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1. Introduction

For terminology and notations not defined here we follow [4,6,21]. Graphs considered
in this paper may have multiple edges or loops. A circuit cover of a bridgeless graph G
is a family C of circuits such that each edge of G belongs to at least one member of C.
The length of C is the total length of circuits in C. A minimum length of a circuit cover
of G is denoted by SCC(Q).

For ordinary graphs (graphs without sign), the subject of shortest circuit cover is not
only a discrete optimization problem [10], but also closely related to some mainstream
areas in graph theory, such as, Tutte’s integer flow theory [1,3,7,11,14,18,22], circuit dou-
ble cover conjecture [15,16], Fulkerson conjecture [8], snarks and graph minors [2,12]. Tt
is proved by Bermond, Jackson and Jaeger [3] that every graph admitting a nowhere-
zero 4-flow has SCC(G) < @. By applying Seymour’s 6-flow theorem [20] or Jaeger’s
8-flow theorem [13], Alon and Tarsi [1], and Bermond, Jackson and Jaeger [3] proved
that every bridgeless graph G has SCC(G) < % One of the most famous open prob-
lems in this area was proposed by Alon and Tarsi [1], that every bridgeless graph G has
SCC(G) < %fl It is proved by Jamshy and Tarsi [15] that the above conjecture im-
plies the circuit double cover conjecture. The relations between SCC(G) and Fulkerson
conjecture, Tutte’s 3-flow and 5-flow conjectures were studied by Fan, Jamshy, Raspaud
and Tarsi in [8,14,7].

For signed graphs, the following upper bounds for shortest circuit covers were recently
estimated in [17].

Theorem 1.1 (Mdcajovd, Raspaud, Rollovd and Skoviera [17]). Let G be an s-bridgeless
signed graph.

(1) In general, SCC(G) < 11|E].

(2) If G is 2-edge-connected, then SCC(G) < 9|E|.

In this paper, Theorem 1.1 is improved as follows.

Theorem 1.2. Let G be an s-bridgeless signed graph with negativeness ey > 0.
(1) In general,

SCC(G) < |B| + 3|V + 21,

where z1 = min{Z|E| + §ex — 7, |V] + 2en — 8}
(2) If G is 2-edge-connected and ey is even, then

SCC(G) < |B| + 2|V] + 2o,

where zo = min{Z|E| + sex — 4, |V|+en — 5}
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Theorem 1.2 is an analog of a result (Theorem 3.4) by Fan [9] that solves a long
standing open problem by Itai and Rodeh [10].

Note that, in a connected s-bridgeless signed graph G with |En(G)| = en, G— En(G)
is a connected unsigned graph (by Lemma 5.3), and hence |E| > ey + |V| — 1. Therefore
Theorem 1.2 implies that if G is an s-bridgeless signed graph with ey > 0, then

14
SCC(G) < —|B| - geN —4

This is an analog of a result (Theorem 3.3) by Alon and Tarsi [1] and by Bermond,
Jackson and Jaeger [3].

2. Notation and terminology for signed graphs

A signed graph is a graph G with a mapping o : E(G) — {1, —1}. An edge e € E(G) is
positive if o(e) = 1 and negative if o(e) = —1. The mapping o, called signature, is usually
implicit in the notation of a signed graph and will be specified only when needed. For a
subgraph H of G, we use Ex(H) to denote the set of all negative edges in H. A circuit
C of G is balanced if |En(C)| =0 (mod 2), and unbalanced otherwise. A signed circuit
of GG is a subgraph of one of the following three types:

(1) a balanced circuit;

(2) a short barbell, the union of two unbalanced circuits that meet at a single vertex;

(3) a long barbell, the union of two disjoint unbalanced circuits with a path that meets
the circuits only at its ends.

A barbell is either a short barbell or a long barbell. The length of a signed circuit C is
the number of edges in C.

Definition 2.1. Let F be a family of signed circuits of a signed graph G and K be a set
of some nonnegative integers.

o F is called a signed circuit cover (resp., signed circuit K-cover) of G if each edge e
of G belongs to k. members of F such that k. > 1 (resp., k. € K). In particular,
a signed circuit {2}-cover is also called a signed circuit double cover.

o The length, denoted by ¢(F), of F is the total length of signed circuits in F.

o F is called a shortest circuit cover of G if it is a signed circuit cover of G with
minimum length. The length of a shortest circuit cover of G is denoted by SCC(G).

Clearly, the signed circuit cover of signed graphs is a generalization of the classic
circuit cover of graphs. By the definition of signed circuit cover, a signed graph has a
signed circuit cover if and only if every edge of the signed graph is contained in a signed
circuit. Such signed graph is called s-bridgeless.
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In a signed graph, switching at a vertex u means reversing the signs of all edges
incident with w. It is obvious (see [19]) that the switching operation preserves signed
circuits and thus the existence and the length of a signed circuit cover of a signed graph
are two invariants under the switching operation.

Definition 2.2. Let G be a signed graph, and X" be the collection of signed graphs obtained
from G by a sequence of switching operations. The negativeness of G is

en(G) = min{|Ex(G')| : VG’ € X}.

Definition 2.3. Let b be a bridge of a connected signed graph G and @1, Q> be the two
components of G — b. The bridge b is called a g-bridge of G if ex(Q1) = en(Q2) = 0
(mod 2).

Note that a signed graph G is g-bridgeless if and only if every component of G contains
no g-bridges, and is s-bridgeless if and only if every component @ of G satisfies e (Q) # 1
and en(Q') > 0 for each bridge b of @ and each component Q" of @ — b (the “only if”

part is proved in [5] and the “if” part is easy).

3. Lemmas and outline of the proofs

Since the concept of g-bridge is introduced in Section 2, the part (2) of Theorem 1.2
can be revised as follows in a slightly stronger version.

Theorem 3.1. Let G be an s-bridgeless signed graph with negativeness ey > 0.
(1) In general,

SCC(G) < |B| +3|V] + =

where z; = min{Z|E| + $ey — 7, |V] + 2en — 8}
(2) If G is g-bridgeless and ey 1is even, then

SCC(G) < |E|+2|V| + 22
where 2z = min{Z|E| + 3ex — 4, |V|+en — 5}.
The following is the major lemma for the proof of Theorem 3.1.

Lemma 3.2. Let G be an s-bridgeless signed graph with |En(G)| = en(G). Then G has a
pair of subgraphs {G1,G2} such that

(1) B(G1) U E(Gs) = E(G),

(2) Gy contains no negative edge and is bridgeless, and

(3) Go— En(G) is acyclic and Go has a signed circuit {1,2,--- | k}-cover, where k = 2
if G is g-bridgeless with an even negativeness, and k = 3 otherwise.
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Lemma 3.2 will be proved in Section 5 after some preparations in Section 4.
The main result, Theorem 3.1, will be proved as a corollary of Lemma 3.2 in Section 6.
The following is the outline of the proof. By (1) of Lemma 3.2,

SCC(G) < SCC(Gy) + SCC(Gy).

Lemma 3.2-(3) provides an estimation for SCC(Gz). For the bridgeless unsigned sub-
graph G, we use the following classical results in graph theory.

Theorem 3.3 (Alon and Tarsi [1], Bermond, Jackson and Jaeger [3]). Let G be a 2-edge-
connected graph. Then SCC(G) < 2|E|.

Theorem 3.4 (Fan [9]). Let G be a 2-edge-connected graph. Then SCC(G) < |E|+|V|-1.
4. Signed circuit covers of generalized barbells

In this section, we study signed circuit covers of generalized barbells which play an
important role in the proof of Lemma 3.2.

A graph is eulerian if it is connected and each vertex is of even degree. For a vertex
subset U of a graph G, let d¢(U) denote the set of all edges between U and V(G) — U.
In a graph, a k-vertex is a vertex of degree k.

Definition 4.1. A signed graph H is called a generalized barbell if it contains a set of
vertex-disjoint eulerian subgraphs B = {Bj,---, By} such that

(1) The contracted graph X = H/(U!_, B;) is acyclic and
(2) For each vertex x of X (if x is a contracted vertex, then let B, be the corresponding
eulerian subgraph of B; otherwise, simply consider E(B,) as an empty set),

|En(Bg)| = [0m(V(Bg))|  (mod 2).

We first study signed eulerian graphs with even number of negative edges which is a
special case of generalized barbells.

Let T be a closed eulerian trail of a signed eulerian graph. For any two vertices u and
v of T', we use uT'v to denote the subsequence of T' starting with u and ending with v in
the cyclic ordering induced by T

Lemma 4.2. Fvery signed eulerian graph with even number of negative edges has a signed
circuit double cover.

Proof. Let B be a counterexample to Lemma 4.2 with |F(B)| minimum. Then the max-
imum degree of B is at least 4 otherwise B is a balanced circuit. By the minimality
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of B, B cannot be decomposed into two signed eulerian subgraphs, each contains an
even number of negative edges. Thus we have the following observation

Observation. For any eulerian trail 7' = ujejuses - - - umenuy of B where m = |E(G)|
and for any two integers 4, j € [1,m] with ¢ < j and w; = uj, w;Tu; is a signed eulerian
graph with odd number of negative edges.

Pick an arbitrary eulerian trail T' = ujejuges - - - umemu. We consider the following
two cases.

Case 1. For any two integers ¢ # j € [1,m], if u; = u;, then [j —i| =1 (mod m).

In this case, the resulting graph obtained from B by deleting all loops is either a single
vertex or a circuit. Since B has an even number of negative edges, one can check that B
has a signed circuit double cover, a contradiction.

Case 2. There are two integers ¢, j € [1,m] such that 2 < j —i <m — 2 and u; = u;.

Let By = w;Tu; and By = u;T'u;. Then, by Observation, both B; and B, are signed
eulerian subgraphs of B with B = By U By such that |E(By)| > 2 and |En(Bg)| = 1
(mod 2) for each k =1,2.

If V(B1) N V(B2) = {u;}, then for each k = 1,2, let B; be the resulting graph
obtained from Bj by adding a negative loop e}, at w;. Clearly, B, remains eulerian,
|E(B;)| < |E(B)|, and |En(By,)| is even. By the minimality of B, Bj, has a signed circuit
double cover Fj. Since €}, is a negative loop of By, it is covered by two barbells, say C}
and CZ, in Fy. Let C* = U2_,(CL — ¢},) for each £ = 1,2. Since V(B;) NV (Ba) = {u;},
both C' and C? are two barbells of B, and so B has a signed circuit double cover
UZ_ (Fr — {C},C?}) u{C*, C?}, a contradiction.

If V(B1) NV (Bz2) # {u;}, then there are two integers s and t such that s € [4, j],
t ¢ [i,j], and us = wu;. By Observation, |En(usTut)] = 1 (mod 2). Let T* be a
new closed eulerian trail of B obtained from 7' by reversing the subsequence wu;T'u;
in T. Then E(usT*u:) is the disjoint union of E(w;Tus) and E(u;Tu;) and thus
En(usT*uy) is the disjoint union of En(u;Tus) and En(u;jTu;). Since |En(u;Tuj)| =1
(mod 2) and |En(usTu))| =1 (mod 2), |En(u;Tus)| = |En(ujTus)| (mod 2). There-
fore |En(usT*u)] = 0 (mod 2), a contradiction to Observation. This completes the
proof of the lemma. O

The following lemma is a generalization of Lemma 4.2.
Lemma 4.3. Every generalized barbell has a signed circuit double cover.

Proof. Let H be a generalized barbell. Let {By,---,B:} be a set of disjoint eulerian
subgraphs of H and X = H/(U!_,B;) as described in Definition 4.1. We will prove by
induction on |E(H) — U!_, E(B;)|.

If E(H) —Ul_; E(B;) = 0, then by the definition of generalized barbell, each compo-
nent of H is a signed eulerian graph with an even number of negative edges. Thus H has
a signed circuit double cover by Lemma 4.2.
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Now assume that E(H) — U!_ E(B;) # 0. Let uwv € E(H) — Ul_, E(B;) and H' be
the new signed graph obtained from H by deleting uv and adding negative loops e,
and e, at u and v, respectively. By the definition, H’' remains as a generalized barbell.
Since X is acyclic, H' has more components than H, and thus by induction to each
component of H', H' has a signed circuit double cover F’. Let {C},C?} and {C},C?}
be the sets of barbells in F’ containing e, and e, respectively. Since e, and e, belong
to two distinct components of H', C* = (C! —e,) U (C% —e,) +uv (i = 1,2) is a barbell
in H. Hence

(‘F/ - {Civ C?u Civ Cg}) U {Cla CQ}
is a signed circuit double cover of H. O

Lemma 4.4. Let H be a generalized barbell with a set of vertex-disjoint eulerian subgraphs
B = {Bi,---,B}, and assume that {B1,--- ,Bs} (2 < s < t) is the set of eulerian
subgraphs corresponding to the 1-vertices of the contracted graph X = H/(Ui_,B;). If
each B; (1 < i <t) is a circuit, then there is a family of signed circuits F in H such
that each edge e of H belongs to

(a) ezactly one member of F if e € U;_ E(B;),
(b) one or two members of F if e € Ul_, E(B), and
(c) at most one member of F if e € E(H) — Ul_,E(B;).

Proof. Assume that H is embedded in the plane and let X* be a graph obtained from
X by first clockwise splitting each vertex x with even degree into Jdx(z) 2-vertices,
and replacing each maximal subdivided edge with a single edge. Then each vertex of
X* is of odd degree. By the definition of generalized barbell, X* is a forest and V (X*)
corresponds to the set of unbalanced circuits of B. Thus X* has a spanning subgraph

satisfying that each component is a star graph with at least two vertices. Let Kj .,
(i=1,---,¢) be all such star subgraphs.

Note that V(X*) = Uf{_, V(K .,) corresponds to the set of unbalanced circuits of 3.
For 1 < i < /, one can check that the subgraph of H corresponding to K ,, has a
signed circuit cover F; such that each edge of the unbalanced circuits corresponding to
1-vertices of K ,, is covered by F; exactly once and each edge of the unbalanced circuit
corresponding to the unique vertex of K ,, with degree r; > 2 is covered by F; once or
twice. Therefore the union of U{_, F; together with the set of balanced circuits of B is a
desired family F of signed circuits of H. O

Given a family of sets {Ay, -+, A;}, their symmetric difference, denoted by A!_; A;,
is defined as the set consisting of elements contained in an odd number of A;’s.

The following result states that a generalized barbell has a signed circuit {1, 2}-cover
with some edges covered only once.
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Lemma 4.5. For each generalized barbell, it either

(i) can be decomposed into balanced circuits, or
(i) has a signed circuit {1,2}-cover F such that there are two edge-disjoint unbalanced
circuits C1 and Co whose edges are covered by F exactly once.

Proof. Let H be a counterexample to Lemma 4.5 with |E(H)| minimum. Thus H is
connected. Otherwise each component of H satisfies either (i) or (ii). This implies that
H satisfies either (i) or (ii), a contradiction to the choice of H.

Claim 4.1. H is eulerian and therefore contains an even number of negative edges.

Proof of Claim 4.1. By the definition of generalized barbell, it is sufficient to show that
H is bridgeless. Suppose to the contrary that H has a bridge. By Lemma 4.3, H has a
signed circuit double cover F’. Since H has bridges, F' contains a barbell C with two
unbalanced circuits C; and Cy. Then F = F' — {C} is a signed circuit {1,2}-cover of H
and covers C7 and Cy exactly once, a contradiction. This proves the claim. O

Since H is eulerian by Claim 4.1, H has a decomposition

C = {017 tee 7Ch7 Ch+17 e 7Ch+m7 Ch+m+17 e 7Ch+m+n}7

where h,m and n are three nonnegative integers, and each Cj; is an unbalanced circuit
if 1 <4 < h, a short barbell if h + 1 <7 < h + m, and a balanced circuit otherwise. We
choose such a decomposition that

(a) h+ 2m + n is as large as possible,

(b) subject to (a), n is as large as possible, and

(c) subject to (a) and (b), m is as large as possible.

Claim 4.2. h > 2 is even and |V (C;) NV (C;)| =0 for 1 <i<j<h.

Proof of Claim 4.2. If h = 0, then C satisfies (i) if m = 0 and the multiset CU(C\ {C1})
satisfies (i) otherwise. Thus h > 0. Since |Ex(H)| = SM 7" " |Ex(Ci)| is even and
|En(C;)| is even for h+1 <4 < h+ m + n, we have Z?:l |En(C;)| is even. But each
|En(C;)| is odd for 1 <4 < h, and so h is even and h > 2.

Let C; and C; be two circuits in C with 1 < ¢ < j < h. If [V(C;) NV(Cj)| > 3,
then C; U C; can be decomposed into three or more circuits (balanced or unbalanced),
a contradiction to (a). So [V(C;)NV(C;)| < 2. If [V(C;)NV(Cj)| = 2, then C; UC] has a
decomposition into two balanced circuits since both C; and C; are unbalanced circuits,
which contradicts (b). If |V(C;) N V(C;)| = 1, then C; U C; is a short barbell, which

contradicts (c). So the claim is true. O
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Let H' = H/(U"_,C;) and for 1 < i < h, let ¢; be the vertex of H' corresponding
to C;. Let T” be a spanning tree of H' since H is connected. By Claim 4.2, h > 2 is even.
Let P; (1<j< %) be a path in 7" from cpj_1 to co; and let

F'=T'[A7 E(P))]

Then F” is a forest and {c1,--- ,cp} is the set of vertices of F’ with odd degree. By the
definition, the subgraph of H corresponding to F” is a generalized barbell satisfying the
conditions in Lemma 4.4, and thus, by Lemma 4.4, it has a family F* of signed circuits
such that F = F*U{Cht1, - , Chym+n} is a signed circuit {1, 2}-cover of H and at least
two unbalanced circuits in {C1,--- ,Cy} are covered by F exactly once, a contradiction.
This completes the proof of Lemma 4.5. O

5. Proof of Lemma 3.2

In this section, we complete the proof of Lemma 3.2. For a signed graph G, we use
B(G) to denote the set of bridges of G and for each e € En(G), define

Sa(e) ={e} U{f :{e, f} is a 2-edge-cut of G}.

Let By (G) be the subset of B(G) such that, for each b € B,(G), at least one component
of G — b contains an odd number of negative edges, and let B,(G) be the subset of B(G)
such that, for each b € B,(G), each component of G — b contains negative edges. We
need the following lemmas.

Lemma 5.1. Let H be a signed graph satisfying that |Ex(H)| > 2 and H — Ex(H) is a
spanning tree of H. If |En(H)| is even, then H has a generalized barbell containing all

edges of By(H) U (Uecpy (m)SH(€))-

Proof. Let T = H — Ex(H). Then E(H) is the disjoint union of E(T) and En(H). For
each e € En(H), let C, be the unique circuit of T + e.

Let H' = Accpy(m)Ce and Op be the set of all components of H' containing an odd
number of negative edges. Since |Ex(H)| is even, so is |Op/|. Let {vy,vq, -+ ,v2:} be
the set of vertices of the contracted graph H/H' corresponding to Og/. For i =1,--- ,t,
there is a shortest path P; in H/H' from vg;_1 to vy;. Note that Ex(H) C E(H') and
hence E(P;) C E(H/H') C E(T). Since T is a tree of H, H" = H' U (A!_P,) is a
generalized barbell.

For every bridge b € By(H), each component of H — b contains an odd number
of negative edges since |En(H)| is even, and thus contains an odd number of members
of Op. This fact implies that b must belong to an odd number of members of { Py, --- , P;}
and thus b € E(H"). Hence By(H) C E(H"). For every e € En(H), it is obvious that
Su(e) € E(C.) and Si(e) N E(Cy) = 0 for any f € En(H) — {e}, which implies that
Su(e) € E(H'). Therefore, Uecp, (m)Su(e) € E(H') C E(H"). O
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Lemma 5.2. Let H be a signed graph satisfying that |En(H)| > 2 and H — Ex(H) is
a spanning tree of H. Then H has a signed circuit {0,1,2,3}-cover such that each edge
of Bs(H) U (Ueepy (m)SH(€)) is covered at least once and each negative loop (if any) is
covered precisely twice.

Proof. Let H be a counterexample with |E(H)| minimum.
Claim 5.1. B(H) = (.

Proof of Claim 5.1. Suppose to the contrary that B(H) # 0. Let b = uwjus € B(H)
and @1 and )2 be the two components of H — b such that u; € Q; for ¢ = 1,2. Since
H — En(H) is connected, we have that b ¢ Ex(H).

If b € B(H)—Bs(H), then there is one member in {Q1, Q2}, without loss of generality,
say @1, satisfying that Bs(Q1) = Bs(H) and Enx(Q1) = En(H). By the minimality of H,
Q1 (and thus H) has a desired signed circuit {0, 1,2, 3}-cover, a contradiction.

If b € By(H), then |Ex(Q1)| > 1 and |En(Q2)| > 1. For each i = 1,2, let Q
be the graph obtained from @Q; by adding a negative loop e; at u;. It is easy to see
that B,(Q) U B,(Q3) = Bu(H) — {b} and U2_,(Ex(Q}) — {es}) = En(H). By the
minimality of H, each Q} has a signed circuit {0, 1, 2, 3}-cover F;* which covers each edge
of Bs(QF)UEN(QF) at least once and covers each negative loop of QF exactly twice. Let
C} and C? be the two signed circuits in F; containing e;. Since e; is a negative loop,
C? (j =1,2) is a barbell of QF, and so C7 = (CY — e;) U (C} — e3) + b is also a barbell
of H. Therefore, F = (F; — {C1,C?}) U (F5 —{C3,C3})U{C,C?} is a desired signed
circuit {0, 1,2, 3}-cover of H, a contradiction. O

Claim 5.1 implies that H is 2-edge-connected. So Lemma 5.2 follows from Lem-
mas 5.1 and 4.3 if |En(H)| is even. Since |Ex(H)| > 2, in the following, we assume
that |En(H)| > 3 is odd.

Let T = H — En(H). Note that T is a spanning tree of H and E(H) is the disjoint
union of E(T) and En(H). For each e € Ex(H), let C, be the unique circuit of T + e.

Claim 5.2. For every e € En(H), H has a signed circuit containing all edges of Sg(e).

Proof of Claim 5.2. Let e € En(H) and f € En(H) — {e}. Note that Sy (e) C E(Ce),
Su(f) € E(Cy) and Sg(e) NSk (f) =0 (it can be checked easily since T'= H — Ex(H)
is a spanning tree of H). If |V(C.) N V(C})| < 1, then there is a shortest path P in
T joining C. to Cy (note that P is a single vertex if |[V(C.) N V(Cy)| = 1), and so
C.UCyUP is a desired signed circuit. If |V(C.) NV (C}y)| > 2, since T is a spanning tree
of H, then C. N C} is a path containing no edges of Sg(e). Thus C.ACy is a balanced
circuit as desired. O

Claim 5.3. Each edge e € En(H) is contained in a 2-edge-cut of H.
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Proof of Claim 5.3. Suppose to the contrary then there is a negative edge e € En(H)
such that Hy = H — e remains 2-edge-connected. If H contains negative loops, we choose
e which is a negative loop.

Note that Hy — Enx(Hy) = H — Enx(H) is a spanning tree of H (and thus Hy).
Since Hy is 2-edge-connected and |En(Ho)| = |En(H) — {e}| > 2 is even, Lemma 5.1
implies that Hy has a generalized barbell H; containing all edges of Uscp, (#,)SH, (f)-
Let F; be a signed circuit double cover of H; by Lemma 4.3. Note that Sy (e) = {e}
and Sy (f) € Su,(f) for any f € Enx(Ho) = Enx(H) — {e}. Thus Uscp,()Su(f) C
{e} U (Usern (m0)SH, (1))

If e is not a negative loop of H, then H has no loop, but has a signed circuit C
containing e by Claim 5.2. Thus F = F; U{C} is a signed circuit {0, 1, 2, 3}-cover of H
covering all edges of Uscp, (m)Su(f), a contradiction.

Assume that e is a negative loop of H and let u denote the unique endvertex of e.

If 71 contains a barbell C, then let C; and C5 be the two unbalanced circuits of C.
Since H is 2-edge-connected, there are two edge-disjoint paths in H from u to Cy and Cy,
denoted by P, and Ps, respectively. Then C} = C; U P; + ¢ for i = 1,2 is a barbell of H.
Since F; is a signed circuit double cover of Hy, F = (F1 — C) U {C1,C4} is a desired
signed circuit {0, 1,2, 3}-cover of H, a contradiction.

If 1 contains no barbells, then e is the unique loop of H. Note that H; is a generalized
barbell. By Lemma 4.5, H; has either a decomposition Fj into balanced circuits or
a signed circuit {1,2}-cover F} and two edge-disjoint unbalanced circuit C; and Co
such that each edge in E(C1) U E(C2) is covered by Fi exactly once. In the former
case, let C’ be a signed circuit containing e by Claim 5.2. Then the family F = Fj U
{C’",C"} is a desired signed circuit {0, 1,2, 3}-cover of H. In the latter case, since H is
2-edge-connected, there are two edge-disjoint paths of H from u to C; and Cs, denoted by
Py and Py, respectively. Similar to the case when Fj contains a barbell, we can construct
a desired signed circuit {0, 1,2, 3}-cover of H, and thus obtain a contradiction. O

By Claim 5.3, H contains no negative loops and |Sg(e)| > 2 for each e € En(H). For
every e € En(G), let M. denote the set of all components of the subgraph H — Sy (e).

Claim 5.4. For two distinct e,e’ € En(H), Su(e') is contained in exactly one member

of M..

Proof of Claim 5.4. Note that each member of M, is 2-edge-connected, and Sy (e) N
Su(e') =0 since H— En(H) is a spanning tree of H. Then Sy (e’) C Uprem, E(M). Let
e* be an arbitrary edge in S (e’) —{e’}. If there are two distinct members M, and M; of
M. such that ¢’ € E(M;) and e* € E(M;), then both M; —e’ and M; —e* are connected,
and so H — {e’, e*} is also connected. This contradicts that {e’, e*} is a 2-edge-cut of H.
So €’ and e* are contained in a common member of M,. The arbitrariness of e* implies
that the claim holds. O
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For every e € En(H), let me = max{|En(H)NE(M)|: M € M.}. It is obvious that
me < |En(H)| — 1 since e ¢ Uprepm, E(M).

Claim 5.5. max{m. :e € Ex(H)} = |[Ex(H)| — 1.

Proof of Claim 5.5. Let e¢g € En(H) and My € M., such that m., = |[En(H) N
E(Mp1)| = max{m. : e € En(H)}. Suppose that me, < |En(H)| — 1. Then there is a
member Moz € M., — {Mp1} such that Myz contains a negative edge e; of H.

By Claim 5.4, Sg(e1) € E(Mp2) and there is a member M;; € M., such that
Su(eg) € E(Mi1). So

{eo} UE(Mo1) € Su(eo) U (Unrem., —{ Mo} E(M)) € E(Mi1),
which implies that

me, 2 |En(H) N E(Mn)| 2 1+ |En(H) N E(Mo1)| = 1+ me,.
This contradicts the choice of ey, and so the claim holds. O

By Claim 5.5, there is an edge e € En(H) such that Enx(H) — {e} is contained in
exactly one member of M.. Let M, = {Mj, -, M!}. Without loss of generality, assume
that Ex(H) — {e} C E(M]) and all edges of M] (i = 2,---,s) are positive. Since H is
2-edge-connected, it follows from the definition of Sy (e) that H/ U_; M/ is a circuit,
and each M/ is also 2-edge-connected. Since |En(M])| = |En(H)| — 1 > 2 is even, M
has a generalized barbell Hj containing all edges of Usc gy (a7)Sar;(f) by Lemma 5.1,
and H| has a signed circuit double cover F; by Lemma 4.3.

Since Enx(M{) = En(H) — {e} and Sy (f) 2 Su(f) for any f € Enx(Mj),

UrenmSu(f) € Sule) U (Urery () Su(f))-
By Claim 5.2, H has a signed circuit C containing all edges of Sy (e), and so F = FLU{C}
is a desired signed circuit {0, 1, 2, 3}-cover of H, a contradiction. This completes the proof
of the lemma. 0O

By the definition of the switching operations, we have the following observation.

Observation 5.3. Let G be a signed graph. Then |Ex(G)| = en(G) if and only if for every
edge cut T of G,

T
Ev@)nr < 1L

We now prove Lemma 3.2.
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Proof of Lemma 3.2. Let G be an s-bridgeless signed graph with |En(G)| = en(G).
Without loss of generality, we further assume that G is connected. Since G is s-bridgeless,
|En(G)| # 1. If |[EN(G)| = 0, then G is a 2-edge-connected unsigned graph. The lemma
is trivial, and thus assume that |[En(G)| > 2.

Let

G1 =G — B(G) — (Ueepy(@)Sale))-

Then G contains no negative edges of G since Enx(G) C Ueep, (a)Sa(e) by the definition
of Sg(e).

Moreover, we claim that G is bridgeless. Let G = G—B(G) and G = G} — En(G).
Then G is bridgeless. Note that by Observation 5.3, B(G)NEN(G) = 0. Thus Ex(G)) =
En(G). Therefore by the definition of GY, f is a bridge of GY if and only if there is an
edge-cut S of G} (and of G too) containing f such that S\ {f} € En(G). On the
other hand, if f € Sg(e) for some e € En(G), then f is a bridge of GY. Thus by
Observation 5.3, f is a bridge of GY if and only if f € Sg(e) for some e € En(G). This
implies G; = G — B(GY) and thus is bridgeless.

To construct G, let H =T + En(G), where T is a spanning tree of G — Enx(G) (the
existence of T' is guaranteed by Observation 5.3). Note that we have the following simple

facts:
(1) En(G) = En(H);
(2) By(G) € By(H);
(3) BJ(G) C By(H),
(4) Sg(e) C Sp(e) for each e € En(G).

By Lemma 5.2, H has a signed circuit {0, 1,2, 3}-cover F» such that each edge of
Bs(H)U (Uee gy (m)SH(€)) (2 Bs(G) U (Ueepy (c)Sale))) is covered by F, at least once.
Let G2 = GUcer, E(C)]. Since G is s-bridgeless, B4(G) = B(G), and so E(G) =
E(G1) U E(G2). It is obvious that G2 — En(G) is acyclic and F» is a desired signed
circuit {1,2,3}-cover of Gs.

In particular, if G is g-bridgeless with even negativeness, then By(G) = B(G) and
by Lemma 5.1, H has a generalized barbell, denoted by G2, containing all edges of
By(H)U(Useny (1 S11(€)) (2 By(G)U(Usey () Ss(e))). Thus B(G) = E(Gh) U E(Ga),
G2 — En(G) is acyclic and by Lemma 4.3, G5 has a signed circuit double cover. This
proves Lemma 3.2. O

6. Proof of Theorem 3.1

In this section, we complete the proof of Theorems 3.1 by applying Lemma 3.2. Let
G be an s-bridgeless signed graph with ex(G) > 0. We only need to consider the case
|En(G)| = en(G) since the existence and the length of a signed circuit cover are two
invariants under the switching operations.
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Since G is s-bridgeless and en(G) > 0, we have that |[En(G)| = en(G) > 2. If G
contains positive loops, then we may consider the subgraph obtained from G by deleting
all positive loops. Thus we further assume that G' contains no positive loops.

By Lemma 3.2, G has a bridgeless unsigned subgraph G; and a signed subgraph Gs
such that E(G1) U E(G2) = E(G), G2 — Ex(G) is acyclic and G2 has a signed circuit
{1,2,--- , k}-cover Fy, where k = 2 if G is g-bridgeless with even negativeness and k = 3
otherwise.

Note that E(G1) C G— En(G) and thus E(G1)NE(G2) C E(G2) — En(G) is acyclic.
Hence we have the following two inequalities.

[E(G1)]+ |E(G2)| = [E(G1) U E(Ga)| + |E(G1) N E(G2)| < [E(G)]+ [V(G)] -1
(1)
[E(G2)] < (IV(G)] = 1) + [Ex(G)] = V(G)] =1+ en(G). (2)

Let F4 be a subset of Fa such that FJ is still a signed circuit cover of G5 and the
number of signed circuits of F7 is as small as possible. We have the following claim.

Claim 6.1. ((F3) < k|E(G2)| — 2(k — 1).

Proof of Claim 6.1. Let ¢t be the number of signed circuits in F3. Since |En(G2)| =
|[En(G)| > 2, t > 1. By the choice of F, every signed circuit in F} has an edge which
is covered by JF} exactly once, and so G5 has at least ¢ edges which are covered by Fj
exactly once. Note that k£ = 2 or 3, and each signed circuit in F3 is of length at least 2
since G has no positive loops. If t = 1, then G is the unique signed circuit in F}, and
so {(F}) = |E(G2)| < k|E(G2)| — 2(k —1). If t > 2, then £(F3) < k(|E(G2)| —t) +t =
EIE(Go)| — (k— 1t <E|E(G2)|—2(k—-1). O

Since (7 is bridgeless and unsigned, by Theorems 3.3 and 3.4, G; has a circuit cover
JF1 with total length

(F) < minf 2 BG)] [BG] + V(G| - 1) 3)

Therefore, F = F1UF} is a signed circuit cover of G and by Claim 6.1 and Equation (3)
together with Equations (1) and (2), the total length of F satisfies that

UF) = L(F1) + U(F3)
< min{glE(Gl)L [E(G)]+ [V(G1)| = 1} + K[E(Ga)| = 2(k = 1)

< min{ 2 (1B(G)] + V(@) ~ 1) + (k= 2)(V(G)] 1+ en(@)) — 2(k — 1),
(@) +V(G)] = 1)+ (V(G)] - 1)
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+ (k=D(IV(G) - 1+ en(G)) —2(k — 1)}
= min(2|B(@)| + KIV(G)| + (5~ D)ex(C) ~ (35 ~2),
[E(G)] + (k+ DIV(G)| + (k = Den (G) = Bk = D}

This completes the proof of Theorem 3.1.
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