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Conjecture 1.1 (Jaeger’s Circular Flow Conjecture). Every 4p-edge-connected graph ad-
mits a modulo (2p + 1)-orientation.

In [5], Kochol also suggested a seemly weaker conjecture.
Conjecture 1.2. Fvery (4p+1)-edge-connected graph admits a modulo (2p+1)-orientation.

For p = 1, Kochol [5] showed that both Conjecture 1.1 and Conjecture 1.2 are equiva-
lent to the 3-Flow Conjecture of Tutte. In the case of p = 2, the truth of Conjecture 1.2
(and Conjecture 1.1) would imply Tutte’s 5-Flow Conjecture (see [4,5]).

Resolving the weak 3-flow conjecture and the weak circular flow conjecture, Thomassen
[9] showed that such orientation exists under the edge connectivity 8 (p = 1) and
2(2p+ 1)2 +2p + 1 (p > 2), respectively. Lovasz et al. [7] further proved that every
6p-edge-connected graph admits a modulo (2p + 1)-orientation.

In this paper, we construct a 4p-edge-connected graph without modulo (2p+ 1)-orien-
tation for every p > 3. Furthermore, for every p > 5, we also construct a (4p + 1)-edge-
connected graph without modulo (2p + 1)-orientation. This disproves Jaeger’s Circular
Flow Conjecture (Conjecture 1.1) for every p > 3 and Conjecture 1.2 for every p > 5.

Theorem 1.3. For every integer p > 3, there exists a 4p-edge-connected graph admitting
no modulo (2p + 1)-orientation.

Theorem 1.4. For every integer p > 5, there exists a (4p + 1)-edge-connected graph ad-
mitting no modulo (2p + 1)-orientation.

In Section 5, graphs constructed in Theorems 1.3 and 1.4 are further extended to
infinite families of counterexamples to Conjectures 1.1 and 1.2.

We shall present the construction of Theorem 1.3 first, which is simpler to analyze.
The construction in Theorem 1.4 is based on the same idea with some more elaborate
modification.

2. Preliminary

Graphs in this paper are finite and may contain parallel edges. In an undirected
graph G, for vertex subsets U,W C V(G), let [U,W]g = {uw € E(G) : u € Uyw € W}
and dg(U) = [U,V(G) — Ulg. For v,w € V(G), define Eg(v) = [{v},V(G) — {v}]a
and Eg(v,w) = [{v},{w}]q, respectively. An edge-cut X of G is called trivial if X =
E¢(v) for some v € V(G), and nontrivial otherwise. Let D = D(G) be an orientation
of G. If A C V(G), we define E};(A) (Ep(A), respectively) to be the set of all directed
edges with initial vertex (terminal vertex, respectively) in A and terminal vertex (initial
vertex, respectively) in V(G) — A. When A = {v}, We simply use E},(v) and Ep(v) for
convenience. For vertex subsets U, W C V(G), we denote [U,W]p = E}(U) N E,(W).
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In addition, dg(v) = |Eg(v)|, dy(v) = |Ep(v)| and df,(v) = |Ef(v)| are known as the
degree, indegree and outdegree of a vertrex v, respectively.

A graph G admits a modulo (2p + 1)-orientation if it has an orientation D such that
d(v) —dp(v) = 0 (mod 2p + 1) for each v € V(G). It is observed by Jaeger [4] that
a graph admits a nowhere-zero circular (2 + %)-ﬂow if and only if it admits a modulo
(2p + 1)-orientation. In particular, a graph has a nowhere-zero 3-flow if and only if it
admits a modulo 3-orientation. The readers are referred to [10] for a comprehensive
introduction on nowhere-zero flows.

Observation 2.1. Let F = (2p—1) K> be the graph consisting of two vertices u,v and 2p—1
parallel edges between u and v, and, let t € Za, 1. The graph F admits an orientation
D such that

di(u) —dp(u) =t (mod 2p+ 1)
if and only if t # 0.

Proof. It is obvious that there is no such orientation for ¢ = 0. The existence of such an
orientation is essentially a solution of the following equations

{ dh(u) —dp(uw) =t (mod 2p+ 1),
db(u) +dp(u) =2p — 1.

For t € {1,---,2p}, an orientation D of F' such that

+ &1 iftis odd
db(u) = |[Efu)| =4 2T 2 ’
p(u) = [Ep(u)] { % -1 if ¢ is even,

and d(u) = |Ep(u)| = (2p — 1) — |Ef (u)| would be sufficient. O

Our construction relies on the following 2-sum operation, which generalizes the “edge
superposition” method in [6]. In fact, the case p = 1 of Lemma 2.3 below coincides with
Proposition 4.6 in [6] or Lemma 1 in [5].

Definition 2.2. Let H; and Hs be two graphs with uy,v; € V(Hy), ug,ve € V(Hz) and
|Em, (u1,v1)| > 2p — 1. Define H = Hy ®o Ha, the 2-sum of H; and Hs, to be the graph
obtained from H; and H, by deleting 2p — 1 parallel edges between u; and vy in Hy,
and then identifying u; and us to be a new vertex wu, and identifying v; and vs to be a
new vertex v (see Fig. 1).

Lemma 2.3. Let H = Hy ®s Hy be a 2-sum of Hy and Hy used in Definition 2.2. If
neither Hy nor Hy admits a modulo (2p + 1)-orientation, then H = Hy @2 Ha admits no
modulo (2p + 1)-orientation.
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H, Hy

Fig. 1. The 2-sum of H; and Hs.

Proof. Let u,v € V(H), u;,v; € V(H;) (i = 1,2) be the vertices described in Defini-
tion 2.2, and let F' be the set of (2p — 1) parallel edges of H; deleted in the 2-sum.

Suppose that H admits a modulo (2p + 1)-orientation D. Let Do be the restriction of
D on Hs and D; be the restriction of D on Hy — F'. Let §;(u;) = da (ug) — dp, (u;) and
Bi(v;) = dBi (vi) — dp, (v;), for each i = 1,2. It is obvious that ’ ’

Bi(ur) = —Bi(vr) = —Baluz) = Bo(vs) (mod 2p+ 1).

Since Hs does not admit a modulo (2p + 1)-orientation, B2(us) = —fBa(ve) # 0
(mod 2p + 1). By Observation 2.1, the edge subset F' can be properly oriented so that
the resulting orientation (together with D;) is a modulo (2p+ 1)-orientation of H;. This
is a contradiction. O

3. The constructions of counterexamples — proof of Theorem 1.3
3.1. Step 1 of the construction

It is known that the complete graph Ky, admits no modulo (2p + 1)-orientation. Our
first construction starts from it.

Construction 1. Let p > 3 be an integer, and {vi,--- ,vap} be the vertexr set of the
complete graph Ky,.

(i) Construct a graph Gi from the complete graph K, by adding an additional set
T of edges such that V(T') = {v1,--- ,v3,—1)} and each component of the edge-induced
subgraph G1[T) is a triangle (see Gy in Fig. 2).

(ii) Construct a graph Go from Gy by adding two new vertices z1 and z2, adding one
edge 2122, adding (p — 2) parallel edges connecting va, and z; for j = 1,2, and adding
one edge v;z; for each 3p —2 <i<4p—1and j=1,2 (see Gy in Fig. 2).

Lemma 3.1. (i) G1 admits no modulo (2p + 1)-orientation.
(i) Go admits no modulo (2p + 1)-orientation. Moreover, Gg contains ezactly two edge-
cuts, E(z1), E(22), of sizes 2p + 1, and all the other edge-culs are of sizes at least 4p.
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(p — 2) parallel edges

L] L] L] . . . L] L] L]
V4p V4p—1 U3p—2
U3 U3p—-3
v V2 U3p—5 U3p—4
Gl G2

Fig. 2. The graphs G; and Ga.

Proof. (i) Suppose to the contrary that G; admits a modulo (2p + 1)-orientation D.
Notice that df,(v) — dp(v) € {£(2p+1)} for each vertex v € V(G1). Denote V* = {z €
V(Gy) : df(z) —dp(z) =2p+ 1} and V™ = {z € V(Gy) : df(2) — dp(z) = —2p — 1},
respectively. Clearly, |[V*| = |V ~| = 2p. Since the edge-induced subgraph G;[T] consists
of (p — 1) vertex-disjoint triangles, each of which may contribute at most two edges in
the edge-cut [V*1, V™ ]g,, we have

V5V, [ SV VT +2(0 = 1) = 4p* + 2p — 2 < 4p* + 2p.
This contradicts to the fact that

W=V @) = Y (dh) — dp() = [V, V ]p| — [V, V]p|

veV+

<|VH Vel

(ii) The proof is by contradiction. Suppose that G2 admits a modulo (2p + 1)-orien-
tation D. Without loss of generality, assume the edge z; 2o is oriented from z; to zo under
the orientation D. Thus, |Ef(21)] = |Eg,(21)| = 2p + 1 and |E(22)] = |Eg,(22)| =
2p + 1. Furthermore, since |Eq,(21,v;)| = |Eqg,(22,v;)| for each 3p — 2 < i < 4p, the
restriction of D on E(G2) — E(G1) is a modulo (2p + 1)-orientation, and, therefore, the
restriction of D on E(G1) is also a modulo (2p+ 1)-orientation. This contradicts (i). O

3.2. Step 2 of the construction

Construction 2. Denote by Capy1 the cycle of length 4p + 1 with V(Capt1) = {c; : i €
Zyp+1} and E(Capy1) = {ciciy1: 1 € Zapy1}. Let W = (2p — 1)Cyps1 - K1 be the graph
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Fig. 3. The graph W for p = 3.

obtained from Cupi1 by replacing each edge cici11 with 2p — 1 parallel edges, and then
adding a center vertexr w joining each vertex ¢; in the cycle (see Fig. 3).

We remark that the graph W is the dual of an example discovered by DeVos in [2]
(also see [1]) on the circular coloring of planar graphs. We include a proof of the following
lemma for the purpose of self-completeness.

Lemma 3.2. The graph W admits no modulo (2p+1)-orientation. Moreover, W is (4p—1)-
edge-connected and every (4p — 1)-edge-cut is trivial.

Proof. Suppose that W admits a modulo (2p + 1)-orientation D. Notice that, for each
vertex ¢;, df(c;) —dp(c;) = 2p+ 1 or = —(2p + 1). Furthermore, since the cycle Cypi1
is of odd length, there exists two consecutive vertices ¢;, ¢;+1 in the cycle with dB (¢;) —
dp(ci) = dh(civ1) — dp(civ1) (€ {£(2p +1)}). However,

dp +2 = [(d}(ci) — dp (i) + (dp(civr) — dp(eit))]
= [ES{cis e DI — |Ep({ei, ciga )]
<low({ci,cit1})| = 4p < 4dp + 2,

a contradiction. O
3.8. The final step of the construction

Now, we are ready to obtain our final construction via the 2-sum operations of W and
copies of Gs.
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Fig. 4. The graph M for p = 3.

Construction 3. For each ¢;,cit1 (i € Zap+1) in W and 21,22 in a copy of Gz, apply
the 2-sum operation described in Definition 2.2. Denote M to be the final graph obtained
after these 4p + 1 2-sum operations (see Fig. /).

Lemma 3.3. The graph M is 4p-edge-connected and admits no modulo (2p+1)-orientation.

Proof. It is straightforward to check M is 4p-edge-connected. Specifically, every vertex
in M is of degree at least 4p + 1. If a nontrivial edge-cut ) separates z; and 25 in a
copy of Ga, then ) must separate at least two copies of G since it intersects the cycle
Cap+1 even number of times. In each copy, at least 2p+ 1 edges is contained in the cut @,
resulting that @ is of size at least 4p + 2. If a nontrivial edge-cut @@ does not separate z;
and zy in any copy of Gg, then @ contains an edge-cut Q' # Eg,(21), Eq,(22) in a copy
of G2, which is of size at least 4p. Therefore, M is 4p-edge-connected.

By Lemmas 3.1 and 3.2 and applying Lemma 2.3 consecutively, M admits no modulo
(2p+ 1)-orientation. This completes the proof of Lemma 3.3, as well as Theorem 1.3. O
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Fig. 5. The graph Gs.

4. The constructions of counterexamples — proof of Theorem 1.4

Note that each 4p-edge-cut in M is of the form d,;(G1) for some copy of Gy. In this
section, the Construction 1 is refined for constructing a new graph G3, which eliminates
these 4p-edge-cuts. However, the lower bound of p is unavoidably raised to 5 in the new
construction.

Construction 4. Let p > 5 be an integer, and {vi, -+ ,v4p} be the vertex set of the
complete graph Kap. Let ¢ = [%1

(i) Construct a graph G} from the complete graph K, by adding an additional set
T" of edges such that V(T') = {v1,--- ,v3q} and each component of the edge-induced
subgraph G1[T'] is a triangle.

(it) Construct a graph G% from G by adding two new vertices z| and z, adding one
edge 2123, adding (3q — 2p + 2) parallel edges connecting vap 1 and 2} for j = 1,2, and
adding one edge viz;- foreach3q+1<i<4p—2andj=1,2.

(iii) Let G}, G2,G3 be three copies of GYy. Construct a graph Gs from these three
copies of GY by identifying the corresponding 2} in G and G3% to be a new vertex yi,
identifying the corresponding 24 in G3 and G to be a new vertex ya, and adding a triangle
connecting the corresponding va,’s of G3, G3 and Gy. Relabel the corresponding vay,’s of
Gi, G% and G3 as wi,wy, w3, and relabel the remaining two degree 2p + 1 vertices as
X1, o, respectively (see Fig. 5).

Lemma 4.1. (i) Neither G nor G admit a modulo (2p + 1)-orientation.
(i) G3 admits no modulo (2p+1)-orientation. In addition, G3 is (2p+1)-edge-connected,
and each edge-cut that does not separate {x1, x5} is of size at least 4p + 1.

Proof. (i) The proof of (i) is analogous to that of Lemma 3.1 (i). Suppose that D is a
modulo (2p + 1)-orientation of Gj. With a similar setting as in Lemma 3.1, we have

2p—1
3

V5V < V-V +2] 1 <4p®+2p.

This contradicts to the fact that
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P+ 2p = V- (2p+1) = Y (dh(v) —dp(v) = [[VF, V7 Ip| = |[V", V7p|

veV+

<|V* Vel

The argument for G is the same as G. Note that dgy (21) = dgy (25) = 2p + 1.

(ii) The proof is by contradiction. Suppose that G5 admits a modulo (2p + 1)-orien-
tation D. Let D; be the restriction of D on G%, for i = 1,2, 3.

We first claim that, under the orientation D, the edges wiws,wiws are either both
oriented away from wy or both oriented towards wy . If not, since {wyws, wiws} is oriented
with opposite directions at w;, we have, under the orientation D; of G3,

df, (w1) —dp, (w1) =0 (mod 2p+1).
Then it follows that

dh () —dp, () =— Y. (df,(v)—dp, (1)) =0 (mod 2p+1).
veV(GH\{u1}

This implies D; is a modulo (2p + 1)-orientation of G3, yielding a contradiction to (i).
Similar conclusion holds for ws.

Without loss of generality, we assume the edges wyws,wyws are both oriented away
from w; in the orientation D. Symmetrically, both edges wyws and wows are oriented
towards w3 in D.

Since Egz(y1) U {wiwa, wiws} is an edge-cut of G, it follows from the orientations
of wiws and wyws that

df, (1) —dp, (1) +2=0 (mod 2p + 1),
and symmetrically,
dp,(y2) = dp,(y2) =2 =0 (mod 2p + 1).
Since dgz(y1) = dgz(y2) = 2p + 1 in G3, we have
dp, (1) = dp, (1) = =(dp, (y2) — dp,(y2)) = 2p — 1. (1)

Let VT = {x € V(G3) : dEQ(a:) —dp,(z) > 0} and V- = {z € V(G3) : dBQ(x) —
dp, (x) < 0}. Then {VF,V ™} is a partition of V(G3) as each vertex of G3 is of odd
degree. Clearly, dJBQ (wz) —dp, (w2) € {£(2p+1)} by the orientations of wiws and waws.

Since dJ152 (vap—1) — dp, (vap—1) =0 (mod 2p + 1) and

doz(vap—1) =4p—1+2(3¢ —2p +2) = 6]

2p—1
p3 143<3(2p+1),

we have d, (vap—1) — dp, (vap—1) € {£(2p + 1)} as well.



10 M. Han et al. / Journal of Combinatorial Theory, Series B 131 (2018) 1-11

So, we conclude that

df, (z) —dp (z) =2p+1, for each vertex x € V' \ {y1}, (2)
df, (z) —dp, (z) = —=2p— 1, for each vertex x € V™ \ {ya}, (3)

and
VI =V =2p+1. (4)

Let S be the set of edge-disjoint 2-paths of G3 joining y; and ys, where |S| = 2p.
Note that each 2-path in S contributes one edge in the edge-cut [VF,V™]5z, and G3[T"]
consists of ¢ triangles, each of which may contribute at most two edges in the edge-cut
[V*,V7]gz. Thus, we have

VE Vel < (VF[ =DV = 1) +2¢ + S|+ [E(y1, 92)|
2p—1
= (2p)* +2[pT] +2p+1
< 4p® +4p — 1. (by p>5)

However, by Eq. (1), (2), (3) and (4), we obtain a contradiction as follows.

4p° +4p— 1= 2o+ D[V \{yi}[+2p— 1= Y (df,(2) — dp, (2)) < |[VF,V ]a3l.

zeV+
This proves (ii). O

The next construction is similar to Construction 3, except that we replace copies of
G5 with copies of G3s.

Construction 5. Construct a graph M’ as follows: Take 4p + 1 copies of G3, then for
each ¢, ciy1 (i € Zapy1) in W oand x1,x2 in a copy of Gs, apply the 2-sum operation
described in Definition 2.2.

The following lemma is a mimic of Lemma 3.3, which eliminates 4p-edge-cuts.

Lemma 4.2. For every p > 5, the graph M’ is (4p + 1)-edge-connected and admits no
modulo (2p + 1)-orientation.

Proof. M’ admits no modulo (2p + 1)-orientation for the same reason as in Lemma 3.3.
Similar argument applies to check that M’ is (4p + 1)-edge-connected. Notice that, by
Lemma 4.1, each edge-cut in G5 that does not separate {x1,xs} is of size at least 4p+ 1.
This proves Lemma 4.2, as well as Theorem 1.4. O
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5. Remarks

The counterexamples constructed in Theorems 1.3 and 1.4 can be easily extended to
some infinite families of counterexamples. One of the most straightforward methods is to
replace some vertices of the graphs M and M’ by copies of some highly connected graphs
(such as, complete graphs of large orders), and see [6] for a similar “vertex superposition”
method. Another method is to replace the cycle Cyp,11 in Construction 2 with a longer
odd cycle. We may also apply the 2-sum operations on copies of W, and then modify
the final construction. In addition, for the final construction, it is not necessary to apply
the 2-sum operation for each ¢;,¢i+1 (i € Zypy1) in W, as long as there is no vertex of
degree 4p — 1 in the resulting graph, it produces a 4p-edge-connected graph (or (4p+ 1)-
edge-connected graph in Construction 5, respectively). Applying the splitting theorem
of Mader [8] would yield a 4p-edge-connected (or (4p + 1)-edge-connected, for p > 5,
respectively) (4p + 1)-regular graph without modulo (2p + 1)-orientation as well. We
leave all those details to interested readers.

The construction in this paper seems to suggest that the gap between 4p and edge
connectivity for admitting modulo (2p + 1)-orientation may depend on p. Therefore, we
propose the following new conjecture on modulo orientations, whose truth still implies
the 3-Flow Conjecture and 5-Flow Conjecture of Tutte, as shown by Kochol [5] and
Jaeger [4].

Conjecture 5.1. For every positive integer p, there exists a sufficiently small positive
constant € = (p) < 3 such that every [(4 + €)p]-edge-connected graph admits a modulo
(2p + 1)-orientation.

Theorem 1.4 indicates e(p) > % when p > 5.
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