in C1, C2 and {u1u3}, 

which is the union of three edge-disjoint paths with the common end-vertices u1 and u3; 
and it is 2-connected. Hence, S1 ∪C1 ∪C2 is 2-connected. Thus, C3 is a removable circuit 
of (G, T ), for every circuit C ′′

3 ∈ F ′′ \{C ′′
1 , C ′′

2 } which contradicts Lemma 5.6. Therefore, 
F ′′ = {C ′′

1 , C ′′
2 }.

Note that (G′′, T ′′) has no SUD-K5-minor, thus by the minimality of (G, T ), we have 
(G′′, T ′′) ∈ 〈2L〉 which finishes the proof of the claim.

By Lemma 2.17, (G′′, T ′′) has at least two edge-disjoint digons of type λ > 0. Since 
(G, T ) has no digon by Lemma 5.7, for each digon D′′ of (G′′, T ′′), the corresponding 
circuit D in G must contain either u2 or the edge u1u3.

There is at most one D in (G, T ) with u2 ∈ V (D) corresponding to a digon in (G′′, T ′′); 
otherwise, (G, T ) would contain a digon, contrary to Lemma 5.7. Let D′′ = 〈u∗, w〉 be 
a digon of type > 0 in (G′′, T ′′) containing the contracted vertex u∗ with edges {e1, e2}
(such digon must exist because of the preceding argument). Because of Lemma 5.7 u∗ is 
not an inner vertex of D′′. Its corresponding triangle D in G containing the edge u1u3

and therefore {e1, e2} is not a transition in T (u∗). Therefore, the only inner vertex of 
D′′ is w. Thus (G, T ) has the 1-LTEP. �
Proof of Theorem 2. By Lemma 5.10, (G, T ) has the 1-LTEP. Thus by Lemma 4.16, 
either (G, T ) is the UD-K5 or it has a CCD of size 3, which is a contradiction. Now 
Theorem 2 follows. �
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