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the proof of the main theorem and also generalizes an earlier
result by Lai and Zhang (Lai and Zhang (2001) [13]).
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1. Introduction

Compatible Circuit Decomposition (CCD) Problem. Let G be a 2-connected eulerian
graph with 6(G) > 4, and for each v € V(G) let T (v) be a set of edge-disjoint edge-pairs
(called transitions) of E(v) (in the case of a loop I we allow {I,1} to be a transition). Can
we find a circuit decomposition C of G such that, for every C € C and every v € V(Q)
and every P € T (v), |E(C)NP| <1 (unless C is a loop and P = {l,1}, in which case
there is no CCD)?

Such C is called compatible with the transition system 7 = UveV(G) T (v) (see also
Definition 2.2).

The compatible circuit decomposition (CCD) problem is closely related to the famous
circuit double cover conjecture, [12,14,16,17], and to the Sabidussi conjecture [7,8,9].

It is well known that not every eulerian graph associated with a transition system
has a compatible circuit decomposition. For example, an undecomposable K5 (or, a bad
K5 to use a more colloquial expression) is the complete graph K5 associated with the
transition system

Ts = {{vivigp, vivi—pu } © i € Zs, p € {1,2}}

where V(K35) = {vo,v1,...,v4} (see Fig. 1).

The compatible circuit decomposition problem has been verified for planar graphs by
Fleischner [7], and for Kj-minor-free graphs by Fan and Zhang [6]. Fleischner further
asked implicitly the following question [10] which is beyond a graph-minor problem. In
what follows we restrict ourselves to 2-connected graphs.

Problem 1 (Fleischner [10]). If (G,T) does not have a compatible circuit decomposi-
tion, does (G,7T) contain either an undecomposable Kjs-transition-minor or one of its
generalized transition-minors?

A transition-minor is not only a graph-minor that preserves some topological structure
of G but also inherits the original transition system 7T (see Definitions 2.8 and 2.10 for
definitions of transition-minor and SUD-Kj5). Problem 1 is completely solved in this

paper.

Theorem 1. Let (G, T) be a 2-connected eulerian graph with the minimum degree § > 4
associated with a transition system. If (G, T) is SUD-K5-minor-free, then it has a com-
patible circuit decomposition.
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Fig. 1. K5 with 75 = {{vi—1vs, vivig1}, {vi—2vi, viviya} : @ € Zs}.

We observe that if 7 = (), then any circuit decomposition of (G,7T) is in accor-
dance with Theorem 1. Thus, we assume that our point of departure is a (G,7T) with
T #0.

In the study of circuit cover and circuit decomposition problems, one of the funda-
mental steps is to determine the structure of two adjacent circuits (i.e., two circuits
having at least one vertex in common). The Hamilton weight problem ([13,19]) is one
of such approaches for faithful cover problem. Its corresponding version for circuit de-
composition is the Hamilton transition problem. That is, if (G, 7T) has some compatible
circuit decomposition and every such decomposition consists of a pair of hamiltonian
circuits, then (G,7) must be constructed recursively from two loops (2L) via a series of
(X <> O)-operations (the operation extending a vertex to a digon); see Definition 2.15
and Conjecture A. The family of transitioned graphs constructed in such a way is de-
noted by (2L). This problem is solved in this paper for SUD-Kj-minor-free graphs, as
stated in Theorem 2 below.

Theorem 2. Let (G, T) be a 4-regular fully transitioned graph such that it has some
compatible circuit decomposition and every such decomposition consists of a pair of hamil-
tonian circuits. If (G, T) is SUD-K5-minor-free, then (G,T) € (2L).

This result plays a key role in the determination of a UD-Kj5-transition-minor in
Theorem 1. It is important to point out that both Theorems 1 and 2 are proved simul-
taneously because one provides the structures of extreme cases, while the other assures
the existence of a compatible circuit decomposition for any proper minor of a smallest
counterexample.

The rest of the paper is organized as follows. Some notation and terminology are
recalled and introduced in Section 2. Main results, Theorems 1 and 2 are further sum-
marized in Section 3. In Section 4, some preliminary lemmas for Theorem 1 are proved
in Subsection 4.1 before its simultaneous proof with Theorem 2 (in Section 5). There are
other important results (Lemmas 4.15 and 4.16) in Subsection 4.2 that determine the
specific structure of UD-K35 and is used in the simultaneous proof of Theorems 1 and 2.
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2. Preliminary discussions
2.1. Basic definitions

For terminology and notation not defined here we follow [3,4,18], and the papers listed
in the References.

A circuit is a 2-regular connected subgraph of a given graph G. A subgraph H of G is
even if degy; (v) is even for every vertex v € V(H).

Let v be a degree two vertex of a given graph G. Suppressing v is the operation of
removing v and adding an edge between the two neighbours of v in G.

Definition 2.1. A vertex subset U is a separator of G separating G to G1,G» if E(G) =
E(G1)UE(Gy) and V(G1) NV (G2) = U and E(G1) N E(G2) = 0. U is a t-separator if
|U| = t. We say a separator U separating subgraphs X1, X» of G if U is a separator of G
separating G to G1,Gy with X; C G;, i =1,2.

2.2. Transition system and CCD

Definition 2.2. Let G be an eulerian graph, and, for each v € V(G) with deg(v) > 4,
let T(v) be a set of edge-disjoint edge-pairs of E(v). The set T = U,ev (g T(v) is
called a transition system of G and each member of 7T is called a transition. A non-trivial
vertex is a vertex with some transition (that is, 7 (v) # 0); otherwise, we called v a
trivial vertex. The graph G with a transition system 7 is called a transitioned graph and
denoted by (G, T); (possibly T = 0). A fully transitioned graph is a transitioned graph
without trivial vertex. For every subgraph H of G, T|g = {P € T |P C E(H)}. In the
case of multiple edges e, f at u,v € V(G), we distinguish between the transition {e, f}
at u and the transition {e, f} at v.

Definition 2.3. Let (G, T) be a transitioned graph.

(1) A l-separator {v} separating G to G1,G2 is a bad cut-vertex if E(v) N E(G;) € T
for at least one i € {1, 2}.
(2) (G, T) is admissible if it does not have a bad cut-vertex.

Definition 2.4. Let (G, T) be a transitioned graph. Let C' = vgv; ... v,._10p be a circuit.
Let e; be the edge of C' joining v; and v; 41 for every i € Z,.

(1) v; is an inner vertex of C if {e;_1,e;} € T(v;) or E(v;)\{ei—1,e;} € T(vi), and we
call {e;_1,€e;} an inner transition of C' at v;. C' is compatible at v; if it is not an inner
vertex of C.

(2) C is a compatible circuit of (G, T) if C' is compatible at every vertex of C.
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Definition 2.5. A family F of circuits of G is a compatible circuit decomposition (abbre-
viated CCD) of (G, T) if F is a circuit decomposition of G and every member of F is a
compatible circuit.

It is obvious that the absence of bad cut-vertices (see Definition 2.3) is a necessary
condition for a transitioned graph admitting a CCD.

Observation 2.6. Consider a non-trivial vertex v of degree 4 in (G,T). Let E(v) =
{e1,...,e4} and P = {ej,ea} € T(v). Then every circuit of a CCD of (G,T) covers
at most one edge of {es,es}. This means in a natural way and without loss of generality,
we can assume that if P € T (v), then E(v)\ P € T(v), for every vertex v of degree 4.
Thus every vertex v of degree 4 is either a trivial vertex, or |T (v)| = 2.

Definition 2.7. A circuit C is a removable circuit of (G,7) if it is compatible and
(G \ E(C),T|a\E(c)) remains admissible (that is, (G \ E(C),T|a\g(c)) has no bad
cut-vertex).

Definition 2.8. Let (G, T) be a transitioned eulerian graph, and, G’ = (G \ Fy)/F. be an
eulerian minor of G obtained by deleting Fy and contracting F, where Fy, F. C E(G).
The resulting transition system 7' = T |g on G’ is defined as follows.

(1) Delete the edges of (F; U F.). The resulting transition system 7' contains all tran-
sitions P € T for which P C E(G \ (F; U F,)).

!0

(2) For each edge e = v/ v/ € F,, identify the end-vertices v/ and v/ as a new vertex ve.

(3) Since we do not define a transition at any vertex v of degree 2, T'(v) = 0 if
degq (v) = 2. And we apply Observation 2.6 to extend 77 (z) if degq/ (2) = 4.

The resulting transitioned graph (G’,T") is called a transition-minor of (G, T).

Definition 2.9. (G, T) is called the undecomposable K5 (UD-Kj for short) if G = K3, and
the transition system 7 is defined as follows.

T (vi) = {{vivigp, vivi—p} + p € {1,2}  (mod 5)}
for every v; € V(K5) = {vg,v1,...,v4}; see Fig. 1.

Definition 2.10. The transitioned graph (G, 7)) is a sup-undecomposable K5 (SUD-Kj5 for
short) if the graph G can be decomposed into 15 connected edge-disjoint subgraphs

{Pij: {i,j} CZs, i <j} U {Qi: i€ Zs}

as follows (see Fig. 2).
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Fig. 2. A sup-undecomposable K.

(1) Each P, ; is a path joining V(Q;) and V(Q;) (i < j), and the different P; ;’s are
internally disjoint;

(2) {Q;: i€ Zs} are disjoint connected subgraphs;

(3) Let @ be the subgraph of H induced by E(Q;) and the four adjacent paths P;
(for every pair j # i). Then each subgraph Q:r has a bad cut-vertex u; separating
P (i41) U Py (i—1) and P 42y U P; (i_2), where u; € V(Q;).

Note that a UD-Kj is a special case of a SUD-K5 where |Q;| = 1 for every i € Zs.

Definition 2.11. (G, 7T) is sup-undecomposable Kjs-transition-minor free (or, SUD-Kj5-
minor-free for short) if it does not have any eulerian minor H such that (H,T|y) is a
SUD-K.

The following is a straightforward observation.

Observation 2.12. Let G’ be an eulerian minor of G. If (G,T) is SUD-Ks5-minor-free,
then (G',T") remains SUD-K5-minor-free (where T’ is described in Definition 2.8).

Example 2.1. In [11], an infinite family of snarks {H,,} has been constructed, which has
a 2-factor F), such that F), is not contained in any circuit double cover of H,,. Let H,,
be the 4-regular graph obtained from H,, by contracting the 1-factor H, \ F, and T,
be the transition system of H,, such that each circuit of F}, has all its vertices as inner
vertices (see Definition 2.4-(1)). Clearly, (H,,7,) has no CCD. Otherwise we can get
a circuit double cover by taking F), together with the CCD of (H,,,7,) (after a proper
adjustment by adding edges of H,\ F},). The 4-regular graph illustrated in Fig. 3-(a) is the
contracted graph Hy where the 2-factor F} is a pair of edge-disjoint hamiltonian circuits
(illustrated by thin lines and thick lines). A study in [11] reveals that each member
(H,,T,) in this family contains a UD-Ks-minor due to the structure of (H,,7,). For
example, the resulting transition graph by deleting some edges Hy is a subdivision of a
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Fig. 4. Digons of type 0, 1, and 2, respectively.

UD-Kj (illustrated in Fig. 3-(b)). Therefore, every transitioned 4-regular graph (H,,, Ty,)
in this family contains a SUD-K5-minor and does not have a CCD.

2.8. Hamiltonian circuit decomposition, (X < O)-operation, (2L)-graphs

Definition 2.13. Let (G, T) be a fully transitioned 4-regular graph. If every CCD of (G, T)
is a pair of hamiltonian circuits, then (G, 7)) is called a Hamilton transitioned graph.

Definition 2.14. Let D = vgvyvg be a digon. D is of type A\ where A is the number of
inner vertices of D (see Fig. 4).

Definition 2.15. Let v be a non-trivial degree 4 vertex of a transitioned graph (G, T).
The (X < O)-operation at v with 7 (v) = {{e1,e2}, {es,es}} is defined as follows (see
Fig. 5). Split v with {e1, ez} becoming incident to a new vertex v; and {es, es} incident
to another new vertex v, and add a pair of parallel edges {es, e} between v; and va,
and define a new transition system by replacing 7 (v) with T (vs) = {{es,es}, {e5,¢e6}}
and with either T (v1) = {{e1,e5},{e2,e6}} or T(v1) = {{e1,e2},{es5,e6}}. In fact, we
have created a digon of type > 0 between v; and vs.

Definition 2.16. Denote by (2L) the family of all transitioned 4-regular graphs ob-
tained from (2L,73) (which appears on the top left of Fig. 6) by a sequence of
(X < O)-operations; it is called the 2L-family and its members are called (2L)-elements.
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Fig. 5. (X <> O)-operations.

Fig. 6. (2L)-elements of order < 3.
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Lemma 2.17. Let (G, T) € (2L) be of order at least 3. Then (G, T) has either two vertex-
disjoint digons of type > 1, or two edge-disjoint digons of type > 1 with at least one
inner transition in the common vertez.

Proof. Note that the order of (G,7) € (2L) being at least 3 implies that G does not
contain an edge with multiplicity more than 2 (this is straightforward from the definition
of (2L)). The family (2L) has precisely three members of order 3 (see Fig. 6); in this
case, every (G,T) € (2L) has two edge-disjoint digons of type > 0 sharing a common
inner vertex.

Thus, the statement of the lemma is true for (G, T) € (2L) of order 3. Hence suppose
that G is of order greater than 3.

Since (X <« O)-operations create a new digon of type > 0, every member of (2L)
except 2L contains at least one digon of type > 0. Let D be a digon of type A > 0 in
(G,T) and let (G',T") € (2L) be the graph obtained from (G,7T) by contracting D. By
induction on |V(G)|, (G’,T") has either two vertex-disjoint digons of type > 0 or two
edge-disjoint digons of type > 0 with an inner transition in a common vertex in each of
these two digons. In all cases at least one of these digons of type > 0 and D are either
two vertex-disjoint digons of type > 0 or two edge-disjoint digons of type > 0 with inner
transitions in the common vertex in (G,7). O
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3. Main results

3.1. Compatible circuit decomposition problem and Theorem 1

Given Definition 2.3, Theorem 1 is restated as a stronger version below.

Theorem 1. Let (G, T) be an eulerian graph associated with an admissible transition
system. If (G, T) is SUD-K5-minor-free, then it has a CCD.

Theorem 1’ is not only a graph minor problem, but also a transition minor problem. It
was originally proposed by Fleischner [10]. Its weak version for graph minors was solved
by Fleischner [7] for planar graphs, and by Fan and Zhang [6] for K5-minor-free graphs.

Note that Theorem 1’ is stronger than the following theorem which is only a graph-

minor-free result (not a transition-minor-free result).

Theorem A. [6] Let T be an admissible transition system of an eulerian graph G. Then
(G,T) has a CCD if G is K5-minor-free.

3.2. Hamiltonian circuit decomposition problem and Theorem 2

In the studies of circuit covering problems or circuit decomposition problems, one
of the critical steps is to determine the structure of the subgraph induced by a pair of
incident circuits ([20,21], etc.). The structure of a graph that is covered by or decomposed
into a pair of hamiltonian circuits provides a local structure of a possible counterexample
to many open problems (such as the circuit double cover conjecture). Its structure for the
faithful circuit covering problem was conjectured in [19]; the following is an equivalent
version for the corresponding compatible circuit decomposition problem.

Conjecture A. [19] Let (G, T) be a fully transitioned 4-regular graph such that it has
some CCD and every such decomposition consists of a pair of hamiltonian circuits.
Then (G,T) € (2L).

Theorem 2 solves Conjecture A for SUD-K5-minor-free graphs. This result generalizes
an early result by Lai and Zhang [13] which is a graph minor result for the faithful
covering problem.

Note that, in this paper, Theorems 1" and 2 are proved simultaneously, which indicates
the technical importance of Hamilton transitioned results (such as, Theorem 2) in the
studies of this area.
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4. Primary lemmas
4.1. For the proof of Theorem 1’
We consider a counterexample (G, T) to Theorem 17, such that

(1) |E(G)| is as small as possible;
(2) subject to (1), the number of transitions is as small as possible.

(G, T) is called a smallest counterexample to Theorem 1°. It follows from the choice of
(G, T) that (G, T) has no removable circuit.

Definition 4.1. Let v be a non-trivial vertex in a transitioned 4-regular graph (G, 7).
A circuit decomposition of (G,T) is called an almost compatible circuit decomposition
with respect to v, if it is compatible in every vertex except v.

A sequence of edge-disjoint circuits {Cy,...,Cr} (k> 2) of (G, T) is called an almost
compatible circuit chain decomposition with respect to v (ACCCD(v) for short), if

(1) it is an almost compatible circuit decomposition with respect to v;
(2) veV(C)NV(Ck),and v ¢ V(C;) Vi € {2,...,k—1}.
(3) foreachi,j e {1,...,k} withi # j, [V(C;)NV(C;)]\{v} # 0 if and only if |j—i| = 1.

The integer k is called the length of the chain {Cy,...,Cy} (see Fig. 7).

By an approach similar to the one in [2], [1] and [6], we obtain the following structural
results. For the purpose of being self-contained, proofs are therefore included.

Lemma 4.2. [6] Let (G,T) be a smallest counterezample to Theorem 17 and let F, =
{C1,...,C;} be an ACCCD of (G, T) with respect to a non-trivial vertex v. If k > 3,
then V(C1) NV(Cy) = {v}.

Proof. By Definition 4.1, v € V(C;) N V(Cy). Let H be the subgraph induced by
E(C1)UE(Cy). If |[V(Ch) NV (Ck)| > 2, then (H,T|g) is 2-connected. So each Cj,
1 < i < k, is a removable circuit, which is a contradiction. O

Lemma 4.3. [6] Any smallest counterezample (G,T) to Theorem 1’ is 4-regular,
2-connected, and for every non-trivial vertex v of (G,T), there exists an ACCCD(v).
Furthermore, every almost CCD with respect to v is an ACCCD(v).

Proof. Let (G, T) be a smallest counterexample to Theorem 1’. Since 7T is admissible,
(G, T) has no bad cut-vertex. If {v} is a l-separator of G separating G to G, Gz, then
(G1,T|a,) and (G2, T |a,) have CCD’s C; and Ca, respectively, Thus, C; UCy is a CCD
of (G, T), a contradiction. Therefore, G is 2-connected.
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Fig. 7. An ACCCD(v) of (G, T).

Let v be a non-trivial vertex in G and let (G’,T’) be a transitioned graph obtained
from (G, T) by removing one transition in vertex v, if deg(v) > 4, or by removing all
transitions of 7 (v), if deg(v) = 4.

By the choice of (G,T), the new graph (G’,T’), which has a smaller number of
transitions, has a CCD, F,. Let C, be the circuit of F, containing the vertex v and one
of the removed transitions and let A= {C € F, \ {C,}| C contains v.}.

By the choice of (G, T), F, is an almost compatible circuit decomposition with respect
to v.

Construct an auxiliary graph Z with the vertex set V(Z) = F,, and two vertices of Z are
adjacent to each other if and only if their corresponding circuits of F,, have a non-empty
intersection in G \ {v}. Since G is 2-connected, Z is connected. Let S = C;...C} be a
shortest path in Z from C; = C, to A (C) € A). Obviously, S is a circuit chain of G
closed at v.

Let G” be the subgraph induced by edges of U F(C;). The transitioned graph
(G",T|gr) is 2-connected, so it has no bad cut-vertex. Thus, every circuit C' € F, \
{C4,...,C}} is a removable circuit. This is impossible. Therefore, F,, = {C1,...,Cy} is
an ACCCD(v) of (G,T) and G is 4-regular. O

Lemma 4.4. Any smallest counterexample to Theorem 1’ has no digon of type X > 0.

Proof. Let (G,T) be a smallest counterexample to Theorem 1’. Suppose (G,7T) has a
digon of type A > 0, D. The smaller graph (G, T") obtained from (G, T) by contracting
D remains SUD-K5-minor-free, because (G, T) has this property. Thus it has a CCD. It
is easily seen that every CCD of (G’,T") induces a CCD on (G, T), which is a contra-
diction. O

Lemma 4.5. Any smallest counterexample to Theorem 1’ is 4-edge-connected.

Proof. Let (G, T) be a smallest counterexample to Theorem 1’. Assume that {e;, ez} is
a 2-edge-cut of (G,T) and G1, G2 are the components of G \ {e1,es2}. By Lemma 4.3,
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G is 2-connected, so e; and es are vertex disjoint. Let e; = ujus and es = v1v9 where
{ui,vl—} C V(Gi), 1= 172

Let H; = G/G3_; for each i = 1,2. It is easy to check that (H;,S;), i = 1,2, is
SUD-Kj5-minor-free, S; = T|g,. So there exists a CCD C; of (H;,S;) and a circuit
C; € C; covering u;v;, i = 1,2. Let C = (C1 U Co U {ujug, v1va}) \ {uivy, ugve}. Thus,
C=(CLUCU{C}H)\{C1,C 3} is a CCD of (G, T), a contradiction.

Since no eulerian graph has an edge-cut of odd size, (G, T) is 4-edge-connected. O

Lemma 4.6. Any smallest counterezample to Theorem 1’ is 3-connected.

Proof. Let (G,7) be a smallest counterexample to Theorem 1’. By Lemma 4.3, G is
a 2-connected 4-regular graph. By Lemma 4.5, G \ X has exactly two components, for
every 2-vertex-cut X.

Suppose {u, v} is a 2-vertex-cut of G such that G, G5 are the components of G\ {u, v}.
Every edge-cut in an eulerian graph has an even number of edges. It follows that u,v
can be chosen such that for ¢ = 1,2, both u and v have the same degrees in G\ V(G;).
By Lemma 4.5, uv ¢ E(G) and degg\v (g, (1) = dega\v (g, (v) = 2, i = 1,2. We have
two cases (see Fig. 8).

Case 1. E(G\V(G;y))NE(u) € T (u).
In this case, let (G}, T/) be a transitioned 4-regular graph obtained from
(G, T) by contracting all edges of G \ V(G;). Then, (G}, 7;) has no SUD-K5-
minor. It follows from the minimality of (G, 7) that (G, 7;) has a CCD. Then
by adapting the circuits containing edges of E(u) U E(v) in these two CCD’s,
we may obtain a CCD of (G, T), which is a contradiction.
Case 2. {uju,uuz} € T(u), {v1iv,vv2} € T (v), where u;, v; are neighbours of v and v in
Gy, i = 1,2, respectively.
In this case, we set G = G\V(Gj+1), and define T as the set of transitions in
G induced by T|g;. Observe that (G, 7) and (G5, T5) have no bad cut-vertex;
otherwise, the bad cut-vertex and vertex u is a 2-vertex-cut yielding Case 1.
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Therefore, (G}, 7;) has a CCD, ¢ = 1, 2. The union of these two CCD’s is a CCD
of (G,T), which is a contradiction.

Lemma 4.6 now follows. O
Corollary 4.7. Any smallest counterezample to Theorem 1° has no digon.

Proof. Let (G,T) be a smallest counterexample to Theorem 1’. Suppose (G,7T) has a
digon, D. By Lemma 4.4, D is a digon of type 0. Then by Lemma 4.6, G \ E(D) is
2-connected. Thus, D is a removable circuit, which is a contradiction. O

Definition 4.8. An even subgraph H of (G, T) is compatible if |E(H) N P| < 1, for every
P € T. An almost compatible 2-even subgraph decomposition {Uy, Uz} with respect to v
is a decomposition into two even subgraphs in such a way that both U;’s are compatible
at every w € V(G) \ {v}, and U; is not compatible at v for at least one 1.

Definition 4.9. Let (G, 7)) be a transitioned 4-regular graph. Let v be a non-trivial vertex
of degree 4 in (G, T) and let {e, f} € T(v). By splitting v (with respect to 7) we mean
that v is split into two degree 2 vertices such that e and f are incident with the same
vertex. The split graph of (G, T), denoted by SP(G, T), is the graph obtained from (G, T)
by splitting every non-trivial vertex.

The following lemma appeared in [1,6] as part of proofs of some theorems (not as an
independent lemma). For the purpose of smoothness of the paper and possible applica-
tions in the future, Lemma 4.10 is stated in this paper as an independent lemma. The
proof is also included here for the purpose of not only the consistency of notation and
terminology but also for the self-completeness of the paper.

Lemma 4.10. [1,6] Let (G, T) be a smallest counterezample to Theorem 1°. Then

(1) SP(G,T) has exactly two components;

(2) for each non-trivial vertex v, if © and y are the two vertices in SP(G,T) which result
by splitting v, then they are contained in different components of SP(G,T);

(3) each component of SP(G,T) is a circuit of odd length.

Proof. Let (G,T) be a smallest counterexample to Theorem 1’. By Lemma 4.3, G is
4-regular and for every non-trivial vertex v € V(G), there exists an ACCCD(v), say
Fo={C1,...,Cy}.

Let

e
ko

Sy = U E(Chyuy) and Sy = UL E(Cy).
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Then, {5, S2} is an almost compatible 2-even subgraph decomposition with respect to v.
Note that depending on the parity of k, v € V(S2) if and only if k is even. If k is odd
then Sy is a set of compatible circuits.

Next, to establish the validity of the Lemma we prove a sequence of claims.

Claim 4.10.1. For every almost compatible 2-even subgraph decomposition {Uy,Us} with
respect to v, for every verter w # v, degy, (w) =2, 1 =1,2.

Assume that {Uy,Us} is an almost compatible 2-even subgraph decomposition with
respect to v and that there exists a vertex w # v, degy, (w) = 4. By Definition 4.8, a
non-trivial vertex of G other than v cannot be of degree 4 in U;, i = 1,2. Thus, w is a
trivial vertex and E(w) C E(Uy).

Let F; be a circuit decomposition of U; for each ¢ = 1,2. The union F; U F» forms an
almost compatible circuit decomposition with respect to v, by the choice of (G, T). By
Lemma 4.3, every almost CCD with respect to a non-trivial vertex is a circuit chain, hence
F1 U Fy is a circuit chain {Dy, ..., D, }. Since G[U;] has a vertex of degree 4, it follows
that » > 3. By Lemma 4.2, we have V(D) NV(D,) = {v}. Let w € V(D;) NV (Dj41).
Note that D; and Dj;, are edge-disjoint and both are subsets of U;. So, every vertex
of the induced subgraph G[D; U D,41] is of degree 2 or 4. If w is the only vertex of
V(D;) NV (Dj41), then {v,w} is a 2-vertex-cut of G (since G has no digon by Corol-
lary 4.7). This contradicts Lemma 4.6.

Thus the induced subgraph G[D; U Dj4] is 2-connected. Let u; € V/(D;) NV (D;_1)
(oruj =vif j=1),and let ujy1 € V(D;11) NV (Djy2) (or ujpq =vif j+1=r). Let
D C G[D;UDj 1] be a circuit containing the vertices u; and wj41. Then G[D;UD;1]\ D
is a removable even subgraph of (G, T). This is a contradiction. Thus, degy;, (w) = 2, for
every w # v, i = 1,2, and thus Claim 4.10.1 is true.

The following claim is obvious.

Claim 4.10.2. For each circuit C of SP(G,T), {S1AC,S2AC} is also an almost com-
patible 2-even subgraph decomposition with respect to v.

Claim 4.10.3. For each trivial vertex w with {e’,e"} = E(w)N Sy, no circuit of SP(G,T)
contains both edges €' and e”.

Suppose that C is a circuit of SP(G,T) containing both edges ¢ and e”. By
Claim 4.10.2, {S1AC, SoAC?E is also an almost compatible 2-even subgraph decomposi-
tion with respect to v. Note that degg, oo (w) = 4. This contradicts Claim 4.10.1. Thus
Claim 4.10.3 now follows.

Therefore, by Claim 4.10.3, we have the following immediate conclusions about SP(G, T ).

Let w be a trivial vertex of (G, T).

Claim 4.10.4. For each pair {¢’,e"} = E(w)NS; (i = 1,2), the edges € and e’ must be
in different blocks of SP(G,T).
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From Claim 4.10.4, we conclude

Claim 4.10.5. The trivial vertex w must be a cut-vertex of some component of SP(G,T).
This also implies

Claim 4.10.6. The circuit decomposition of SP(G,T) is unique.

Notation. Let Ry,..., R, be the components of the split graph SP(G,T), and let
{X1,..., X} be the unique circuit decomposition of SP(G, T ), which is also the block
decomposition of SP(G,T).

Claim 4.10.7. Let x and y be the two vertices in SP(G,T) which result from by splitting v.
Then x and y are contained in different components of SP(G,T).

Proceeding by contradiction, suppose that x and y are contained in the same compo-
nent Ry, of SP(G,T). Let P be a path of R; joining x and y. Let C' be the even subgraph
induced by F(P) in G. Note that C' is not compatible in its vertices except at v. S; and
So are compatible at every vertex u # v, and S7 is not compatible at vertex v. Therefore,
{S1AC, S3AC} is a compatible 2-even subgraph decomposition which is a contradiction
to the choice of G and thus proves the claim.

By Claim 4.10.7 assume without loss of generality that € X; and y € X5 where X;
is a block of R;, j =1,2.

Claim 4.10.8. The circuits X, and Xo are of odd lengths, while all other X;(i > 2) are

of even lengths.

Colour the edges of S with blue, and the edges of Sy with red. By Claim 4.10.4, each
circuit X; is of even length if ¢ £ 1,2 since its edges are alternately coloured with red
and blue, while X; and X5 are of odd length since each of z, y is incident with two edges
of the same colour. Claim 4.10.8 now follows.

The following is the final claim and concludes the proof of the lemma.

Claim 4.10.9. h = t = 2. That s, the split graph SP(G,T) has precisely components
Ry = X1 and Ry = X5 each of which is a circuit of odd length.

Since the non-trivial vertex v was selected arbitrarily, all conclusions we have had
above can be applied to every non-trivial vertex; that is, for every non-trivial vertex v
and the vertices  and y resulting by splitting v, it follows that z € X3 and y € Xs.

If R; has more than one block, then R; must have a block QX3 other than X; that
contains precisely one cut-vertex z of R; (note that Q3 corresponds to a leaf in the
block-cut-vertex graph of R;). By Claims 4.10.7 and 4.10.8, every vertex of @3 is trivial.
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So by Claim 4.10.5, every vertex of Q3 is a cut-vertex of SP(G, T ). This contradicts the
supposed existence of Q3.

Furthermore, no edge of R; with ¢ > 2 is incident with a non-trivial vertex. By the
definition of SP(G,T), each R; with i > 2 also corresponds to a component of G whose
vertices are all trivial. This contradicts G being connected.

Therefore, SP(G,T) consists of two vertex disjoint circuits of odd length X; = Ry
and Xo = Ry. Lemma 4.10 now follows. O

Since in the proof of Lemma 4.10, it is shown that any smallest counterexample to
Theorem 1’ has no trivial vertex, we have the following corollary.

Corollary 4.11. Any smallest counterexample to Theorem 1’ is a fully transitioned graph.

Lemma 4.12. [6] Let (G,T) be a smallest counterexample to Theorem 1’ and let F, =
{C4,...,Ck} be an ACCCD of (G, T) with respect to a non-trivial vertex v with k = |F,|
maximum. Then k > 3.

Proof. Since v is of degree 4, k > 1 where F, = {C1,...,Cy}. Assume that k = 2. Let Ry
and Ry be the components of SP(G, T) (see Lemma 4.10 (1)). By Lemma 4.10 and Defini-
tion 4.9, without loss of generality, let E(v)NE(Cy) C E(Ry) and E(v) N E(C2) C E(R3).
Consider {C1AR;,C5ARy}. Tt is easy to check that {C1AR;,CoAR;} is an almost
compatible decomposition into even subgraphs of (G,7) with respect to v. Note that
E(v) C E(C2ARy). Therefore, the maximum degree of C2AR; is four and hence any
of its circuit decomposition consists of at least two circuits. Since SP(G,7T) has two
components and G is 2-connected, (G, T) has at least a second non-trivial vertex u # v.
Because C; is compatible in u, C1AR; is not empty. Therefore, the union of circuit
decompositions of C1AR; and C5A R, has at least three elements. This contradicts the
maximality of |F,|. O

4.2. Cornered triangle extension property: key lemmas for the determination of UD-Ks5

There are few results in graph theory that tell us the existence of the Petersen-minor
(for example, [5,15], etc.). The main lemmas in this section provide a new approach to
identify the precise structure of a transitioned UD-Kj (their corresponding versions for
the faithful circuit covering problem identify the Petersen graph). These lemmas are
applied in the final steps of the proofs of Theorems 1’ and 2.

Definition 4.13. Let Cy = zy1y2 be a non-compatible circuit of length 3.

(1) The corner of Cy is a given inner vertex, say x, of the triangle. If y; is a compatible
vertex of Cp, then the opposite edge zy; is called a leg of Cy (i # j).

(2) For p = 1,2, a triangle Cy with the corner x is called p-legged if E(x) N E(C)h)
contains at least p legs.
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Fig. 9. A cornered triangle Cy = xzyiy22, and its extension C7; = wizyiwi.

(3) Let Cy = ay1y22 be a triangle with the corner . Given zy; a leg of Cy, an extension
of Cy along the leg zy; is another triangle C; = w;xy;w; with the corner w; where
w; ¢ V(Co) (note that y,w; is a leg of C;).

(4) A p-legged triangle Cy = zyiy22 with the corner x is p-extendable if every leg xy;
has an extension which is also p-legged (a p-legged extension; see Fig. 9).

Definition 4.14. For a given integer u € {1,2}, a graph G has the the p-legged-triangle-
extension property (abbreviated as p-LTEP) if G contains some p-legged triangle and
each of them is p-extendable (see Definition 4.13(4)).

The following two lemmas play an important role in the proofs of the main theorems.
These lemmas identify the structure of the UD-Kj5 based on the extension property.

In the proofs of the main theorems, the 1-LTEP or 2-LTEP will be verified for smallest
counterexamples to the theorems. We wish to point out that although Lemma 4.15 and
Lemma 4.16 look very similar, neither of them is an immediate corollary of the other.

Lemma 4.15. Let (G, T) be a 4-reqular, fully transitioned, simple graph. If (G, T) has the
2-LTEP, then it is exactly the UD-Kj5.

Proof. By the 2-LTEP, there exists a 2-legged triangle in (G, T), say Sy = vvivgv, with
corner v and two legs vv; and wvvs. Since Sy has the 2-LTEP, each leg vv; (i = 1,2),
has a 2-legged extension S; = v;120v;v;42 which is also a 2-legged triangle with the
corner v;4o.

Since G is simple, it can be seen that vy # vy, for otherwise, by looking at the
transitions contained in E(v3), the edge vvg would be contained in two distinct transitions
{vsv,v3v1} and {vzv,v3va} (see Fig. 10-(ii)).

Since S; has the 2-LTEP (i = 1,2), each leg vv;12 has a 2-legged extension S; o =
w;vv;pow;. Since G is 4-regular, wy € {ve,vs} and wy € {vy,v3}. Since the transition
{vqv,v4v2} € T (v4) and wy is an inner vertex of S3, we have that wy # vy. Hence,
wy = vo. Symmetrically, wy = vy.

Since S7 has the 2-LTEP, the leg vv3, has a 2-legged extension S5 = w3vyvzws with
corner ws. By the 4-regularity of G, ws € {v,vs,v4}. Since ws is an inner vertex of S,
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Fig. 10. Proof of Lemma 4.15.
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Fig. 11. Case A (wg = v1).

one has w3 = vy by looking at the transitions at v and vy. Thus, {v4vy,v4v3} € T (v4),
and {vsve,vsvs4} € T (v3) (see Fig. 10-(iii)).
It is now easy to check that (G, 7) is exactly the UD-K5. O

Lemma 4.16. Let (G, T) be a 4-reqular, 4-edge-connected, fully transitioned, simple graph.
If (G, T) has the 1-LTEP, then either it is the UD-K5 or it has a CCD of size 3.

Proof. Let S; = vgvivavg be a 1-legged triangle with the corner vy and a leg vyvs. By
using the 1-LTEP of S; at the leg vgvy, we have a new vertex v3 such that So = vgvauzvg
is a 1-legged triangle with the corner vs and a leg vgvs.

By using the 1-LTEP of S, at the leg vgvs, there is a 1-legged triangle S3 = vovzwovg
with the corner wg and a leg vowg. Since S3 # Se and G is simple, there are two
possibilities for wg: wo = vy or wo ¢ {vg,...,v3}.

Case A: wy = v (see Fig. 11).

We will show that this case cannot happen.

Since (G, T) is fully transitioned, there exists a transition of vy contained in the edge
set {vov1, vova, vovs t. By rotational symmetry, we may assume that {vovy, vova} € T (vo).
Thus vevs is another leg of the 2-legged triangle So. By using the 1-LTEP of S5 at the
leg vovs, there exists a 1-legged triangle Sy = vovzwive with the corner wy and a leg
vows . It is obvious that wy ¢ {vg, va, v3}. If wy = vy, then the edge v1v3 will be contained
two distinct transitions, which is impossible.
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By using the 1-LTEP of S; at the leg wow;, there exists a 1-legged triangle
S5 = vowiwove with the corner wy and a leg vowsy. Since G is 4-regular and simple,
wy € {vg,v1}. If the corner wy = vy, then {wowy, wove} = {vowi,vova} € T (vg). But
the edge vovs is already contained in another transition {vovy,vovs}. This is a contrac-
tion, and therefore, ws = v.

Let e’ € E(vg) — {vgv1,vov2,vou3} and €’ € E(wy) — {wyv1, wive, wivs}. Since G is
4-regular and 4-edge-connected, we have that ¢’ = ¢’ for otherwise {¢’, €} is a 2-edge-cut
of G. That is, ¢/ = €” = wyvg, and V(G) = {vo, v1, v, v3, w1 }.

Consider the 2-legged triangle vowivzvg with corner vg. By using the 1-LTEP at the
leg vowq, there exists a 1-legged triangle vowiwsvy with the corner ws. By the 4-regularity
of GG, one must have ws = v; or wz = vy. However, none of them can happen as can be
seen by checking the transitions around v; and wvs.

Case B: wg ¢ {vo,...,vs3}; denote wy = vy (see Fig. 12).

By wusing the 1-LTEP of S3 at the leg wvgvs, there exists a 1-legged triangle
Se = vouawsvg with the corner ws and a leg vows. Since G is 4-regular and sim-
ple, w3 € {vy,vo}. If wg = v, then the edge vovy is contained in the two transitions
{vavg,vov1 } and {vavg, vavs} of ve. This is a contradiction. Therefore, ws = v;.

Note there is no information yet about the transitions around the vertex wvy. By
symmetry, there are two cases for further analysis:

{vgv1,vova} € T (vg) or {wovy,vovs} € T (vg). (1)

In either case, we can assume that vy is compatible in the triangle Sy = vgvav3vg.
That is, the edge vovs is another leg of the triangle S5. By using the 1-LTEP of S; at
the leg vov3, we have an extension S7 = vovzwsve with the corner wy and a leg vowy.
Proceeding similarly to the above, by looking at the transitions around vy, we have that
wy # vyg. Hence, there are two possibilities for wy: wy ¢ {vo,...,v4} or wy = vy (see
Fig. 12).

Subcase B-1. wy ¢ {vy, ..., v4}; denote wy = vy (see Fig. 13).

For this subcase, we will find a CCD of size 3. By using the 1-LTEP of S7 at the
leg vovs = vawy, there exists an extension vovswsve with the corner ws and a leg vows.
Since G is 4-regular and simple and ws € [N (v2) NN (v5)] — V(S7), we have w; = v1 (see
Fig. 13). Arguing similarly as above, we then get vqvs € E(G) by the 4-edge connectivity
and 4-regularity. Therefore V(G) = {vg,...,vs}.

By (1), if {vov1,vous} € T (vg), then consider the 2-legged triangle Sy = vav1vgve With
the corner vy. The leg v1v5 cannot be extended by checking at the transitions around vs
and the neighbourhood of vz, v4. This is a contradiction.

So, by (1), we must have {vov1,vova} € T (vg), and thus the set

{010203041117 VoV1V5V3V0, UO'U2'U5U4'UO}

is a CCD of (G, T) of size 3.
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Fig. 12. Case B (wo = v4): S7 = vavzwavs and subcase B-1 (w4 = v5), subcase B-2 (wy = v1).

H. Fleischner et al. / Journal of Combinatorial Theory, Series B 187 (2019) 25-5/

U1 — Wy
74
or
= Yo A Vo N
AN
y -
U3 p Us = W4
Sy

U1 U1 = Ws
7q q
Vg Yo AN vy = Uy Vo AN Vo
X X
V - % -
U3 Vs = W4y V3 Vs
Fig. 13. Subcase B-1 (w4 = vs).
V1 = W4
(2 = (2
U3 U3

Fig. 14. Subcase B-2 (v1 = wy): (G, T) is the UD-K5.

Subcase B-2. wy = vy (see Fig. 14).

It is obvious that vevs € E(G) by the 4-edge connectivity and 4-regularity of G
(see Fig. 14). By (1), we may first assume that {vgvi,vove} € T (vo). Then consider
the 2-legged triangle v vov1v4 with the corner vy. The leg vovy cannot be extended by
checking at the transitions around vy and v3. This is a contradiction.

So, by (1), we must have {vovi,vovs} € T (v). It is easy to check that (G,T) is the
UD-K5 (see Fig. 14). O

5. Simultaneous proof of Theorems 1’ and 2
Suppose at least one of these two theorems is false. Let (G, T) be a counterexample to

either Theorem 1’ or Theorem 2 with |E(G)| being as small as possible. Therefore, every
admissible transitioned 4-regular graph without SUD-Kj5-minor and smaller than (G, T)
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has a CCD; and for every Hamilton transitioned graph (H,S) smaller than (G,T), if
(H,S) is SUD-K5-minor-free, then (H,S) € (2L).
For our considerations we introduce an extra definition.

Definition 5.1. Let G’ be a graph obtained from G by some operations. A digon D’ of
G’ is virtual if its corresponding subgraph D in G is a circuit of length > 2 such that at
least one edge of D’ corresponds to a path of length > 1 in D; otherwise we speak of D’
as a real digon.

Now we consider two cases with respect to the assumed counterexample.

Case I. (G, T) is a counterexample to Theorem 1’.
Case II. (G, T) is a counterexample to Theorem 2.

5.1. Case I. (G, T) is a counterezample to Theorem 1’

The goal of our first step is to show that (G, T) has a kind of extension property for
a type of cornered triangle, which is to be proved in Lemma 5.5.

Definition 5.2. A circuit C' = vjvy...vivy is called an almost removable circuit with
respect to v1 (ARC(vy), for short) if it is compatible at every vertex except vy such that
(G\ E(C),T|e\E(c)) has no bad cut-vertex.

Note that, for an almost removable circuit C,, with respect to vy, if d(v;) = 4 and
vy is incident with two transitions, say P, and Ps, then P; is contained in (), and P,
remains in G\ E(C,, ). If this case happens, the remaining transition P, is removed from
T|e\E(c,,) by Definition 2.8-(3).

Lemma 5.3. Let (G, T) be a smallest counterexample to Theorem 1°, and let C,, be
a circuit of G containing vi. Then C,, is an ARC(v1) if and only if there exists an
ACCCD(v1) Fu, containing C,, .

Proof. Sufficiency is trivially true. Let C,, be an ARC(v;). Since (G,7T) is a smallest
counterexample to Theorem 17, the transitioned graph (G'\ E(Cy,), Tle\g(c,,)) has
a CCD, say C;. Note that C; U{C,, } is an ACCCD(v;) because of Lemma 4.3. O

Lemma 5.4. Let (G,T) be a smallest counterezample to Theorem 1°, and let C,, be a
triangle of G containing vi. If Cy, is compatible at every vertex except vi, then C,, is
an ARC(v1).

Proof. Let C,, = vivavsv; be compatible at every vertex except v;. By Definition 5.2,
we need to show (G'\ E(Cy,), T|e\E(c,,)) has no bad cut-vertex. Assume there exists
a cut-vertex x # wv1 in G such that G has two blocks @)1 and Qs incident with x
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Fig. 15. An ACCCD(v) of (G,T), and, (G', T").

and Q1 N E(x) € T(z). f V(Q1) NV(C,,) = {v2}, then {x,vs} is a 2-vertex-cut. If
V(Q1) NV (C,,) = {v1,v2}, then {z,v3} is a 2-vertex-cut. In both cases we obtain a
contradiction to Lemma 4.6. O

Lemma 5.5. Let (G,T) be a smallest counterezample to Theorem 1°. Then (G,T) has
the following properties.

(i) ARC(v) exists for every vertex v;
(ii) @ shortest ARC is of length 3, and
(iii) for every ARC(v1) = vivavsvy and for the edge viva, there exists an ARC(w) =
WU VW, W # V3.

Proof. By Lemma 4.3, for every vertex v € V(G), there exists an ACCCD(v) (see Corol-
lary 4.11), and, for every v € V(G), by Lemma 5.3, (G, T) contains an ARC(v).

Choose ACR(v) with the smallest length among all ARC’s in (G,7T) and choose
ACCCD(v), F, = {C4,...,Cx} with maximum length involving this shortest ACR(v),
C, say (see the left side of Fig. 15).

Let (G',T') be obtained from (G, 7) by deleting all edges of C} except uv where u
is a neighbour of v on C%, contracting uv to a new vertex v* and suppressing vertices of
degree two.

For every C" € G, assume that C is the subgraph of (G, T) induced by E(C’) and
vice versa.

Clearly, (G',T') has no SUD-Ks-minor (see the right side of Fig. 15), and because
of the choice of (G, T), we may consider F’ to be a CCD of (G’,T"). There exist two
circuits H{ and Hj of F each of which contains the new vertex v*.

Claim 5.5.1. 7' = {H{, H}}.
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Proof of Claim 5.5.1. Assume that |F’| > 3. Then we have to show that, for every C’ €
F'\ {H{, H}}, the corresponding circuit C' in G is a removable circuit of (G, 7). It is
evident that C' is compatible in (G,T) since v* ¢ V(C"). We thus want to show that
(G\ E(C),T|a\E(c)) has no bad cut-vertex.

To this end, it is sufficient to show that J is 2-connected where J is the subgraph of
G induced by the edges of H| and H) and the circuit Cj. Note that H{ U H/ corresponds
in G the H; U Hy which is a pair of paths with the common end-vertices v and v. Adding
the circuit Cf, the resulting graph J is therefore 2-connected (because Hy; U Hy U {uv}
is already 2-connected). O

It now follows that every CCD of (G’,T’) is a pair of hamiltonian circuits. By the
minimality of (G, T), the smaller transitioned graph (G’,T’) is not a counterexample to
Theorem 2. Thus, we can draw the following conclusion.

Claim 5.5.2.
(G',T") € (2L).

By Lemma 4.4, (G,7) has no digon of type A > 0. However, by Claim 5.5.2 and
Lemma 2.17, (G',T’) contains at least two digons of type A > 0. Let D’ be a digon of
type A > 0 in (G’,T"). Because of Lemma 4.4, there can only be two kinds of digons in
(G',T"); either

E(D)NE(Cy_y) # 0 # E(D") N E(C_,)

(which is a virtual digon), or D’ contains the vertex v* and some edges of C{ and C},_,
where k = 3 (which is a real digon).

Let D] be a virtual digon in (G, T”). Let D; denote the circuit in G corresponding to
D’. Observe that C}_, N D] = Cr_oN D is an edge of G and Cj_; N D; contains some
vertices of Cy. Let V(D) = {y,z} and let z be an inner vertex of Dj. If D] is of type
2, then it can be easily seen that the circuit C,_1AD; is a removable circuit in (G, 7).
Thus, Dj is of type 1.

Claim 5.5.3. Dy is an ARC(z).

Proof of Claim 5.5.3. Since D] is of type 1, it is sufficient to show that G\ F(D;) remains
2-connected.

Suppose G* = G \ E(D;) has a cut-vertex, x say. Then = € V(Ci_1) N V(Cj_2),
since, for every i € {1,...,k} \ {k — 2,k — 1}, C; is also as a circuit in G*. For, if z ¢
V(Crk—1) NV (Cl—2) would hold, then {v, 2} would be a 2-vertex-cut in G, contradicting
Lemma 4.6. Note that J = (Cx_2 U Ci_1) \ E(D1) is a pair of edge-disjoint paths with
common end-vertices y and z implying that y and z are not cut-vertices of G*. Thus,
x # y,z and x is a cut-vertex of J separating y and z. Let G7,G% be components
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of G* \ {z} with y € V(GY), z € V(G3). Let K be the subgraph of G* induced by
the set of circuits {C1,...,Ck} \ {Ck—2,Ck—_1}, which is a connected subgraph of G*
since v € V(C1) N V(Cy). Then it is easy to see that either V(K) C V(G7) U {z} or
V(K) C V(G%) U {z}, but not both. Assume that V(K) C V(G7) U{x}. Then {x,z} is
a 2-vertex-cut of G. This contradicts Lemma 4.6 and finishes the proof of the claim. O

By the choice of Cf, the length of D is not smaller than the length of C%. Thus, by
Claim 5.5.3, we have the following immediate corollary.

Claim 5.5.4.
V(Ci) \ {v,u} CV(Cr—1)NV(Dy).
Claim 5.5.5. k£ = 3.

Proof of Claim 5.5.5. By Lemma 2.17, (G',T') has at least two edge-disjoint digons of
types 1 or 2. If k > 4, then every digon of (G', T”) is virtual. But, by Claim 5.5.4, at least
one of them is a digon of type > 0 in (G, T), contrary to Lemma 4.4. Hence k =3. O

Since k = 3, (G',T') has at most one virtual digon. Let D} be a real digon in (G',T”)
and let Dy = wwvwu correspond to Dj in G.

Claim 5.5.6. Dy is an ARC(w) for some w € V(Cy) NV(Cy).

Proof of Claim 5.5.6. Denote D} = (w,v*) with one edge in C] and the other edge in
C)._; = C4. By the definition of 7'(v*), D5 is compatible at v*. So w is an inner vertex
of Dy since D), is of type A > 0. D}, is extended to Do in G which is the triangle vwuv. If
u is also an inner vertex of Dy, then it is easy to see that Co A D5 is a removable circuit
in (G, T). Now by Lemma 5.4, Ds is an ARC(w). O

In the general case, by the analogous argument as we did for C3 and wwv, for every
ARC(v1), say C,, = vivguzvy and the edge vive, for some v; € V(G), there exists a
vertex w € (Ng(v1) N Ng(v2)) \ {vs} such that C,, = wvivew is an ARC(w). This
completes the proof of the lemma. O

Proof of Theorem 1°. We first claim that every shortest ARC is a 2-legged cornered
triangle. Note that, by Definition 5.2, each ARC contains precisely one inner vertex.
By Lemma 5.5(ii), every shortest ARC is a triangle. That is, every shortest ARC is a
2-legged cornered triangle.

In order to apply Lemma 4.15, we further claim that (G,7) has the 2-LTEP. By
Lemma 5.5(1) and (ii) again, (G,7) contains some 2-legged cornered triangles. By
Lemma 5.5(iii), each shortest ARC has an extension at every leg.

Thus, by Lemma 4.15, (G, T) is exactly the UD-Kj5, which is a contradiction. O
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5.2. Case II. (G, T) is a counterexample to Theorem 2

Lemma 5.6. (G, T) has no non-hamiltonian removable circuit.

Proof. Let C be a non-hamiltonian removable circuit of (G, 7). Then the SUD-K5-minor-
free transitioned graph (G \ E(C), T|e\g(c)) has a CCD C. Thus, C U {C} is a CCD of
(G, T) with at least three circuits, which is a contradiction. O

Lemma 5.7. (G, T) has no digon of any type.

Proof. Suppose that D is a digon of type > 1 in (G, T). Let (G',T") = (G/D, T|c/p)-
It is obvious that every CCD of (G, T) induces a CCD on the smaller graph (G',T")
because edges of D of are contained in different members of any CCD. By the same
token, every CCD of (G',T’) also induces a CCD of (G,T). Note that (G',T’) re-
mains SUD-K5-minor-free. Therefore, by the minimality of (G, 7T), the reduced graph
(G',T") € (2L). Then, by the definition of the family (2L) of graphs and by the choice
of D, we have (G,T) € (2L), which is a contradiction.

Assume that D = (vy,v9) is a digon of type 0 in (G,T) with E(D) = {ej,ea}.
D is a compatible circuit, but not a removable circuit (by Lemma 5.6). Hence,
(G\ E(D), T|e\E(p)) has a bad cut-vertex w. That is, {w} is a 1-separator of G\ E(D)
separating G\ E(D) into two subgraphs G; and Gs.

Let H; = G/G; for i # j and let w; be the contracted vertex of G, for ¢ = 1,2. As
an eulerian minor of G, each H; is SUD-K5-minor free. And every CCD F; of (H;, T|n,)
has exactly two members for otherwise, a third member of F; not passing through the
contracted vertex w; is a removable circuit of (G,7T), for i = 1,2. This contradicts
Lemma 5.6. Hence, (G;, T
member of (2L). By Lemma 2.17, each (G;, T|x,) has at least two edge-disjoint digons of
type > 1, one of which is different from D and must be a digon of the original graph G.
This contradicts the first part of the proof that (G, 7) contains no digon of type > 1. 0O

p,) remains a Hamilton transitioned graph, and therefore, a

Definition 5.8. Let {H;, Hy} be a CCD of the Hamilton transitioned graph (G,T).
A circuit C' = vjvy...v,01 is called an H;-Segment-Chord Circuit with respect to vy
(H;-SgCC(vy) for short) if vyvy is a chord of H; and C'\ {vjv;} is a segment of H; and
vy is an inner vertex of C' (See Fig. 16).

Obviously, for every compatible hamiltonian circuit H;, every transition P at a
non-trivial vertex v and every chord e contained in P, there exists an H;-SgCC(v) con-
taining e.

Lemma 5.9. For any given decomposition {Hy, Hy} into hamiltonian compatible circuits
in (G, T) a shortest H;-SgCC is of length 3.
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Fig. 16. H,-SgCC(v1) Co = v1vz2 ... v,v1.

Proof. For i € {1,2}, among all H;-SgCC’s, let Cy = vy ...vxv; be a shortest one.
Without loss of generality Cy is an H;-SgCC(vy) (see Fig. 16). By Lemma 5.7, k > 3.

The new 4-regular graph (G’,T”) is obtained from (G, 7T) by deleting all edges of Cy
except vyvg, contracting viv, to a new vertex v* and suppressing vertices of degree two.
(G',T") remains SUD-K5-minor-free. Hence, (G, T”) does have a CCD.

Claim 5.9.1. Every CCD of (G',T") is a pair of hamiltonian circuits.

Let F’ be an arbitrary CCD of (G’, T'). There exist two circuits C] and C} in F’ each
of which contains the new vertex v*.

For every circuit C’ € F', let C' denote the subgraph of G induced by the edges
of C'. Note that C3 = Cf is also a compatible circuit of (G, T), for every circuit C4 €
F'\A{C1,C4} if such Cf exists. We show that Cj is removable in (G, T) by showing that
the subgraph of G induced by E(Cy) U E(Cy) U E(Cs) is 2-connected.

Set H = G[Cy; U Cy U (Cy \ {vivg})]; this is the union of three edge-disjoint paths
with the common end-vertices v; and vg. If H has a cut-vertex x, it must separate v
and vy. Hence, H U {vjv;} = Cp U C; U Csy does not have any cut-vertex. Thus, Cj
is a removable circuit of (G, T), for every circuit C} € F'\ {C},C%}. This contradicts
Lemma 5.6. Therefore, F' = {C}, C4}.

Since (G’,T’) has no SUD-K5-minor, by the minimality of (G, T), we draw the fol-
lowing conclusion.

Claim 5.9.2. (G',T") € (2L).

Note that v* is the only contracted vertex of G’ and ws,...,v,_1 are the only sup-
pressed vertices of G'. Since G has no digon of type A > 0 (see Lemma 5.7), for each digon
D’ of G, the corresponding circuit D of G must contain either some of {vg, ..., v5_1}
or the edge vivg. And if D contains vivg, then D’ must contain the contracted vertex
v* and be compatible at v*.

Claim 5.9.3. Let D’ be a digon of type A > 0 in G'. Then the corresponding circuit in G
is an Hy-SgCC.
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If x is an inner vertex of D’ = (z,y), then one edge of D’ is an Hj-edge, another one
is an Ho-segment. So it is an Hs-SgCC(x).
Assume that k& > 4.

Claim 5.9.4. There is no real digon in G'.

Suppose to the contrary that there is a real digon D’ in G’. Let D be the circuit in
G corresponding to D’. Since D is not a digon in G and does not contain any vertex of
{va,...,vk_1}, it corresponds to a Hy-SgCC(x) of length 3. This contradicts k > 4.

Claim 5.9.5. Fvery virtual digon uses v*.

Let D7, D} be a pair of edge-disjoint digons of G’; both are virtual (by Claim 5.9.4).

Suppose that v* ¢ V(D]) and z is an inner vertex of Dj. By Claim 5.9.3, D; is an
Hy-SgCC(x). By the choice of Cy (that it is shortest), D; must contain all vertices of
{va,...,v5—1}. Thus D5 contains no other suppressed vertices and, therefore, D) is a
real digon contradicting Claim 5.9.4.

Claim 5.9.6. Every virtual digon is compatible at v*.

Suppose that v* is an inner vertex of the digon D/. Thus, D; is an Hs-SgCC(vy). We
will show that D; is shorter than Cy. Since D} and D} are edge-disjoint, each of D}, Dj
contains one transition of 7'(v*). Hence, v* must be an inner vertex of both D} and Dj.
Furthermore, the corresponding circuits D1, Dy in G do not contain the chord vivg, and
contain some vertex of {vs,...,vx_1}. That is, Dy contains at most (k — 3) vertices of
{vo,...,vk—1}. Thus, D; is shorter than Cy. This contradicts the choice of Cp.

Claim 5.9.7. k < 4. Furthermore, each D; contains precisely one vertexr of {vs,vs} if
k=4.

Let D}, D} be two edge-disjoint digons of G’. Both are virtual, use v* and are com-
patible at v*. And it is obvious that if D} traverses v,, and then D} traverses vji1. The
corresponding circuits D; in G contain an Hs-segment each passing through at least k—3
vertices of {va,...,vp_1}, i = 1,2; for otherwise, it would be shorter than Cy. Since G is
4-regular, (k—3) 4+ (k—3) < k—2. Thus, k <4 and {vs,...,v5_1} = {va,v3} implying
the validity of the remainder of the claim.

Claim 5.9.8. £ = 3.

If k£ = 4, then, by Claim 5.9.7, let D1 = viv4v,v,v1 with an inner vertex v,, where
p =2 or 3 (see Fig. 17). Furthermore, the segment v4v,v, is an Ha-segment. If p = 2,
then there is a triangle v,vov1v,, inner at v, which is an H;-SgCC(v,,) shorter than Cj.
If p = 3, then D* = (v3,v4) induces a digon of G. This contradicts Lemma 5.7. Thus,
k = 3 and Lemma 5.9 now follows. O
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Vg U3 Vg U3

VU1 o U1 V4
vn vn

H1 Hl

Fig. 17. k =4 : D; = vivgv,vavi, g = 2,3.

Since k = 3 and by Claim 5.9.2, at least one digon of (G’,T”) is a real digon, with
the circuit corresponding to this digon in (G, T) is a 1-legged triangle vivswv; with the
corner w and a leg either viw or vzw.

In Lemma 5.9, we proved the existence of 1-legged triangles. In the next lemma
(Lemma 5.10), we show that every l-legged triangle has the 1-LTEP. Note that the
proof of this lemma is similar to the proof of Claims 5.9.1 and 5.9.2 for Lemma 5.9.

Lemma 5.10. (G,7T) has the 1-LTEP.

Proof. Assume that S; = ujususu; is a 1-legged triangle with the corner u; and a leg
ujuz. Let (G”,T") be a new 4-regular graph obtaining from (G, T) as follows. Remove
uiue and usug, contract ujus to a new vertex u* and then suppress vertices of degree
two. (G”,T") remains SUD-Kj5-minor-free.

Claim 5.10.1. (G”,T"") has no bad cut-vertex.

Proof of Claim 5.10.1. Suppose that p is a bad cut-vertex in (G, T") (p # us, otherwise
uy is a cut-vertex of G contrary to G is 2-connected). Thus, {usg, p} is a 2-vertex-cut in
(G,T). Let GY and G be the components of G \ {ua,p} such that {ui,us} C V(GY).
Remove V(GY) and identify us and p to a new vertex ¢ to obtain a new transitioned
4-regular graph (G", T"") which is admissible (since ujus € E(G),) and SUD-K5-minor-
free. Thus (G"”',7"") has a CCD. It is easily seen that every CCD of (G, T") is a
pair of hamiltonian circuits (a removable circuit in (G”',T"") not containing ¢ is also a
removable circuit in (G, T)). By the choice of (G, T), (G",T"") € (2L). By Lemma 2.17,
(G",T") has two edge-disjoint digons of type > 0. Since (G,7T) has no digon of any
type, {uiug,u1p} € T (u1). However, {ujug, uius} € T(u1) (see definition of a 1-legged
triangle with corner wq); this contradicts p # us. Now Claim 5.10.1 follows. O

Hence, (G”,T") does have a CCD.
Claim 5.10.2. (G",T") € (2L).

Let F” be an arbitrary CCD of (G”,T"). There exist two circuits C} and C¥ in F”
each of which contains the new vertex u*.
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For every circuit C” € F”, denote bz C the subgraph of G induced by the edges
of a circuit C”. Note that Cj is also a compatible circuit of (G,T), for every circuit
cl e F'\{cy,Cy}.

Let H be the subgraph of G induced by the edges contained in Cy,Cs and {ujus},
which is the union of three edge-disjoint paths with the common end-vertices u; and ug;
and it is 2-connected. Hence, S; UC7 UC5 is 2-connected. Thus, C'5 is a removable circuit
of (G, T), for every circuit C% € F"\{CY,C%} which contradicts Lemma 5.6. Therefore,
f’// — {C:/l/, Cé/ .

Note that (G”,T") has no SUD-K5-minor, thus by the minimality of (G, T), we have
(G",T") € (2L) which finishes the proof of the claim.

By Lemma 2.17, (G”,T") has at least two edge-disjoint digons of type A > 0. Since
(G, T) has no digon by Lemma 5.7, for each digon D" of (G”,T"), the corresponding
circuit D in G must contain either us or the edge ujus.

There is at most one D in (G, T) with us € V(D) corresponding to a digon in (G”, T");
otherwise, (G,T) would contain a digon, contrary to Lemma 5.7. Let D" = (u*, w) be
a digon of type > 0 in (G”,T") containing the contracted vertex u* with edges {ey, e2}
(such digon must exist because of the preceding argument). Because of Lemma 5.7 u* is
not an inner vertex of D”. Its corresponding triangle D in G containing the edge wjus
and therefore {e1, ez} is not a transition in 7 (u*). Therefore, the only inner vertex of
D" is w. Thus (G, T) has the 1-LTEP. 0O

Proof of Theorem 2. By Lemma 5.10, (G, T) has the 1-LTEP. Thus by Lemma 4.16,
either (G,T) is the UD-Kj or it has a CCD of size 3, which is a contradiction. Now
Theorem 2 follows. O
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