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Abstract. Converting modulo flows into integer-valued flows is one of the most critical steps
in the study of integer flows. Tutte and Jaeger’s pioneering work shows the equivalence of modulo
flows and integer-valued flows for ordinary graphs. However, such equivalence no longer holds for
signed graphs. This motivates us to study how to convert modulo flows into integer-valued flows for
signed graphs. In this paper, we generalize some early results by Xu and Zhang [Discrete Math., 299
(2005), pp. 335–343], Schubert and Steffen [European J. Combin., 48 (2015), pp. 34–47], and Zhu
[J. Combin. Theory Ser. B, 112 (2015), pp. 93–103] and show that, for signed graphs, every modulo
(2 + 1

p
)-flow with p ∈ Z+ ∪ {∞} can be converted/extended into an integer-valued flow.
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1. Introduction. In flow theory, an integer-valued flow and a modulo flow are
different by their definitions. For ordinary graphs, Tutte showed that a graph admits
an integer-valued nowhere-zero k-flow if and only if it admits a modulo nowhere-zero k-
flow. We also notice that although most landmark results are stated as integer-valued
flow results, due to the theorem by Tutte, they were initially proved for modulo flows,
such as the 8-flow theorem by Jaeger [5], the 6-flow theorem by Seymour [13], and
the weak 3-flow theorem by Thomassen [15].

However, Tutte’s result cannot be applied for signed graphs (see Figure 1). That
is, there is a big gap between modulo flows and integer-valued flows for signed graphs.
The first known result was proved by Bouchet [1] in his study of chain-groups.

Theorem 1.1 (see [1, Proposition 3.5]). If a signed graph (G, σ) admits a modulo
k-flow f1, then it admits an integer-valued 2k-flow f2 with supp(f1) ⊆ supp(f2).

In this paper, Theorem 1.1 is improved for some important cases: modulo 2-flows,
modulo 3-flows, and modulo circular (2 + 1

p )-flows.

1.1. Basic definitions. Graphs considered here may have multiple edges or
loops. Let G be a graph with vertex set V (G) and edge set E(G). For a vertex v, we
denote by EG(v) the set of edges incident with v and denote dG(v) = |EG(v)| (known
as the degree of v). When no confusion is caused, we simply use E(v) and d(v) for
short. Let X and Y be two disjoint vertex sets. We denote by E(X,Y ) the set of
edges with one end in X and the other end in Y and denote e(X,Y ) = |E(X,Y )|.
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An edge set F is an odd-λ-edge cut if |F | = λ is odd and G−F has more components
than G. A graph G is odd-λ-edge-connected if it contains no odd-k-edge cut for any
k ≤ λ − 2. The odd-edge-connectivity of G is the smallest integer λ for which G is
odd-λ-edge-connected. If F = {e}, then e is a bridge of G. A graph G is bridgeless if
it contains no bridges.

A signed graph is a graph G associated with a signature σ : E(G) → {±1}. An
edge e is positive if σ(e) = 1 and negative otherwise. Every edge of G consists of two
half-edges, each of which is incident with exactly one end of this edge. For a vertex v,
denote by H(v) the set of all half-edges incident with v. Let H(G) =

⋃
v∈V (G)H(v).

For a half-edge h, we use eh to denote the edge containing h. An orientation of (G, σ)
is a mapping τ : H(G) → {±1} such that τ(h1)τ(h2) = −σ(e) for e ∈ E(G), where
h1 and h2 are the two half-edges of e.

For a signed graph (G, σ), switching at a vertex u means reversing the signs of all
edges incident with u. Let X(G,σ) be the set of signatures of G obtained from σ via a
sequence of switching operations. The negativeness of G is the smallest integer q for
which G has a signature σ′ ∈ X(G,σ) with exactly q negative edges.

1.2. Integer-valued flows in signed graphs.

Definition 1.2. Let (G, σ) be a signed graph associated with an orientation τ .
Let k be a positive integer and f : E(G) → Z be a mapping such that 0 ≤ |f(e)| ≤
(k − 1) for every edge e ∈ E(G). The boundary of f at a vertex v is defined as
∂f(v) =

∑
h∈H(v) f(eh)τ(h). The mapping f is an integer-valued k-flow (modulo

k-flow, respectively) of (G, σ) if ∂f(v) = 0 (∂f(v) ≡ 0 (mod k), respectively) for each
vertex v ∈ V (G).

Let f be a flow of a signed graph (G, σ). The support of f , denoted by supp(f),
is the set of edges e with f(e) 6= 0. A flow f is nowhere-zero if supp(f) = E(G).
For convenience, we respectively shorten the notations of nowhere-zero k-flows into
integer-valued k-NZFs and modulo k-NZFs.

To verify Bouchet’s 6-flow conjecture [1] for 6-edge-connected signed graphs, Xu
and Zhang [18] proved the following two results, which generalize Tutte’s theorem to
a signed graph with k = 2, 3.

Theorem 1.3 (see [18]). If a signed graph (G, σ) admits a modulo 2-flow f1 such
that each component of supp(f1) contains an even number of negative edges, then it
also admits an integer-valued 2-flow f2 with supp(f1) = supp(f2).

Theorem 1.4 (see [18]). If a signed graph (G, σ) admits a modulo 3-flow f1
such that supp(f1) is bridgeless, then it also admits an integer-valued 3-flow f2 with
supp(f1) = supp(f2).

In this paper, under the weaker conditions, we prove the following two results,
which are analogues of Theorem 1.1 and respectively improve Theorems 1.3 and 1.4.

Theorem 1.5. If a signed graph (G, σ) is connected and admits a modulo 2-flow
f1 such that supp(f1) contains an even number of negative edges, then it also admits
an integer-valued 3-flow f2 with supp(f1) = {e ∈ E(G) : f2(e) = ±1}.

Theorem 1.6. If a signed graph (G, σ) is bridgeless and admits a modulo 3-flow
f1, then it also admits an integer-valued 4-flow f2 with supp(f1) ⊆ {e ∈ E(G) : f2(e) =
±1,±2}.

By applying a lemma in [2] together with Theorems 1.5 and 1.6, one can show
that every bridgeless signed graph admitting a nowhere-zero integer flow admits a
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958 JIAN CHENG, YOU LU, RONG LUO, AND CUN-QUAN ZHANG

Fig. 1. (G, σ) admits a modulo 3-NZF with all edges assigned with 1 but no integer-valued 3-NZF.

nowhere-zero integer 11-flow.

1.3. Integer-valued circular flows in signed graphs.

Definition 1.7. Let (G, σ) be a signed graph associated with an orientation τ .
(1) Let k and d be two positive integers. An integer-valued (modulo, respectively)

circular k
d -flow of (G, σ) is an integer-valued (modulo, respectively) flow f such

that d ≤ |f(e)| ≤ k − d for every edge e ∈ E(G).
(2) Let p be a positive integer. The orientation τ is a modulo (2p+1)-orientation

if
∑
e∈H(v) τ(e) ≡ 0 (mod 2p+ 1) for every vertex v ∈ V (G).

When k = 3, Tutte’s theorem [16] implies that a graph G admits a modulo
circular 3-flow if and only if it admits an integer-valued circular 3-flow. This result
was generalized to integer-valued circular (2 + 1

p )-flows by Jaeger [6] as follows.

Theorem 1.8 (see [6]). Let G be a graph. Then the following statements are
equivalent:

(A) G admits a modulo (2p+ 1)-orientation.
(B) G admits a modulo circular (2 + 1

p )-flow.

(C) G admits an integer-valued circular (2 + 1
p )-flow.

For signed graphs, using an identical proof in [6], one can easily prove that (A)
and (B) are still equivalent. However, similar to the argument for modulo flows,
the equivalence relation between (B) and (C) does not hold for signed graphs (see
Figure 1). For more details, readers are referred to [7], [8], [11], [12], [18], [20], etc.

The following are some early results proved by Xu and Zhang [18], Schubert and
Steffen [12], and Zhu [20].

Theorem 1.9. Let (G, σ) be a signed graph. Then (B) and (C) are equivalent if
the following hold:

(1) ([18]) p = 1, and (G, σ) is cubic and contains a perfect matching;
(2) ([12]) (G, σ) is (2p+ 1)-regular and contains a p-factor;
(3) ([20]) (G, σ) is (12p − 1)-edge-connected with negativeness even or at least

(2p+ 1).

In this paper, we improve all the results in Theorem 1.9 as follows.

Theorem 1.10. (B) and (C) are equivalent for signed graphs with odd-edge-
connectivity at least (2p+1). That is, if a signed graph (G, σ) is odd-(2p+1)-connected,
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then it admits a modulo circular (2+ 1
p )-flow if and only if it admits an integer-valued

circular (2 + 1
p )-flow.

2. Proof of Theorem 1.5. Let (G, σ) together with a flow f1 be a counterex-
ample to Theorem 1.5 such that |E(G)| is minimized. In the following context, we
are to yield a contradiction by showing that (G, σ) actually admits an integer-valued
3-flow f2 satisfying Theorem 1.5. For convenience, we denote B = supp(f1).

Claim 2.1. B 6= E(G), and each edge of E(G)−B is a bridge.

Proof. If B = E(G), then G is an eulerian graph containing an even number
of negative edges. By Theorem 1.3, G admits an integer-valued 2-NZF f2. If e∗ ∈
E(G)−B is not a bridge, let G′ = G−{e∗}. Then G′ is connected and f1 is a modulo
2-flow of G′ with |E(G′)| < |E(G)|. Thus by the minimality of (G, σ), (G′, σ) admits
an integer-valued 3-flow f2 with B = {e ∈ E(G′) : f2(e) = ±1}. In both cases, f2 is
a desired integer-valued 3-flow.

Claim 2.2. For an edge e ∈ E(G)−B, denote the components of G− {e} by Q1

and Q2. Then each B ∩Qi contains an odd number of negative edges.

Proof. Since B contains an even number of negative edges, B ∩ Q1 and B ∩ Q2

contain the same parity number of negative edges. Suppose to the contrary that each
contains an even number of negative edges. For i ∈ {1, 2}, we have |E(Qi)| < |E(G)|,
and therefore (Qi, σ) admits an integer-valued 3-flow gi such that B ∩ Qi = {e ∈
E(Qi) : gi(e) = ±1}. We define f2 as f2(e′) = gi(e

′) for each e′ ∈ Qi and f2(e) = 0.
It is easy to see that f2 is a desired integer-valued 3-flow.

Now we first choose an edge e∗ in E(G) − B and denote its ends by x1 and
x2, respectively. For each i ∈ {1, 2}, let Qi be the component of G − {e∗} with
xi ∈ V (Qi). We construct a new signed graph (Hi, σi) from Qi by adding a negative
loop ei at xi. Denote Bi = (B ∩ Qi) ∪ {ei}, and assign f1(ei) = 1. By Claim 2.2,
each Bi contains an even number of negative edges. Therefore, f1 is a modulo 2-flow
of (Hi, σi) with support Bi. Since |E(Hi)| < |E(G)|, by the minimality of G, (Hi, σi)
admits an integer-valued 3-flow gi such that Bi = {e ∈ E(Hi) : gi(e) = ±1}. Note
that |∂gi(xi)| = 2 in Qi. Without loss of generality, we can assume that ∂g2(x2) =
−σ(e∗)∂g1(x1); otherwise we can replace g1 by −g1. Finally, we define f2 by assigning
f2(e) = gi(e) for each e ∈ E(Qi), and by choosing f2(e∗) = 2 or −2 such that the
boundaries of f2 at x1 and x2 are both zero. It is easy to verify that f2 is a desired
integer-valued 3-flow.

3. Proof of Theorem 1.6. First let us recall the vertex-splitting operation and
the splitting lemma.

Definition 3.1. Let G be a graph and v be a vertex. If F ⊂ EG(v), we denote
by G(v;F ) the graph obtained from G by splitting the edges of F away from v, that is,
adding a new vertex v∗ and changing the common end of edges in F from v to v∗ (See
Figure 2.)

Lemma 3.2 (splitting lemma [3, 4]). Let G be a bridgeless graph and v be a
vertex. If dG(v) ≥ 4 and e1, e2, e3 ∈ EG(v) are chosen in a way that e1 and e3 are
in different blocks when v is a cut-vertex, then either G(v;{e1,e2}) or G(v;{e1,e3}) is
bridgeless. Furthermore, G(v;{e1,e3}) is bridgeless if v is a cut-vertex.

Proof of Theorem 1.6. Let (G, σ) together with a flow f1 be a counterexample to
Theorem 1.6 such that the following hold:
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v

e1 e2

· · ·

G

⇒
v

v∗

e1 e2

· · ·

G(v;{e1,e2})

Fig. 2. Splitting {e1, e2} away from v.

w ⇒

ew′

ew′′

ew

(1) ∂f1(w) ≡ 0 (mod 3), dG1(w) = 2

v∗ v ⇒ vv∗

(2) ∂f1(w) 6≡ 0 (mod 3)

Fig. 3. Construction of signed graph (G2, σ2).

(1) | suppc(f1)| is minimized, where suppc(f1) = E(G)− supp(f1);
(2) subject to (1),

∑
v∈V (G) |dG(v)− 3| is minimized.

Now we use an argument similar to the one used in section 2 and show that
(G, σ) actually admits an integer-valued 4-flow satisfying Theorem 1.6 in the following
context.

Claim 3.1. supp(f1) 6= ∅ and suppc(f1) 6= ∅.
Proof. If supp(f1) = ∅, then simply let f2(e) = 0 for each edge e. If suppc(f1) = ∅,

then supp(f1) = E(G), and thus f1 itself is a modulo 3-NZF of (G, σ). Since G is
bridgeless, Theorem 1.4 implies that (G, σ) admits an integer-valued 3-NZF f2. In
both cases, f2 is a desired integer-valued 4-flow.

Claim 3.2. The maximum degree of G is at most 3.

Proof. Suppose that G has a vertex v with dG(v) ≥ 4. Since G is bridgeless,
Lemma 3.2 implies that we can split a pair of edges e1, e2 from v such that the resulting
signed graph, say (G1, σ1), is still bridgeless. In G1, we consider f1 as a mapping on
E(G1) and denote the common end of e1 and e2 by v∗. Thus, ∂f1(v∗) ≡ −∂f1(v)
(mod 3).

Let w ∈ {v, v∗}. If ∂f1(w) ≡ 0 (mod 3) and dG1
(w) = 2 with EG1

(w) =
{ew′ , ew′′}, then we further suppress the vertex w and denote the new edge by ew (see
Figure 3(1)). Then we can assign ew with value f1(ew′), signature σ1(ew′)σ1(ew′′),
and an orientation (based on its signature and value) in such a way that both ends
of ew have zero boundary. If ∂f1(w) 6≡ 0 (mod 3), then we further add a positive
edge vv∗ oriented from v to v∗ and assign vv∗ with value ∂f1(v∗) (see Figure 3(2)).
In both cases, denote the resulting signed graph and mapping by (G2, σ2) and g1,
respectively.
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It is easy to verify that g1 is a modulo 3-flow of (G2, σ2) and | suppc(g1)| ≤
| suppc(f1)| and that

∑
v∈V (G2)

|dG2
(v)− 3| <

∑
v∈V (G) |dG(v)− 3|. By the choice of

(G, σ), (G2, σ2) has an integer-valued 4-flow g2 with supp(g1) ⊆ {e ∈ E(G2) : g2(e) =
±1,±2}. One can easily get a desired integer-valued 4-flow f2 of (G, σ) from g2.

Note that G is connected. By Claim 3.1, G has a vertex x such that EG(x) ∩
supp(f1) 6= ∅ and EG(x)∩suppc(f1) 6= ∅. Let e∗ be an edge of EG(x)∩suppc(f1), and
denote the other end of e by y. We may without loss of generality assume that e∗ is
positive; otherwise we make a switch at x. We may further assume that e∗ is oriented
from x to y. Now we contract e∗ and denote the resulting signed graph by (G′, σ′).
Thus, the restriction of f1 to E(G′), say f ′1, is a modulo 3-flow of (G′, σ′). It follows
from supp(f ′1) = supp(f1) that | suppc(f ′1)| < | suppc(f1)|. Hence, (G′, σ′) admits an
integer-valued 4-flow f ′2 such that supp(f ′1) ⊆ {e ∈ E(G′) : f ′2(e) = ±1,±2}.

Now we consider the mapping f ′2 on E(G). Each vertex (possibly except x and
y) has zero boundary and ∂f ′2(x) = −∂f ′2(y). If ∂f ′2(x) 6≡ 0 (mod 3), then we extend
f ′2 to a mapping h1 by assigning h1(e∗) = −∂f ′2(x). Thus, h1 is a modulo 3-flow of G
with supp(h1) ⊃ supp(f1). This implies | suppc(h1)| < | suppc(f1)|, which contradicts
the assumption (1). Thus, ∂f ′2(x) ≡ 0 (mod 3). In summary, x is a vertex satisfying
dG(x) ≤ 3, EG(x) ∩ suppc(f1) 6= ∅, and 1 ≤ |f ′2(e)| ≤ 2 for e ∈ EG(x) ∩ supp(f1).
Hence, 0 ≤ |∂f ′2(x)| ≤ 4, and furthermore |∂f ′2(x)| ∈ {0, 3}. Finally, we extend f ′2 to
a mapping f2 by assigning f2(e∗) = −∂f ′2(x). Clearly, f2 is an integer-valued 4-flow
satisfying Theorem 1.6.

4. Proof of Theorem 1.10.

4.1. A new vertex splitting lemma. The vertex splitting method is one of
the most useful techniques in graph theory (especially in the study of integer-valued
flow and cycle cover problems). In section 3, we have discussed the splitting lemma
introduced by Fleischner (see Lemma 3.2). Here are earlier results about vertex
splitting by Nash-Williams [10], Mader [9], and Zhang [19].

Theorem 4.1 (see [10]). Let λ be an even integer and G be a λ-edge-connected
graph. Let v ∈ V (G), and let a be an integer such that λ ≤ a and λ ≤ d(v) − a.
Then there is an edge subset F ⊂ E(v) such that |F | = a and G(v;F ) remains λ-edge-
connected.

Theorem 4.2 (see [9]). Let G be a graph, and let v ∈ V (G) such that v is not a
cut-vertex. If d(v) ≥ 4 and v is adjacent to at least two distinct vertices, then there
are two edges e1, e2 ∈ E(v) such that, for every pair of vertices x, y ∈ V (G) − {v},
the local edge-connectivity between x and y in the graph G(v;{e1,e2}) remains the same
as in G.

Theorem 4.3 (see [19]). Let G be a graph with odd-edge-connectivity at least λo.
Let v be a vertex of G such that d(v) 6= λo and E(v) = {e0, e1, . . . , ed(v)−1}. Then
there is a pair of edges ei, ei+1 ∈ E(v) (subindices modulo d(v)) such that the graph
G(v;{ei,ei+1}) remains odd-λo-edge-connected.

Definition 4.4. Let G be a graph and v be a vertex. Let S(v) be a subset of
{(ei, ej) : ei, ej ∈ E(v) and ei 6= ej}. The subset S(v) is sequentially connected if, for
every pair of edges e′, e′′ ∈ E(v), there is a sequence (e0, e1), (e1, e2), . . . , (et−2, et−1),
(et−1, et) ∈ S(v) (subindices modulo d(v)) such that e′ = e0 and e′′ = et.

In Theorem 4.3, the subset S(v) = {(ei, ei+1) : i ∈ Zd(v)} is sequentially con-
nected. Therefore, the following theorem is a generalization of Theorem 4.3 and is
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expected to have many applications in graph theory. The proof of Theorem 4.5 is
identical to the one in [19], and an alternative proof can be also found in [14].

Theorem 4.5. Let G be a graph with odd-edge-connectivity at least λo and v be a
vertex with d(v) 6= λo. Let S(v) be a subset of {(ei, ej) : ei, ej ∈ E(v) and ei 6= ej}. If
the subset S(v) is sequentially connected, then there is a pair of edges (e′, e′′) ∈ S(v)
such that the graph G(v;{e′,e′′}) remains odd-λo-edge-connected.

The following corollary is an analogue of Theorem 4.1 with respect to odd-edge-
connectivity.

Corollary 4.6. Let G be a graph with odd-edge-connectivity at least λo and v be
a vertex with d(v) > λo. Let a be an even integer such that a ≤ d(v)−λo. Then there
is an edge subset F ⊂ E(v) of size a such that G(v;F ) remains odd-λo-edge-connected.

Proof. Let a = 2b. Now we apply Theorem 4.5 to v repeatedly b times at v
(taking S(v) to be the set of all possible ordered pairs of E(v) in each step). Then
the resulting graph remains odd-λo-edge-connected. Denote by {v∗1 , . . . , v∗b} the set
of the resulting vertices of degree two. It is easy to see that {vv∗i : i = 1, . . . , b} is a
desired edge subset F of E(v).

4.2. An application of Tutte’s f-factor theorem. Theorem 1.10 will be
proved by applying both Theorem 4.5 and some f -factor lemmas (such as Lemma 4.10)
in this section.

Definition 4.7. Let G be a graph and f : V (G) → Z+ be a mapping. An f -
factor of G is a subgraph H such that dH(v) = f(v) for each vertex v ∈ V (G). In
particular, if the range of f is {1, 2}, we simply call H a {1, 2}-factor.

In [17], Tutte gave a necessary and sufficient condition of the existence of f -factors.

Theorem 4.8 (see [17]). A graph G has an f -factor if and only if for any two
disjoint vertex subsets S, T ⊆ V (G),

(4.1)
∑
v∈S

f(v) ≥ |O(S, T )|+
∑
v∈T

[f(v)− dG−S(v)],

where O(S, T ) is the set of components U of G− S − T for which

(4.2)
∑
v∈U

f(v) + e(U, T ) ≡ 1 (mod 2).

Next we apply Tutte’s f -factor theorem to find a {1, 2}-factor for graphs defined
below.

Lemma 4.9. Let k be an odd integer and G be an odd-k-edge-connected graph.
Let {V1, V2} be a partition of V (G) such that dG(v) = k if v ∈ V1 and dG(v) = 2k if
v ∈ V2. If f is a function satisfying f(v) = dG(v)/k for each vertex v, then G has an
f -factor.

Proof. Let S and T be two disjoint subsets of V (G) and O = O(S, T ). Let
{Q1, Q2, Q3, Q4} be a partition of T , where for each t ∈ {1, 2}, Qt consists of the
vertices v ∈ T ∩Vt such that dG−S(v) = 0, Q3 consists of the vertices v of T ∩V2 such
that dG−S(v) = 1, and Q4 = T −Q1 −Q2 −Q3. The following claim directly follows
from the definitions.
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Claim 4.1.
(1) kf(v) = dG(v) and f(v) ≡ dG(v) (mod 2) for each vertex v.
(2)

∑
v∈U dG(v) + e(U, T ) ≡ 1 (mod 2) for each U ∈ O.

We partition O into O1 and O2, where
O1 = {U ∈ O : e(U, T ) = 0} and O2 = {U ∈ O : e(U, T ) 6= 0}.

Claim 4.2. ∑
U∈O

e(U, S) ≥ k|O1|+ |O2|.

Proof. Note that if U ∈ O1, then e(U, T ) = 0, and thus E(U, S) is an edge-cut.
Since G is odd-k-edge-connected, it suffices to show that for each U ∈ O, e(U, S) ≡ 1
(mod 2).

For each U ∈ O, we have∑
v∈U

dG(v) ≡ e(U, T ) + e(U, S) ≡ −e(U, T ) + e(U, S) (mod 2).

Thus by Claim 4.1(2), we have e(U, S) ≡ 1 (mod 2).

Claim 4.3.

e(S, T ) =
∑
v∈T

[dG(v)− dG−S(v)] ≥ k
∑
v∈T

[f(v)− dG−S(v)] + (k − 1)|O2|.

Proof. Since dG−S(v) = 0 if v ∈ Q1 ∪Q2 and dG−S(v) = 1 if v ∈ Q3, we have

(4.3)
∑

v∈Q1∪Q2∪Q3

[dG(v)−dG−S(v)] = k
∑

v∈Q1∪Q2∪Q3

[f(v)−dG−S(v)]+(k−1)
∑
v∈Q3

dG−S(v).

Since kf(v) = dG(v) for each vertex v, we have
(4.4)∑
v∈Q4

[dG(v)−dG−S(v)] =
∑
v∈Q4

[kf(v)−dG−S(v)] = k
∑
v∈Q4

[f(v)−dG−S(v)]+(k−1)
∑
v∈Q4

dG−S(v).

Combining (4.3) and (4.4), we have

(4.5)
∑
v∈T

[dG(v)− dG−S(v)] = k
∑
v∈T

[f(v)− dG−S(v)] + (k − 1)
∑

v∈Q3∪Q4

dG−S(v).

Since each vertex v ∈ Q3 ∪Q4 is adjacent to at most dG−S(v) components in O2,
we have

(4.6)
∑

v∈Q3∪Q4

dG−S(v) ≥ |O2|.

Combining (4.5) and (4.6), we have

e(S, T ) ≥ k
∑
v∈T

[f(v)− dG−S(v)] + (k − 1)|O2|.

Denote Sc = V (G)− S. Now we are to estimate e(S, Sc) in two ways by finding
a lower bound and an upper bound. Obviously,

(4.7) e(S, Sc) ≤
∑
v∈S

dG(v) = k
∑
v∈S

f(v).
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On the other hand,

(4.8) e(S, Sc) ≥ e(S, T ) +
∑
U∈O

e(S,U).

By (4.7) and (4.8) together with Claims 4.2 and 4.3, we have

k
∑
v∈S

f(v) ≥ k
∑
v∈T

[f(v)− dG−S(v)] + (k − 1)|O2|+ k|O1|+ |O2|

= k
∑
v∈T

[f(v)− dG−S(v)] + k(|O1|+ |O2|)

= k

(∑
v∈T

[f(v)− dG−S(v)] + |O|

)
.

(4.9)

By (4.9), we have ∑
v∈S

f(v) ≥ |O|+
∑
v∈T

[f(v)− dG−S(v)].

Therefore, by Theorem 4.8, G has an f -factor.

Lemma 4.10. Let G be a graph with odd-edge-connectivity at least (2p + 1). If
there is a mapping µ : V (G) → Z+ such that dG(v) = (2p + 1)µ(v) for each vertex
v ∈ V (G), then there is a spanning subgraph F such that dF (v) = pµ(v).

Proof. For each vertex v with dG(v) /∈ {2p + 1, 2(2p + 1)}, we first apply Corol-
lary 4.6 to v with a = 2(2p+ 1) and λo = 2p+ 1. Repeatedly apply this process until
the degree of every vertex is either (2p+ 1) or 2(2p+ 1). Let G′ denote the resulting
graph.

Next we apply Lemma 4.9 to G′ with k = 2p + 1. Let F0 be a {1, 2}-factor of
G′ such that, for each v ∈ V (G′), dF0(v) = 1 if dG′(v) = 2p + 1 and dF0(v) = 2 if
dG′(v) = 2(2p+ 1).

Let G′′ = G′ − E(F0). Split each vertex v of G′′ with dG′′(v) = 4p into a pair
of degree 2p vertices (no need to preserve the odd-edge-connectivity here). Let G′′′

be the resulting 2p-regular graph. By Petersen’s theorem, G′′′ has a 2-factorization
{F1, . . . , Fp}.

When p is even, say p = 2q, the subgraph F induced by the edges of F1, . . . , Fq is
a desired spanning subgraph. When p is odd, say p = 2q+ 1, the subgraph F induced
by the edges of F0, F1, . . . , Fq is a desired spanning subgraph.

4.3. Completion of the proof of Theorem 1.10. Now we are ready to com-
plete the proof of Theorem 1.10.

It is obvious that (C) implies (B). Since (A) and (B) in Theorem 1.8 are equiv-
alent, we will prove that (A) implies (C).

Let (G, σ) be an odd-(2p + 1)-edge-connected signed graph and τ be a modulo
(2p+ 1)-orientation of (G, σ). We are going to show that (G, σ) has an integer-valued
circular (2 + 1

p )-flow.

For each v ∈ V (G), denote H+
τ (v) = {h ∈ H(v) : τ(v) = 1} and H−τ (v) = {h ∈

H(v) : τ(v) = −1}. Let d+τ (v) = |H+
τ (v)| and d−τ (v) = |H−τ (v)|. If both d+τ (v) > 0

and d−τ (v) > 0 for some vertex v, then by Theorem 4.5 with S(v) = {(e′, e′′) : e′ ∈
H+
τ (v) and e′′ ∈ H−τ (v)}, one can split a pair of half-edges (one from H+

τ (v) and
the other from H−τ (v)) away from v and then suppress the resulting degree 2 vertex.
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Let G′ be the resulting graph obtained from G by repeatedly applying Theorem 4.5
until no such pair of edges exists. Then G′ remains odd-(2p + 1)-edge-connected.
Since τ remains a modulo (2p + 1)-orientation of (G′, σ) and either d+τ (v) = 0 or
d−τ (v) = 0 for each vertex v of G′, there is a mapping µ of G′ : V (G′) → Z+ such
that dG′(v) = (2p+ 1)µ(v).

By Lemma 4.10, G′ has a spanning subgraph F such that dF (v) = pµ(v). Then
the integer-valued function f∗ defined as follows is a circular (2 + 1

p )-flow of (G, σ):

f∗(e) =

{
p if e 6∈ F ,
−p− 1 if e ∈ F .
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