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SUMMARY
Gas flux in volcanic conduits is often associated with long-period oscillations known as
seismic tremor (Lesage et al.; Nadeau et al.). In this study, we revisit and extend the ‘magma
wagging’and ‘whirling’models for seismic tremor, in order to explore the effects of gas flux
on the motion of a magma column surrounded by a permeable vesicular annulus (Jellinek &
Bercovici; Bercovici et al.; Liao et al.). We find that gas flux flowing through the annulus
leads to a Bernoulli effect, which causes waves on the magma column to become unstable
and grow. Specifically, the Bernoulli effects are associated with torques and forces acting on
the magma column, increasing its angular momentum and energy. As the displacement of
the magma column becomes large due to the Bernoulli effect, frictional drag on the conduit
wall decelerates the motions of the column, restoring them to small amplitude. Together, the
Bernoulli effect and the damping effect contribute to a self-sustained wagging-and-whirling
mechanism that help explain the longevity of long-period seismic tremor.
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1 INTRODUCTION

1.1 Volcanic seismicity and volatile degassing

The unrest of many volcanic systems is often linked to the release of gaseous volatiles. During magma ascent, volatile exsolution and degassing
are thought to induce pre-eruptive seismicity, according to both field observations and analytical models (Konstantinou & Schlindwein 2003;
McNutt 2005; Lesage et al. 2006; Nadeau et al. 2011; Zuccarello et al. 2013). Specifically, several studies have shown that gas in the conduit
can contribute to the excitation of shallow long-period seismic tremor, which is an important precursor to eruptive volcanism (Garcés et al.
1998; Lesage et al. 2006; Jellinek & Bercovici 2011; Nadeau et al. 2011; Bercovici et al. 2013). For example, waves can be excited by
stirring of a magma-gas mixture and yield 1 Hz oscillations, which are often observed in volcanic tremor (Garcés et al. 1998). According
to the ‘magma wagging’model (Jellinek & Bercovici 2011), the accumulation of gas bubbles forms a vesicular annulus enveloping the
magma column, allowing it to ‘wag’ from side to side also with a 1 Hz frequency. Bercovici et al. (2013) further showed that when gas
flux flows through the permeable annulus, the ‘wagging’motion of the magma column is excited by a Bernoulli effect, wherein pinching
of the annulus causes a low pressure that enhances further pinching. In three dimensions, magma wagging can assume circular or elliptical
‘whirling’ motions, which possibly yield detectable spatial seismic patterns (Liao et al. 2018). However, in the absence of gas flux, the whirling
motions are quickly damped out by viscous dissipation in the magma column. As the characteristics of the whirling motions are potentially
prognostic of the intensification of volcanic unrest en route to eruption (Liao et al. 2018), it is important to understand how the whirling
motions can be repeatedly excited, despite viscous damping. Here, we extend the above models to explore how gas flux affects the wagging
and whirling motions of the magma column, especially with regard to their excitation and longevity. Our model is especially applicable to
silicic volcanoes that undergo prolonged and repeated seismic tremors, including chugging events, as well as pre-eruptive degassing.

1.2 The original and extended magma wagging models

The 2-D magma wagging model developed by Jellinek & Bercovici (2011) is based on the assumption that, inside the volcanic conduit, the
magma column is enveloped by a gas-rich foamy annulus. When the magma column is displaced towards one side of the conduit, the bubbles
in the annulus become compressed, and their increased gas pressure pushes the magma column back towards its resting position. Because of
the magma column’s inertia, it overshoots the resting position, thereby triggering oscillations. When the annulus contains isolated bubbles,
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714 Y. Liao and D. Bercovici

Figure 1. A sketch of the volcanic conduit (grey solid lines) and the magma column (orange shade). The amplitude u and polar angle ψu of the column, as
well as the column’s radius Rm and the conduit’s radius Rc, are indicated. Black vertical arrows indicate the direction of the gas flux, whose velocity w varies
with polar angle θ along the annulus. x̂ is a basis of the Cartesian coordinates coinciding with θ = 0.

the fundamental frequency for free oscillations of the magma column is

ωo =
√

2ρoC2
g

φoρm(R2
c − R2

m)
(1)

where ρo and φo are the undisturbed gas density and gas volume fraction in the annulus; Cg is the isothermal sound speed in the gas; ρm is
the density of the magma and Rm and Rc are the radii of the magma column and the volcanic conduit, respectively (see Fig. 1). In the original
study of Jellinek & Bercovici (2011), the oscillatory motions are assumed to be from side to side, without any rotational motion. Because the
bubbles in the annulus are assumed to be isolated, the annulus is impermeable, thus precluding any gas flux to flow through.

The original wagging model was extended by Bercovici et al. (2013) to include the influence of gas flux in a permeable annulus. The
authors discovered a Bernoulli-type mechanism, by which the side-to-side wagging motions can be sustained. A more recent extension
of the wagging model allows for 3-D motions, in the form of ‘whirling’, wherein the magma column tracks elliptical trajectories, whose
eccentricities depend on the energy and angular momentum of the magma column (Liao et al. 2018). The whirling motions also cause seismic
radiation patterns spiralling away from the conduit, which are manifested as time delays between waveforms detected by seismometers at
different locations. In the whirling model, the annulus is assumed to be impermeable. Lacking an excitation mechanism, the whirling motions
are damped out by the viscous dissipation in the magma column. In the current study, we extend the 3-D wagging model to incorporate gas
flux through a permeable annulus. We will explore if the Bernoulli effect identified in the 2-D wagging model by Bercovici et al. (2013) also
exists in three dimensions, and whether it helps sustain the whirling motions. A theoretical framework will be presented in Section 2. Results
from linear analysis, including the evolution of the magma column’s angular momentum and energy will be presented in Section 3. Some
non-linear effects and their influence on the motions of the magma column will be presented in Section 4, followed by discussion in Section 5.

2 THEORET ICAL FRAMEWORK

2.1 Governing equations for the motion of the magma column

The geometry of our model (Fig. 1 and Fig. A1) is similar to the ones in recent studies (Bercovici et al. 2013; Liao et al. 2018), wherein
a magma column, enveloped by a permeable vesicular annulus, rests in the centre of a vertical conduit. The displacement of the magma
column is represented by the vector �u = �u(z, t) at time t and height z along the column. In cylindrical-polar coordinates, the displacement is
represented by its magnitude u, and its polar angle ψu, which is measured against the x̂ unit vector in the Cartesian coordinates. The direction
of x̂ , once arbitrarily selected, remains fixed for all time.

Any horizontal section of the magma column with thickness dz is subjected to a gas pressure force �Fg , which arises from non-uniform
gas density variation in the deformed vesicular annulus surrounding the column section (see Appendix A, Fig. A1). The column section is
also subjected to a viscous bending force �Fvb, due to the differential shear stresses acting on its upper and lower surfaces. When the magma
column moves against the annulus, the relative velocity between the moving column and the static conduit wall gives rise to a shear stress
across the magma matrix in the annulus. This shear stress results in a viscous annulus drag force acting on the annulus–column interface �F ad.
If the volume ratio of magma in the annulus is low, the annulus drag force �F ad is small in comparison to the viscous bending force �Fvb; hence
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Magma wagging and whirling with gas flux 715

its effect was omitted in the previous 2-D and 3-D models (Jellinek & Bercovici 2011; Bercovici et al. 2013; Liao et al. 2018). In this study,
we include �F ad, so as to study a more comprehensive coupling between the gas annulus and the magma column.

For convenience, we use grouped subscript a, b, c to represent the subscripts a, b and c separately, and use grouped superscript a, b, c to
represent a, b and c separately. According to Newton’s second law, the equation of motion for the magma column section, under the three
forces �Fg,ad,vb, can be expressed in Cartesian coordinates

ρmπR2
mdz

∂2�u
∂t2

= �Fg + �F ad + �Fvb (2)

When the displacement magnitude u is small compared with the width of the annulus, u2 < <(Rc − Rm)2, the three forces acting on the
magma column section are, respectively (see Appendix A2)

Fg
x = −C2

g Rmπdzρc
1 − C2

gπdz
(
ρc

2ux + ρs
2uy

)
Fg
y = −C2

g Rmπdzρs
1 + C2

gπdz
(
ρc

2uy − ρs
2ux

)
�F ad = −∂�u

∂t
(1 − φo)μmπ

Rm

Rc − Rm
dz

�Fvb = μmπR2
m

∂3�u
∂t∂z2

(3)

where the subscript x and y indicate the x and y components of the given vector in the Cartesian coordinates, respectively. The isothermal
sound speed for the gas phase Cg is assumed to be constant, due to the high heat capacity of the magma (Bercovici & Michaut 2010). ρc

n and
ρs
n (n = 1, 2, 3) are the Fourier coefficients of the gas density ρ according to eq. (4), as discussed in the following section. φo is the volume

fraction of the gas phase in the undeformed annulus. We assume that the magma has constant viscosity μm, and that the viscosity of the gas
annulus is proportional to the volume fraction of magma in the deformed annulus section.

2.2 Evolution of gas density and velocity

In the permeable annulus, we assume that the sheared bubbles are tube shaped, and that the gas pathways are only in the vertical direction.
Both the gas density ρ(t, z, θ ) and the vertical gas velocity w(t, z, θ ) are functions of time t, height z and the polar position θ along the annulus,
measured against x̂ (see Fig. A1 in Appendix A1). Given azimuthal periodicity, these functions can be expressed as discrete Fourier series

ρ(θ ) = ρo +
∞∑

m=1

(
ρc
m cosmθ + ρs

m sinmθ
)

w(θ ) = Wo +
∞∑

m=1

(
wc

m cosmθ + ws
m sinmθ

) (4)

in which the Fourier coefficients ρc
n , ρs

n , wc
n and ws

n are functions of t and z. ρo and Wo are the unperturbed gas density and velocity in the
steady state.

The evolutions of ρ and w are coupled to each other, and can be found via conservation of mass and momentum in both the gas phase
and magma matrix in the annulus, following Bercovici et al. (2013) (see Appendix A3)

∂(ρϕ)

∂t
+ ∂(ρϕw)

∂z
= 0 (5a)

ρφ

(
∂w

∂t
+ w

∂w

∂z

)
= −C2

g

∂ρ

∂z
− ((1 − φ)ρm + φρ) g (5b)

where g is the gravitational acceleration, and (see Appendix A3)

ϕ(θ ) = φo −
(
ux

Um
cos θ + uy

Um
sin θ

)
(6a)

φ(θ ) = φo − (1 − φo)

(
ux

Um
cos θ + uy

Um
sin θ

)
(6b)

where Um ≡ R2
c−R2

m
2Rm

. We can obtain the evolution equations for the Fourier coefficients by substituting eq. (4) into the governing eq. (5).
Therefore, the evolution of the system, including the magma column and the gas flux, is determined by eqs (2) and (5).
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716 Y. Liao and D. Bercovici

3 EVOLUTION OF THE SYSTEM WITH SMALL PERTURBATIONS

3.1 Linear stability analysis

We select the width of the annulus Rc − Rm for the length scale, (Rc − Rm)/Cg for the timescale, the unperturbed gas density ρo for the density
scale and non-dimensionalize the governing eqs (2) and (5). The resulting dimensionless evolution equations are

∂(ρϕ)

∂t
+ ∂(ρϕw)

∂z
= 0 (7a)

ρφ

(
∂w

∂t
+ w

∂w

∂z

)
= −∂ρ

∂z
− γ (β(1 − φ) + ρφ) (7b)

∂2ux

∂t2
= − λ

β
ρc

1 − λ2

β
(ρc

2ux + ρs
2uy) + η

∂3ux

∂z2∂t
− (1 − φo)ηλ

∂ux

∂t
(7c)

∂2uy

∂t2
= − λ

β
ρs

1 + λ2

β
(ρc

2uy − ρs
2ux ) + η

∂3uy

∂z2∂t
− (1 − φo)ηλ

∂uy

∂t
(7d)

where ρ, w, and ux, y have been normalized by their respective scales. The dimensionless constants are defined as

β = ρm/ρo, λ = Rc − Rm

Rm
, η = μm

ρmCg(Rc − Rm)
, γ = (Rc − Rm)g

C2
g

(8)

where the dimensionless number β is the ratio of magma and gas density, λ is a measure of annulus thickness relative to the column width,
η measures the competition between the viscous bending forces and gas spring forces and γ represents the ratio of hydrostatic pressure and
gas pressure.

Using linear perturbation theory and assuming g = γ = 0 following Bercovici et al. (2013), we obtain the governing equations for small
perturbations (see Appendix B1)

(
∂

∂t
+ M

∂

∂z
)(φoρ

c,s
1 − ζux,y) + φo

∂w
c,s
1

∂z
= 0 (9a)

φo(
∂

∂t
+ M

∂

∂z
)wc,s

1 + ∂ρ
c,s
1

∂z
= 0 (9b)

∂2ux,y

∂t2
+ λ

β
ρ
c,s
1 − η

∂3ux,y

∂t∂z2
+ (1 − φo)ηλ

∂ux,y

∂t
= 0 (9c)

where ζ = (Rc − Rm)/Um = 2/(λ + 2); M = Wo/Cg is a gas injection Mach number, determined by the undisturbed gas flux velocity Wo.
With the linear approximation, the evolution of higher degree components in gas density ρc

2 , ρs
2 are governed by the sound-wave equations,

which are decoupled from the motion of the magma column.
Assuming all perturbations have the form eikz + st, eq. (9) leads to a relation between the complex growth rate s and wavenumber k (see

Fig. B1 and Appendix B2). Similar to the findings of Bercovici et al. (2013), we observe that each wavenumber k corresponds to four distinct
roots for s. Among the four roots, three are stable with Re(s) < 0, indicating that the corresponding perturbations decay with time; one root
is unstable with Re(s) > 0, whose perturbations grow with time (Fig. B1a). In the 2-D model, Bercovici et al. (2013) recognized the unstable
growing root as a consequence of the Bernoulli effect from the gas flowing through the deformable annulus, whereby the pinching/dilating
in the annulus section leads to an increase/decrease in gas velocity and the associated decrease/increase in gas pressure, which causes further
pinching/dilating. Similarly, the Bernoulli effect induces an instability in three dimensions as well, driving perturbations to grow in both x̂
and ŷ components of the displacement and serves as an excitation mechanism for 3-D whirling motions (Liao et al. 2018). Because of its
origin, we name the unstably growing perturbations ‘Bernoulli perturbations’. The perturbations in the gas density ρ

c,s
1 can be expressed as

responses to the to the perturbations in the displacement ux, y through a complex response factor �̃ (see Appendix B3). Using the response
factor, we express the real part of growth rate s as

σ = Im(�̃)λ

2ωβ
− ηk2

2
− (1 − φo)λη

2
(10)

where Im(�̃) is the imaginary part of the response factor, ω = −Im(s) indicates the oscillation frequency of the perturbation and σ = Re(s)
determines if the perturbation grows (if σ > 0) or decays (if σ < 0) with time. The first term on the right-hand side of eq. (10) suggests that
the gas density response factor �̃ is directly linked to the growth or decay of a perturbation.
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Magma wagging and whirling with gas flux 717

Figure 2. Frame (a) shows the magnitudes of the gas torques, normalized by the magnitude of the angular momentum according to eq. (11) as a function of
wavenumber k for all roots of s [i.e. solutions for eq. (B6) in Appendix B2]. The blue curves all have positive values and correspond to the left y-axis; and the
green curve has negative values and corresponds to the left y-axis. Frame (b) shows the ratio between the Bernoulli torque and the viscous bending torque as
functions of k for multiple gas injection Mach numbers M = Wo/Cg, which are indicated by the colours of the curves.

3.2 Evolution of energy and angular momentum

3.2.1 Evolution of angular momentum under the linear forces

We define a dimensionless angular momentum �L = �u × ∂�u
∂t , and three dimensionless torques from the distinct linear forces �T g,vb,ad ≡

�u × �Fg,vb,ad , where �F ad and �Fvb correspond to the annulus drag and the viscous bending forces, respectively, and �Fg corresponds to the gas
pressure force due to the non-uniform linear perturbations in the gas density. For a single root with wavenumber k, angular frequency s = σ

− iω and gas density response factor �̃, the torques are related to the angular momentum as (see Appendices B5.1 and B5.2)

�T vb = −ηk2 �L, �T ad = −(1 − φo)λη �L, �T g = Im(�)λ

ωβ
�L (11)

The torques generated by the viscous forces ( �T vb and �T ad) are opposite in sign to the angular momentum itself, and therefore decelerate the
rotational motions of the magma column. The torque generated by the gas pressure force ( �T g) may have the same sign as �L (see Fig. 2a), in
which case it accelerates the rotational motions. The evolution of the angular momentum is determined by the sum of all three torques

∂ �L
∂t

= �T vb + �T ad + �T g = �T tot (12)

where the total torque �T tot = �T vb + �T ad + �T g can be further calculated using eqs (10) and (11), which becomes

�T tot = 2σ �L (13)

When the system is dominated by any of the three stable perturbations (with σ < 0), the net torque �T tot points in the opposite direction of �L ,
which damps the rotational motions of the magma column. When the system is dominated by the Bernoulli perturbations (with σ > 0), the
angular momentum increases with time, because the positive and large torque �T g causes a propelling net torque �T tot. In this case, we refer
to �T g as the ‘Bernoulli torque’ due to its close link to the Bernoulli effect. Due to the Bernoulli effect, the strength of the Bernoulli torque
increases with increasing gas velocity, which is indicated by the higher Mach number (see Fig. 2b).

When the system is dominated by the perturbations with a single growth rate s = σ − iω and wavenumber k (e.g. after the system has
evolved long enough for the decaying perturbations to vanish), the displacement components ux, y(z, t) can be obtained from the waveform
solutions ûx,yeikz+st , where the complex Fourier coefficients ûx and û y are determined by the initial displacement of the magma column. In
this case, the angular momentum for the perturbations can be expressed as a function of time t and height z (see Appendix B5.2)

�L = (
ω|ûx | · |û y |e2σ t sin ω(τ u

y − τ u
x )

)
ẑ (14)

where |ûx | and |û y | are the magnitudes of ûx and û y , respectively; and τ u
x,y are time lags indicating the initial phases of the oscillations along x̂

and ŷ. If the magma column has wagging motions with the perturbations confined to a 2-D vertical plane, then the displacement components
ux and uy are always proportional to each other and τ u

x − τ u
y = nπ (n = 0, 1, 2, . . . ). In this case, the angular momentum is always zero. If

the gas annulus is impermeable, the Bernoulli torque �T g always vanishes (see Appendix B5.2), and the angular momentum decays due to the
viscous torques. If the magma column whirls in the conduit with 3-D Bernoulli perturbations, and the annulus is permeable, the rotational
motions will be propelled due to the Bernoulli torque. By enabling the Bernoulli effect, the permeable annulus enhances the growth in angular
momentum of the whirling magma column.
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718 Y. Liao and D. Bercovici

3.2.2 Evolution of energy under the linear forces

When the system is dominated by a single growth rate s = σ − iω and wavenumber k, the linear evolution eq. (9c) can be expressed in terms
of the real and imaginary parts of s (see Appendix B5.3)

∂2�u
∂t2

= −(σ 2 + ω2)�u + 2σ
∂�u
∂t

(15)

which is similar to the evolution equation of a damped harmonic oscillator under a linear drag (if σ < 0), or propelling (if σ > 0) force. We
define a potential � similar to the elastic potential for a harmonic oscillator, a kinetic energy K and the total energy E as

� = 1

2
u2(σ 2 + ω2), K = 1

2

∂�u
∂t

· ∂�u
∂t

, E ≡ � + K (16)

where u2 = u2
x + u2

y . Similar to the torques, we identify the power sources and sinks (i.e. rate of work) corresponding to the linear forces,

Wad,vb,g = ∂�u
∂t · �F ad,vb,g , which, for perturbations with a single growth rate s and wavenumber k, become (see Appendix B5.3)

Wvb = −2k2ηK Wad = −2(1 − φo)ηλK Wg = 2λ

β

Im(�)

ω
K (17)

The power sinks Wad and Wvb indicate the work done by the viscous forces, which are always negative and thus tend to damp the energy
of the magma column. Wg is referred to as the ‘Bernoulli power source’ for the Bernoulli perturbations, which indicates the positive work
done to the magma column by the gas pressure force under the Bernoulli effect. Similar to the Bernoulli torque, the Bernoulli power source
increases the total energy of the system under the dominance of the Bernoulli perturbations. The evolution of the energy E is determined by
the sum of all power sources

∂E
∂t

= Wad + Wvb + Wg = W tot (18)

where the total power source W tot can be further expressed, using eqs (10) and (17), as

W tot = 4σK (19)

Comparing eq. (17) with eq. (11), and eq. (13) with eq. (19), we observe that

Wad,vb,g,tot

2K
=

�T ad,vb,g,tot

�L
Therefore, we deduce that, similar to T g , Wg is positive for three out of the four roots of a given wavenumber (as shown in Fig. 2a), and that
the Bernoulli power source increases with the gas velocity (Fig. 2b); for the Bernoulli perturbations, Wg is strong enough to yield a positive
W tot, hence causing the energy of the magma column to increase. The evolutions of energy and angular momentum in our linear analysis
show that the Bernoulli effect, which causes the Bernoulli perturbations to grow, also promotes the growth in both angular momentum and
energy of the magma column. Note that if the system contains multiple wavelengths or frequencies (e.g. just after an unrest when decaying
perturbations have not subsided yet), the torques and power sources acting on the magma column consist of quadratic non-linear products
between different perturbations. However, due to the growing Bernoulli perturbations, both the energy and angular momentum contain at
least one exponentially growing component, and become subjected to the Bernoulli torque and Bernoulli power source, as time proceeds.
During the growth of energy and angular momentum, the displacement amplitude of the magma column becomes larger and larger. The
large displacement eventually leads to non-linear damping effects that are negligible with small displacement but are prominent with large
displacement. These effects will be discussed in the following section.

4 NON-L INEAR ANNULAR DAMPING

When the magnitude u of the magma column’s displacement increases due to the Bernoulli effect and the approximation u2 � 1 no longer
satisfies, the non-linear effects caused by large u become important. As the displacement grows, the most compressed section along the
annulus has thickness 1 − u. The non-linear annulus drag force F ad ∝ 1

1−u increases rapidly with u, causing stronger resistance when the

annulus is pinched towards the conduit wall. Because the viscous bending force and gas force �Fvb,g change less rapidly with larger u (remain
finite, while �F ad becomes infinite at u → 1), the increase of �F ad can lead to a stronger damping torque and power sink, which may cause the
angular momentum �L and energy E of the magma column to decrease when u is large enough.

4.1 The effect of non-linear damping on angular momentum and energy

At large displacement of the magma column, the annulus drag force �F ad contributes to a non-linear torque and power source according to

�T ad = �u × �F ad, Wad = ∂�u
∂t

· �F ad (20)
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Magma wagging and whirling with gas flux 719

Figure 3. Torques and rates of work done to the magma column dominated Bernoulli perturbations with wavenumber k = 0.0042. Frame (a) shows the annulus
drag torque �T ad/�L , and frame (b) shows the annulus drag power sink Wad/2K as functions of the dimensionless displacement amplitude u. Insets in (a) and
(b) are zoom-in of the curves over small values of u. A near-circular trajectory (i.e. angle ψv

u = π/2) is assumed when calculating the torque and power sink.
Frame (c) shows the total torque �T tot/�L (blue curve), and total power source W tot/2K (green curves) as functions of u. The total power source/sink is calculated
for three different whirling trajectories represented by the value of angle ψv

u between the displacement �u and the velocity �v of the magma column: a 2-D
trajectory (ψv

u = 0), a near circular trajectory (ψv
u = π/2) and an elliptical trajectory (ψv

u = π/4). The total torque and power source (for circular trajectory)
cross zero (black dash line) at the critical displacement uc. The values of non-linear torques and power sources are calculated according to eqs (C5) and (C9)
in Appendix C1.

Similar to their linear forms, the non-linear torque �T ad and power source Wad have opposite signs to that of �L and E . Meanwhile, their
magnitudes | �T ad| and |Wad| monotonically increase with u (Figs 3 a and b). As a result, the non-linear damping of the motions of the magma
column becomes more rapid as u increases.

Because �T ad and Wad change far more drastically (which could approach infinity when u → 1) than �T vb,g and Wvb,g (which remain
finite), we approximate the later torques and power sources using their linear forms. With these approximations, we calculate the changes
in the total torque �T tot and power source W tot at large displacement by substituting the linear forms of �T ad and Wad by their non-linear
counterparts (see Appendix C1 for details).

When the displacement magnitude u increases, �T tot transitions from being propelling (positive) to damping (negative) when the magnitude
of the magma column reaches a critical value uc such that �T tot(uc) = 0 (see Fig. 3 c and Fig. C1 in Appendix C1 for more parameters). Once
when u > uc, the damping of the angular momentum begins. Similarly, for the damping of the energy of the magma column, we can define a
critical displacement magnitude, beyond which the power source becomes a power sink. Specifically, if the trajectory of the magma column
is near circular (i.e. the displacement �u is perpendicular to the velocity �v = ∂�u

∂t and the angle between them ψv
u = π/2 or 3π /2), the total

power source and the total torque transition at the same critical displacement uc. If the trajectory of the magma column section is elliptical,
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the transition in W tot is delayed and occurs at a magnitude larger than uc. An exception occurs when the trajectory of the magma column
is 2-D and free of angular momentum (i.e. �u and �v are parallel with ψv

u = 0 or π ): in this case, W tot may remain positive even when the
displacement of the magma column reaches the maximum value permitted by the system (u = 1), resulting in the column colliding with the
conduit wall and its motion halted upon collision (Fig. 3c).

4.2 Re-excitation of high-frequency modes and timescales of non-linear damping

Using the critical displacement uc for the total torque and total power source (for near-circular trajectory), we define a critical growth time
tc to be the time it takes for the displacement magnitude u to increase from its initial value to the critical displacement uc. If the Bernoulli
perturbations correspond to an initial displacement magnitude uo at t = 0, the critical growth time tc can be approximated by

uoe
σ tc = uc (21)

where σ is the growth rate of the Bernoulli perturbation. The non-linear effect can lead to re-excitations of linear perturbations: when t> tc, the
rapid damping of energy and angular momentum is likely to soon decrease u back to a small value and restore the magma column to the linear
regime. As the magma column re-enters the linear regime, the instantaneous values (�u, �v, ρ,w), now resulting from the non-linear damping,
form a new set of initial perturbations and redistribute among perturbations with different frequencies, starting a new round of oscillations.
We can identify the cycle of the whirling motions to be from the onset of initial perturbations to the restoration of small displacements of
the magma column, and tc can be viewed as a midpoint through this process. The non-linear damping towards the end of each whirling cycle
can be viewed as a process of generating the initial conditions of the next cycle. As a result, the Bernoulli effect and the non-linear damping
effect together contribute to a self-sustained wagging mechanism.

The length of the whirling cycle is determined by the physical properties of the conduit, as well as the velocity Wo of the unperturbed
gas flux. When gas exsolution intensifies in the volcanic conduit, the velocity of the gas flux becomes larger, resulting in larger uc (Fig. 4a).
The magma column therefore can reach further towards to the conduit wall, which potentially leads to larger amplitudes in seismic pressure
waves (Liao et al. 2018), before the non-linear damping becomes important. However, as the growth rate σ increases with the gas flux velocity
significantly, the magma column can reach uc more rapidly, hence the growth time tc decreases (Fig. 4b). As discussed in previous studies,
as the volcano becomes more active, the annulus thins, since the magma becomes shear weakening with greater vesiculation (Jellinek &
Bercovici 2011; Gonnermann & Manga 2007). For a volcanic conduit with fixed outer radius Rc and gas injection velocity, the thinning of
the annulus causes a decrease in uc (Fig. 4c) as well as tc (Fig. 4d). When the annulus thickness is fixed, the critical displacement and growth
time both increase for bigger conduit radii (Figs 4 c and d).

When the unrest of the volcano intensifies en route to an eruption, the gas flux velocity increases, and the vesicular annulus becomes
thinner. Therefore, the length of each whirling cycle (approximated by 2tc), becomes shorter. Meanwhile, during each whirling cycle, the
seismic signals associated with the motions of the magma column first intensify due to the Bernoulli perturbations (when t < tc), and then
decrease due to the non-linear damping (when t> tc). This non-monotonic evolution in time is similar to that for the chugging events observed
in seismic tremor. Considering a system with magma density ρm ∼ 2.85 × 103kgm−3, magma viscosity μm ∼ 107Pas, isothermal sound
speed Cg ∼ 700 ms−1, magma to gas density ratio ρm/ρo ∼ 100, the length of a whirling cycle 2tc can range from seconds to over a minute
for varying conduit radius and annulus width (see Figs 4 b and d). This time range overlaps those observed for chugging envelopes in seismic
tremor from seconds to tens of seconds (Johnson & Lees 2000).

5 SUMMARY AND DISCUSS ION

Following the existing 3-D extension of the gas-flux-free whirling model (Liao et al. 2018), and the 2-D wagging model with gas flux
(Bercovici et al. 2013), we examine the motion of magma column in three dimensions in the presence of gas flux through a permeable
vesicular annulus. Similar to the findings of Bercovici et al. (2013), we find that gas flux through the annulus induces instabilities in the
displacement of the magma column, as well as the density and velocity of the gas in the annulus. We refer to these instabilities as the Bernoulli
perturbations, which originate from the Bernoulli effect in the gas flux flowing through the permeable and deformable annulus. We further
find that when the Bernoulli perturbations dominate the system, the gas pressure causes a positive torque (Bernoulli torque), and provides
positive work (Bernoulli power source) acting on the magma column, hence increasing both its angular momentum and energy.

As the system evolves, the dominance of the Bernoulli perturbations causes the amplitudes of waves in the magma column’s displacement
to grow exponentially. When the displacement of the magma column becomes large enough and reaches a critical value uc, a non-linear drag
force from shear across the annulus becomes important, resulting in rapid damping of the energy and angular momentum of the magma
column. An exception occurs when the magma column undergoes 2-D, side-to-side wagging motion, in which case the non-linear damping
does not effectively reduce the energy of the column. As a result, the wagging column could eventually collide with the conduit wall before
its displacement decreases. The pinching of the annulus and the contact between the magma column and the conduit wall, in this case, may
lead to partial destruction of the annulus structure, which may further disturb the wagging motion. When the magma column whirls in three
dimensions, the non-linear damping sends the magma column back to its linear regime where its displacement is small, and a new cycle of
perturbations starts again.
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Figure 4. Critical displacement uc (in metres) and corresponding critical growth time tc (in seconds), for a system with initial column displacement uo ∼ 1 cm.
Frame (a) shows the critical displacement uc as a function of gas injection velocity Wo in two cases with different annulus widths. Frame (b) shows the critical
growth time tc as a function of Wo for two different annulus widths. The inset in (b) shows the same curve over smaller values of Wo. Frames (c) and (d) show
the critical displacement uc and the growth time tc as functions of the annulus width Rc − Rm, respectively, for two different conduit radii Rc = 25 and 100 m.
For each case, the Bernoulli perturbations with the maximum growth rate among all wavenumbers is selected to calculate uc and tc.

The Bernoulli effect and the annulus damping effect contribute to different regimes of a self-sustained excitation mechanism: due to the
Bernoulli effect, the motion of the magma column can intensify, causing detectable pressure waves that transmit away from the conduit; due
to the non-linear damping effect, the motion of the magma column is self-regulated, so that oscillations with similar frequencies to those of
seismic tremor can be periodically regenerated (see Appendix B2). We also note that the presence of the non-linear damping can maintain
the integrity of the gas annulus, by preventing the whirling of the magma column to grow until the annulus is destroyed. The evolution of
whirling predicted by the excitation mechanism, which involves cycles of first increasing and then decreasing intensity of whirling, is similar
in frequency to the ‘chugging’events observed in seismic tremor, which are characterized by envelopes of high-amplitude seismic signals
(Johnson & Lees 2000). The typical length of a chugging envelope, which range from seconds to tens of seconds, is consistent with the
prediction on the length of the whirling cycles using our model.
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APPENDIX A : THEORET ICAL FRAMEWORK

A1 Model set-up

Following previous magma wagging models (Jellinek & Bercovici 2011; Liao et al. 2018), we assume that inside the volcanic conduit with
radius Rc, a magma column with radius Rm is enveloped by a gas-rich foamy annulus with width Rc − Rm. The displacement of the magma
column in three dimensions is represented by its displacement vector �u(z, t) at time t and height z along the column (Fig. 1). In cylindrical-polar
coordinates, �u is expressed using its magnitude u and its polar angle ψu (Fig. A1a).

For an arbitrary point Q on the surface of the magma column with polar angle of θ (Fig. A1a), its position �rm (Fig. A1b) satisfies
Rm = |�rm − �u|, leading to

rm(θ ) = u cos �θ +
√
R2
m − u2 sin2 �θ (A1)

where �θ = θ − ψu represents the angle between the displacement vector �u and �rm . The expression for rm in eq. (A1) straightforwardly leads
to the expressions for r 2

m and r 3
m

r 2
m = R2

m − u2 + 2u cos �θ

(
u cos �θ +

√
R2
m − u2 sin2 �θ

)
r 3
m = 3u(R2

m − u2) cos �θ + 4u3 cos3 �θ + (R2
m + 3u2 − 4u2 sin2 �θ )

√
R2
m − u2 sin2 �θ

(A2)

We identify the unit vector n̂, which is perpendicular to the surface element at Q, and the unit vector t̂ , which is parallel to the surface element.
The two unit vectors are (see Fig. 1b)

n̂(θ ) = (�rm − �u)/Rm

t̂(θ ) = ẑ × n̂
(A3)

where ẑ = (0, 0, 1) is the unit vector along the vertical direction. The local unit vectors n̂ and t̂ defined in eq. (A3) have geometrical relations
with the direction of the magma column’s displacement:

û · n̂ = ẑ · (
û × t̂

) = rm
Rm

cos �θ − u

Rm

û · t̂ = −ẑ · (û × n̂) = − rm
Rm

sin �θ

(A4)

where û = �u/u is the unit vector along the direction of the displacement �u.
In the following text, we will use the vector operations and definitions

∠b̂
â = ∠ĉ

â + ∠b̂
ĉ = ∠ĉ

â − ∠ĉ
b̂

(A5a)

cos∠b̂
â = â · b̂ = �a·�b

ab , sin∠b̂
â = ẑ ·

(
â × b̂

)
= ẑ·(�a×�b)

ab (A5b)

where �a and �b are arbitrary vectors on the horizontal plane, whose amplitudes are a and b, respectively. â = �a/a and b̂ = �b/b are the
unit vectors along the directions of �a and �b, and ĉ is an unit vector along an arbitrary direction. We define ∠b̂

â as the polar angle obtained by
rotating â, in the counterclockwise direction, till it aligns with b̂.

A2 Forces on the magma column

For any section of the magma column with thickness dz, the column section is subjected to a gas pressure force �Fg , which arises from
non-uniform gas density variation in the deformed vesicular annulus. For a small surface element on the magma column at point Q (Fig. A1a),
the pressure force acting on the surface element points towards the centre of the magma column. The pressure force has a magnitude P(θ )dS,
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Figure A1. Frame (a) shows the intersection of the conduit (black line) and the magma column (orange line). Q is an arbitrary point on the surface of the
magma column. Grey shaded area indicates a section of the annulus with angular position θ . The undisturbed position of the magma column is indicated by
the orange dash line. Frame (b) shows the pressure force and annulus drag force, generated in the annulus section, acting on the interface between the annulus
section and magma column.

where P(θ ) is the gas pressure in the deformed annulus section measured at θ , and dS is the area of the surface element spanned by dθ . The
motion of the column also generates a shear stress at Q, which can be approximated as μ(θ ) �v.t̂

Rc−Rm
, where �v = ∂�u

∂t is the velocity of the magma
column section, and μ(θ ) is the viscosity of the annulus, primarily controlled by the magma matrix. Assuming the gas annulus is at constant
temperature due to the high heat capacity of the magma, then the gas pressure force d �Fg and drag force d �F ad acting on the same column
surface can be further expressed as

d �Fg = −C2
gρ(θ )rmdθdzn̂

d �F ad = −μ(θ )rmdθdz
�v · t̂

Rc − rm
t̂

(A6)

where Cg is the isothermal sound speed of the gas in the annulus, and the term rmdθdz represents the area of the surface element dS spanned
by angular increment dθ and vertical increment dz.

The pressure and viscous drag forces can be further expressed as d �Fg = dFg
u û + dFg

ψψ̂ and d �F ad = dF ad
u û + dF ad

ψ ψ̂ , where û and
ψ̂ = ẑ × û are the perpendicular bases in polar coordinates. The radial and tangential components for both forces can be calculated according

to dFg,ad
u = û · d �Fg,ad and dFg,ad

ψ = ẑ ·
(
û × d �Fg,ad

)
, which lead to

dFg
u = −(û · n̂)C2

gρ(θ )rmdθdz, dFg
ψ = −ẑ · (û × n̂)C2

gρ(θ )rmdθdz (A7a)

dF ad
u = −(û · t̂)μ(θ )rmdθdz

�v · t̂
Rc − rm

, dF ad
ψ = −ẑ · (

û × t̂
)
μ(θ )rmdzdθ

�v · t̂
Rc − rm

(A7b)

Substitute eqs (A1) and (A4) into eq. (A7a), we expand the pressure force components in eq. (A7a) as

dFg
u = −C2

gρ(θ )dθdz

(
u cos �θ +

√
R2
m − u2 sin2 �θ

) (
u cos �θ + √

R2
m − u2 sin2 �θ

Rm
cos �θ − u

Rm

)

= C2
gρ(θ )(u2 − R2

m)

Rm
cos �θdθdz − C2

gρ(θ )u

Rm
cos 2�θ

(
u cos �θ +

√
R2
m − u2 sin2 �θ

)
dθdz

dFg
ψ = −C2

gρ(θ )dθdz

(
u cos �θ +

√
R2
m − u2 sin2 �θ

)
u cos �θ + √

R2
m − u2 sin2 �θ

Rm
sin �θ

= −C2
gρ(θ )dθdz

Rm

(
2u2 cos2 �θ sin �θ + (R2

m − u2) sin �θ + 2u sin �θ cos �θ

√
R2
m − u2 sin2 �θ

)
= C2

gρ(θ )(u2 − R2
m)

Rm
sin �θdθdz − C2

gρ(θ )u

Rm
sin 2�θ

(
u cos �θ +

√
R2
m − u2 sin2 �θ

)
dθdz

(A8)
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Using the relation (A5a), we expand the components of the viscous drag force eq. (A7b) as

dF ad
u = −(û · t̂)μ(θ )rmdθdz

v cos
(
∠û

v̂ + ∠t̂
û

)
Rc − rm

= −(û · t̂)μ(θ )rmdθdzv
(v̂ · û)(û · t̂) + (û × v̂) · (û × t̂)

Rc − rm

dF ad
ψ = −ẑ · (

û × t̂
)
μ(θ )rmdθdz

v cos
(
∠û

v̂ + ∠t̂
û

)
Rc − rm

= −ẑ · (
û × t̂

)
μ(θ )rmdθdzv

(v̂ · û)(û · t̂) + (û × v̂) · (û × t̂)

Rc − rm

(A9)

Substituting eqs (A4) and (A2) into eq. (A9), the components of the viscous drag force are further expanded as

dF ad
u = − (û.v̂)

R2
m

μ(θ )dθdz

Rc − rm
v

(
3u(R2

m − u2) sin2 �θ cos �θ + 4u3 sin2 �θ cos3 �θ
)

+ ẑ · (û × v̂)

R2
m

μ(θ )dθdz

Rc − rm
v

(
u(3R2

m − 5u2) cos2 �θ sin �θ − u(R2
m − u2) sin �θ + 4u3 cos4 �θ sin �θ

)
− (û.v̂)

R2
m

μ(θ )dθdz

Rc − rm
v

(
(R2

m + 3u2) sin2 �θ − 4u2 sin4 �θ
)√

R2
m − u2 sin2 �θ

+ ẑ · (û × v̂)

R2
m

μ(θ )dθdz

Rc − rm
v

(
(R2

m + u2) sin �θ cos �θ − 4u2 sin3 �θ cos �θ
) √

R2
m − u2 sin2 �θ

dF ad
ψ = − (û.v̂)

R2
m

μ(θ )dθdz

Rc − rm
v

(
u(R2

m − u2) sin �θ + u(5u2 − 3R2
m) sin �θ cos2 �θ − 4u3 sin �θ cos4 �θ

)
− ẑ · (û × v̂)

R2
m

μ(θ )dθdz

Rc − rm
v

(
u(3R2

m − 7u2) cos3 �θ + u(3u2 − 2R2
m) cos �θ + 4u3 cos5 �θ

)
+ (û.v̂)

R2
m

μ(θ )dθdz

Rc − rm
v

(
(u2 + R2

m) sin �θ cos �θ − 4u2 sin3 �θ cos �θ
) √

R2
m − u2 sin2 �θ

− ẑ · (û × v̂)

R2
m

μ(θ )dθdz

Rc − rm
v

(
(R2

m − u2) cos2 �θ − 4u2 sin2 �θ cos2 �θ + u2
)√

R2
m − u2 sin2 �θ (A10)

in which the column’s displacement magnitude u allowed in the conduit has a maximum value of Rc − Rm (i.e. the width of the vesicular
annulus). When the annulus is thin compared to the magma column such that (Rc − Rm)/Rm < <1, we assume a moderate displacement
magnitude O( u2

R2
m

) ∼ 0. Under this assumption, we substitute eq. (A1) for rm, and reduce the expressions for the pressure force components
(A8) and the annulus drag force components (A10) to

dFg
u = −C2

g Rmρ(θ ) cos �θdθdz − C2
guρ(θ ) cos 2�θdθdz (A11a)

dFg
ψ = −C2

g Rmρ(θ ) sin �θdθdz − C2
guρ(θ ) sin 2�θdθdz (A11b)

dF ad
u = − (û·v̂)μ(θ)dθdz

R2
m (Rc−Rm−u cos �θ)

v
(
R3
m + 3uR2

m cos �θ − R3
m cos2 �θ − 3uR2

m cos3 �θ
)

+ ẑ·(û×v̂)μ(θ)dθdz
R2
m (Rc−Rm−u cos �θ)

v
(
R3
m sin �θ cos �θ + 3uR2

m sin �θ cos2 �θ − uR2
m sin �θ

)
(A11c)

dF ad
ψ = − ẑ · (û × v̂)(1 − φo)μ(θ )dθdz

R2
m(Rc − Rm − u cos �θ )

v
(−2uR2

m cos �θ + R3
m cos2 �θ + 3uR2

m cos3 �θ
)

− (û · v̂)(1 − φo)μ(θ )dθdz

R2
m(Rc − Rm − u cos �θ )

v
(
uR2

m sin �θ − 3uR2
m sin �θ cos2 �θ − R3

m sin �θ cos �θ
)

(A11d)

The total pressure and drag forces can also be expressed in polar coordinate as �Fg,ad = Fg,ad
u û + Fg,ad

ψ ψ̂ , where the radial and tangential
components are obtained by integrations along the annulus

Fg
u =

∫ 2π

θ=0
dFg

u , Fg
ψ =

∫ 2π

θ=0
dFg

ψ (A12a)

F ad
u =

∫ 2π

θ=0
dF ad

u F ad
ψ =

∫ 2π

θ=0
dF ad

ψ (A12b)
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Note that as ρ(θ ) is azimuthally periodic along the annulus ρ(θ + 2mπ ) = ρ(θ ) (m = 1, 2, 3, . . . ), it can be expressed using discrete
Fourier series shown in eq. (A32a)

ρ = ρo +
∞∑

m=1

(
ρc
m cosmθ + ρs

m sinmθ
)

(A13)

Substituting eq. (A13) into eqs (A11a) and (A11b), we integrate according to eq. (A12a) and obtain the net pressure force components

Fg
u = − C2

g Rmπdzρc
1 cos ψu − C2

g Rmπdzρs
1 sin ψu − uπdzC2

g (ρc
2 cos 2ψu + ρs

2 sin 2ψu)

Fg
ψ = − C2

g Rmπdzρs
1 cos ψu + C2

g Rmπdzρc
1 sin ψu − uπdzC2

g (ρs
2 cos 2ψu − ρc

2 sin 2ψu)
(A14)

To calculate the net annulus drag force, we assume that the viscosity of the annulus μ(θ ) increases linearly with the volume fraction
of magma in the deformed annulus as μ(θ ) = μm(1 − φ), where φ (see Appendix A3) is the gas volume fraction in the deformed annulus
section. Using the expression (A28) for φ , μ(θ ) becomes

μ(θ ) = μm(1 − φo)

(
1 + Rc − Rm

Um
u cos �θ

)
(A15)

where Um ≡ R2
c−R2

m
2Rm

(see Appendix A3). Substituting the expression for μ(θ ) into eqs (A11c) and (A11d) and integrating them according to
eq. (A12b), we obtain the components of the net drag force

F ad
u = −(û · v̂)

Rm

Um
πdzvμm(1 − φo)

+ 4(û · v̂)
Rc − Rm −Um

Um
πdzvμm(1 − φo)

⎛⎝ 3
2 + 1

2
Rm

Rc−Rm

1 +
√

1 − u2

(Rc−Rm )2

− 3

4

⎞⎠
F ad

ψ = ẑ · (û × v̂)
Rm

Um
πdzvμm(1 − φo)

− 4ẑ · (û × v̂)
Rc − Rm +Um

Um
πdzvμm(1 − φo)

⎛⎝1

4
− 1√

1 − u2

(Rc−Rm )2

⎛⎝1 −
3
2 + 1

2
Rm

Rc−Rm

1 +
√

1 − u2

(Rc−Rm )2

⎞⎠⎞⎠
(A16)

The total pressure force and drag force are determined by eqs (A14) and (A16).
When the displacement u is also small compared with the width of the gas annulus such that O( u2

(Rc−Rm )2 ) ∼ 0, eq. (A16) can be further
reduced to its linear form

F ad
u = −(û.v̂)v(1 − φo)μmπdz

Rm

Rc − Rm

F ad
ψ = −ẑ · (û × v̂)v(1 − φo)μmπdz

Rm

Rc − Rm

(A17)

The expressions for the total pressure force and drag force are determined by eqs (A14) and (A17) in cylindrical-polar coordinates, with the
assumption of small displacement u < <Rc − Rm. In Cartesian coordinates, the components of the forces can be obtained via

Fg,ad
x = Fg,ad

u cos ψu − Fg,ad
ψ sin ψu, Fg,ad

y = Fg,ad
u sin ψu + Fg,ad

ψ cos ψu (A18)

where ψu = ∠û
x̂ is the polar angle of the displacement vector �u. Substituting eq. (A16) into eq. (A18), the components of the pressure and

annulus drag force in the Cartesian coordinates become

Fg
x = −C2

g Rmπdzρc
1 − uC2

gπdz
(
ρc

2(cos 2ψu cos ψu + sin 2ψu sin ψu) + ρs
2(sin 2ψu cos ψu − cos 2ψu sin ψu)

)
Fg
y = −C2

g Rmπdzρs
1 − uC2

gπdz
(
ρs

2(cos 2ψu cos ψu + sin 2ψu sin ψu) + ρc
2(sin 2ψu cos ψu − cos 2ψu sin ψu)

)
F ad
x = −v ((û · v̂) cos ψu − ẑ · (û × v̂) sin ψu) (1 − φo)μmπdz

Rm

Rc − Rm

F ad
y = −v ((û · v̂) sin ψu + ẑ · (û × v̂) cos ψu) (1 − φo)μmπdz

Rm

Rc − Rm

(A19)

in which the pressure force components can be further expressed as

Fg
x = −C2

g Rmπdzρc
1 − uC2

gπdzρc
2 cos ψu − uC2

gπdzρs
2 sin ψu

Fg
y = −C2

g Rmπdzρs
1 + uC2

gπdzρc
2 sin ψu − uC2

gπdzρs
2 cos ψu

(A20)

and the drag force components can be further expressed using the relation (A5)

F ad
x = −v cos ψv(1 − φo)μmπdz

Rm

Rc − Rm

F ad
y = −v sin ψv(1 − φo)μmπdz

Rm

Rc − Rm

(A21)
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726 Y. Liao and D. Bercovici

where ψv = ∠v̂
x̂ is the polar angle of the velocity vector.

In Cartesian coordinates, the displacement of the magma column �u has components ux, uy, and the velocity of the magma column �v has
components vx, vy, which can be calculated using their magnitudes u, v and polar angles ψu, ψ v:

ux = u cos ψu, uy = u sin ψu, vx = v cos ψv, vy = v sin ψv (A22)

Substituting eq. (A22) into eqs (A20) and (A21), we finally obtain the expressions for the forces in Cartesian coordinates with the assumption
of small displacement

Fg
x = −C2

g Rmπdzρc
1 − C2

gπdzρc
2ux − C2

gπdzρs
2uy

Fg
y = −C2

g Rmπdzρs
1 + C2

gπdzρc
2uy − C2

gπdzρs
2ux

F ad
x = −vx (1 − φo)μmπdz

Rm

Rc − Rm

F ad
y = −vy(1 − φo)μmπdz

Rm

Rc − Rm

(A23)

which leads to the first three equations in eq. (3) after substituting ∂�u
∂t for �v.

Apart from the pressure force and the annulus drag force generated on the column–annulus interface, the magma column is also subjected
to a viscous bending force �Fvb, which is caused by the differential shear stresses acting on the upper and lower surfaces of the column section.
The shear stress tensor T acts on a given horizontal surface intersecting the column such that

T .ẑ = μm
∂

∂z
�v (A24)

where the horizontal velocity �v is assumed to be uniform across the column interface but varying in vertical direction. The viscous bending
force �Fvb can be obtained from the difference in T across the section’s lower and upper surfaces

�Fvb = [T]|z+dz
z π R2

m = μmπ R2
mdz

∂2

∂z2

∂�u
∂t

(A25)

where πR2
m is the area of the upper and lower surfaces. Eq. (A25) leads to the last equation in eq. (3).

A3 Gas flux dynamics

The volume of the annulus segment spanned by the angular increment dθ (see Fig. A1) and vertical increment dz is dV = dz
∫ Rc
rm

rdθdr .
Under the assumption of small displacement, dV is further expressed using the expression for rm in eq. (A1):

dV = dVo[1 − u

Um
cos �θ ] (A26)

where Um ≡ R2
c−R2

m
2Rm

, and dVo = 1
2 (R2

c − R2
m)dθdz is the volume of the undeformed annulus section. The volume of magma in the undeformed

annulus section is dVm = dVo(1 − φo), where φo is the undisturbed gas volume fraction. We assume that the magma matrix is incompressible
due to the high compressibility of the gas phase, hence dVm is constant. In the deformed annulus section with total volume dV, the gas volume
dVg = dV − dVm = ϕ(θ )dVo, where ϕ, defined as dVg/dVo, is

ϕ(θ ) = φo − u

Um
cos �θ (A27)

The gas volume fraction in the deformed annulus section φ(θ ) = dVg/dV is, to first order of u:

φ(θ ) = φo − (1 − φo)
u

Um
cos �θ (A28)

Using the relation �θ = θ − ψu and the relation (A22), we re-express eqs (A28) and (A27) as

ϕ(θ ) = φo − ux cos θ + uy sin θ

Um
(A29a)

φ(θ ) = φo − (1 − φo)
ux cos θ + uy sin θ

Um
(A29b)

which leads to eq. (6) in the main text. The conservation of mass in the deformed annulus section is expressed as

∂(ρϕ)

∂t
+ ∂(ρϕw)

∂z
= 0 (A30)

where ρ = ρ(θ , t, z) and w = w(θ , t, z) are the gas density and velocity in the annulus. The equation of motion for the gas flux can be achieved
by analysing the forces on both the gas and the magma phase following (Bercovici et al. 2013), which yield

ρφ

(
∂w

∂t
+ w

∂w

∂z

)
= −C2

g

∂ρ

∂z
− ((1 − φ)ρm + φρ) g (A31)
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where ρm is the density of the magma. The first term on the right-hand side of eq. (A31) denotes the pressure gradient force, which follows
the assumption of a constant isothermal gas sound speed Cg and the ideal gas law P(θ ) = C2

gρ(θ ). The second term on the right-hand side
of eq. (A31) is the gravitational force acting on the mixture of gas and magma within the annulus section, which results from combining the
equations of motion of the gas and magma phases. Although the permeability in the gas annulus is not explicitly incorporated in eq. (A31), it
is implicitly required for the Darcy drag of the porous gas flows [for detailed derivation, refer to Bercovici et al. (2013)].

Given azimuthal periodicity, the gas density and velocity can be expressed as discrete Fourier series

ρ(θ ) = ρo +
∞∑

m=1

(
ρc
m cosmθ + ρs

m sinmθ
)

(A32a)

w(θ ) = Wo +
∞∑

m=1

(
wc

m cosmθ + ws
m sinmθ

)
(A32b)

where ρc
n , wc

n , ρs
n and ws

n (n = 1, 2, 3, . . . ) are the Fourier coefficients that vary with time t and height z.

APPENDIX B : L INEAR STABIL ITY ANALYS IS

B1 Dimensionless linear equations for perturbations

We select the annulus’ width Rc − Rm for the length scale, (Rc − Rm)/Cg for a timescale and the unperturbed gas density ρo as the density
scale to non-dimensionalize the governing equations. The dimensionless governing equations corresponding to eqs (A23), (A30) and (A31)
become

∂(ρϕ)

∂t
+ ∂(ρϕw)

∂z
= 0

ρφ

(
∂w

∂t
+ w

∂w

∂z

)
= −∂ρ

∂z
− γ (β(1 − φ) + ρφ)

∂2ux

∂t2
= − λ

β
ρc

1 − λ2

β
(ρc

2ux + ρs
2uy) + η

∂3ux

∂z2∂t
− (1 − φo)ηλ

∂ux

∂t

∂2uy

∂t2
= − λ

β
ρs

1 + λ2

β
(ρc

2uy − ρs
2ux ) + η

∂3uy

∂z2∂t
− (1 − φo)ηλ

∂uy

∂t
(B1)

where ρ, w and ux, y have been normalized by their respective scales. The dimensionless constants are defined as

β = ρm/ρo, λ = Rc − Rm

Rm
, η = μm

ρmCg(Rc − Rm)
, γ = (Rc − Rm)g

C2
g

(B2)

The dimensionless number β is the ratio of magma and gas density, λ is a measure of annulus thickness relative to the column width, η

measures the competition between the viscous damping and gas spring forces and γ measures the competition between hydrostatic pressure
and gas pressure. In the rest of our study, we assume g = γ = 0 following Bercovici et al. (2013).

A steady-state solution for eq. (B1) can be readily found, which corresponds to the undisturbed system with a uniform gas velocity
Wo. The steady-state solution for the displacement is u(0)

x,y = 0. The steady solution for the gas density is ρ(0) = 1 and for the gas velocity
w(0) = Wo/Cg. Both the solutions for the gas density and gas velocity are uniform across the annulus and independent of θ . Therefore, the
corresponding Fourier coefficients are ρc,(0)

n = ρs,(0)
n = wc,(0)

n = ws,(0)
n = 0.

We introduce a small perturbation to the system, which leads to the new solutions of ux = εu(1)
x , uy = εu(1)

y , ρ = 1 +
ε
∑∞

n

(
ρc,(1)
n cos nθ + ρs,(1)

n sin nθ
)

and w = M + ε
∑∞

n

(
wc,(1)

n cos nθ + ws,(1)
n sin nθ

)
, where ε � 1, M = Wo/Cg is defined as a gas in-

jection Mach number and the subscript (1) indicates the first-order perturbations. We substitute the perturbation solutions into eq. (B1), take
the first order of ε, and obtain six linearized equations (wherein the superscript ‘(1) ’is dropped):

(
∂

∂t
+ M

∂

∂z
)(φoρ

c,s
1 − ζux,y) + φo

∂w
c,s
1

∂z
= 0

φo(
∂

∂t
+ M

∂

∂z
)wc,s

1 + ∂ρ
c,s
1

∂z
= 0

∂2ux,y

∂t2
+ λ

β
ρ
c,s
1 − η

∂3ux,y

∂t∂z2
+ (1 − φo)ηλ

∂ux,y

∂t
= 0

(B3)

where

ζ = (Rc − Rm)/Um = 2/(λ + 2) (B4)

With the linear approximation, the evolution of higher degree components (m> 1) in gas density and velocity are governed by the sound-wave
equations, which are decoupled from the motion of the magma column. Because λ is small (assuming thin annulus), the contributions from
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728 Y. Liao and D. Bercovici

Figure B1. Complex growth rate s according to dispersion relation resulting from the solution to eq. (B6). Frame (a) shows Re(s) as a function of wavenumber
k for all four roots of eq. (B6). Values of the three blue curves are shown by the y-axis on the left; values of the green curve are shown by the y-axis on the
right. Frame (b) shows −Im(s) as a function of wavenumber k for the four roots. The oscillation frequency is normalized by the inviscid oscillation frequency
α generated by an impermeable annulus, as defined in eq. (B12). Two blue curves have small oscillation frequencies, whose values are shown on the y-axis on
the left; and two red curves have high oscillation frequencies, whose values are shown on the y-axis on the right.

the higher degree components to the non-linear evolutions of the magma column’s motions are limited due to higher powers in λ in eq. (B1).
Therefore, to study the interactions between the gas flux and the wagging motion, and also assuming a thin vesicular annulus, we focus on
the lowest degree components ρ

c,s
1 and w

c,s
1 in the rest of our study.

The first-order perturbations governed by eq. (B3) indicate that the evolution of the gas flux with even symmetry (ρc
1, w

c
1) is coupled to the

evolution of ux , while the evolution of gas flux with odd symmetry (ρs
1, w

s
1) is coupled with uy only. As a result, the evolution of (ρc

1, w
c
1, ux )

is independent from the evolution of (ρs
1, w

s
1, uy) and the evolution of the column displacement �u = εux x̂ + εuy ŷ is the superposition of two

1-D displacements in orthogonal directions. Note that these relations are only true in the linear approximation when the displacement is very
small.

B2 Linear stability analysis and dispersion relation

The solution for eq. (B3) can be expressed as a superposition of propagating waves

ux,y =
∑
k

ûx,ye
ikz+st ρ

c,s
1 =

∑
k

ρ̂
c,s
1 eikz+st w

c,s
1 =

∑
k

ŵ
c,s
1 eikz+st (B5)

where ûx,y , ρ̂
c,s
1 and ŵ

c,s
1 are complex amplitudes for the Fourier modes, and the complex growth rate s is a function of wavenumber k.

Substituting the wave-like solutions (B5) into (B3), we obtain the characteristic equation for s

s2 + φoα
2(s + ikM)2

k2 + φo(s + ikM)2
+ η

(
k2 + (1 − φo)λ

)
s = 0 (B6)

the solution for which is the dispersion relation s(k). Taking the real and imaginary components separately, the characteristic eq. (B6) leads to

σ 2 − ω2 + φoα
2Re

(
(s + ikM)2

k2 + φo(s + ikM)2

)
+ η

(
k2 + (1 − φo)λ

)
σ = 0 (B7a)

− 2(σω) + Im

(
(s + ikM)2

k2 + φo(s + ikM)2

)
− η

(
k2 + (1 − φo)λ

)
ω = 0 (B7b)

where σ (k) and ω(k) are real numbers defined by

σ = Re(s), ω = −Im(s) (B8)

For each wavenumber k, there are four distinct roots for eq. (B6), three of which are stable with Re(s) < 0 (Fig. B1a, dashed and dotted
curves in blue and green), and one unstable with Re(s) > 0 (Fig. B1a, blue solid curve). Both the unstable root and the rapid-decay root
correspond to low-frequency oscillations (Fig. B1b, blue curves), whose periods are much longer than that of the fundamental oscillation
frequency α, defined in eq. (B12), which corresponds to ∼ 1 Hz tremor (Jellinek & Bercovici 2011; Bercovici et al. 2013). The two slower
decay roots, which behave similar to up- and down-propagating sound waves, have high-frequency oscillations (Fig. B1b, red curves). Similar
findings were first discovered by Bercovici et al. (2013) in their 2-D magma wagging model, in which the unstable root was recognized
as a consequence of Bernoulli effect. Here, the Bernoulli effect induces an instability in three dimensions, driving instabilities in both x̂
and ŷ components of the displacement and serves as an excitation mechanism for the 3-D whirling motion. Therefore, we will refer to the
perturbation with Re(s) > 0 as the Bernoulli perturbation, as it is a consequence of the Bernoulli effect.
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Magma wagging and whirling with gas flux 729

Figure B2. Gas torques associated to all four roots as function of wavenumber, with variations in system parameters M, λ, η and φo.

It is worth noting that, if the system has an impermeable gas annulus as assumed in previous models (Jellinek & Bercovici 2011; Liao
et al. 2018), the mass of gas phase in any deformed annulus section conserved, thus ρdVg = ρodVoφo (see Appendix A3). Using the expression
(A27) for ϕ, the gas density in the impermeable annulus becomes

ρ(θ ) = ρoφo/ϕ = ρo + ρo

φoUm
u cos �θ (B9)

Comparing eq. (B9) with the alternative expression (A32a) for ρ(θ ) using its Fourier modes, we observe that the Fourier coefficients in
eq. (A32a) must satisfy

ρc
1 = ρoux

Umφo
, ρs

1 = ρouy

Umφo

and

ρc
n = ρs

n = 0 (n > 1)

After being normalized by the density scale ρo and length scale Rc − Rm, the dimensionless density perturbations become

ρc
1 = ζux/φo, ρs

1 = ζuy/φo (B10)

which contribute to the restoring force in eq. (A23). Substituting the above relation to eq. (B3), the governing equations for the first-order
perturbation in the magma column’s displacement becomes

∂2ux,y

∂t2
+ α2ux,y = η

∂3ux,y

∂t∂z2
− (1 − φo)ηλ

∂ux,y

∂t
(B11)

where

α =
√

λζ

βφo
(B12)

corresponds to the fundamental oscillation frequency. Substituting the waveform solutions (B5) into (B11), the characteristic equation
becomes

s = −1

2

(
k2 + (1 − φo)λ

)
η ± αi

√
1 − (k2 + (1 − φo)λ)2

η2

4
(B13)

which in the limit of small wavenumber k and thin annulus width λ becomes

s = −1

2

(
k2 + (1 − φo)λ

)
η ± αi

which corresponds to a damped oscillation with frequency α. Substituting the definitions of the dimensionless numbers eqs (B2) and (B4) into

eq. (B12), the dimensional oscillation frequency for the impermeable annulus becomes

√
2ρoC2

g

φoρm (R2
c−R2

m )
, recovering the fundamental frequency

in the previous models with impermeable gas annulus (Jellinek & Bercovici 2011; Liao et al. 2018).

B3 Gas density response factor and its link to growing instabilities

The Fourier coefficients for the gas density ρ̂
c,s
1 defined in eq. (B5) can be expressed as a response to the Fourier coefficient in the magma

column displacement ûx,y

ρ̂
c,s
1 = �̃ûx,y (B14)

where �̃ is defined as the response factor between gas density and column displacement and is calculated by substituting eqs (B5) and (B6)
into (B3)

�̃ = ζ (s + Mki)2

φo(s + Mki)2 + k2
, (B15)
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The real and imaginary parts of the gas density response factor (B15) can be expressed separately as

Re
(
�̃

) = ζRe

(
(s + Mki)2

φo(s + Mki)2 + k2

)
Im

(
�̃

) = ζ Im

(
(s + Mki)2

φo(s + Mki)2 + k2

)
(B16)

Substituting eqs (B16) into (B7), we obtain

σ 2 − ω2 + φo
α2

ζ
Re

(
�̃

) + η
(
k2 + (1 − φo)λ

)
σ = 0 (B17a)

−2(σω) + φo
α2

ζ
Im

(
�̃

) − η
(
k2 + (1 − φo)λ

)
ω = 0 (B17b)

−(σ 2 + ω2) + φo
α2

ζ

(
Re(�̃) + σ

Im(�̃)
ω

)
= 0 (B17c)

where eq. (B17c) is obtained by summing up the products of eq. (B17a) multiplied by ω and eq. (B17b) multiplied by σ .
Substituting the expression for α in eqs (B12) into (B17 b) leads to the relation between the growth rate σ and the gas response factor

σ = Im(�)λ

2ωβ
− ηk2

2
− (1 − φo)λη

2
(B18)

In contrast, the growth rate determined by eq. (B13) for an impermeable annulus is

σ = Re(s) = −ηk2

2
− (1 − φo)λη

2
(B19)

which is always negative. Comparison between eqs (B18) and (B19) suggests that the Bernoulli perturbation, for which σ > 0, is linked to
the variation in gas density and exists only when the annulus is permeable.

B4 Expressions of linear perturbations in real space

The displacement in real space can be obtained by taking the real part of eq. (B5). When the system is dominated by a single root (e.g. when
time progressed long enough such that the decay roots are damped out, the Bernoulli perturbation dominates) with angular frequency s = σ

− iω and wavenumber k, the displacement components ux and uy at height z is

ux,y(t, z) = Re
(
ûx,ye

ikz+(σ−iω)t
)

= Re
((

Re(ûx,y) + iIm(ûx,y)
)

(cos kz + i sin kz) (cos ωt − i sin ωt)
)
eσ t

= (
Re(ûx,y) cos kz cos ωt + Re(ûx,y) sin kz sin ωt + Im(ûx,y) cos kz sin ωt − Im(ûx,y) sin kz cos ωt

)
eσ t

= (
Re(ûx,y) cos ωt + Im(ûx,y) sin ωt

)
cos kzeσ t + (

Re(ûx,y) sin ωt − Im(ûx,y) cos ωt
)

sin kzeσ t

= |ûx,y | cos

(
ωt − tan−1

(
Im(ûx,y)

Re(ûx,y)

))
cos kzeσ t + |ûx,y | sin

(
ωt − tan−1

(
Im(ûx,y)

Re(ûx,y)

))
sin kzeσ t

= |ûx,y | cos
(
ω(t − τ u

x,y) − kz
)
eσ t

(B20)

where |ûx,y | and τ u
x,y are defined as

|ûx,y | =
√

Re(ûx,y)2 + Im(ûx,y)2, τ u
x,y = tan−1

(
Im(ûx,y)

Re(ûx,y)

)
/ω (B21)

The amplitudes |ûx | and |û y | indicate the initial values of the displacement components ux and uy, and the time-shifts τ u
x and τ u

y are determined
by the initial phases of the oscillatory parts in ux and uy, respectively. The gas density ρc and ρs can be obtained from eq. (B5) following
similar derivation as eq. (B20), finally leading to the expressions of a single root in real space and time

ux,y = Re
(
ûx,ye

ikz+st
) = |ûx,y | cos

(
ω(t − τ u

x,y) − kz
)
eσ t (B22a)

ρ
c,s
1 = |�||ux,y | cos(ω(t − τ u

x,y − τ ρ) − kz)eσ t (B22b)

where

|�| =
√

Re(�̃)2 + Im(�̃)2 τ ρ = 1

ω
tan−1

(
Im(�̃)

Re(�̃)

)
(B23)

Take the time derivative of eq. (B22a), we obtain the velocity components vx, y = ∂ux, y/∂t:

vx,y = σ |ûx,y | cos
(
ω(t − τ u

x,y) − kz
)
eσ t − ω|ûx,y | sin

(
ω(t − τ u

x,y) − kz
)
eσ t

= σux,y − ω|ûx,y | sin
(
ω(t − τ u

x,y) − kz
)
eσ t (B24)

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/215/1/713/5061123 by Yale U

niversity user on 05 February 2019



Magma wagging and whirling with gas flux 731

The responses of gas density components ρc, s can also be expressed in terms of the displacement and velocity. Rewrite the time-shift τ ρ

in eq. (B23) as

cos ωτρ = Re(�̃)√
Re(�̃)2 + Im(�̃)2

, sin ωτρ = Im(�̃)√
Re(�̃)2 + Im(�̃)2

, |�̃| =
√

Re(�̃)2 + Im(�̃)2

and substitute it into eq. (B22b), we expand the density components as

ρ
c,s
1 = |�̃||ûx,y |

(
cos

(
ω(t − τ u

x,y) − kz
)

cos ωτρ + sin
(
ω(t − τ u

x,y) − kz
)

sin ωτρ
)
eσ t

= |ûx,y |eσ tRe(�̃) cos
(
ω(t − τ u

x,y) − kz
) + |ûx,y |eσ t Im(�̃) sin

(
ω(t − τ u

x,y) − kz
)

= Re(�̃)ux,y + |ûx,y |eσ t Im(�̃) sin
(
ω(t − τ u

x,y) − kz
)

(B25)

Substituting eqs (B22a) and (B24) into (B25), ρ
c,s
1 then become

ρc
1 =

(
Re(�̃) + Im(�̃)σ

ω

)
ux − Im(�̃)

ω
vx (B26a)

ρs
1 =

(
Re(�̃) + Im(�̃)σ

ω

)
uy − Im(�̃)

ω
vy (B26b)

B5 Energy and angular momentum of the Bernoulli perturbation

B5.1 Definitions of linear forces

Observing the linear evolution equation for the displacement of the magma column in eq. (B3)

∂2ux,y

∂t2
= − λ

β
ρ
c,s
1 + η

∂3ux,y

∂t∂z2
− (1 − φo)ηλ

∂ux,y

∂t
(B27)

We can define three dimensionless forces from the above equation

�Fg = − λ

β

(
ρc

1 x̂ + ρs
1 ŷ

)
(B28a)

�Fvb = η
∂2

∂z2

∂�u
∂t

(B28b)

�F ad = −(1 − φo)ηλ
∂�u
∂t

(B28c)

in which �Fvb and �F ad correspond to the viscous bending force on the deformed magma column and the annulus drag force at the
column–annulus interface, respectively; and �Fg is the gas pressure force for the linear perturbations. Using these forces, the dimensionless
evolution equation for the linear perturbations can be expressed as

∂2�u
∂t2

= �Fg + �Fvb + �F ad (B29)

When the system is dominated by perturbation with a single growth rate and wavenumber, the forces can be expressed using the magma
column’s displacement �u and velocity �v = ∂�u/∂t by substituting eqs (B5) and (B26) into (B28)

�Fg = − λ

β

(
Im(�̃)σ

ω
+ Re(�̃)

)
�u + λ

β

Im(�̃)

ω
�v

�Fvb = −ηk2�v
�F ad = −(1 − φo)ηλ�v (B30)

where �̃ is calculated according to eq. (B15). It is worth noting that when the gas annulus is impermeable, the density perturbations are
determined by eq. (B10), in which case eq. (B28a) reduces to

�Fg = − λζ

βφo
�u (B31)

which is always parallel with the displacement �u of the magma column.
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732 Y. Liao and D. Bercovici

B5.2 Angular momentum and torques

We define the dimensionless angular momentum �L = �u × �v and the dimensionless torques as �T g,vb,ad ≡ �u × �Fg,vb,ad, which are further
expressed after taking the cross product of �u and eq. (B30)

�T vb = −ηk2 �L, �T ad = −(1 − φo)λη �L, �T g = Im(�)λ

ωβ
�L (B32)

The evolution of the angular momentum becomes

∂ �L
∂t

= ∂�u
∂t

× ∂�u
∂t

+ �u × ∂2�u
∂t2

= �u × ∂2�u
∂t2

= �T vb + �T ad + �T g (B33)

A total torque �T tot = �T vb + �T ad + �T g can be further calculated using the relation in eq. (B18)

�T tot =
(

Im(�)λ

ωβ
− ηk2 − (1 − φo)λη

)
�L = 2σ �L (B34)

For a complex growth rate, the angular momentum of the magma column �L = �u × �v = Lẑ has non-zero component in the ẑ direction,
where the amplitude L can be expanded using eqs (B22a) and (B24)

L = uxvy − uyvx

= |ûx û y |e2σ t
(
σ cos

(
ω(t − τ u

y ) − kz
)

cos
(
ω(t − τ u

x ) − kz
) − ω sin

(
ω(t − τ u

y ) − kz
)

cos
(
ω(t − τ u

x ) − kz
))

−|ûx û y |e2σ t
(
σ cos

(
ω(t − τ u

x ) − kz
)

cos
(
ω(t − τ u

y ) − kz
) − ω sin

(
ω(t − τ u

x ) − kz
)

cos
(
ω(t − τ u

y ) − kz
))

= |ûx û y |ωe2σ t
(
sin

(
ω(t − τ u

x ) − kz
)

cos
(
ω(t − τ u

y ) − kz
) − sin

(
ω(t − τ u

y ) − kz
)

cos
(
ω(t − τ u

x ) − kz
))

= |ûx û y |ωe2σ t sin
((

ω(t − τ u
x ) − kz

) − (
ω(t − τ u

y ) − kz
))

= |ûx û y |ωe2σ t sin
(
ω(τ u

y − τ u
x )

)
(B35)

We observe from eq. (B35) that if the relation between the two Fourier coefficients satisfies τ u
x − τ u

y = nπ (n = 0, 1, 2, . . . ), then the
displacement components ux and uy determined by eq. (B22a) are always proportional to each other, which corresponds to 2-D motion, in
which case the angular momentum is zero. If the motion is 3-D but the gas annulus is impermeable [the case in Liao et al. (2018)], �Fg ‖ �u
according to eq. (B31), causing the torque �T g = �u × �Fg to vanish. In this condition, the angular momentum decays under the negative viscous
torques. When the motion is 3-D and the annulus is permeable, the gas torque has a finite value. We observe from eq. (B32) that �T vb and �T ad

are always in the opposite direction of �L (i.e. when rotation is clockwise, the torques are counterclockwise, and vice versa), hence contribute
to decreasing �L . In contrast, the sign of �T g is positive for three out of the four roots of s for any given wavenumber (see Fig. 2 a and Fig. B2).
However, it is only for the unstable root that �T g is large enough to counter the two negative torques �T ad,vb, which yield a positive net torque
�T tot indicated in eq. (B34). Therefore, we refer to the gas torque �T g of the Bernoulli perturbation as the Bernoulli torque. The gas torques as
functions of wavenumber k remain qualitatively similar, despite variations in the system’s parameters such as magma viscosity, gas injection
velocity, annulus width and porosity. As the Bernoulli effect depends on the velocity of the gas flows, the Bernoulli torque increases with
increasing gas injection velocity (see Fig. 2b).

B5.3 Energy and power sources

To define an energy for the wagging magma column, we first observe the acceleration of the magma column in eq. (B29), which can be
expanded using the displacement and velocity of the magma column using eq. (B30) when the system is dominated by a single root

∂2�u
∂t2

= − λ

β

(
Im(�)σ

ω
+ Re(�)

)
�u +

(
λ

β

Im(�)

ω
− (1 − φo)ηλ − k2η

)
∂�u
∂t

(B36)

which can be expressed in terms of σ and ω using the relations (B17c) and (B18)

∂2�u
∂t2

= −(σ 2 + ω2)�u + 2σ
∂�u
∂t

(B37)

which is similar to the evolution equation of an harmonic oscillator under a linear drag (if σ < 0), or propelling (if σ > 0) force. We define a
potential � similar to the elastic potential of an harmonic oscillator, and a kinetic energy K to be

� = 1

2
u2(σ 2 + ω2), K = 1

2

∂�u
∂t

· ∂�u
∂t

(B38)

where u2 = u2
x + u2

y . An ‘energy’E can then be defined as the sum of the kinetic energy and the potential

E ≡ � + K (B39)

Multiplying both side the above equation by the velocity ∂�u
∂t leads to

∂

∂t

(
1

2

∂�u
∂t

· ∂�u
∂t

)
= − ∂

∂t

(
1

2
(σ 2 + ω2)�u · �u

)
+ 4σ

(
1

2

∂�u
∂t

· ∂�u
∂t

)
(B40)
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which according to the definitions in eqs (B38) and (B39), becomes

∂E
∂t

= 4σK (B41)

We can further identify the contribution by the three forces to ∂E/′∂t by substituting eqs (B18) back to (B41):

∂E
∂t

= 2λ

β

Im(�)

ω
K − 2(1 − φo)ηλK − 2k2ηK

= Wg + Wad + Wvb

(B42)

where Wad, Wvb and Wg are defined as the power sources provided by the three corresponding forces

Wvb = −2k2ηK Wad = −2(1 − φo)ηλK Wg = 2λ

β

Im(�)

ω
K (B43)

among which Wg indicates the rate of work done by the gas pressure force, and is referred to as the Bernoulli power source when the Bernoulli
perturbation dominates. The total power source (i.e. the rate of works done by all forces) to the system is

W tot = 2

(
−k2η − (1 − φo)ηλ + λ

β

Im(�)

ω

)
K = 4σK (B44)

Comparing eqs (B43) with (B32), we can observe that

Wad, vb,g

2K
=

�T ad,vb,g

�L
Therefore, the rates of work done by different forces varies with k and s in the same way as the torques. Similar to the angular momentum,
the total rate of work done to the system is positive when the Bernoulli perturbation dominates.

APPENDIX C : NON-L INEAR EFFECTS OF LARGE COLUMN DISPLACEMENT

C1 Non-linear damping of the angular momentum and energy

When the magnitude of the column displacement u increases due to the unstable root, the non-linear effects become important in the system
when the approximation of O(u2) = 0 no longer satisfies. Especially, as u approaches the annulus’ width (u → 1), the most deformed annulus
section becomes infinitely thin, and the shear stress at the column–annulus interface, hence the annulus drag force �F ad, approaches infinity.
Because �Fg and �Fvb remain finite at large displacement, the strong increase in �F ad can drastically decrease the energy and angular momentum
once the non-linear damping effect of �F ad becomes larger than the Bernoulli effect in �Fg . As shown in Appendix B5, �L and E grow with
time at small displacement, before they are damped out by the non-linear drag force. This indicates that a transition must happen at a critical
displacement where the total torque and rate of work changes from being positive to negative due the increased importance of the non-linear
damping effect.

The non-linear annulus drag force �F ad, derived in Appendix A2 is expressed by its radial and tangential components in eq. (A16) in
polar-cylindrical coordinates

F ad
u = û · �F ad, F ad

ψ = ẑ ·
(
û × �F ad

)
(C1)

where û is the radial basis û = �u/u. We use the same scales in Appendix B1 to non-dimensionlaize the force, where the length scale is
the annulus’ thickness Rc − Rm, velocity scale is the isothermal gas sound speed Cg and timescale is (Rc − Rm)/Cg. The forces are non-

dimensionalized by the product of the acceleration scale
C2
g

Rc−Rm
and the mass of a magma column section πR2

mρmdz. The dimensionless form
of eq. (A16) becomes

F ad
u = −(û · v̂)ηζλ(1 − φo)v + 4(û · v̂)ηλ2(ζ − 1)(1 − φo)v

(
3λ+1

2λ

1+
√

1−u2
− 3

4

)
(C2a)

F ad
ψ = ẑ · (û × v̂)ηζλ(1 − φo)v − 4ẑ · (û × v̂)ηλ2(ζ + 1)(1 − φo)v

(
1
4 − 1√

1−u2

(
1 − 3λ+1

2λ

1+
√

1−u2

))
(C2b)

where dimensionless numbers λ, η and ζ where defined in eqs (B2) and (B4). Comparing eqs (C1) and (C2b), we further expand the
torque generated by the non-linear annulus drag force �T ad = �u × �F ad = uF ad

ψ ẑ into

�T ad = ηζλ(1 − φo)�L − 4ηλ2(ζ + 1)(1 − φo)�L
(

1

4
− 1√

1 − u2

(
1 −

3λ+1
2λ

1 + √
1 − u2

))
(C3)
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734 Y. Liao and D. Bercovici

Figure C1. (a)–(d) show the non-linear annulus drag torque as function of the displacement magnitude. (e)–(h) show the total non-linear torque as function of
the displacement magnitude. The function are shown with variations in system parameters M, λ, η and φo. The intersection of total torque with 0 (dash line)
indicates the critical displacement uc.

where the angular momentum �L = �u × �v = uv(û × v̂). Define

�(u) =
4
(

1 + 1
ζ

)
√

1 − u2

1+λ

2λ
− √

1 − u2

1 + √
1 − u2

+ 1 + 1

ζ
(C4)

the torque becomes

�T ad = ηζλ(1 − φo)�L (1 − λ�(u)) (C5)

Note that �(u) > 0 and monotonically increases with u. Therefore, the torque �T ad always has the opposite sign with the angular momentum.
When the displacement increases, �T ad increases rapidly and is always opposite in sign to �L , hence the non-linear damping of the angular
momentum becomes stronger (Figs C1 a–d). The instantaneous rate of work done by the non-linear annulus drag force Wad = �v · �F ad =
vF ad cos∠ �Fad

v̂ . Using eq. (A5), we further express Wad as

Wad = vF ad cos∠û
v̂ cos∠ �Fad

û − vF ad sin∠û
v̂ sin∠ �Fad

û

= cos∠û
v̂(û · �F ad)v − sin∠û

v̂ ẑ ·
(
û × �F ad

)
v

= (û · v̂)vF ad
u + ẑ · (û × v̂)vF ad

ψ

(C6)

Substituting eqs (C2) into (C6), we obtain the rate of work done by the non-linear viscous drag force

Wad =v2 cos2 ψv
u ηλ(1 − φo)

(
−ζ + 4λ(ζ − 1)

(
3λ+1

2λ

1 + √
1 − u2

− 3

4

))

+ v2 sin2 ψv
u ηλ(1 − φo)

(
ζ − 4λ(ζ + 1)

(
1

4
− 1√

1 − u2

(
1 −

3λ+1
2λ

1 + √
1 − u2

))) (C7)

where ψv
u = ∠v̂

û is the angle between the displacement �u and the velocity �v. We define another u-depended variable

�(u) = −1 + 4λ

(
1 − 1

ζ

) (
3λ+1

2λ

1 + √
1 − u2

− 3

4

)
(C8)

which leads to

Wad = 2Kηλ(1 − φo)ζ
(
cos2 ψv

u�(u) + sin2 ψv
u (1 − λ�(u))

)
(C9)

where �(u) was defined in eq. (C4). When ψv
u = 0 or π , the motion of the magma column is 2-D, and Wad is always finite. In this case,

the non-linear viscous damping may not be large enough to cause the decrease in energy, due to the finite value of �(u). When the motion
of the magma column is 3-D, thus ψv

u 
= 0 or π , the damping effect can be infinitely large as u → 1, hence the total energy eventually
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decreases as the work done by the drag force becomes large enough. Especially, when the wagging motion is near circular with ψv
u = π/2,

Wad = 2Kηλ(1 − φo)ζ (1 − λ�(u)), which is similar to eq. (C5), thus

�T ad

�L = Wad|ψv
u = π

2

2K

It is worth noticing that when the displacement magnitude is small enough such that O(u2) ∼ 0,

� → (1 + 1

ζ
)
1

λ
, � → − 1

ζ

which lead eqs (C5) and (C9) to recover their linear forms in eqs (B32) and (B43), respectively. We can further approximate the evolutions
of energy and angular momentum of the system at large column displacement by substituting the linear torque and power source done by the
linear viscous annulus drag force by the non-linear counterparts using eqs (C5) and (C9). As the effect of gas force and viscous bending force
remain finite, we assume that the non-linear contribution of the annulus drag force is much more prominent, hence keeping the linear forms
of the other two forces. Under this approximation, the total torque and power source in eqs (B34) and (B44) become

�T tot =
(

2σ + λη(1 − φo) + �T ad
)

�L (C10a)

W tot = (
4σ + 2λη(1 − φo) + Wad

)
K (C10b)

which, using eqs (C5) and (C9), can be further expressed in u

�T tot

�L = 2σ + (1 + ζ )λη(1 − φo) − ηλ2ζ (1 − φo)�(u) (C11a)

W tot

2K
= 4σ + 2ηλ(1 − φo)

(
1 + ζ�(u) cos2 ψv

u + ζ (1 − λ�(u)) sin2 ψv
u

)
(C11b)

As the angular momentum at large displacement amplitude is eventually damped by the non-linear annulus drag force, but increases
when the displacement amplitude is small, we can define a critical displacement at which the angular momentum transitions from increasing
to decreasing. Such transition happens when the total torque decreases to zero, hence �T tot(uc) = 0. The critical displacement uc therefore can
be obtained from eq. (C11a)

�(uc) = 2σ + (1 + ζ )λη(1 − φo)

ζηλ2(1 − φo)
(C12)

Once when u > uc, the total torque becomes negative and the angular momentum starts decreasing (Figs C1 e–h). Despite the variation of
the critical displacement for different parameters in the system, the evolution of the total torque is qualitatively the same, crossing 0 from
positive to negative as the displacement increases. If the Bernoulli perturbation corresponds to a circular trajectory (i.e. ψv

u = π/2 or 3π /2),
the decrease in the energy of the system also occurs when the displacement amplitude reaches uc, at which point W tot(uc) = �T tot(uc) = 0.
When the Bernoulli perturbation corresponds to elliptical trajectories, the decrease in energy is postponed. Furthermore, if the trajectory is
2-D (i.e. ψv

u = 0 or π ), the total power source W tot could still have a positive value even at u = 1. Therefore, whether and when the energy
of the system will be damped by the non-linear drag force sensitively depends on the shape of the wagging trajectory.
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