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A shortest circuit cover F of a bridgeless graph G is a family of 
circuits that covers every edge of G and is of minimum total 
length. The total length of a shortest circuit cover F of G
is denoted by SCC(G). For ordinary graphs (graphs without 
sign), the subject of shortest circuit cover is closely related to 
some mainstream areas, such as, Tutte’s integer flow theory, 
circuit double cover conjecture, Fulkerson conjecture, and 
others. For signed graphs G, it is proved recently by Máčajová, 
Raspaud, Rollová and Škoviera that SCC(G) ≤ 11|E| if G is 
s-bridgeless, and SCC(G) ≤ 9|E| if G is 2-edge-connected. In 
this paper this result is improved as follows,

SCC(G) ≤ |E| + 3|V | + z

where z = min{ 2
3 |E| + 4

3 εN − 7, |V | + 2εN − 8} and εN is 
the negativeness of G. The above upper bound can be further 
reduced if G is 2-edge-connected with even negativeness.
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1. Introduction

For terminology and notations not defined here we follow [4,6,21]. Graphs considered 
in this paper may have multiple edges or loops. A circuit cover of a bridgeless graph G
is a family C of circuits such that each edge of G belongs to at least one member of C. 
The length of C is the total length of circuits in C. A minimum length of a circuit cover 
of G is denoted by SCC(G).

For ordinary graphs (graphs without sign), the subject of shortest circuit cover is not 
only a discrete optimization problem [10], but also closely related to some mainstream 
areas in graph theory, such as, Tutte’s integer flow theory [1,3,7,11,14,18,22], circuit dou-
ble cover conjecture [15,16], Fulkerson conjecture [8], snarks and graph minors [2,12]. It 
is proved by Bermond, Jackson and Jaeger [3] that every graph admitting a nowhere-
zero 4-flow has SCC(G) ≤ 4|E|

3 . By applying Seymour’s 6-flow theorem [20] or Jaeger’s 
8-flow theorem [13], Alon and Tarsi [1], and Bermond, Jackson and Jaeger [3] proved 
that every bridgeless graph G has SCC(G) ≤ 25|E|

15 . One of the most famous open prob-
lems in this area was proposed by Alon and Tarsi [1], that every bridgeless graph G has 
SCC(G) ≤ 21|E|

15 . It is proved by Jamshy and Tarsi [15] that the above conjecture im-
plies the circuit double cover conjecture. The relations between SCC(G) and Fulkerson 
conjecture, Tutte’s 3-flow and 5-flow conjectures were studied by Fan, Jamshy, Raspaud 
and Tarsi in [8,14,7].

For signed graphs, the following upper bounds for shortest circuit covers were recently 
estimated in [17].

Theorem 1.1 (Máčajová, Raspaud, Rollová and Škoviera [17]). Let G be an s-bridgeless 
signed graph.

(1) In general, SCC(G) ≤ 11|E|.
(2) If G is 2-edge-connected, then SCC(G) ≤ 9|E|.

In this paper, Theorem 1.1 is improved as follows.

Theorem 1.2. Let G be an s-bridgeless signed graph with negativeness εN > 0.
(1) In general,

SCC(G) ≤ |E| + 3|V | + z1,

where z1 = min{ 2
3 |E| + 4

3εN − 7, |V | + 2εN − 8}.
(2) If G is 2-edge-connected and εN is even, then

SCC(G) ≤ |E| + 2|V | + z2,

where z2 = min{ 2 |E| + 1 εN − 4, |V | + εN − 5}.
3 3
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Theorem 1.2 is an analog of a result (Theorem 3.4) by Fan [9] that solves a long 
standing open problem by Itai and Rodeh [10].

Note that, in a connected s-bridgeless signed graph G with |EN (G)| = εN , G −EN (G)
is a connected unsigned graph (by Lemma 5.3), and hence |E| ≥ εN + |V | − 1. Therefore 
Theorem 1.2 implies that if G is an s-bridgeless signed graph with εN > 0, then

SCC(G) ≤ 14
3 |E| − 5

3εN − 4.

This is an analog of a result (Theorem 3.3) by Alon and Tarsi [1] and by Bermond, 
Jackson and Jaeger [3].

2. Notation and terminology for signed graphs

A signed graph is a graph G with a mapping σ : E(G) → {1, −1}. An edge e ∈ E(G) is 
positive if σ(e) = 1 and negative if σ(e) = −1. The mapping σ, called signature, is usually 
implicit in the notation of a signed graph and will be specified only when needed. For a 
subgraph H of G, we use EN (H) to denote the set of all negative edges in H. A circuit 
C of G is balanced if |EN (C)| ≡ 0 (mod 2), and unbalanced otherwise. A signed circuit
of G is a subgraph of one of the following three types:

(1) a balanced circuit;
(2) a short barbell, the union of two unbalanced circuits that meet at a single vertex;
(3) a long barbell, the union of two disjoint unbalanced circuits with a path that meets 

the circuits only at its ends.

A barbell is either a short barbell or a long barbell. The length of a signed circuit C is 
the number of edges in C.

Definition 2.1. Let F be a family of signed circuits of a signed graph G and K be a set 
of some nonnegative integers.

• F is called a signed circuit cover (resp., signed circuit K-cover) of G if each edge e
of G belongs to ke members of F such that ke ≥ 1 (resp., ke ∈ K). In particular, 
a signed circuit {2}-cover is also called a signed circuit double cover.

• The length, denoted by �(F), of F is the total length of signed circuits in F .
• F is called a shortest circuit cover of G if it is a signed circuit cover of G with 

minimum length. The length of a shortest circuit cover of G is denoted by SCC(G).

Clearly, the signed circuit cover of signed graphs is a generalization of the classic 
circuit cover of graphs. By the definition of signed circuit cover, a signed graph has a 
signed circuit cover if and only if every edge of the signed graph is contained in a signed 
circuit. Such signed graph is called s-bridgeless.
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In a signed graph, switching at a vertex u means reversing the signs of all edges 
incident with u. It is obvious (see [19]) that the switching operation preserves signed 
circuits and thus the existence and the length of a signed circuit cover of a signed graph 
are two invariants under the switching operation.

Definition 2.2. Let G be a signed graph, and X be the collection of signed graphs obtained 
from G by a sequence of switching operations. The negativeness of G is

εN (G) = min{|EN (G′)| : ∀G′ ∈ X }.

Definition 2.3. Let b be a bridge of a connected signed graph G and Q1, Q2 be the two 
components of G − b. The bridge b is called a g-bridge of G if εN (Q1) ≡ εN (Q2) ≡ 0
(mod 2).

Note that a signed graph G is g-bridgeless if and only if every component of G contains 
no g-bridges, and is s-bridgeless if and only if every component Q of G satisfies εN (Q) �= 1
and εN (Q′) > 0 for each bridge b of Q and each component Q′ of Q − b (the “only if” 
part is proved in [5] and the “if” part is easy).

3. Lemmas and outline of the proofs

Since the concept of g-bridge is introduced in Section 2, the part (2) of Theorem 1.2
can be revised as follows in a slightly stronger version.

Theorem 3.1. Let G be an s-bridgeless signed graph with negativeness εN > 0.
(1) In general,

SCC(G) ≤ |E| + 3|V | + z1

where z1 = min{ 2
3 |E| + 4

3εN − 7, |V | + 2εN − 8}.
(2) If G is g-bridgeless and εN is even, then

SCC(G) ≤ |E| + 2|V | + z2

where z2 = min{ 2
3 |E| + 1

3εN − 4, |V | + εN − 5}.

The following is the major lemma for the proof of Theorem 3.1.

Lemma 3.2. Let G be an s-bridgeless signed graph with |EN (G)| = εN (G). Then G has a 
pair of subgraphs {G1, G2} such that

(1) E(G1) ∪ E(G2) = E(G),
(2) G1 contains no negative edge and is bridgeless, and
(3) G2 −EN (G) is acyclic and G2 has a signed circuit {1, 2, · · · , k}-cover, where k = 2

if G is g-bridgeless with an even negativeness, and k = 3 otherwise.
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Lemma 3.2 will be proved in Section 5 after some preparations in Section 4.
The main result, Theorem 3.1, will be proved as a corollary of Lemma 3.2 in Section 6. 

The following is the outline of the proof. By (1) of Lemma 3.2,

SCC(G) ≤ SCC(G1) + SCC(G2).

Lemma 3.2-(3) provides an estimation for SCC(G2). For the bridgeless unsigned sub-
graph G1, we use the following classical results in graph theory.

Theorem 3.3 (Alon and Tarsi [1], Bermond, Jackson and Jaeger [3]). Let G be a 2-edge-
connected graph. Then SCC(G) ≤ 5

3 |E|.

Theorem 3.4 (Fan [9]). Let G be a 2-edge-connected graph. Then SCC(G) ≤ |E| +|V | −1.

4. Signed circuit covers of generalized barbells

In this section, we study signed circuit covers of generalized barbells which play an 
important role in the proof of Lemma 3.2.

A graph is eulerian if it is connected and each vertex is of even degree. For a vertex 
subset U of a graph G, let δG(U) denote the set of all edges between U and V (G) − U . 
In a graph, a k-vertex is a vertex of degree k.

Definition 4.1. A signed graph H is called a generalized barbell if it contains a set of 
vertex-disjoint eulerian subgraphs B = {B1, · · · , Bt} such that

(1) The contracted graph X = H/(∪t
i=1Bi) is acyclic and

(2) For each vertex x of X (if x is a contracted vertex, then let Bx be the corresponding 
eulerian subgraph of B; otherwise, simply consider E(Bx) as an empty set),

|EN (Bx)| ≡ |δH(V (Bx))| (mod 2).

We first study signed eulerian graphs with even number of negative edges which is a 
special case of generalized barbells.

Let T be a closed eulerian trail of a signed eulerian graph. For any two vertices u and 
v of T , we use uTv to denote the subsequence of T starting with u and ending with v in 
the cyclic ordering induced by T .

Lemma 4.2. Every signed eulerian graph with even number of negative edges has a signed 
circuit double cover.

Proof. Let B be a counterexample to Lemma 4.2 with |E(B)| minimum. Then the max-
imum degree of B is at least 4 otherwise B is a balanced circuit. By the minimality 
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of B, B cannot be decomposed into two signed eulerian subgraphs, each contains an 
even number of negative edges. Thus we have the following observation

Observation. For any eulerian trail T = u1e1u2e2 · · · umemu1 of B where m = |E(G)|
and for any two integers i, j ∈ [1, m] with i < j and ui = uj , uiTuj is a signed eulerian 
graph with odd number of negative edges.

Pick an arbitrary eulerian trail T = u1e1u2e2 · · · umemu1. We consider the following 
two cases.

Case 1. For any two integers i �= j ∈ [1, m], if ui = uj , then |j − i| ≡ 1 (mod m).
In this case, the resulting graph obtained from B by deleting all loops is either a single 

vertex or a circuit. Since B has an even number of negative edges, one can check that B
has a signed circuit double cover, a contradiction.

Case 2. There are two integers i, j ∈ [1, m] such that 2 ≤ j − i ≤ m − 2 and ui = uj .
Let B1 = uiTuj and B2 = ujTui. Then, by Observation, both B1 and B2 are signed 

eulerian subgraphs of B with B = B1 ∪ B2 such that |E(Bk)| ≥ 2 and |EN (Bk)| ≡ 1
(mod 2) for each k = 1, 2.

If V (B1) ∩ V (B2) = {ui}, then for each k = 1, 2, let B′
k be the resulting graph 

obtained from Bk by adding a negative loop e′
k at ui. Clearly, B′

k remains eulerian, 
|E(B′

k)| < |E(B)|, and |EN (B′
k)| is even. By the minimality of B, B′

k has a signed circuit 
double cover Fk. Since e′

k is a negative loop of B′
k, it is covered by two barbells, say C1

k

and C2
k , in Fk. Let C� = ∪2

k=1(C�
k − e′

k) for each � = 1, 2. Since V (B1) ∩ V (B2) = {ui}, 
both C1 and C2 are two barbells of B, and so B has a signed circuit double cover 
∪2

k=1(Fk − {C1
k , C2

k}) ∪ {C1, C2}, a contradiction.
If V (B1) ∩ V (B2) �= {ui}, then there are two integers s and t such that s ∈ [i, j], 

t /∈ [i, j], and us = ut. By Observation, |EN (usTut)| ≡ 1 (mod 2). Let T ∗ be a 
new closed eulerian trail of B obtained from T by reversing the subsequence uiTuj

in T . Then E(usT ∗ut) is the disjoint union of E(uiTus) and E(ujTut) and thus 
EN (usT ∗ut) is the disjoint union of EN (uiTus) and EN (ujTut). Since |EN (uiTuj)| ≡ 1
(mod 2) and |EN (usTut))| ≡ 1 (mod 2), |EN (uiTus)| ≡ |EN (ujTut)| (mod 2). There-
fore |EN (usT ∗ut)| ≡ 0 (mod 2), a contradiction to Observation. This completes the 
proof of the lemma. �

The following lemma is a generalization of Lemma 4.2.

Lemma 4.3. Every generalized barbell has a signed circuit double cover.

Proof. Let H be a generalized barbell. Let {B1, · · · , Bt} be a set of disjoint eulerian 
subgraphs of H and X = H/(∪t

i=1Bi) as described in Definition 4.1. We will prove by 
induction on |E(H) − ∪t

i=1E(Bi)|.
If E(H) − ∪t

i=1E(Bi) = ∅, then by the definition of generalized barbell, each compo-
nent of H is a signed eulerian graph with an even number of negative edges. Thus H has 
a signed circuit double cover by Lemma 4.2.
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Now assume that E(H) − ∪t
i=1E(Bi) �= ∅. Let uv ∈ E(H) − ∪t

i=1E(Bi) and H ′ be 
the new signed graph obtained from H by deleting uv and adding negative loops eu

and ev at u and v, respectively. By the definition, H ′ remains as a generalized barbell. 
Since X is acyclic, H ′ has more components than H, and thus by induction to each 
component of H ′, H ′ has a signed circuit double cover F ′. Let {C1

u, C2
u} and {C1

v , C2
v }

be the sets of barbells in F ′ containing eu and ev, respectively. Since eu and ev belong 
to two distinct components of H ′, Ci = (Ci

u − eu) ∪ (Ci
v − ev) + uv (i = 1, 2) is a barbell 

in H. Hence

(F ′ − {C1
u, C2

u, C1
v , C2

v }) ∪ {C1, C2}

is a signed circuit double cover of H. �
Lemma 4.4. Let H be a generalized barbell with a set of vertex-disjoint eulerian subgraphs 
B = {B1, · · · , Bt}, and assume that {B1, · · · , Bs} (2 ≤ s ≤ t) is the set of eulerian 
subgraphs corresponding to the 1-vertices of the contracted graph X = H/(∪t

i=1Bi). If 
each Bi (1 ≤ i ≤ t) is a circuit, then there is a family of signed circuits F in H such 
that each edge e of H belongs to

(a) exactly one member of F if e ∈ ∪s
i=1E(Bi),

(b) one or two members of F if e ∈ ∪t
i=s+1E(Bt), and

(c) at most one member of F if e ∈ E(H) − ∪t
i=1E(Bi).

Proof. Assume that H is embedded in the plane and let X∗ be a graph obtained from 
X by first clockwise splitting each vertex x with even degree into 1

2dX(x) 2-vertices, 
and replacing each maximal subdivided edge with a single edge. Then each vertex of 
X∗ is of odd degree. By the definition of generalized barbell, X∗ is a forest and V (X∗)
corresponds to the set of unbalanced circuits of B. Thus X∗ has a spanning subgraph 
satisfying that each component is a star graph with at least two vertices. Let K1,ri

(i = 1, · · · , �) be all such star subgraphs.
Note that V (X∗) = ∪�

i=1V (K1,ri
) corresponds to the set of unbalanced circuits of B. 

For 1 ≤ i ≤ �, one can check that the subgraph of H corresponding to K1,ri
has a 

signed circuit cover Fi such that each edge of the unbalanced circuits corresponding to 
1-vertices of K1,ri

is covered by Fi exactly once and each edge of the unbalanced circuit 
corresponding to the unique vertex of K1,ri

with degree ri ≥ 2 is covered by Fi once or 
twice. Therefore the union of ∪�

i=1Fi together with the set of balanced circuits of B is a 
desired family F of signed circuits of H. �

Given a family of sets {A1, · · · , At}, their symmetric difference, denoted by Δt
i=1Ai, 

is defined as the set consisting of elements contained in an odd number of Ai’s.
The following result states that a generalized barbell has a signed circuit {1, 2}-cover 

with some edges covered only once.
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Lemma 4.5. For each generalized barbell, it either

(i) can be decomposed into balanced circuits, or
(ii) has a signed circuit {1, 2}-cover F such that there are two edge-disjoint unbalanced 

circuits C1 and C2 whose edges are covered by F exactly once.

Proof. Let H be a counterexample to Lemma 4.5 with |E(H)| minimum. Thus H is 
connected. Otherwise each component of H satisfies either (i) or (ii). This implies that 
H satisfies either (i) or (ii), a contradiction to the choice of H.

Claim 4.1. H is eulerian and therefore contains an even number of negative edges.

Proof of Claim 4.1. By the definition of generalized barbell, it is sufficient to show that 
H is bridgeless. Suppose to the contrary that H has a bridge. By Lemma 4.3, H has a 
signed circuit double cover F ′. Since H has bridges, F ′ contains a barbell C with two 
unbalanced circuits C1 and C2. Then F = F ′ − {C} is a signed circuit {1, 2}-cover of H
and covers C1 and C2 exactly once, a contradiction. This proves the claim. �

Since H is eulerian by Claim 4.1, H has a decomposition

C = {C1, · · · , Ch, Ch+1, · · · , Ch+m, Ch+m+1, · · · , Ch+m+n},

where h, m and n are three nonnegative integers, and each Ci is an unbalanced circuit 
if 1 ≤ i ≤ h, a short barbell if h + 1 ≤ i ≤ h + m, and a balanced circuit otherwise. We 
choose such a decomposition that

(a) h + 2m + n is as large as possible,
(b) subject to (a), n is as large as possible, and
(c) subject to (a) and (b), m is as large as possible.

Claim 4.2. h ≥ 2 is even and |V (Ci) ∩ V (Cj)| = 0 for 1 ≤ i < j ≤ h.

Proof of Claim 4.2. If h = 0, then C satisfies (i) if m = 0 and the multiset C ∪ (C \ {C1})
satisfies (ii) otherwise. Thus h > 0. Since |EN (H)| =

∑h+m+n
i=1 |EN (Ci)| is even and 

|EN (Ci)| is even for h + 1 ≤ i ≤ h + m + n, we have 
∑h

i=1 |EN (Ci)| is even. But each 
|EN (Ci)| is odd for 1 ≤ i ≤ h, and so h is even and h ≥ 2.

Let Ci and Cj be two circuits in C with 1 ≤ i < j ≤ h. If |V (Ci) ∩ V (Cj)| ≥ 3, 
then Ci ∪ Cj can be decomposed into three or more circuits (balanced or unbalanced), 
a contradiction to (a). So |V (Ci) ∩V (Cj)| ≤ 2. If |V (Ci) ∩V (Cj)| = 2, then Ci ∪Cj has a 
decomposition into two balanced circuits since both Ci and Cj are unbalanced circuits, 
which contradicts (b). If |V (Ci) ∩ V (Cj)| = 1, then Ci ∪ Cj is a short barbell, which 
contradicts (c). So the claim is true. �
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Let H ′ = H/(∪h
i=1Ci) and for 1 ≤ i ≤ h, let ci be the vertex of H ′ corresponding 

to Ci. Let T ′ be a spanning tree of H ′ since H is connected. By Claim 4.2, h ≥ 2 is even. 
Let Pj (1 ≤ j ≤ h

2 ) be a path in T ′ from c2j−1 to c2j and let

F ′ = T ′[Δ
h
2
j=1E(Pj)]

Then F ′ is a forest and {c1, · · · , ch} is the set of vertices of F ′ with odd degree. By the 
definition, the subgraph of H corresponding to F ′ is a generalized barbell satisfying the 
conditions in Lemma 4.4, and thus, by Lemma 4.4, it has a family F∗ of signed circuits 
such that F = F∗∪{Ch+1, · · · , Ch+m+n} is a signed circuit {1, 2}-cover of H and at least 
two unbalanced circuits in {C1, · · · , Ch} are covered by F exactly once, a contradiction. 
This completes the proof of Lemma 4.5. �
5. Proof of Lemma 3.2

In this section, we complete the proof of Lemma 3.2. For a signed graph G, we use 
B(G) to denote the set of bridges of G and for each e ∈ EN (G), define

SG(e) = {e} ∪ {f : {e, f} is a 2-edge-cut of G}.

Let Bg(G) be the subset of B(G) such that, for each b ∈ Bg(G), at least one component 
of G − b contains an odd number of negative edges, and let Bs(G) be the subset of B(G)
such that, for each b ∈ Bs(G), each component of G − b contains negative edges. We 
need the following lemmas.

Lemma 5.1. Let H be a signed graph satisfying that |EN(H)| ≥ 2 and H − EN (H) is a 
spanning tree of H. If |EN (H)| is even, then H has a generalized barbell containing all 
edges of Bg(H) ∪ (∪e∈EN (H)SH(e)).

Proof. Let T = H − EN (H). Then E(H) is the disjoint union of E(T ) and EN (H). For 
each e ∈ EN (H), let Ce be the unique circuit of T + e.

Let H ′ = �e∈EN (H)Ce and OH′ be the set of all components of H ′ containing an odd 
number of negative edges. Since |EN (H)| is even, so is |OH′ |. Let {v1, v2, · · · , v2t} be 
the set of vertices of the contracted graph H/H ′ corresponding to OH′ . For i = 1, · · · , t, 
there is a shortest path Pi in H/H ′ from v2i−1 to v2i. Note that EN (H) ⊆ E(H ′) and 
hence E(Pi) ⊆ E(H/H ′) ⊆ E(T ). Since T is a tree of H, H ′′ = H ′ ∪ (�t

i=1Pi) is a 
generalized barbell.

For every bridge b ∈ Bg(H), each component of H − b contains an odd number 
of negative edges since |EN (H)| is even, and thus contains an odd number of members 
of OH′ . This fact implies that b must belong to an odd number of members of {P1, · · · , Pt}
and thus b ∈ E(H ′′). Hence Bg(H) ⊆ E(H ′′). For every e ∈ EN (H), it is obvious that 
SH(e) ⊆ E(Ce) and SH(e) ∩ E(Cf ) = ∅ for any f ∈ EN (H) − {e}, which implies that 
SH(e) ⊆ E(H ′). Therefore, ∪e∈EN (H)SH(e) ⊆ E(H ′) ⊆ E(H ′′). �
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Lemma 5.2. Let H be a signed graph satisfying that |EN(H)| ≥ 2 and H − EN (H) is 
a spanning tree of H. Then H has a signed circuit {0, 1, 2, 3}-cover such that each edge 
of Bs(H) ∪ (∪e∈EN (H)SH(e)) is covered at least once and each negative loop (if any) is 
covered precisely twice.

Proof. Let H be a counterexample with |E(H)| minimum.

Claim 5.1. B(H) = ∅.

Proof of Claim 5.1. Suppose to the contrary that B(H) �= ∅. Let b = u1u2 ∈ B(H)
and Q1 and Q2 be the two components of H − b such that ui ∈ Qi for i = 1, 2. Since 
H − EN (H) is connected, we have that b /∈ EN (H).

If b ∈ B(H) −Bs(H), then there is one member in {Q1, Q2}, without loss of generality, 
say Q1, satisfying that Bs(Q1) = Bs(H) and EN (Q1) = EN (H). By the minimality of H, 
Q1 (and thus H) has a desired signed circuit {0, 1, 2, 3}-cover, a contradiction.

If b ∈ Bs(H), then |EN (Q1)| ≥ 1 and |EN (Q2)| ≥ 1. For each i = 1, 2, let Q∗
i

be the graph obtained from Qi by adding a negative loop ei at ui. It is easy to see 
that Bs(Q∗

1) ∪ Bs(Q∗
2) = Bs(H) − {b} and ∪2

i=1(EN (Q∗
i ) − {ei}) = EN (H). By the 

minimality of H, each Q∗
i has a signed circuit {0, 1, 2, 3}-cover F∗

i which covers each edge 
of Bs(Q∗

i ) ∪ EN (Q∗
i ) at least once and covers each negative loop of Q∗

i exactly twice. Let 
C1

i and C2
i be the two signed circuits in F∗

i containing ei. Since ei is a negative loop, 
Cj

i (j = 1, 2) is a barbell of Q∗
i , and so Cj = (Cj

1 − e1) ∪ (Cj
2 − e2) + b is also a barbell 

of H. Therefore, F = (F∗
1 − {C1

1 , C2
1 }) ∪ (F∗

2 − {C1
2 , C2

2 }) ∪ {C1, C2} is a desired signed 
circuit {0, 1, 2, 3}-cover of H, a contradiction. �

Claim 5.1 implies that H is 2-edge-connected. So Lemma 5.2 follows from Lem-
mas 5.1 and 4.3 if |EN (H)| is even. Since |EN (H)| ≥ 2, in the following, we assume 
that |EN (H)| ≥ 3 is odd.

Let T = H − EN (H). Note that T is a spanning tree of H and E(H) is the disjoint 
union of E(T ) and EN (H). For each e ∈ EN (H), let Ce be the unique circuit of T + e.

Claim 5.2. For every e ∈ EN (H), H has a signed circuit containing all edges of SH(e).

Proof of Claim 5.2. Let e ∈ EN (H) and f ∈ EN (H) − {e}. Note that SH(e) ⊆ E(Ce), 
SH(f) ⊆ E(Cf ) and SH(e) ∩ SH(f) = ∅ (it can be checked easily since T = H − EN (H)
is a spanning tree of H). If |V (Ce) ∩ V (Cf )| ≤ 1, then there is a shortest path P in 
T joining Ce to Cf (note that P is a single vertex if |V (Ce) ∩ V (Cf )| = 1), and so 
Ce ∪Cf ∪P is a desired signed circuit. If |V (Ce) ∩V (Cf )| ≥ 2, since T is a spanning tree 
of H, then Ce ∩ Cf is a path containing no edges of SH(e). Thus CeΔCf is a balanced 
circuit as desired. �
Claim 5.3. Each edge e ∈ EN (H) is contained in a 2-edge-cut of H.
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Proof of Claim 5.3. Suppose to the contrary then there is a negative edge e ∈ EN (H)
such that H0 = H −e remains 2-edge-connected. If H contains negative loops, we choose 
e which is a negative loop.

Note that H0 − EN (H0) = H − EN (H) is a spanning tree of H (and thus H0). 
Since H0 is 2-edge-connected and |EN (H0)| = |EN (H) − {e}| ≥ 2 is even, Lemma 5.1
implies that H0 has a generalized barbell H1 containing all edges of ∪f∈EN (H0)SH0(f). 
Let F1 be a signed circuit double cover of H1 by Lemma 4.3. Note that SH(e) = {e}
and SH(f) ⊆ SH0(f) for any f ∈ EN (H0) = EN (H) − {e}. Thus ∪f∈EN (G)SH(f) ⊆
{e} ∪ (∪f∈EN (H0)SH0(f)).

If e is not a negative loop of H, then H has no loop, but has a signed circuit C

containing e by Claim 5.2. Thus F = F1 ∪ {C} is a signed circuit {0, 1, 2, 3}-cover of H
covering all edges of ∪f∈EN (H)SH(f), a contradiction.

Assume that e is a negative loop of H and let u denote the unique endvertex of e.
If F1 contains a barbell C, then let C1 and C2 be the two unbalanced circuits of C. 

Since H is 2-edge-connected, there are two edge-disjoint paths in H from u to C1 and C2, 
denoted by P1 and P2, respectively. Then C ′

i = Ci ∪ Pi + e0 for i = 1, 2 is a barbell of H. 
Since F1 is a signed circuit double cover of H1, F = (F1 − C) ∪ {C ′

1, C ′
2} is a desired 

signed circuit {0, 1, 2, 3}-cover of H, a contradiction.
If F1 contains no barbells, then e is the unique loop of H. Note that H1 is a generalized 

barbell. By Lemma 4.5, H1 has either a decomposition F ′
1 into balanced circuits or 

a signed circuit {1, 2}-cover F ′′
1 and two edge-disjoint unbalanced circuit C1 and C2

such that each edge in E(C1) ∪ E(C2) is covered by F ′′
1 exactly once. In the former 

case, let C ′ be a signed circuit containing e by Claim 5.2. Then the family F = F ′
1 ∪

{C ′, C ′} is a desired signed circuit {0, 1, 2, 3}-cover of H. In the latter case, since H is 
2-edge-connected, there are two edge-disjoint paths of H from u to C1 and C2, denoted by 
P1 and P2, respectively. Similar to the case when F1 contains a barbell, we can construct 
a desired signed circuit {0, 1, 2, 3}-cover of H, and thus obtain a contradiction. �

By Claim 5.3, H contains no negative loops and |SH(e)| ≥ 2 for each e ∈ EN (H). For 
every e ∈ EN (G), let Me denote the set of all components of the subgraph H − SH(e).

Claim 5.4. For two distinct e, e′ ∈ EN (H), SH(e′) is contained in exactly one member 
of Me.

Proof of Claim 5.4. Note that each member of Me is 2-edge-connected, and SH(e) ∩
SH(e′) = ∅ since H −EN (H) is a spanning tree of H. Then SH(e′) ⊆ ∪M∈Me

E(M). Let 
e∗ be an arbitrary edge in SH(e′) −{e′}. If there are two distinct members Mi and Mj of 
Me such that e′ ∈ E(Mi) and e∗ ∈ E(Mj), then both Mi −e′ and Mj −e∗ are connected, 
and so H − {e′, e∗} is also connected. This contradicts that {e′, e∗} is a 2-edge-cut of H. 
So e′ and e∗ are contained in a common member of Me. The arbitrariness of e∗ implies 
that the claim holds. �
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For every e ∈ EN (H), let me = max{|EN (H) ∩ E(M)| : M ∈ Me}. It is obvious that 
me ≤ |EN (H)| − 1 since e /∈ ∪M∈Me

E(M).

Claim 5.5. max{me : e ∈ EN (H)} = |EN (H)| − 1.

Proof of Claim 5.5. Let e0 ∈ EN (H) and M01 ∈ Me0 such that me0 = |EN (H) ∩
E(M01)| = max{me : e ∈ EN (H)}. Suppose that me0 < |EN (H)| − 1. Then there is a 
member M02 ∈ Me0 − {M01} such that M02 contains a negative edge e1 of H.

By Claim 5.4, SH(e1) ⊆ E(M02) and there is a member M11 ∈ Me1 such that 
SH(e0) ⊆ E(M11). So

{e0} ∪ E(M01) ⊆ SH(e0) ∪ (∪M∈Me0 −{M02}E(M)) ⊆ E(M11),

which implies that

me1 ≥ |EN (H) ∩ E(M11)| ≥ 1 + |EN (H) ∩ E(M01)| = 1 + me0 .

This contradicts the choice of e0, and so the claim holds. �
By Claim 5.5, there is an edge e ∈ EN (H) such that EN (H) − {e} is contained in 

exactly one member of Me. Let Me = {M ′
1, · · · , M ′

s}. Without loss of generality, assume 
that EN (H) − {e} ⊆ E(M ′

1) and all edges of M ′
i (i = 2, · · · , s) are positive. Since H is 

2-edge-connected, it follows from the definition of SH(e) that H/ ∪s
i=1 M ′

i is a circuit, 
and each M ′

i is also 2-edge-connected. Since |EN (M ′
1)| = |EN (H)| − 1 ≥ 2 is even, M ′

1
has a generalized barbell H ′

1 containing all edges of ∪f∈EN (M ′
1)SM ′

1
(f) by Lemma 5.1, 

and H ′
1 has a signed circuit double cover F1 by Lemma 4.3.

Since EN (M ′
1) = EN (H) − {e} and SM ′

1
(f) ⊇ SH(f) for any f ∈ EN (M ′

1),

∪f∈EN (H)SH(f) ⊆ SH(e) ∪ (∪f∈EN (M ′
1)SM ′

1
(f)).

By Claim 5.2, H has a signed circuit C containing all edges of SH(e), and so F = F1∪{C}
is a desired signed circuit {0, 1, 2, 3}-cover of H, a contradiction. This completes the proof 
of the lemma. �

By the definition of the switching operations, we have the following observation.

Observation 5.3. Let G be a signed graph. Then |EN (G)| = εN (G) if and only if for every 
edge cut T of G,

|EN (G) ∩ T | ≤ |T |
2 .

We now prove Lemma 3.2.



176 Y. Lu et al. / Journal of Combinatorial Theory, Series B 134 (2019) 164–178
Proof of Lemma 3.2. Let G be an s-bridgeless signed graph with |EN (G)| = εN (G). 
Without loss of generality, we further assume that G is connected. Since G is s-bridgeless, 
|EN (G)| �= 1. If |EN (G)| = 0, then G is a 2-edge-connected unsigned graph. The lemma 
is trivial, and thus assume that |EN (G)| ≥ 2.

Let

G1 = G − B(G) − (∪e∈EN (G)SG(e)).

Then G1 contains no negative edges of G since EN (G) ⊆ ∪e∈EN (G)SG(e) by the definition 
of SG(e).

Moreover, we claim that G1 is bridgeless. Let G′
1 = G −B(G) and G′′

1 = G′
1 −EN (G). 

Then G′
1 is bridgeless. Note that by Observation 5.3, B(G) ∩EN (G) = ∅. Thus EN (G′

1) =
EN (G). Therefore by the definition of G′′

1 , f is a bridge of G′′
1 if and only if there is an 

edge-cut S of G′
1 (and of G too) containing f such that S \ {f} ⊆ EN (G). On the 

other hand, if f ∈ SG(e) for some e ∈ EN (G), then f is a bridge of G′′
1 . Thus by 

Observation 5.3, f is a bridge of G′′
1 if and only if f ∈ SG(e) for some e ∈ EN (G). This 

implies G1 = G′′
1 − B(G′′

1) and thus is bridgeless.
To construct G2, let H = T + EN (G), where T is a spanning tree of G − EN (G) (the 

existence of T is guaranteed by Observation 5.3). Note that we have the following simple 
facts:

(1) EN (G) = EN (H);
(2) Bg(G) ⊆ Bg(H);
(3) Bs(G) ⊆ Bs(H);
(4) SG(e) ⊆ SH(e) for each e ∈ EN (G).
By Lemma 5.2, H has a signed circuit {0, 1, 2, 3}-cover F2 such that each edge of 

Bs(H) ∪ (∪e∈EN (H)SH(e)) (⊇ Bs(G) ∪ (∪e∈EN (G)SG(e))) is covered by F2 at least once. 
Let G2 = G[∪C∈F2E(C)]. Since G is s-bridgeless, Bs(G) = B(G), and so E(G) =
E(G1) ∪ E(G2). It is obvious that G2 − EN (G) is acyclic and F2 is a desired signed 
circuit {1, 2, 3}-cover of G2.

In particular, if G is g-bridgeless with even negativeness, then Bg(G) = B(G) and 
by Lemma 5.1, H has a generalized barbell, denoted by G2, containing all edges of 
Bg(H) ∪ (∪e∈EN (H)SH(e)) (⊇ Bg(G) ∪ (∪e∈EN (G)SG(e))). Thus E(G) = E(G1) ∪E(G2), 
G2 − EN (G) is acyclic and by Lemma 4.3, G2 has a signed circuit double cover. This 
proves Lemma 3.2. �
6. Proof of Theorem 3.1

In this section, we complete the proof of Theorems 3.1 by applying Lemma 3.2. Let 
G be an s-bridgeless signed graph with εN (G) > 0. We only need to consider the case 
|EN (G)| = εN (G) since the existence and the length of a signed circuit cover are two 
invariants under the switching operations.
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Since G is s-bridgeless and εN (G) > 0, we have that |EN (G)| = εN (G) ≥ 2. If G

contains positive loops, then we may consider the subgraph obtained from G by deleting 
all positive loops. Thus we further assume that G contains no positive loops.

By Lemma 3.2, G has a bridgeless unsigned subgraph G1 and a signed subgraph G2
such that E(G1) ∪ E(G2) = E(G), G2 − EN (G) is acyclic and G2 has a signed circuit 
{1, 2, · · · , k}-cover F2, where k = 2 if G is g-bridgeless with even negativeness and k = 3
otherwise.

Note that E(G1) ⊆ G −EN (G) and thus E(G1) ∩E(G2) ⊆ E(G2) −EN (G) is acyclic. 
Hence we have the following two inequalities.

|E(G1)| + |E(G2)| = |E(G1) ∪ E(G2)| + |E(G1) ∩ E(G2)| ≤ |E(G)| + |V (G)| − 1

(1)

|E(G2)| ≤ (|V (G)| − 1) + |EN (G)| = |V (G)| − 1 + εN (G). (2)

Let F ′
2 be a subset of F2 such that F ′

2 is still a signed circuit cover of G2 and the 
number of signed circuits of F ′

2 is as small as possible. We have the following claim.

Claim 6.1. �(F ′
2) ≤ k|E(G2)| − 2(k − 1).

Proof of Claim 6.1. Let t be the number of signed circuits in F ′
2. Since |EN (G2)| =

|EN (G)| ≥ 2, t ≥ 1. By the choice of F ′
2, every signed circuit in F ′

2 has an edge which 
is covered by F ′

2 exactly once, and so G2 has at least t edges which are covered by F ′
2

exactly once. Note that k = 2 or 3, and each signed circuit in F2 is of length at least 2
since G has no positive loops. If t = 1, then G2 is the unique signed circuit in F ′

2, and 
so �(F ′

2) = |E(G2)| ≤ k|E(G2)| − 2(k − 1). If t ≥ 2, then �(F ′
2) ≤ k(|E(G2)| − t) + t =

k|E(G2)| − (k − 1)t ≤ k|E(G2)| − 2(k − 1). �
Since G1 is bridgeless and unsigned, by Theorems 3.3 and 3.4, G1 has a circuit cover 

F1 with total length

�(F1) ≤ min{5
3 |E(G1)|, |E(G1)| + |V (G1)| − 1}. (3)

Therefore, F = F1∪F ′
2 is a signed circuit cover of G and by Claim 6.1 and Equation (3)

together with Equations (1) and (2), the total length of F satisfies that

�(F) = �(F1) + �(F ′
2)

≤ min{5
3 |E(G1)|, |E(G1)| + |V (G1)| − 1} + k|E(G2)| − 2(k − 1)

≤ min{5
3(|E(G)| + |V (G)| − 1) + (k − 5

3)(|V (G)| − 1 + εN (G)) − 2(k − 1),

(|E(G)| + |V (G)| − 1) + (|V (G)| − 1)
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+ (k − 1)(|V (G)| − 1 + εN (G)) − 2(k − 1)}

= min{5
3 |E(G)| + k|V (G)| + (k − 5

3)εN (G) − (3k − 2),

|E(G)| + (k + 1)|V (G)| + (k − 1)εN (G) − (3k − 1)}.

This completes the proof of Theorem 3.1.
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