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Abstract. Multiplicative Weights (MW) is a simple yet powerful algo-
rithm for learning linear classifiers, for ensemble learning à la boosting,
for approximately solving linear and semidefinite systems, for comput-
ing approximate solutions to multicommodity flow problems, and for
online convex optimization, among other applications. Recent work in
algorithmic game theory, which applies a computational perspective to
the design and analysis of systems with mutually competitive actors, has
shown that no-regret algorithms like MW naturally drive games toward
approximate Coarse Correlated Equilibria (CCEs), and that for certain
games, approximate CCEs have bounded cost with respect to the opti-
mal states of such systems.

In this paper, we put such results to practice by building distributed
systems such as routers and load balancers with performance and conver-
gence guarantees mechanically verified in Coq. The main contributions
on which our results rest are (1) the first mechanically verified implemen-
tation of Multiplicative Weights (specifically, we show that our MW is
no regret) and (2) a language-based formulation, in the form of a DSL, of
the class of games satisfying Roughgarden smoothness, a broad charac-
terization of those games whose approximate CCEs have cost bounded
with respect to optimal. Composing (1) with (2) within Coq yields a
new strategy for building distributed systems with mechanically veri-
fied complexity guarantees on the time to convergence to near-optimal
system configurations.

Keywords: Multiplicative weights · Algorithmic game theory
Smooth games · Interactive theorem proving · Coq

1 Introduction

The Multiplicative Weights algorithm (MW, [1,25]) solves the general problem of
“combining expert advice”, in which an agent repeatedly chooses which action,
or “expert”, to play against an adaptive environment. The agent, after playing
an action, learns from the environment both the cost of that action and of other
actions it could have played in that round. The environment, in turn, may adapt
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in order to minimize environment costs. MW works by maintaining a weighted
distribution over the action space, in which each action initially has equal weight,
and by updating weights with a linear or exponential loss function to penalize
poorly performing actions.

MW is a no-regret algorithm: its expected cost approaches that of the best
fixed action the agent could have chosen in hindsight (i.e., external regret tends to
zero) as time t → ∞. Moreover, this simple algorithm performs remarkably well:
in number of rounds logarithmic in the size of the action space, MW’s expected
regret can be bounded by a small constant ǫ (MW has bounded external regret).
In [1], Arora, Hazan, and Kale showed that MW has wide-ranging connections
to numerous problems in computer science, including optimization, linear and
semidefinite programming, and machine learning (cf. boosting [14]).

Our work targets another important application of MW: the approximate
solution of multi-agent games, especially as such games relate to the construc-
tion of distributed systems. It is well known (cf. [30, Chapter 4]) that no-regret
algorithms such as MW converge, when played by multiple independent agents,
to a large equilibrium class known as Coarse Correlated Equilibria (CCEs). CCEs
may not be socially optimal, but for some games, such as Roughgarden’s smooth
games [35], the social cost of such equilibrium states can be bounded by a con-
stant factor of the optimal cost of the game (the game has bounded Price of
Anarchy, or POA). Therefore, to drive the social cost of a smooth game to near
optimal, it suffices simply to let each agent play a no-regret algorithm such
as MW.

Moreover, a number of distributed systems can be encoded as games, espe-
cially when the task being distributed is viewed as an optimization problem.
Consider, for example, distributed balancing of network flows over a set of web
servers, an application we return to in Sect. 3. Assuming the set of flows is fixed,
and that the cost of (or latency incurred by) assigning a flow to a particular web
server increases as a function of the number of flows already assigned to that
server (the traffic), then the load balancing application is encodable as a game
in which each flow is a “player” attempting to optimize its cost (latency). An
optimal solution of this game minimizes the total latency across all flows. Since
the game is Roughgarden smooth (assuming affine cost functions), the social
cost of its CCEs as induced by letting each player independently run MW is
bounded with respect to that of an optimal solution.

1.1 Contributions

In this paper, we put such results to work by building the first verified implemen-
tation of the MW algorithm – which we use to drive all games to approximate
CCEs – and by defining a language-based characterization of a subclass of games
called Roughgarden smooth games that have robust Price of Anarchy guarantees
extending even to approximate CCEs. Combining our verified MW with smooth
games, we construct distributed systems for applications such as routing and
load balancing that have verified convergence and correctness guarantees.
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Specifically, our main contributions are:

– a new architecture, as embodied in the Cage system (https://github.com/
gstew5/cage), for the construction of distributed systems with verified com-
plexity guarantees, by composition of verified Multiplicative Weights (MW)
with robust Price of Anarchy bounds via Roughgarden smoothness;

– the first formally verified implementation of the MW algorithm;
– a language-based characterization of Roughgarden smooth games, in the

form of a mechanized DSL for the construction of such games together with
smoothness preservation theorems showing that each combinator in the lan-
guage preserves smoothness;

– the application of the resulting system to distributed routing and load bal-
ancing.

By verified, we mean our MW implementation has mechanically checked con-
vergence bounds and proof of correctness within an interactive theorem prover
(specifically, Ssreflect [16], an extension of the Coq [5] system). By convergence
and correctness, we mean that we prove both that MW produces the right answer
(functional correctness with respect to a high-level functional specification), but
also that it does so with external regret1 bounded by a function of the number
of iterations of the protocol (convergence). Convergence of MW in turn implies
convergence to an approximate CCE. By composing this second convergence
property with Roughgarden smoothness, we bound the social, or total, cost of
the resulting system state with respect to the optimal.

As we’ve mentioned, MW has broad application across a number of subdis-
ciplines of computer science, including linear programming, optimization, and
machine learning. Although our focus in this paper is the use of MW to imple-
ment no-regret dynamics, a general strategy for computing the CCEs of multi-
agent games, our implementation of MW (Sect. 5.3) could be used to build, e.g.,
a verified LP solver or verified implementation of boosting as well.

Limitations. The approach we outline above does not apply to all distributed
systems, nor even to all distributed systems encodable as games. In particular, in
order to prove POA guarantees in our approach, the game encoding a particular
distributed system must first be shown Roughgarden smooth, a condition which
does not always apply (e.g., to network formation games [35, Section 2]). More
positively, the Smooth Games DSL we present in Sects. 3 and 4 provides one
method by which to explore the combinatorial nature of Roughgarden smooth-
ness, as we demonstrate with some examples in Sect. 3.

Relationship to Prior Work. Some of the ideas we present in this paper pre-
viously appeared in summary form in a 3-page brief announcement at PODC
2017 [4]. The current paper significantly expands on the architecture of the Cage

system, our verified implementation of Multiplicative Weights, the definition of
the Smooth Games DSL, and the composition theorems of Sect. 6 proving that
the pieces fit together to imply system-wide convergence and quality bounds.

1 The expected (per-step) cost of the algorithm minus that of the best fixed action.

https://github.com/gstew5/cage
https://github.com/gstew5/cage
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1.2 Organization

The following section provides background on games, algorithmic game the-
ory, and smoothness. Section 3 presents an overview of the main components of
the Cage approach, via application to examples. Section 4 provides more detail
on the combinators of our Smooth Games DSL. Section 5 presents our verified
implementation of MW. Section 6 describes the composition theorems proving
that multi-agent MW converges to near-optimal ǫ-CCEs. Sections 7 and 8 present
related work and conclude.

2 Background

2.1 Games

Von Neumann, Morgenstern, and Nash [28,29] (in the US) and Bachelier, Borel,
and Zermelo [3,8,43] (in Europe) were the first to study the mathematical theory
of strategic interaction, modern game theory. Nash’s famous result [27] showed
that in all finite games, mixed-strategy equilibria (those in which players are
allowed to randomize) always exist. Since the 1950s, game theory has had huge
influence in numerous fields, especially economics.

In our context, a game is a tuple of a finite type A (the strategy space) and
a cost function Ci mapping tuples of strategies of type A1 × A2 × . . . × AN to
values of type R, the cost to player i of state (a1, . . . , ai, . . . , aN ). For readers
interested in formalization-related aspects, Listing 1 provides additional details.

Listing 1: Games in Ssreflect-Coq

In Ssreflect-Coq, an extension of the standard Coq system, a finite type
A : finType pairs the type A with an enumerator enum : list A such that
for all a : A, count a enum = 1 (every element is included exactly once). To
define games, we use operational type classes [38], which facilitate parameter
sharing:

Class game (A : finType) (N : nat) (R : realFieldType)

‘(costClass : CostClass N R A) : Type � {}.

costClass declares the cost function Ci, and N is the number of players.

A state s : A1 × A2 × . . . × AN is a Pure Nash Equilibrium (PNE) when no
player i ∈ [1, N ] has incentive to change its strategy: ∀s′

i. Ci(s) ≤ Ci(s
′
i, s−i).

Here s′
i is an arbitrary strategy. Strategy si is player i’s move in state s. By

s′
i, s−i we denote the state in which player i’s strategy is s′

i and all other players
play s. In other words, no player can decrease its cost by unilateral deviation.

Pure-strategy Nash equilibria do not always exist. Mixed Nash Equilibria
(MNE), which do exist in all finite games, permit players to randomize over
the strategy space, by playing a distribution σi over A. The overall state is the
product distribution over the player distributions. Every PNE is trivially an
MNE, by letting players choose deterministic distributions σi.
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Correlated Equilibria (CEs) generalize MNEs to situations in which players
coordinate via a trusted third party. In what follows, we’ll mostly be interested
in a generalization of CEs, called Coarse Correlated Equilibria (CCEs), and
their approximate relaxations. Specifically, a distribution σ over AN (Listing
2) is a CCE when ∀i∀s′

i. Es∼σ[Ci(s)] ≤ Es∼σ[Ci(s
′
i, s−i)]. Es∼σ[Ci(s)] is the

expected cost to player i in distribution σ. The CCE condition states that there
is no s′

i that could decrease player i’s expected cost. CCEs are essentially a
relaxation of MNEs which do not require σ to be a product distribution (i.e.,
the players’ strategies may be correlated). CEs are a subclass of CCEs in which
Es∼σ[Ci(s

′
i, s−i)] may be conditioned on si.

A distribution σ over states may only be approximately a CCE. Define as ǫ-
approximate those CCEs σ for which ∀i∀s′. Es∼σ[Ci(s)] ≤ Es∼σ[Ci(s

′
i, s−i)] + ǫ.

Moving to s′
i can decrease player i’s expected cost, but only by at most ǫ.

Listing 2: Discrete Distributions in Ssreflect-Coq

Since our games A are finite, discrete distributions suffice to formalize
MNEs, CEs, and CCEs. We model such distributions as finite functions
(those with finite domain) from the strategy space A to R:

Record dist (A : finType) : Type �

mkDist { pmf :> {ffun A → R}; dist ax : dist axiom pmf }.

Here {ffun A → R} is Ssreflect syntax for the type of finite functions from A
to R. The second projection of the record, dist ax, asserts that pmf represents
a valid distribution: pmf is positive and

∑

a:A pmf a = 1.
The Coq predicate eCCE:

Definition eCCE (ǫ : R) (σ : dist AN ) : Prop �

∀(i : [0..N − 1]) (s′ : A),
expectedCost i σ ≤ (expectedUnilateralCost i σ s′) + ǫ.

states that distribution σ (over N -tuples of strategies A, one per player) is
an ǫ-approximate CCE, or ǫ-CCE.

2.2 Algorithmic Game Theory

Equilibria are only useful if we’re able to quantify, with respect to the game
being analyzed:

1. How good equilibrium states are with respect to the optimal configurations
of a game. By optimal, we usually mean states s∗ that optimize the social
cost: ∀s.

∑

i Ci(s
∗) ≤

∑

i Ci(s).
2. How “easy” (read computationally tractable) it is to drive competing players

of the game toward an equilibrium state.

Algorithmic game theory and the related fields of mechanism design and dis-
tributed optimization provide excellent tools here.
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Good Equilibria. The Price of Anarchy, or POA, of game (A,C) quantifies the
cost of equilibrium states of (A,C) with respect to optimal configurations. Pre-
cisely, define POA as the ratio of the social cost of the worst equilibrium s to
the social cost of an optimal state s∗. POA near 1 indicates high-quality equi-
libria: finding an equilibrium in such a game leads to overall social cost close
to optimal. Prior work in algorithmic game theory has established nontrivial
POA bounds for a number of game classes: on various classes of congestion and
routing games [2,6,10], on facility location games [40], and others [11,32].

In the system of Sect. 3, we use the related concept of Roughgarden smooth
games [35], or simply smooth games, which define a subclass of games with
canonical POA proofs. To each smooth game are associated two constants, λ
and μ. The precise definition of the smoothness condition is less relevant here
than its consequences: if a cost-minimization game is (λ, μ)-smooth, then it has
POA λ/(1−μ). Not all games are smooth, but for those that are, the POA bound
above extends even to CCEs and their approximations, a particularly large (and
therefore tractable) class of equilibria [35, Sects. 3 and 4].

Tractable Dynamics. Good equilibrium bounds are most useful when we know
how quickly a particular game converges to equilibrium [7,9,12,13,17]. Certain
classes of games, e.g. potential games [26], reach equilibria under a simple model
of dynamics called best response. As we’ve mentioned, we use a different dis-
tributed learning algorithm in this work, variously called Multiplicative Weights
(MW) [1] or sometimes Randomized Weighted Majority [25], which drives all
games to CCEs, a larger class of equilibrium states than those achieved by poten-
tial games under best response.

3 Cage by Example

No-regret algorithms such as MW can be used to drive multi-agent sys-
tems toward the ǫ-CCEs of arbitrary games. Although the CCEs of general
games may have high social cost, those of smooth games, as identified by
Roughgarden [35], have robust Price of Anarchy (POA) bounds that extend
even to ǫ-CCEs. Figure 1 depicts how these pieces fit together in the high-
level architecture of our Cage system, which formalizes the results of Sect. 2
in Coq. Shaded boxes are program-related components while white boxes are
proof related.

3.1 Overview

At the top, we have a domain-specific language in Coq (DSL, box 1) that gener-
ates games with automatically verified POA bounds. To execute such games, we
have verified (also in Coq) an implementation of the Multiplicative Weights algo-
rithm (MW, 2). Correctness of MW implies convergence bounds on the games it
executes: O((ln |A|)/ǫ2) iterations suffice to drive the game to an ǫ-CCE (here,
|A| is the size of the action space, or game type, A).
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Fig. 1. System architecture

We compose N instances of multiplicative weights (4), one per agent, with a
server (3) that facilitates communication, implemented in OCaml and modeled
by an operational semantics in Coq. To actually execute games, we use Coq’s
code extraction mechanism to generate OCaml code that runs clients against
the server, using an unverified OCaml shim to send and receive messages. We
prove performance guarantees in Coq from POA bounds on the game and from
the regret bound on MW.

3.2 Smooth Games DSL

The combinators exposed by the Smooth Games DSL operate over game types
A, cost functions C, and smoothness parameters λ and μ. Basic combinators in
this language include (i) Resource and (ii) Unit games, the first for coordinating
access to shared resources under congestion and the second with fixed cost 0.
Combinators that take other games as arguments include:

– the bias combinator Bias(A, b), which adds the fixed value b to the cost func-
tion associated with game A;

– the scalar combinator Scalar(A,m), which multiplies the output of the cost
function C associated with game A by a fixed value m;

– the product combinator A × B, corresponding to the parallel composition of
two games A and B with cost equal to the sum of the costs in the two games;

– the subtype game {x : A, P (x)}, which constructs a new game over the
dependent sum type Σx : A.P (x) (values x satisfying the predicate P );
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– the singleton game Singleton(A), which has cost 1 if if player i “uses” the
underlying resource (BResource(f i) = true), and 0 otherwise. The function
B−(−) generalizes the notion of resource usage beyond the primitive Resource
game. For example, BScalar(A,m)(x) = BA(x): usage in a game built from the
scalar combinator reduces to usage in the underlying game.

3.3 Example: Distributed Routing

We illustrate the Smooth Games DSL with an example: distributed routing over
networks with affine latency functions (Fig. 2). This game is known to have POA
5/2 [35].

In a simple version of the game, N routing agents each choose a path from
a global source vertex s to a global sink vertex t. Latency over edge e, modeled
by an affine cost function ce(x) = aex+ be, scales in the amount of traffic x over
that edge. An optimal solution minimizes the total cost to all agents.

Fig. 2. Routing game with
affine edge costs

We model each link in the network as a
Resource game, which in its most basic form is
defined by the following inductive datatype:

Inductive Resource : Type �

| RYes : Resource
| RNo : Resource.

RYes indicates the agent chose to use the resource
(a particular edge) and RNo otherwise. The cost
function for Resource is defined by:

Definition ResourceCostFun (i : [0..N − 1]) (s : [0..N − 1] →fin Resource) : R �

if si is RYes then traffic s else 0.

in which s is a map from agent labels to resource strategies and traffic s is the
total number of agents that chose to use resource s. An agent pays traffic s if
it uses the resource, otherwise 0. We implement Resource as a distinct inductive
type, even though it’s isomorphic to bool, to ensure that types in the Smooth
Games DSL have unique game instances. To give each resource the more inter-
esting cost function ce(x) = aex + be, we compose Resource with a second com-
binator, Affine(ae, be,Resource), which has cost 0 if an agent does not use the
resource, and cost ae∗(traffic s)+ be otherwise. This combinator preserves (λ, μ)-
smoothness assuming λ+μ ≥ 1, a side condition which holds for Resource games.

We encode m affine resources by applying Affine to Resource m times, then
folding under product:

T � Affine(a1,b1,Resource)
× Affine(a2,b2,Resource)
× . . .
× Affine(am,bm,Resource)

The associated cost function is the sum of the individual resource cost functions.
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Values of type T may assign RYes to a subset of resources that doesn’t corre-
spond to a valid path in a graph G = (V,E). To prevent this behavior, we apply
to T the subtype combinator Σ, specialized to a predicate isValidPath(G, s, t)
enforcing that strategies (r1, r2, . . . , r|E|) correspond to valid paths from s to

t: T’ � ΣisValidPath(G,s,t)(T). The game T’ is (5/3, 1/3)-smooth, just like the
underlying Resource game, which implies POA of (5/3)/(1 – 1/3) = 5/2.

3.4 Example: Load Balancing

Fig. 3. Load balancing game

As a second example, consider the load balanc-
ing game depicted in Fig. 3, in which a number of
network flows are distributed over several servers
with affine cost functions. In general, N load bal-
ancing agents are responsible for distributing M
flows over K servers. The cost of allocating a flow
to a server is modeled by an affine cost function
which scales in the total load (number of flows)
on that server. Like routing, the load balancing
game has POA 5/2. This is no coincidence; both
are special cases of “finite congestion games”, a
class of games which have POA 5/2 when costs

are linear [10]. The connection between them can be seen more concretely by
observing that they are built up from the same primitive Resource game.

We model the system as an NM -player K-resource game in which each player
corresponds to a single network flow. Each load balancing agent poses as multiple
players (MW instances) in the game, one per flow, and composes the actions
chosen by these players to form its overall strategy. The result of running the
game is an approximate CCE with respect to the distribution of flows over
servers.

Each server is defined as a Resource with an affine cost function, using
the same data type and cost function as in the routing example. Instead of
isValidPath, we use a new predicate exactlyOne to ensure that each network flow
is assigned to exactly one server.

4 Smooth Games

Roughgarden smoothness [35] characterizes a subclass of games with canoni-
cal Price of Anarchy (POA) proofs. In [35], Roughgarden showed that smooth
games have canonical POA bounds not only with respect to pure Nash equilibria
but also with respect to mixed Nash equilibria, correlated equilibra, CCEs, and
their approximate relaxations. In the context of Cage, we use smoothness to
bound the social cost of games executed by multiple clients each running MW.
We show how the technical pieces fit together, in the form of bounds on an
operational semantics of the entire Cage system, in Sect. 6. This section intro-
duces the technical definition of smoothness and the language of combinators,
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Syntax

Scalars m, b; Predicates P
Game types A, B ::= Resource | Unit | Bias(A, b) | Scalar(A, m)

| A × B | {x : A, P (x)} | Singleton(A)

Judgment ⊢(λ,µ) (A, C) read “Game (A, C) is (λ, µ)-smooth.”

⊢( 5

3
, 1

3
) (Resource, ResourceCostFun)

ResourceSmooth

⊢(1,0) (Unit, fun i f. 0)
UnitSmooth

⊢(λ,µ) (A, C)

⊢(1,0) (Singleton(A), fun i f. if BA(f i) then 1 else 0)
SingletonSmooth

⊢(λ,µ) (A, C)

⊢(λ,µ) ({x : A, P (x)}, fun i f. Ci (fun j. (f j).1))
SigmaSmooth

⊢(λ,µ) (A, C) 1 ≤ λ + µ 0 ≤ b

⊢(λ,µ) (Bias(A, b), fun i f. Ci f + b)
BiasSmooth

⊢(λ,µ) (A, C) 0 ≤ m

⊢(λ,µ) (Scalar(A, m), fun i f. m ∗ Ci f)
ScalarSmooth

⊢(λA,µA) (A, CA) ⊢(λB ,µB) (B, CB)

⊢(max(λA,λB),max(µA,µB)) (A × B, fun i f. CA
i f + CB

i f)
ProductSmooth

Fig. 4. Smooth games DSL

or Smooth Games DSL of Sect. 3, that we use to build games that are smooth
by construction.

Definition 1 (Smoothness). A game (A,C) is (λ, μ)-smooth if for any two
states s, s∗ : AN , the following inequality holds:

k
∑

i=1

Ci(s
∗
i , s−i) ≤ λ · C(s∗) + μ · C(s).

Here, Ci(s
∗
i , s−i) denotes the individual cost to player i in the mixed state where

all other players follow their strategies from s, while player i follows the corre-
sponding strategy from s∗. Smooth games bound the individual cost of players’
unilateral deviations from state s to s∗ by the weighted social costs of s and s∗.
In essence, when λ and μ are small, the effect of any single player’s deviation
from a given state has minimal effect.

The smoothness inequality leads to natural proofs of POA for a variety of
equilibrium classes. As an example, consider the following bound on the expected
cost of ǫ-CCEs of (λ, μ)-smooth games:
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Lemma smooth eCCE (d : dist (state N T )) (s′ : state N T ) (ǫ : R) :
eCCE ǫ d → optimal s′ →
ExpectedCost d ≤ λ∗(Cost s′) + μ∗(ExpectedCost d) + N∗ǫ.

ExpectedCost d is the sum for all players i of the expected cost to player i of
distribution d. N is the number of players in the game.

The smooth eCCE bound implies the following Price of Anarchy bound on
the expected cost, summed across all players, of distribution d:

Lemma smooth POA ǫ (d : dist (state N T )) s′ :
eCCE ǫ d → optimal s′ →
ExpectedCost d ≤ λ/(1 − μ)∗(Cost s′) + (N∗ǫ)/(1 − μ).

If d is an ǫ-CCE, then its cost is no more than λ/(1 - μ) times the optimal
cost of s′, plus an additional term that scales in the number of players N . For
example, for concrete values λ = 5/3, μ = 1/3, ǫ = 0.0375, and N = 5, we get
multiplicative approximation factor λ/(1 − μ) = 5/2 and additive factor 0.28. A
value of ǫ = 0.0375 is reasonable; as Sect. 5 will show, it takes fewer than 20, 000
iterations of the Multiplicative Weights algorithm, in a game with strategy space
of size 1000, to produce ǫ ≤ 0.0375.

4.1 Combinators

Figure 4 lists the syntax and combinators of the Smooth Games DSL we used
in Sect. 3 to build smooth routing and load balancing games.

The smoothness proof accompanying the judgment of Resource games is
the least intuitive, and provides some insight into the behavior of smooth
games. The structure of our proof borrows from a stronger result given by
Roughgarden [35]: smoothness for resource games with affine cost functions
and multiple resources. The key step is the following inequality first noted by
Christodoulou and Koutsoupias [10]:

y(z + 1) ≤
5

3
y2 +

1

3
z2

for non-negative integers y and z. We derive (5
3 , 1

3 )-smoothness of Resource games
from the following inequalities:

N−1
∑

i=0

Ci(s
∗
i , s−i) ≤ (traffic s∗) · (traffic s + 1) (1)

(traffic s∗) · (traffic s + 1) ≤
5

3
· (traffic s∗)2 +

1

3
· (traffic s)2 (2)

(traffic s∗) · (traffic s + 1) ≤
5

3
· C(s∗) +

1

3
· C(s) (3)

N−1
∑

i=0

Ci(s
∗
i , s−i) ≤

5

3
· C(s∗) +

1

3
μ · C(s) (4)
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The inequality in step 1 is due to the fact that the cost per player in state s∗

is at most traffic s + 1, and there are exactly traffic s∗ players incurring such
cost. I.e., (traffic s∗) · (traffic s + 1) is the number of nonzero terms times the
upper bound on each term. The substitution in step 3 comes from the fact that
in any state s, C(s) = (traffic s)2; each of the m players using the resource incur
cost m.

The proofs of smoothness for other combinators are straightforward. For
example, since Unit games always have cost 0, all values of λ and μ satisfy
the smoothness inequality: 0 ≤ λ · 0 + μ · 0. We restrict the range of the cost
function in SingletonSmooth games to {0, 1} by applying the function BA(·),
which generalizes the notion of “using a resource” to all the game types of
Fig. 4. Smoothness of the Singleton game follows by case analysis on the results
of BA(·) in the states s and s∗ of the smoothness inequality. The games produced
by the SigmaSmooth combinator have costs equal to those of the underlying
games but restrict the domain to those states satisfying a predicate P . Since
smoothness of the underlying bound holds for all states in A, the same bound
holds of the restricted domain of states a ∈ A drawn from P . Smoothness of
product games relies on the fact that smoothness still holds if λ and μ are
replaced with larger values. Thus, each of the argument games to ProductSmooth
is (max(λA, λB),max(μA, μB))-smooth. The overall product game, which sums
the costs of its argument games, is (max(λA, λB),max(μA, μB))-smooth as well.

It’s possible to derive combinators from those defined in Fig. 4. For example,
define as Affine(m, b,A) the game with cost function mx+ b. We implement this
game as {p : Scalar(m,A) × Scalar(b,Singleton(A)), p.1 = p.2}, or the subset of
product games over the scalar game Scalar(m,A) and the {0, 1} scalar game over
b such that the first and second projections of each strategy p are equal.

5 Multiplicative Weights (MW)

At the heart of the Cage architecture of Sect. 3 lies our verified implementation
of the Multiplicative Weights algorithm. In this section, we present the details of
the algorithm and sketch its convergence proof. Section 5.3 presents our verified
MW implementation and mechanized proof of convergence.

For all a ∈ A, client initializes w1(a) = 1.

For time t ∈ [1 . . . T ] :
Client Environment

Let Γt �
∑

a∈A wt(a).
Play strategy pt(a) = wt(a)/Γt.

Choose cost vector ct.

Update weights wt+1(a) � wt(a) ∗ (1 − η ∗ ct(a))

Fig. 5. Multiplicative Weights (MW)
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5.1 The Algorithm

The MW algorithm (Fig. 5) pits a client, or agent, against an adaptive envi-
ronment. The agent maintains a weight distribution w over the action space,
initialized to give each action equal weight. At each time step t ∈ [1 . . . T ], the
agent commits to the distribution wt/

∑

a∈A wt(a), communicating this mixed
strategy to the environment. After receiving a cost vector ct from the environ-
ment, the agent updates its weights wt+1 to penalize high-cost actions, at a rate
determined by a learning constant η ∈ (0, 1/2]. High η close to 1/2 leads to
higher penalties, and thus relatively less exploration of the action space.

The environment is typically adaptive, and may be implemented by a number
of other agents also running instances of MW. The algorithm proceeds for a fixed
number of epochs T , or until some bound on expected external regret (expected
cost minus the cost of the best fixed action) is achieved. In what follows, we
always assume that costs lie in the range [−1, 1]. Costs in an arbitrary but
bounded range are also possible (with a concomitant relaxation of the algorithm’s
regret bounds), as are variations of MW to solve payoff maximization instead of
cost minimization.

5.2 MW Is No Regret

The MW algorithm converges reasonably quickly: To achieve expected regret at
most ǫ, it’s sufficient to run the algorithm O((ln |A|)/ǫ2) iterations, where |A|
is the size of the action space [36, Chapter 17]. Regret can be driven arbitrarily
small as the number of iterations approaches infinity. Bounded regret suffices to
prove convergence to an approximate CCE, as [36] also shows.

In this section, we present a high-level sketch of the proof that MW is no
regret. We follow [36, Chapter 17], which has additional details. At the level
of the mathematics, our formal proof makes no significant departures from
Roughgarden.

Definition 2 (Per-Step External Regret). Let a∗ be the best fixed action in
hindsight (i.e., the action with minimum cost given the cost vectors received from

the environment) and let OPT �
∑T

t=1 ct(a
∗). The expected per-step external

regret of MW is
(

T
∑

t=1

ζt − OPT

)

/ T.

The summed term defines the cumulative expected cost of the algorithm for time
t ∈ [1 . . . T ], where by ζt we denote the expected cost at time t:

ζt =
∑

a∈A

pt(a) · ct(a) =
∑

a∈A

wt(a)

Γt

· ct(a)
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To get per-step expected regret, we subtract the cumulative cost of a∗ and divide
by the number of time steps T .

Theorem 1 (MW Has Bounded Regret). The algorithm of Fig. 5 has
expected per-step external regret at most η + ln |A| / ηT .

Proof Sketch. The proof of Theorem 1 uses a potential-function argument, with
potential Φt equal the sum of the weights Γt =

∑

a∈A wt(a) at time t. It proceeds
by relating the cumulative expected cost

∑

t ζt of the algorithm to OPT , the
cost of the best fixed action, through the intermediate quantity ΓT+1.

The proof additionally relies on the following two facts derived from the

Taylor expansion ln(1 − x) = −x − x2

2 − x3

3 − · · · :

ln(1 − x) ≤ −x, x < 1

−x − x2 ≤ ln(1 − x), x ≤ 1/2

⊓⊔

By letting η =
√

ln |A| / T (cf. [36, Chapter 17]), it’s possible to restate the
regret bound of Theorem 1 to the following arguably nicer bound:

Corollary 1 (MW Is No Regret)

(

T
∑

t=1

ζt − OPT

)

/ T ≤ 2
√

ln |A| / T

Here, the number of iterations T must be large enough to ensure that η =
√

ln |A| / T ≤ 1/2, thus ensuring that η ∈ (0, 1/2].

5.3 MW Architecture

Fig. 6. MW architecture

Our implementation and proof
of MW (Fig. 6) were designed to
be extensible. At a high level,
the proof structure follows the
program refinement methodol-
ogy, in which a high-level mathe-
matical but inefficient specifica-
tion of MW (High-Level Func-
tional Specification) is gradually
made more efficient by a series of
refinements to various features
of the program (for example, by
replacing an inefficient implementation of a key-value map with a more efficient
balanced binary tree).

For each such refinement, we prove that every behavior of the lower-level
program is a possible behavior of the higher-level program it refines. Thus spec-
ifications proved for all behaviors of the high-level program also apply to each
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behavior at the low level. By behavior here, we mean the trace of action distri-
butions output by MW as it interacts with, and receives cost vectors from, the
environment.

We factor the lower implementation layers (Medium and Low) into an inter-
preter and operational semantics over a domain-specific language specialized to
MW-style algorithms (MW DSL). The DSL defines commands for maintain-
ing and updating weights tables as well as commands for interacting with the
environment. We prove, for any DSL program c, that the interpretation of that
program refines its behavior with respect to the small-step operational semantics
(Medium). Our overall proof specializes this general refinement to an implemen-
tation of MW as a command in the DSL, in order to relate that command’s
interpreted behavior to the high-level functional specification.

5.4 MW DSL

The syntax and semantics of the MW DSL are given in Fig. 7. The small-step
operational semantics (⊢ c, σ ⇒ c′, σ′) is parameterized by an environment ora-
cle that defines functions for sending action distributions to the environment
(oracle send) and for receiving the resulting cost vectors (oracle recv). The oracle
will in general be implemented by other clients also running MW (Sect. 6) but is
left abstract here to facilitate abstraction and reuse. The oracle is stateful (the
type T , of oracle states, may be updated both by oracle send and oracle recv).

Most of the operational semantics rules are straightforward. In the MW-

Step-Weights rule for updating the state’s weights table, we make use of
an auxiliary expression evaluation function E−[−] (standard and therefore not
shown in Fig. 7). The only other interesting rules are those for send and recv,
which call oracle send and oracle recv respectively. In the relation oracle recv, the
first two arguments are treated as inputs (the input oracle state of type T and
the channel) while the second two are treated as outputs (the cost vector of type
A → Q and the output oracle state). In the relation oracle send, the first three
arguments are inputs while only the last (the output oracle state) is an output.

Multiplicative Weights. As an example of an MW DSL program, consider our
implementation (Listing 1.1) of the high-level MW of Fig. 5. To the right of
each program line, we give comments describing the effect of each command.
The program is itself divided into three functions:mult weights init, which ini-
tializes the weights table to assign weight 1 to each action a in the action space
A; mult weights body, which defines the body of the main loop of MW; and
mult weights, which simply composes mult weights init with mult weights body.
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Listing 1.1. MW DSL Implementation of Multiplicative Weights

Definition mult weights init (A : Type) �

update (λ a : A ⇒ 1); (∗ For all a ∈ A, initialize w1(a) = 1. ∗)
send. (∗ Commit to the uniform distribution over actions. ∗)

Definition mult weights body (A : Type) �

recv; (∗ Block until agent receives cost vector ct from environment. ∗)
update (λ a : A ⇒ weight a ∗ (1 − η ∗ cost a)); (∗ Update weights. ∗)
send. (∗ Commit to distribution wt/Γt. ∗)

Definition mult weights (A : Type) (n : N.t) �

mult weights init A; (∗ Initialize weights and commit to initial mixed strategy. ∗)
iter n (mult weights body A). (∗ Do n iterations of the MW main loop. ∗)

The MW DSL contains commands and expressions that are specialized to
MW-style applications. Consider the function mult weights body (line 5). It first
receives a cost vector from the environment using the specialized recv command.
At the level of the MW DSL, recv is somewhat abstract. The program does not
specify, e.g., which network socket to use. Implementation details such as these
are resolved by the MW interpreter, which we discuss below in Sect. 5.5.

After recv, mult weights body implements an update to its weights table as
defined by the command: update (λa : A ⇒ weight a ∗ (1 − η ∗ cost a)). As an
argument to the update, we embed a function from actions a ∈ A to expressions
that defines how the weight of each action a should change at this step (time t+
1). The expressions weight a and cost a refer to the weight and cost, respectively,
of action a at time t. The anonymous function term is defined in Ssreflect-

Coq, the metalanguage in which the MW DSL is defined.

5.5 Interpreter

To run MW DSL programs, we wrote an executable interpreter in Coq with
type:

interp (c : com A) (s : cstate) : option cstate.

The type cstate defines the state of the interpreter after each step, and in general
maps quite closely to the type of states σ used in the MW DSL operational
semantics. It is given by the record:



Verified Learning Without Regret 577

Syntax

Binary operators ⊕ ::= + | − | ∗
Expressions e ::= d | −e | weight a | cost a | η | e1 ⊕ e2

Commands c ::= skip | update (λa : A ⇒ e) | c1; c2 | iter n c | recv | send

Environment Oracle

oracle recv : T → oracle chanty → (A → Q) → T → Prop
oracle send : T → dist A → oracle chanty → T → Prop

States σ �

{ SCosts : A → Q; SCostsOk : ∀a. |SCosts a| ≤ 1
; SPrevCosts : seq {c : A → Q | ∀a. |c a| ≤ 1}
; SWeights : A → Q

; SWeightsOk : ∀a. 0 < SWeights a
; SEta : Q; SEtaOk : 0 < SEta ≤ 1/2
; SOutputs : seq (dist A)
; SChan : oracle chanty
; SOracleSt : T }.

Current cost vector
Previous cost vectors
Weights table

The η parameter
Committed distributions
I/O channel
Environment/oracle state

Operational Semantics

σ′ = σ{SWeights � λa : A ⇒ Eσ[e[x ← a]]}

⊢ update (λx : A ⇒ e), σ ⇒ skip, σ′ MW-Step-Weights

⊢ skip; c2, σ ⇒ c2, σ

⊢ c1, σ ⇒ c′
1, σ

′

⊢ c1; c2, σ ⇒ c′
1; c2, σ

′

⊢ iter 1 c, σ ⇒ c, σ

1 < n

⊢ iter n c, σ ⇒ c; iter (n − 1) c, σ

oracle recv (SOracleSt σ) (SChan σ) c t

⊢ recv, σ ⇒ skip, σ{SCosts � c; SPrevCosts � SCosts σ :: SPrevCosts σ; SOracleSt � t}

oracle send (SOracleSt σ) d ch t

⊢ send, σ ⇒ skip, σ{SOutputs � d :: SOutputs σ; SChan � ch; SOracleSt � t}

Fig. 7. MW DSL syntax and operational semantics, parameterized by an environment
oracle defining the type T of environment states and the functions oracle recv and
oracle send for interacting with the environment. The type A is that of states in the
underlying game.

Record cstate : Type �

{ SCosts : M.t Q

; SPrevCosts : list (M.t Q)
; SWeights : M.t Q

; SEta : Q

; SOutputs : list (A → Q)
; SChan : oracle chanty
; SOracleSt : T }.

Current cost vector
Previous cost vectors
Weights table
The η parameter
Committed distributions
I/O channel
Environment/oracle state
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At the level of cstates, we use efficient purely functional data structures such as
AVL trees. For example, the type M.t Q denotes an AVL-tree map from actions
A to rational numbers Q. In the small-step semantics state, by contrast, we
model the weights table not as a balanced binary tree but as a Ssreflect-Coq

finite function, of type {ffun A → Q}, which directly maps actions of type A to
values of type Q.

To speed up computation on rationals, we use a dyadic representation q = n
2d ,

which facilitates fast multiplication. We do exact arithmetic on dyadic Q instead
of floating point arithmetic to avoid floating-point precision error. Verification of
floating-point error bounds is an interesting but orthogonal problem (cf. [31,34]).

The field SOutputs in the cstate record, a list of functions mapping actions
a ∈ A to their probabilities, stores the history of weights distributions generated
by the interpreter as send commands are executed. To implement commands
such as send and recv, we parameterize our MW interpreter by an environment
oracle, just as we did the operational semantics. The operations implemented
by the interpreter environment oracle are functional versions of the operational
semantics oracle send and oracle recv:

oracle send′ : ∀A:Type, T → A → oracle chanty ∗ T
oracle recv′ : ∀A:Type, T → oracle chanty → list (A∗Q) ∗ T

The oracle state type T is provided by the implementation of the oracle, as in
the operational semantics. The command oracle send′ takes a state of type T
and a value of type A as arguments and returns a pair of a channel of type
oracle chanty (on which to listen for a response from the environment) and a
new oracle state of type T . The command oracle recv′ takes as arguments the
oracle state and channel and returns a list of (a, q) pairs, representing a cost
vector over actions, along with the new oracle state.

5.6 Proof

The top-level theorem proved of our high-level functional specification of MW is:

Theorem perstep weights noregret :
(expCostsR − OPTR)/T ≤ η + ln size A / (η ∗T).

The expression expCostsR is the cumulative expected cost of MW on a sequence
of cost vectors, or the sum, for each time t, of the expected cost of the MW
algorithm at time t. OPTR is the cumulative cost over T rounds of the best
fixed action. The number η (a dyadic rational required to lie in range (0, 1/2])
is the learning parameter provided to MW and ln size A is the natural log of
the size of the action space A. T is the number of time steps. In contrast to the
interpreter and semantics of Sect. 5.3 (where we do exact arithmetic on dyadics),
for reasoning and specification at the level of the proof we use Coq’s real number
library and real-valued functions such as square root and log.

By choosing η to equal
√

ln size A / T , Corollary 1 showed that it’s possi-
ble to restate the right-hand side of the inequality in perstep weights noregret to
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2 ∗ sqrt (ln size A / T), thus giving an arguably nicer bound. Since in our imple-
mentation of MW we require that η be a dyadic rational, we cannot implement
η =

√

ln size A / T directly (ln size A is irrational). We do, however, prove the

following tight approximation for all values of η approaching
√

ln size A / T :

Lemma perstep weights noregret’ :
∀r : R. r 
= −1 → η = (1+r)∗(sqrt (ln size A / T)) →
(expCostsR − OPTR)/T ≤
(1+r)∗(sqrt (ln size A / T)) + (sqrt (ln size A / T))/(1+r).

In the statement of this lemma, the r term quantifies the error (how far
η is from its optimal value sqrt (ln size A / T). We require that r 
= −1 to
ensure that division by 1 + r is well-defined. The resulting bound approaches
2 ∗ sqrt (ln size A / T) as r approaches 0.

High-Level Functional Specification. Our high-level functional specification of
MW closely models the mathematical specification of MW given in Fig. 5. For
example, the following four definitions:

Definition weights : Type � {ffun A → Q}.

Definition costs : Type � {ffun A → Q}.

Definition init weights : weights � λ( : A) ⇒ 1.

Definition update weights (w:weights) (c:costs) : weights �

λa : A ⇒ w a ∗ (1 − η ∗ c a).

construct the types of weight (weights) and cost vectors (costs), represented
as finite functions from A to Q; define the initial weight vector (init weights),
which maps all actions to cost 1; and define the MW weight update rule
(update weights). The recursive function:

Fixpoint weights of (cs : seq costs) (w : weights) : weights �

if cs is c :: cs′ then update weights (weights of cs′ w) c else w.

defines the vector that results from using update weights to repeatedly update
w with respect to cost vectors cs.

Adaptive Vs. Oblivious Adversaries. In our high-level specification of MW, we
parameterize functions like weights of by a fixed sequence of cost vectors cs
rather than model interaction with the environment, as is done in Fig. 5. An
execution of our low-level interpreted MW, even against an adaptive adversary,
is always simulatable by the high-level functional specification by recording in
the low-level execution the cost vectors produced by the adversary, as is done
by the SPrevCosts field (Sect. 5.5), and then passing this sequence to weights of.
This strategy is quite similar to using backward induction to solve the MW game
for an oblivious adversary.

Connecting the Dots. To connect the MW interpreter to the high-level specifi-
cation, we prove a series of refinement theorems (technically, backward simula-
tions). As example, consider:
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Lemma interp step plus :
∀(a0 : A) (s : state A) (t t′ : cstate) (c : com A),
interp c t = Some t′ →
match states s t →
∃c′ s′, final com c′ ∧

((c =CSkip ∧ s = s′) ∨ step plus a0 c s c′ s′) ∧
match states s′ t′.

which relates the behavior of the interpreter (interp c t) when run on an arbitrary
command c in cstate t to our model of MW DSL commands as specified by the
operational semantics.

To prove that the operational semantics correctly refines our high-level func-
tional specification of MW (and therefore satisfies the regret bounds given at
the start of Sect. 5.6), we prove a similar series of refinements. Since backward
simulations compose transitively, we prove regret bounds on our interpreted MW
just by composing the refinements in series. The bounds we prove in this way
are parametric in the environment oracle with which MW is instantiated. When
the oracle state types differ from source to target in a particular simulation, as
is the case in our proof that the MW DSL interpreter refines the operational
semantics, we require that the oracles simulate as well.

6 Coordinated MW

A system of multiple agents each running MW yields an ǫ-CCE of the underlying
game. If the game being played is smooth – for example, it was built using the
combinators of the Smooth Games DSL of Sect. 4 – then the resulting ǫ-CCE
has bounded social cost with respect to a globally optimal strategy. In this
section, we put these results together by (1) defining an operational semantics of
distributed interaction among multiple clients each running MW, and (2) proving
that distributed executions of this semantics yield near-optimal solutions, as long
as the underlying game being played is smooth.

6.1 Machine Semantics

We model the evolution of the distributed machine by the operational seman-
tics in Fig. 8. Client states (client state) bundle commands from the MW DSL
(Sect. 5) with MW states parameterized by the ClientPkg oracle. The client ora-
cle send and receive functions model single-element (pin) queues, represented as
values of type option (dist A), storing values sent by an MW node, and of type
option (A → Q), storing values received by an MW node.

States of the coordinated machine (type machine state N A) map client
indices in range [0..N − 1] to client states (type client state A). Machine states
also record, at each iteration of the distributed MW protocol, the history of dis-
tributions received from the clients in that round (type seq ([0..N−1] → dist A)),
which will be used to prove Price of Anarchy bounds in the next section
(Sect. 6.2). We say that all clients have sent in a particular machine state m,
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Client Oracle

ClientPkg �

{ sent : option (dist A);
received : option (A → Q);
received ok : ∀v. received = Some v → ∀a. 0 ≤ va ≤ 1 }

client oracle recv A (p : ClientPkg) (− : unit) (v : A → Q) (p′ : ClientPkg) �

p.received = Some v ∧ p′.received = None ∧ p′.sent = p.sent

client oracle send A (p : ClientPkg) (d : dist A) (− : unit) (p′ : ClientPkg) �

p.sent = None ∧ p′.sent = Some d ∧ p′.received = p.received

Machine States

client state A ∋ σ � (com A ∗ state A ClientPkg unit)

machine state N A ∋ m �

{ clients : [0..N − 1] → client state A;
hist : seq ([0..N − 1] → dist A) }

all clients have sent A (m : machine state) (f : [0..N − 1] → dist A) �

∀i : [0..N − 1]. let (−, σ) � m.clients i in

(SOracleSt σ).received = None ∧ (SOracleSt σ).sent = Some fi.

Machine Step ⊢ m =⇒ m′

cost vec A i : A → Q � λa.
∑

(p:[0..N−1]→A|pi=a)

∏
(j|i�=j) fj pj ∗ Ci p

m.clients i = (c, σ) m′.clients i = (c, σ′) σ ∼O σ′

(SOracleSt σ).sent = None (SOracleSt σ′).received = Some (cost vec f i)

server sent cost vector i f m m′

m.clients i = (c, σ) (SOracleSt σ).sent = None ⊢ c, σ ⇒ c′, σ′

⊢ m =⇒ m{ clients � m.clients[i �→ (c′, σ′)] }
ClientStep

all clients have sent m f
(∀i. server sent cost vector i f m m′) m′.hist = f :: m.hist

⊢ m =⇒ m′
ServerStep

Fig. 8. Semantics of the distributed machine

committing to the set of distributions f , if each client’s received buffer is empty
and its sent buffer contains the distribution fi, of type dist A.

The machine step relation models a server–client protocol, distinguishing
server steps (ServerStep) from client steps (ClientStep). Client steps, which run
commands in the language of Fig. 7, may interleave arbitrarily. Server steps are
synchronized by the all clients have sent relation to run only after all clients have
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completed the current round. The work done by the server is modeled by the
auxiliary relation server sent cost vector i f m m′, which constructs and sends to
client i the cost vector derived from the set of client distributions f . The relation
σ ∼O σ′ states that σ and σ′ are equal up to their SOracleSt components.

In the distributed MW setting, the cost to player i of a particular action a : A
is defined as the expected value, over all N -player strategy vectors p in which
player i chose action a (pi = a), of the cost to player i of p, with the expectation
over the (N − 1)-size product distribution induced by the players j 
= i.

6.2 Convergence and Optimality

Our proof that MW is no regret (Sect. 5) extends to system-wide convergence
and optimality guarantees, with respect to the distributed execution model of
Fig. 8 in which each client runs our MW implementation. The proof has three
major steps:

1. Show that no-regret clients implementing MW are still no regret when inter-
leaved in the distributed semantics of Fig. 8.

2. Prove that per-client regret bounds – one for each client running MW – imply
system-wide convergence to an ǫ-CCE.

3. Use POA results for smooth games from Sect. 4 to bound the cost, with
respect to that of an optimal state, of all such ǫ-CCEs.

Composing 1, 2, and 3 proves that the distributed machine of Fig. 8 – when
instantiated to clients running MW – converges to near-optimal solutions to
smooth games. We briefly describe each part in turn.

Part 1 : No-regret clients are still no regret when interleaved. That MW no-regret
bounds lift to an MW client running in the context of the distributed operational
semantics of Fig. 8 follows from the oracular structure of our implementation
of MW (Sect. 5) – clients interact with other clients and with the server only
through the oracle.

In particular, for any execution ⊢ m =⇒+ m′ of the machine of Fig. 8, and
for any client i, there is a corresponding execution of client i with respect to a
small nondeterministic oracle that simply “guesses” which cost vector to supply
every time the MW client executes a recv operation. Because MW is no regret
for all possible sequences of cost vectors, proving a refinement against the non-
deterministic oracle implies a regret bound on client i’s execution from state mi

to state m′
i.

We lift this argument to all the clients running in the Fig. 8 semantics by
proving the following theorem:

Theorem all clients bounded regret A m m′ T (ǫ : rat) :
hist m = nil → 0 < size (hist m′) → final state m′ →
⊢ m =⇒+ m′ →
(∀i, m.clients i = (mult weights A T, init state A η tt (init ClientPkg A))) →
η + ln size A/(η ∗T) ≤ ǫ →
machine regret eps m′ ǫ.
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The predicate machine regret eps holds in state s′, against regret bound ǫ, if all
clients have expected regret in state s′ at most ǫ (with respect to the σT distri-
bution we describe below), for any rational ǫ larger than η + ln size A/(η ∗T)
(the regret bound we proved of MW in Sect. 5).

We assume that the history is empty in the initial state (hist m = nil), and
that at least one round was completed (0 < size (hist m′)). By final state m′, we
mean that all clients have synchronized with the server (by receiving a cost vector
and sending a distribution) and then have terminated in CSkip. All clients in state
m are initialized to execute T steps of MW over game A (mult weights A T), from
an initial state and initial ClientPkg.

Part 2: System-wide convergence to an ǫ-CCE. The machine semantics of Fig. 8
converges to an approximate Coarse Correlated Equilibrium (ǫ-CCE).

More formally, consider an execution ⊢ m =⇒+ m′ of the Fig. 8 semantics
that results in a state m′ for which machine regret eps m′ ǫ (all clients have regret
at most ǫ, as established in Part I). The distribution σT , defined as the time-
averaged history of the product of the distributions output by the MW clients
at each round, is an ǫ-CCE:

σT � λp.

∑T

i=1

∏N

j=1(hist m′)j
i pj

T

By (hist m′)j
i we mean the distribution associated to player j at time i, as

recorded in the execution history stored in state m′. The value ((hist m′)j
i pj) is

the probability that client j chose action pj in round i.
We formalize this property in the following Coq theorem:

Theorem machine regret eCCE m′ ǫ :
machine regret eps m′ ǫ →
eCCE ǫ σT .

which states that σT is an eCCE, with approximation factor ǫ, as long as each
client’s expected regret over σT is at most ǫ (machine regret eps m′ ǫ) – exactly
the property we proved in Part 1 above.

Part 3 System-wide regret bounds. The machine semantics of Fig. 8 converge to
a state with expected cost bounded with respect to the optimal cost.

Consider an execution of the Fig. 8 semantics ⊢ m =⇒+ m′ and an ǫ satisfying
the conditions of all clients bounded regret. If the underlying game is smooth,
the expected cost of the time-averaged distribution of the clients in m′, σT , is
bounded with respect to the cost of an optimal strategy profile s′ by the following
Coq theorem:

Theorem systemwide POA bound A m m′ T (ǫ : rat) s′ :
hist m = nil → ⊢ m =⇒+ m′ → 0 < size (hist m′) → final state m′ →
(∀i, m.clients i = (mult weights A T, init state A η tt (init ClientPkg A))) →
η + ln size A/(η∗T) ≤ ǫ →
optimal s′ →
ExpectedCost σT ≤ λ/(1−μ) ∗ Cost s′ + (N∗ǫ/(1−μ))
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In the above theorem, λ and μ are the smoothness parameters of the game A
while N is the number of players. Cost s′ is the social (total) cost of the optimal
state s′.

7 Related Work

Reinforcement Learning, Bandits. There is extensive work on reinforcement
learning [39], multi-agent reinforcement learning (MARL [19]), and multi-armed
bandits (MAB, [15]), more than can be cited here. We note, however, that Q-
learning [41], while similar in spirit to MW, addresses the more general scenario
in which an agent’s action space is modeled by an arbitrary Markov Decision
Process (in MW, the action space is a single set A). Our verified MW imple-
mentation is most suitable, therefore, for use in the full-information analog of
MAB problems, in which actions are associated with “arms” and each agent
learns the cost of all arms – not just the one it pulled – at each time step. In
this domain, MW has good convergence bounds, as we prove formally of our
implementation in this paper. Relaxing our verified MW and formal proofs to
the partial information Bandit setting is interesting future work.

Verified Distributed Systems. EventML [33] is a domain-specific language for
specifying distributed algorithms in the Logic of Events, which can be mechan-
ically verified within the Nuprl proof assistant. Work has been done to develop
methods for formally verifying distributed systems in Isabelle [20]. Model check-
ing has been used extensively (e.g., [21,24]) to test distributed systems for bugs.

Verdi [42] is a Coq framework for implementing verified distributed sys-
tems. A Verdi system is implemented as a collection of handler functions which
exchange messages through the network or communicate with the “outside
world” via input and output. Application-level safety properties of the system
can be proved with respect to a simple, idealized network semantics. A verified
system transformer (VST) can then be used to transform the executable sys-
tem into one which is robust to network faults such as reordering, duplication,
and dropping of packets. The safety properties of the system proved under the
original network semantics are preserved under the new faulty semantics, with
minimal additional proof effort required of the programmer.

The goals of Verdi are complementary to our own. We implement a veri-
fied no-regret MW algorithm, together with a language of Roughgarden smooth
games, for constructing distributed systems with verified convergence and cor-
rectness guarantees. Verdi allows safety properties of a distributed system to
be lifted to analogous systems which tolerate various network faults, and pro-
vides a robust runtime system for execution in a practical setting. It stands to
reason, then, that Verdi (as well as follow-on related work such as [37]) may pro-
vide a natural avenue for building robust executable versions of our distributed
applications. We leave this for future work.

Chapar [23] is a Coq framework for verifying causal consistency of distributed
key-value stores as well as correctness of client programs with respect to causally
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consistent key-value stores. The implementation of a key-value store is proved
correct with respect to a high-level specification using a program refinement
method similar to ours. Although Chapar’s goal isn’t to verify robustness to
network faults, node crashes and message losses are modeled by its abstract
operational semantics.

IronFleet [18] is a framework and methodology for building verified dis-
tributed systems using a mix of TLA-style state machine refinement, Hoare
logic, and automated theorem proving. An IronFleet system is comprised of
three layers: a high-level state machine specification of the overall system, a
more detailed distributed protocol layer which describes the behavior of each
agent in the system as a state machine, and the implementation layer in which
each agent is programmed using a variant of the Dafny [22] language extended
with a trusted set of UDP networking operations. Correctness properties are
proved with respect to the high-level specifications, and a series of refinements
is used to prove that every behavior in the implementation layer is a refine-
ment of some behavior in the high-level specification. IronFleet has been used to
prove safety and liveness properties of IronRSL, a Paxos-based replicated state
machine, as well as IronKV, a shared key-value store.

Alternative Proofs. Variant proofs of Theorem 1, such as the one via KL-
divergence (cf. [1, Section 2.2]), could be formalized in our framework without
modifying most parts of the MW implementation. In particular, because we have
proved once and for all that our interpreted MW refines a high-level specification
of MW, it would be sufficient to formalize the new proof just with respect to the
high-level program of Sect. 5.6.

8 Conclusion

This paper reports on the first formally verified implementation of Multiplica-
tive Weights (MW), a simple yet powerful algorithm for approximately solving
Coarse Correlated Equilibria, among many other applications. We prove our
MW implementation correct via a series of program refinements with respect
to a high-level implementation of the algorithm. We present a DSL for building
smooth games and show how to compose MW with smoothness to build dis-
tributed systems with verified Price of Anarchy bounds. Our implementation
and proof are open source and available online.

Acknowledgments. This material is based on work supported by the National Sci-
ence Foundation under Grant No. CCF-1657358. We thank the ESOP anonymous
referees for their comments on an earlier version of this paper.



586 S. Merten et al.

References

1. Arora, S., Hazan, E., Kale, S.: The multiplicative weights update method: a meta-
algorithm and applications. Theor. Comput. 8(1), 121–164 (2012)

2. Awerbuch, B., Azar, Y., Epstein, A.: The price of routing unsplittable flow. In: Pro-
ceedings of the thirty-seventh annual ACM Symposium on Theory of Computing,
pp. 57–66. ACM (2005)
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