
European Journal of Combinatorics 69 (2018) 36–48

Contents lists available at ScienceDirect

European Journal of Combinatorics

journal homepage: www.elsevier.com/locate/ejc

Multiple weak 2-linkage and its applications on
integer flows of signed graphs
You Lu a, Rong Luo b, Cun-Quan Zhang b

a Department of Applied Mathematics, School of Science, Northwestern Polytechnical University, Xi’an,
Shaanxi, 710072, China
b Department of Mathematics, West Virginia University, Morgantown, WV 26506, United States

a r t i c l e i n f o

Article history:
Received 29 September 2016
Accepted 5 September 2017

a b s t r a c t

For two pairs of vertices x1, y1 and x2, y2, Seymour and Thomassen
independently presented a characterization of graphs containing
no edge-disjoint (x1, y1)-path and (x2, y2)-path. In this paper we
first generalize their result to k ≥ 2 pairs of vertices. Namely,
for 2k vertices x1, y1, x2, y2, . . . , xk, yk, we characterize the graphs
without edge-disjoint (xi, yi)-path and (xj, yj)-path for any 1 ≤

i < j ≤ k. Then applying this generalization, we present a
characterization of signed graphs in which there are no edge-
disjoint unbalanced circuits. Finally with this characterization we
further show that every flow-admissible signed graph without
edge-disjoint unbalanced circuits admits a nowhere-zero 6-flow
and thus verify thewell-knownBouchet’s 6-flowconjecture for this
family of signed graphs.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Let {x1, x2, . . . , xk, y1, y2, . . . , yk} be an ordered set of vertices of a graph G. The linkage problem
is to find vertex-disjoint paths joining some pairs xi and yi, while the weak linkage problem is to find
edge-disjoint paths joining some pairs xi and yi. The following is a summary of some weak linkage
problems.

Problem1.1 (Weak 2-Linkage Problem). For k = 2, does the graph contain a pair of edge-disjoint paths
P1 and P2 such that Pµ joins xµ and yµ for each µ = 1, 2?
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Problem 1.2 (Multiple Weak 2-Linkage Problem). For any integer k ≥ 2, is there a pair of integers
1 ≤ i < j ≤ k such that the graph G contains a pair of edge-disjoint paths Pi and Pj such that Pµ joins
xµ and yµ for each µ = i, j?

Problem 1.3 (Weak Linkage Problem). For any integer k ≥ 2, does the graph G contain a set of pairwise
edge-disjoint paths {P1, . . . , Pk} such that Pµ joins xµ and yµ, for each µ ∈ {1, . . . , k}.

It is evident that both Problems 1.2 and 1.3 are generalizations of Problem 1.1 by simply letting
k = 2. Problem 1.1was completely solved by Seymour and Thomassen independently in Theorem 1.4.

LetH be a contraction ofG and let x ∈ V (G).We use x̂ to denote the vertex inH which x is contracted
into.

Theorem 1.4 (Seymour [15], Thomassen [18]). Let G be a 2-connected graph and x1, x2, y1, y2 be vertices
in G. Then the following two statements are equivalent.

(i) G does not contain edge-disjoint (x1, y1)-path and (x2, y2)-path.
(ii) G is contractible to the 4-circuit x̂1x̂2ŷ1ŷ2x̂1 or to a graphwhich is obtained from a 2-connected plane

cubic graph by selecting a facial circuit and inserting the distinct vertices x̂1, x̂2, ŷ1, ŷ2 in that cyclic
order on edges of that circuit.

Problem 1.3 is also called integer k-commodity flow problem which was studied recently by
Seymour [17].

In this paper, similar to [15] and [18], we will provide a complete characterization for graphs
with or without the multiple weak 2-linkage property. It is obvious that Problem 1.3 is stronger than
Problem 1.2.

Later in this paper, we will apply our characterization in the study of integer flow problems for
signed graphs (see Theorem 1.7).

The following is one of our main theorems.

Theorem 1.5. Let G be a 2-connected graph and x1, x2, . . . , xk, y1, y2, . . . , yk (k ≥ 2) be vertices in G.
Then the following are equivalent.

(i) For any i ̸= j, G does not contain edge-disjoint (xi, yi)-path and (xj, yj)-path.
(ii) The graph G can be contracted to the 2k-circuit C1 on the vertices x̂1, . . . , x̂k, ŷ1, . . . , ŷk or to a cubic

graph G′ which can be obtained from a 2-connected cubic plane graph by selecting a facial circuit C2
and inserting the vertices x̂1, . . . , x̂k, ŷ1, . . . , ŷk on the edges of C2 in such a way that for every pair
{i, j} ⊆ {1, . . . , k}, the vertices x̂i, x̂j, ŷi, ŷj are around C1 or C2 in this cyclic order.

(iii) Let (G+, w) be the weighted graph where G+ is obtained from G by adding edges F = {xiyi : i ∈

[1, k]} and the weight w : E(G+) → {0, 1} such that w(e) = 0 if e ∈ E(G) and w(e) = 1 if e ∈ F .
Then G+ contains no pair of edge-disjoint circuits with odd weight.

Note that (ii) is equivalent to the following:
(ii) There is a permutation π on [1, k] and G is contractible to the 2k-circuit ẑ1ẑ2 . . . ẑ2kẑ1 or to a graph

obtained from a 2-connected plane cubic graph by selecting a facial circuit and inserting the 2k distinct
vertices ẑ1, ẑ2, . . . , ẑ2k in that cyclic order on edges of that circuit, where {zi, zk+i} = {xπ (i), yπ (i)} for each
i ∈ [1, k].

Theorem 1.5 can be applied to characterize signed graphs without edge-disjoint unbalanced
circuits.

Theorem 1.6. Let G be a 2-connected signed graph with negativeness ϵ(G) = k ≥ 2 and with
|N(G)| = ϵ(G), whereN(G) = {x1y1, x2y2, . . . , xkyk} is the set of all negative edges of G. Then the following
are equivalent.

(i) G contains no edge-disjoint unbalanced circuits.
(ii) G−N(G) is contractible to a 2-connected graph containing no edge-disjoint (x̂i, ŷi)-path and (x̂j, ŷj)-

path for any i ̸= j.
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(iii) The graphG can be contracted to a cubic graphG′ such that either G′
−{x̂1ŷ1, . . . , x̂kŷk} is a 2k-circuit

C1 on the vertices x̂1, . . . , x̂k, ŷ1, . . . , ŷk or can be obtained from a 2-connected cubic plane graph
by selecting a facial circuit C2 and inserting the vertices x̂1, . . . , x̂k, ŷ1, . . . , ŷk on the edges of C2 in
such a way that for every pair {i, j} ⊆ {1, . . . , k}, the vertices x̂i, x̂j, ŷi, ŷj are around the circuit C1
or C2 in this cyclic order.

The characterization of signed graphs without edge-disjoint unbalanced circuits can be further
applied to study integer flows of this family of signed graphs.

In 1983, Bouchet [3] proposed a flow conjecture which states that every flow-admissible signed
graph admits a nowhere-zero 6-flow. This conjecture remains open. Bouchet [3] himself proved that
such signed graphs admit nowhere-zero 216-flows. Zýka [26] further proved that such signed graphs
admit nowhere-zero 30-flows. DeVos [4] improved Zýka’s result to 12-flows.

In this paper, we confirm Bouchet’s conjecture for signed graphs containing no edge-disjoint
unbalanced circuits by applying Theorem 1.6.

Theorem 1.7. Every flow-admissible signed graph without edge-disjoint unbalanced circuits admits a
nowhere-zero 6-flow.

2. Notation and terminology

For terminology and notations not defined here we follow [2,5,20]. Graphs or signed graphs
considered in this paper are finite and may have multiple edges or loops.

Let G = (V , E) be a graph with vertex set V = V (G) and edge set E = E(G). For U ⊆ V , denote
δ(U) = δG(U) the set of edges with one end in U and the other in V \U . If U = {u}, we write δ({u}) for
δ(u). A d-vertex is a vertex with degree d. For an edge e of a graph G, contracting e is done by deleting
e and then (if e is not a loop) identifying its ends. For S ⊆ E(G), we use G/S to denote the resulting
graph obtained from G by contracting all edges in S.

For U1,U2 ⊆ V (G), a (U1,U2)-path is a path which starts at a vertex in U1 and ends at a vertex in
U2, and whose internal vertices belong to neither U1 nor U2; if G1 and G2 are subgraphs of G, we write
(G1,G2)-path instead of (V (G1), V (G2))-path. Let C = v1 . . . vrv1 be a circuit. A segment of C is the path
vivi+1 . . . vj−1vj (mod r) contained in C and is denoted by viCvj or vjC−vi.

For a plane graph G embedded in the planeΠ , a face of G is a connected topological region (an open
set) of Π \ G. If the boundary of a face is a circuit of G, it is called a facial circuit of G. The facial circuit
bounding the infinite face is called the outer circuit.

A block of G is a maximal subgraph that does not contain a cut-vertex. The block tree B(G) of G is a
bipartite graph with bipartition (B, S), where B is the set of blocks of G, S is the set of cut vertices of
G, and a block B and a cut vertex v are adjacent in B(G) if and only if B contains v. Note that B(G) is a
tree. If G is not 2-connected, the blocks of Gwhich correspond to leaves of its block tree are called leaf
blocks. An internal vertex of a block of G is a vertex which is not a cut vertex of G.

3. Signed graphs and flows

3.1. Signed graphs, switching operation, and orientations

A signed graph (G, σ ) is a graph G together with a signature σ : E(G) → {±1}. If no confusion
arises, we write (G, σ ) as G and the signature σ will be specified only when needed. An edge e ∈ E(G)
is positive if σ (e) = 1 and negative otherwise. For a subgraph H of G, denote N(H) the set of negative
edges in H . A circuit C of G is balanced if |N(C)| is even, and is unbalanced otherwise. A signed graph is
balanced if it does not contain an unbalanced circuit. A barbell is the union of two disjoint unbalanced
circuits joined by a path that meets the circuits only at its ends.

For a signed graph G, switching at a vertex umeans reversing the signs of all edges incident with u.
Obviously, the parity of the number of negative edges in a circuit is an invariant under the switching
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operation. Let XG be the set of signed graphs obtained from G via a sequence of switching operations.
The negativeness of G is defined by

ϵ(G) = min{|N(G′)| : G′
∈ XG}.

The following two propositions directly follow from the definitions of switching operation and
negativeness.

Proposition 3.1. Let G be a signed graph. Then ϵ(G) = |N(G)| if and only if |N(G) ∩ δ(U)| ≤
1
2 |δ(U)| for

every U ⊆ V (G).

Proposition 3.2. Let G be a signed graph and B be the set of blocks of G. Then

ϵ(G) =

∑
B∈B

ϵ(B).

In a signed graph, every edge is composed of two half-edges, each of which is incident with one
end. Denote the set of half-edges of G by H(G) and the set of half-edges incident with v by H(v). For a
half-edge h ∈ H(G), we refer to eh as the edge containing h, and denote the other half-edge of eh by h′.
An orientation of G is a mapping τ : H(G) → {±1} such that τ (h)τ (h′) = −σG(eh) for each h ∈ H(G).
It is convenient to think of τ as an assignment of orientations on H(G). Namely, if τ (h) = 1, h is a
half-edge oriented away from its end and otherwise towards its end.

3.2. Flows in signed graphs

For basic definitions, properties and results about Tutte’s Flow Theory, readers are referred to
standard textbooks or reference books, such as, [2,5,24], etc.

Definition 3.3. Let τ be an orientation of a signed graph G and f : E(G) → Z be a mapping.

(1) The boundary of f is the function ∂ f : V (G) → Z defined as ∂ f (v) =
∑

h∈H(v)τ (h)f (eh) for each
vertex v.

(2) If ∂ f (v) = 0 for each v ∈ V (G) and |f (e)| < k for each e ∈ E(G), (τ , f ) is called an integer k-flow
(or simply a k-flow) of G.

(3) If ∂ f (v) ≡ 0 (mod k) for each v ∈ V (G) and 0 ≤ f (e) < k for each e ∈ E(G), (τ , f ) is called a
modular k-flow (or simply a Zk-flow) of G.

(4) The support of f , denoted by supp(f ), is the set of edges e with f (e) ̸= 0. A flow (τ , f ) is said to
be nowhere-zero if supp(f ) = E(G).

Flows on signed graphs arise naturally as duals of local tensions on non-orientable surfaces. More
discussions are referred to [1,7–14,21,25].

For the sake of convenience, a nowhere-zero k-flow (resp., nowhere-zero Zk-flow) is abbreviated
as a k-NZF (resp., a Zk-NZF). Observe that G admits a k-NZF (resp., a Zk-NZF) under an orientation τ if
and only if it admits a k-NZF (resp., a Zk-NZF) under any orientation τ ′.

A signed graph G is flow-admissible if it admits a k-NZF for some k. Bouchet characterized all flow-
admissible signed graphs.

Proposition 3.4 (Bouchet [3]). A connected signed graph G is flow-admissible if and only if ϵ(G) ̸= 1 and
there is no cut-edge b such that G − b has a balanced component.

The rest of the paper is organized as follows. Some lemmas on flows will be presented in Section 4.
The proof of Theorem 1.7 will be presented in Section 5, and the proofs of Theorems 1.5 and 1.6 will
be postponed to Sections 6 and 7, respectively.
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4. Some lemmas on flows

In this section we present some lemmas that will be used in the proof of Theorem 1.7.
A graph is even if the degree of each vertex is even. Tutte proved the following result.

Proposition 4.1 (Tutte [19]). A graph admits a 2-NZF if and only if it is even.

The following is a straightforward observation in network theory since, for every U ⊆ V (G),∑
e∈δ(U)φ(e) =

∑
e∈δ(Uc )φ(e) (by Definition 3.3).

Proposition 4.2. If (τ , φ) is a positive k-NZF of a graph G, then τ is a strongly connected orientation of
G.

Let τ be an orientation of a graph G and E0 ⊆ E(G). We denote τ̃E0 the orientation of G obtained
from τ by reversing the direction of every arc in E0. Let f : E(G) → Zk be amapping. f̃E0 is themapping
of E(G) defined as follows:

f̃E0 (e) =

{
f (e) if e ̸∈ E0,

k − f (e) if e ∈ E0.

Lemma 4.3 (Younger [23]). If a graph G admits a Zk-NZF (τ , f ), then there is an edge subset E0 of G such
that (τ̃E0 , f̃E0 ) is a positive integer flow.

DeVos [4] proved the following extension lemma on modular flows.

Lemma 4.4 (DeVos [4]). Let G be a graph with an orientation τ and assume that G admits a Zk-NZF. If a
vertex u of G has degree at most 3 and γ : δ(u) → Zk \ {0} satisfies ∂γ (u) ≡ 0 (mod k), then there is a
Zk-NZF (τ , φ) of G so that φ|δ(u) = γ , where φ|δ(u) is the restriction of φ on δ(u).

We extend DeVos’s lemma to integer flows in the following lemma.

Lemma 4.5. Let G be a graph with an orientation τ and assume that G admits a k-NZF. If a vertex u of
G has degree at most 3 and γ : δ(u) → {±1, . . . ,±(k − 1)} satisfies ∂γ (u) = 0, then there is a k-NZF
(τ , φ) of G so that φ|δ(u) = γ .

Proof. Without loss of generality, assume that 0 < γ (e) < k for each e ∈ δ(u). By Lemma 4.4, G has a
Zk-NZF (τ , φ1) such that φ1|δ(u) = γ . By Lemma 4.3, there is a subset E0 ⊆ E(G) such that (τ̃E0 , φ2) is a
positive k-NZF where φ2 = (φ1 )̃E0 .

If E0 ∩ δ(u) = ∅, let φ3(e) = −φ2(e) for each e ∈ E0, and φ3(e) = φ2(e) for each e ∈ E(G) \ E0. Note
that φ3|δ(u) = φ1|δ(u) = γ . Thus (τ , φ3) is a desired k-NZF.

Now we assume E0 ∩ δ(u) ̸= ∅. Let s and t be the numbers of arcs in E0 ∩ δ(u) with their tails and
their heads at u under τ̃E0 , respectively. Then s + t ≥ 1 since E0 ∩ δ(u) ̸= ∅. Note that each arc ewith
tail at u under τ̃E0 contributes k − φ1(e) to ∂φ2(u) and −φ(e) to ∂φ1(u) since it has head at u under τ .
Similarly, each arc e with head at u under τ̃E0 contributes −(k − φ1(e)) to ∂φ2(u) and φ1(e) to ∂φ1(u).
Since both (τ , φ1) and (τ̃E0 , φ2) are flows of G,

0 = ∂φ2(u) = ∂φ1(u) + sk − tk = ∂γ (u) + (s − t)k = (s − t)k.

Since 1 ≤ s + t ≤ d(u) ≤ 3, we have s = t = 1. Let E0 ∩ δ(u) = {e1, e2}, where e1 = uu1 with its tail
at u and e2 = uu2 with its head at u under τ̃E0 .

We first show that there is a directed circuit C containing e1 and e2 under τ̃E0 . If u1 = u2, let C
be the directed circuit consisting of e1 and e2. Now we assume u1 ̸= u2. Since (τ̃E0 , φ2) is a positive
integer flow, τ̃E0 is strongly connected by Proposition 4.2. Thus there is a directed path P from u1 to u2.
Since d(u) ≤ 3 and u2uu1 is a directed path from u2 to u1 in τ̃E0 , P does not contain u. Hence uu1Pu2u
is a directed circuit containing e1 and e2 under τ̃E0 .

Let E1 = E(C)∆E0 be the symmetric difference of E(C) and E0. Then δ(u)∩E1 = ∅ and τ̃E1 = (τ̃E0 )Ẽ(C).
Letφ4 : E(G) → Z be themapping such thatφ4(e) = φ2(e) if e ̸∈ E(C) andφ4(e) = k−φ2(e) if e ∈ E(C).
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That is, (τ̃E1 , φ4) is obtained from (τ̃E0 , φ2) by reversing the directions of all arcs in E(C) and replacing
the flow φ2(e) with k − φ2(e) for each arc e in C . Since C is a directed circuit and (τ̃E0 , φ2) is a positive
k-NZF, (τ̃E1 , φ4) is also a positive k-NZF.

Let φ5 : E(G) → Z be the mapping such that φ5(e) = −φ4(e) if e ∈ E1 and φ5(e) = φ4(e) otherwise.
Then (τ , φ5) is the flow obtained from (τ̃E1 , φ4) by reversing the directions of all edges in E1 and then
negating their flow values. Since δ(u) ∩ E1 = ∅, we have φ5|δ(u) = φ4|δ(u) = (φ1 )̃E1 |δ(u) = γ . Hence
(τ , φ5) is a desired k-NZF. This completes the proof of Lemma 4.5. ■

To introduce and prove our second lemma, we need the following operation and several known
results. Let G be a signed graph. We define the following operation.

Φk : add a balanced circuit or a barbell C into G if |E(C) \ E(G)| ≤ k.

For a subgraphH ofG, denote by ⟨H⟩k themaximum subgraph ofG obtained fromH viaΦk-operations.
The following is the well-known 6-flow theorem due to Seymour.

Theorem 4.6 (Seymour [16]). Every bridgeless graph admits a 6-NZF.

With a similar argument to the proof of Seymour’s 6-flow theorem, Zýka obtained the following
result.

Lemma 4.7 (Zýka [26]). Let G be a signed graph and H be a subgraph of G. If ⟨H⟩2 = G, then G admits a
Z3-flow (τ , f ) such that E(G) \ E(H) ⊆ supp(f ).

Unlike unsigned graphs, for signed graphs, admitting a Zk-NZF does not guarantee that the signed
graph admits a k-NZF. However, the following lemma gives a sufficient condition to guarantee the
existence of a 3-NZF if the signed graph admits a Z3-NZF.

Lemma 4.8 (Xu and Zhang [22]). Let G be a bridgeless signed graph. Then G admits a 3-NZF if and only if
G admits a Z3-NZF.

The following lemma was proved for unsigned graphs originally but can be easily extended to
signed graphs.

Lemma 4.9 (See [6] and [16]). Let G be a graph (or a signed graph) and k1, k2 be two integers. If G admits
a k1-flow (τ , f1) and a k2-flow (τ , f2) such that supp(f1)∪supp(f2) = E(G), then (τ , f1+k1f2) is a k1k2-NZF
of G.

Lemma 4.10. Let G be a cubic signed graph with N(G) = {u1uk+1, . . . , uku2k} (k ≥ 2). If G − N(G) is
the 2k-circuit C = u1 . . . ukuk+1 . . . u2ku1 or a graph obtained from a 2-connected plane cubic graph by
selecting a facial circuit C and inserting the vertices u1, . . . , uk, uk+1, . . . , u2k in that cyclic order on edges
of C, and if every 2-edge-cut of G − N(G) is contained in E(C), then G admits a 6-NZF.

Proof. Let τ be an orientation of G. Let H be an even subgraph of G containing C such that
(a) E(H) ⊆ E(G) \ N(G),
(b) subject to (a), ⟨H⟩2 is connected and |E(⟨H⟩2)| is as large as possible.
Since H is an unsigned even subgraph of G, by Proposition 4.1 we have the following claim.

Claim 4.1. G admits a 2-flow (τ , f1) with supp(f1) = E(H).

Claim 4.2. ⟨H⟩2 = G.

Proof of Claim4.2. Note that k ≥ 2 and each negative edge inN(G) is a chord of the unsigned circuit C .
ThusN(G) ⊆ E(⟨H⟩2) and the unsigned subgraph ⟨H⟩2−N(G) is still connected since ⟨H⟩2 is connected.
Denote U = V (⟨H⟩2) and W = V (G) − U . Then ⟨H⟩2 = G[U]. To prove Claim 4.2, it is sufficient to
proveW = ∅.
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Suppose to the contrary W ̸= ∅. Since ⟨H⟩2 − N(G) is connected, by the maximality of |E(⟨H⟩2)|,
every vertex in W has at most one neighbor in U . Thus the minimum degree of G[W ] is at least two
since G is cubic. Let L be a component of G[W ]. If L has a bridge, choose a bridge e such that L − e has
a 2-edge-connected component L0. If L is bridgeless, let L0 = L. Since the minimum degree of L is at
least two, L0 is nontrivial.

Since each 2-edge-cut of G is contained in E(C), we have |δG(V (L0))| ≥ 3. Since |δL(V (L0))| ≤ 1,
there are two distinct edges xx′, yy′ where x, y ∈ V (L0) and x′, y′

∈ U . Since L0 is 2-edge-connected
and nontrivial, L0 has two edge-disjoint (x, y)-paths P1 and P2. LetH ′

= H∪P1∪P2. By the definition of
Φ2-operation, xx′, yy′

∈ E(⟨H ′
⟩2). Thus ⟨H ′

⟩2 is connected and |E(⟨H ′
⟩2)| > |E(⟨H⟩2)|. This contradicts

the maximality of |E(⟨H⟩2)| and thus completes the proof of the claim. □

By Claim 4.2 and Lemma 4.7, G admits a Z3-flow (τ , f2) with E(G) \ E(H) ⊆ supp(f2).

Claim 4.3. G admits a 3-flow (τ , f3) with supp(f3) = supp(f2).

Proof of Claim 4.3. Let G′
= G[supp(f2)]. Then G′ admits a Z3-NZF (τ ′, f2), where τ ′ is the restriction

of τ on G′. By Lemma 4.8, it is sufficient to prove that G′ is bridgeless. Note that by Theorem 1.6, G does
not contain two edge-disjoint unbalanced circuits, and neither does G′.

Suppose to the contrary that G′ has a bridge b. Then at least one component of G′
− b does not

contain unbalanced circuits and thus is balanced. Let Q be a balanced component of G′
−b, and switch

some vertices of Q such that all edges of Q are positive. We use G′′ to denote the new signed graph
obtained from G′. Since G′ admits a Z3-NZF, so does G′′. Let (τ ′, f ′

2) be a Z3-NZF of G′′. Since all edges
of Q are positive in G′′,

|f ′

2(e)| ≡ |

∑
v∈V (Q )

∂ f ′

2(v)| ≡ 0 (mod 3),

a contradiction. Thus G′ is bridgeless. □
By Lemma 4.9 and Claims 4.1 and 4.3, (τ , f1 + 2f2) is a desired 6-NZF of G. ■

5. Proof of Theorem 1.7

The aim of this section is to prove Theorem 1.7: Every flow-admissible signed graph without edge-
disjoint unbalanced circuits admits a nowhere-zero 6-flow.

Note that the balance property of a circuit and the existence of a k-NZF are two invariants under
switching operations. Because G is flow-admissible and does not contain edge-disjoint unbalanced
circuits, by Proposition 3.4 G is bridgeless and at most one block of G is unbalanced. If each block of
G is balanced, then G is balanced. By Theorem 4.6, G admits a 6-NZF. Hence we assume that G has
only one unbalanced block. By Proposition 3.2, the negativeness of this unbalanced block is equal to
ϵ(G) (≥ 2). By Theorem 4.6, each balanced block admits a 6-NZF. Thus we may further assume that G
is 2-connected and ϵ(G) = |N(G)| ≥ 2.

Denote N(G) = {x1y1, . . . , xkyk}. By Theorem 1.6, let H be a contraction of G − N(G) such that

(a) H is the 2k-circuit C ′
= ẑ1ẑ2 . . . ẑ2kẑ1 or a graph obtained from a 2-connected plane cubic graph

by selecting a facial circuit C ′ and inserting the 2k vertices ẑ1, ẑ2, . . . , ẑ2k in that cyclic order on
edges of C ′, where π is a permutation on [1, k] and {zi, zk+i} = {xπ (i), yπ (i)} for each i ∈ [1, k];

(b) subject to (a), |V (H)| is as small as possible.

Clearly, G1 = H + N(G) is cubic and by the minimality of H , every 2-edge-cut of H (and thus G1) is
contained in E(C ′). Let τ be an orientation of G. By Lemma 4.10, G1 admits a 6-NZF (τ1, f1), where τ1 is
the restriction of τ on G1.

Next we will prove that (τ1, f1) can be extended to a 6-NZF of G. If G = G1, then (τ1, f1) is a 6-NZF
of G. So we assume G ̸= G1.

Pick an arbitrary vertex x of H such that the subgraph Bx of G contracted into x is nontrivial (such x
exists since G ̸= G1). Since G1 is cubic, denote δG(V (Bx)) = δG1 (x) = {e1, e2, e3}, and for i ∈ [1, 3], let
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hi be the half edge of ei whose end is in Bx. We add a new vertex u to Bx + {h1, h2, h3} such that u is
a common end of all hi, and denote the new graph by G2. Then G2 is a bridgeless unsigned graph and
thus admits a 6-NZF by Theorem 4.6.

Let τ2 be the restriction of τ on G2 and define γ (hi) = f1(ei) for each hi. Note that τ2(hi) = τ1(hi)
for each hi. Since (τ1, f1) is a 6-NZF of G1, we have ∂γ (u) = ∂ f1(x) = 0. By Lemma 4.5, there is a 6-NZF
(τ2, f2) of G2 such that f2|δG2 (u) = γ = f1|δG1 (x), and thus f1 can be extended to all edges in E(Bx). By
applying the same argument to every xwith nontrivial Bx, one can extend (τ1, f1) to a 6-NZF of G. □

6. Proof of Theorem 1.5

The aim of this section is to prove Theorem 1.5. (iii) ⇒ (i) is trivial since (i) is a special case of (iii).
We only need to show that (i) ⇒ (ii) ⇒ (iii).

(i) ⇒ (ii)
We first show that (i) ⇒ (ii) by contradiction. Let k be the smallest integer such that there is a

counterexample to it and choose G to be a counterexample with |V (G)|+ |E(G)|minimum. Then there
are 2k vertices x1, x2, . . . , xk, y1, y2, . . . , yk such thatG does not contain edge-disjoint (xi, yi)-path and
(xj, yj)-path for any i ̸= j but (ii) does not hold. Denote T = {x1, x2, . . . , xk, y1, y2 . . . , yk}. Note that
k ≥ 3 by Theorem 1.4.

By the minimality of G, we have the following claim.

Claim 6.1. If G has a subgraph B such that there is an edge xy ∈ δG(V (B)) where x ∈ V (B) such that B is
a leaf block of G − xy, then |V (B) ∩ {xi, yi : i ∈ [1, k]}| ≥ 2 unless B is a K2 in which case dG(x) = 2 and
x ∈ T .

Proof of Claim 6.1. Let G1 = G/E(B) if |E(B)| ≥ 2 and |V (B)∩ T | ≤ 1 or if |E(B)| = 1 and x ̸∈ T . Since
B is a leaf block of G−xy, G1 remains 2-connected and satisfies (i). Thus by theminimality of G, G/E(B)
satisfies (ii) and so does G, a contradiction. This proves the claim. □

By theminimality of k, there is a permutation π on [1, k−1] and G is contractible to a 2-connected
graph H with maximum degree at most 3 satisfying

(1) ẑ1, . . . , ẑk−1, ẑk+1, . . . , ẑ2k−1 are distinct 2-vertices of H appearing in a facial circuit C1 of H in
the cyclic order, where {zi, zk+i} = {xπ (i), yπ (i)} for i ∈ [1, k − 1].

We choose such H satisfying (1) and
(2) subject to (1), |V (C1) ∩ {ẑi : i ∈ [1, 2k]} ∩ V2(H)| as large as possible where V2(H) is the set of

all 2-vertices in H .
Denote T̂H = {ẑ1, . . . , ẑk−1, ẑk+1, . . . , ẑ2k−1} ∪ {ẑk, ẑ2k} and let S ⊆ E(G) such that H = G/S. Note

that |V (C1) ∩ T̂H ∩ V2(H)| is the maximum among all contraction H of G satisfying (1).
Since G does not contain edge-disjoint (zi, zi+k)-path and (zj, zj+k)-path for any i, j ∈ [1, k] and

i ̸= j, we have the following observation.

Claim 6.2. For any distinct i, j ∈ [1, k], H does not contain vertex-disjoint (ẑi, ẑk+i)-path and (ẑj, ẑk+j)-
path.

By applying Claim 6.1, for any 2-edge-cut {e1, e2} of G, every component of G − {e1, e2} either
contains at least two vertices in T or is a single vertex in T which has degree 2 in G. Since each 2-
edge-cut in H is also a 2-edge-cut in G, the following claim holds.

Claim 6.3. If {e1, e2} is a 2-edge-cut of H, then every component of H − {e1, e2} either contains at least
two vertices in T̂H = {ẑi : i ∈ [1, 2k]} or is a single vertex in T̂H which is a 2-vertex in H.

Since ẑi ∈ V (C1) ∩ V2(H) for each i ∈ [1, k − 1] ∪ [k + 1, 2k − 1] by (1), we only need to show the
following statements:

• ẑk ̸= ẑ2k and ẑd ̸= ẑi for any d ∈ {k, 2k} and i ∈ [1, k − 1] ∪ [k + 1, 2k − 1] (see Claim 6.4);
• {ẑk, ẑ2k} ⊂ V (C1) (see Claim 6.5);
• {ẑk, ẑ2k} ⊂ V2(H) (see Claim 6.6).
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From the above three statements, it is not difficult to check that G satisfies (ii) and the suppressed
graph of H (contracting all 2-vertices in H) is a desired cubic plane graph which is a contradiction to
the minimality of G.

Claim 6.4. ẑk ̸= ẑ2k and ẑd ̸= ẑi for each d ∈ {k, 2k} and i ∈ [1, k − 1] ∪ [k + 1, 2k − 1].

Proof of Claim 6.4. Obviously, ẑk ̸= ẑ2k. Suppose to the contrary that ẑd = ẑi for some d ∈ {k, 2k} and
some i ∈ [1, k − 1] ∪ [k + 1, 2k − 1]. Without loss of generality, assume ẑk = ẑk+1.

Let W be the connected subgraph of G that is contracted into ẑk. Since ẑk+1 is a 2-vertex of H , let
δG(V (W )) = δH (ẑk+1) = {e1, e2}, where e1, e2 occur on ẑk−1C1ẑk+2 cyclically, and denote by h1, h2
the ends of e1, e2 on W , respectively. Note that h1 ̸= h2 and G/E(W ) is 2-edge-connected since G is
2-connected.

Since G is 2-connected, there are two edge-disjoint paths P1 and P2 in G joining {z1, z2k} to V (W )
(thus to {h1, h2}). Without loss of generality, assume that P1 is a (z1, h1)-path and P2 is a (z2k, h2)-path.

(6.4.1) There are no edge-disjoint (h2, zk)-path and (h1, zk+1)-path in W .
Otherwise let P ′

1 and P ′

2 be edge-disjoint (h1, zk+1)-path and (h2, zk)-path in W , respectively. Then
the (z2k, zk)-path P2h2P ′

2 is edge-disjoint from the (z1, zk+1)-path P1h1P ′

1 in G, a contradiction to (i).
This proves (6.4.1).

(6.4.2) W is 2-connected.
Suppose to the contrary that W is not 2-connected. Since {e1, e2} is an edge-cut of G and G is 2-

connected, h1 and h2 belong to distinct leaf blocks of W . Since |V (W ) ∩ T | ≤ 2, by Claim 6.1, each
leaf block is a K2 in which case dG(hi) = 2 for each i = 1, 2. Thus {h1, h2} = {zk, zk+1} ⊂ T . Let
S ′

= S \ {e|e is in and is incident with orW h1 h2} and let H ′
= G/S ′. Then H ′ can be obtained from H

by simply splitting the vertex ẑk+1 into two adjacent 2-vertices ẑk and ẑk+1. Let C ′

1 be the corresponding
facial circuit in H ′ to C1. Then H ′ satisfies (1) but |V (C ′

1) ∩ T̂H ′ ∩ V2(H ′)| = 1 + |V (C1) ∩ T̂H ∩ V2(H)|, a
contradiction to the choice of H . This proves (6.4.2).

By (6.4.1) and (6.4.2), we can apply Theorem 1.4 on W with the vertices h2, h1, zk, zk+1. That is,
W is contractible to a graph W ′ which is either a 4-circuit C ′

= ĥ′

2ĥ
′

1ẑ
′

kẑ
′

k+1ĥ
′

2 or a graph which is
obtained from a 2-connected plane cubic graph by selecting the outer circuit C ′ and inserting the
vertices ĥ′

2, ĥ
′

1, ẑ
′

k, ẑ
′

k+1 in that cyclic order on edges of C ′. Replacing ẑk in H with W ′ to obtain a new
contraction H ′ of G, the facial circuit C ′

1 obtained from C1 by replacing the vertex ẑk by the segment
ĥ′

1C
′ẑ ′

kC
′ẑ ′

k+1C
′ĥ′

2. Thus H ′ satisfies (1) but |V (C ′

1) ∩ T̂H ′ ∩ V2(H ′)| = 1 + |V (C1) ∩ T̂H ∩ V2(H)|, a
contradiction to the choice of H . This contradiction completes the proof of the claim. □

Denote the facial circuit C1 = u1u2 . . . uℓu1 and assume that u1 = ẑ1, us = ẑk−1, and ut = ẑk+1 with
1 < s < t < ℓ since ẑ1, . . . , ẑk−1, ẑk+1, . . . , ẑ2k−1 occur in C1 in the cyclic order. Note that ∆(H) ≤ 3
and dH (u1) = dH (us) = dH (ut ) = 2. Let

a = min{i : there is a (ẑk, ui)-path P in H − E(C1)},
b = max{i : there is a (ẑk, ui)-path P in H − E(C1)}.

Note that if ẑk is an isolated vertex of H − E(C1), then ẑk = ua = ub.

Claim 6.5. {ẑi : i ∈ [1, 2k]} ⊆ V (C1).

Proof of Claim 6.5. Since ẑi ∈ V (C1) for each i ∈ [1, k − 1] ∪ [k + 1, 2k − 1], we only need to
show {ẑk, ẑ2k} ⊂ V (C1). Suppose to the contrary ẑk ̸∈ V (C1) (without loss of generality). Since H is
2-connected, there are two internally vertex-disjoint (ẑk, C1)-paths, and thus a < b. Since ẑk ̸∈ V (C1),
d(ua) = d(ub) = 3 and thus ui ̸= ẑj for any i ∈ {a, b} and j ∈ [1, 2k].

Let Pi be a (ẑk, ui)-path in H − E(C1) for each i ∈ {a, b}. Let P be a (ẑ2k, C1)-path in H and let uµ be
the other end of P on C1. Without loss of generality, assume that ua lies in the segment ẑ1C1ẑ2.
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(6.5.1) uaC1ub contains the vertex ẑ2.
Suppose to the contrary that uaC1ub does not contain the vertex ẑ2. Then ub also lies in the segment

ẑ1C1ẑ2. Let ea = uaua−1 and eb = ubub+1. Since C1 is a facial circuit of H and the maximum degree of
H is at most 3, {ea, eb} is a 2-edge-cut of H by the definition of a and b. Note that the component of
H − {ea, eb} containing ẑk does not contain any other ẑi than ẑk and has at least three vertices. This
contradicts Claim 6.3 and this contradiction proves (6.5.1).

(6.5.2) Let {i, j} ⊂ {a, b, µ} such that µ ∈ {i, j} and i < j. Then neither uiC1uj nor ujC1ui contains both
ẑd and ẑd+k for any d ∈ [1, k − 1].

Suppose to the contrary that uiC1uj contains both ẑd and ẑd+k for some d ∈ [1, k− 1]. Without loss
of generality, assume i = a and j = µ. Then PjujC1uiPi is a (ẑ2k, ẑk)-path which is vertex-disjoint from
the (ẑd, ẑd+k)-path ẑdC1ẑd+k, a contradiction to Claim 6.2. So uiC1uj does not contain both ẑd and ẑd+k
for any d ∈ [1, k−1]. By symmetry, we can show that ujC1ui does not contain both ẑd and ẑd+k for any
d ∈ [1, k − 1] and thus this proves (6.5.2).

Since ua lies in the segment of ẑ1Cẑ2, uµ must lie in the segment of ẑk+1Cẑk+2 by (6.5.2). Since uµ

lies in the segment of ẑk+1Cẑk+2, by (6.5.2) again, ub must lie in the segment of ẑ1Cẑ2. Thus ẑ2 does not
belong to the segment uaC1ub, a contradiction to (6.5.1). This completes the proof of the claim. □

Claim 6.6. {ẑi : i ∈ [1, 2k]} ⊆ V2(H). That is, dH (ẑk) = dH (ẑ2k) = 2.

Proof of Claim 6.6. Suppose to the contrary dH (ẑk) = 3 (without loss of generality). ẑk is not an
isolated vertex of H − E(C1). Since G is 2-connected, a ̸= b. Since both ẑk−1 = us and ẑk+1 = ut are
isolated vertices in H − E(C1), a ̸= s and b ̸= t .

(6.6.1) There is a (ẑk, ẑ2k)-path P and an i ∈ [1, k − 1] such that P and ẑiC1ẑi+k share only one common
vertex which is ẑk.

Without loss of generality, we assume that ẑk lies in the segment usC1ut = ẑk−1C1ẑk+1. Then
ẑ2k must lie in the segment ẑ2k−1C1ẑ1. Otherwise it is easy to find vertex-disjoint (ẑk, ẑ2k)-path and
(ẑi, ẑk+i)-path for some i ∈ [1, k − 1], a contradiction to Claim 6.2. Note that a ̸= s and b ̸= t .

We first show that either a < s or b > t . Otherwise suppose s < a < b < t . Let ea = uaua−1 and
eb = ubub+1. Note that C1 is a facial circuit of H and the maximum degree of H is at most 3. By the
definition of a and b, {ea, eb} is a 2-edge-cut of H . Moreover, ẑk is the unique vertex of {ẑi : i ∈ [1, 2k]}
in the component of H − {ea, eb} containing ẑk. This contradicts Claim 6.3 since the component is
nontrivial.

If a < s, let Pa be a (ẑk, ua)-path in H − E(C1). Then the (ẑk, ẑ2k)-path ẑkPauaC−

1 ẑ2k and the
(ẑk−1, ẑ2k−1)-path ẑk−1C1ẑ2k−1 only share the vertex ẑk.

If b > t , let Pb be a (ẑk, ub)-path in H − E(C1). Then the (ẑk, ẑ2k)-path ẑkPbubC1ẑ2k and the (ẑ1, ẑk+1)-
path u1C1ut = ẑ1C1ẑk+1 only share the vertex ẑk. This proves (6.6.1).

Without loss of generality, we take i = 1 in (6.6.1). That is, there is a (ẑk, ẑ2k)-path P such that P
and ẑ1C1ẑk+1 share only one common vertex ẑk.

Let W be the subgraph of G that is contracted into ẑk. Denote δG(V (W )) = δH (ẑk) = {e1, e2, e3}
where e1 is not in C1 and e2 and e3 are in C1. Then e1 ∈ E(P) and both e2 and e3 are in ẑ1Cẑk+1. Denote
the ends of e1, e2, e3 inW by h1, h2, h3, respectively.

(6.6.2) W does not contain edge-disjoint (zk, h1)-path and (h2, h3)-path.
If W contains edge-disjoint (zk, h1)-path and (h2, h3)-path, one can easily find edge-disjoint

(zk, z2k)-path and (z1, zk+1)-path since the (ẑk, ẑ2k)-path P and ẑ1C1ẑk+1 share only one common vertex
ẑk in H . This proves (6.6.2).

(6.6.3)W is 2-connected.
Suppose to the contrary that W is not 2-connected. Then it has at least two leaf blocks and thus

|E(W )| ≥ 2. Since |δG(V (W ))| = 3, there must be a leaf block of W which is incident with exactly
one of e1, e2 and e3, denoted ei. Then W contains a leaf block of G − ei. By Claim 6.4, zk is the only
vertex in {zi : i ∈ [1, 2k]} = T contained in W . By Claim 6.1, dG(hi) = 2 and hi = zk. Let e′

i be the
edge in W incident with hi. Then {e′

i, eα, eβ} is a 3-edge-cut where {α, β} = {1, 2, 3} \ {i}. Let W ′ be
the component of G − {e′

i, eα, eβ} contained in W . Then W ′ contains no zi for each i ∈ [1, 2k] and
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|E(W ′)| = |E(W )| − 1. Moreover G/E(W ′) remains 2-connected and satisfies (i). By the minimality of
G, G/E(W ′) satisfies (ii) and so does G, a contradiction. This proves (6.6.3).

By (6.6.2) and (6.6.3), we apply Theorem 1.4 on W with the vertices zk, h2, h1, h3. Then W is
contractible to a graphW1 which is either the 4-circuit C ′

= ĥ1ĥ2ẑ ′

kĥ3ĥ1 or a graph which is obtained
from a 2-connected plane cubic graph by selecting the outer circuit C ′ and inserting the vertices
ĥ1, ĥ2, ẑ ′

k, ĥ3 in that cyclic order on edges of C ′. Without loss of generality, assume ĥ′

2C
′ĥ′

3 contains ẑ
′

k.
Replace ẑk in H with W1 to obtain a new contraction H ′ of G. The facial circuit C ′

1 is obtained from C1

by replacing the vertex ẑk with the segment ĥ′

2C
′ĥ′

3 which contains ẑ ′

k as a 2-vertex. Thus H ′ satisfies
(1) but |V (C ′

1) ∩ T̂H ′ ∩ V2(H ′)| = 1 + |V (C1) ∩ T̂H ∩ V2(H)|, a contradiction to the choice of H . This
contradiction completes the proof of Claim 6.6. □

(i) ⇒ (ii) follows from Claims 6.4, 6.5, and 6.6.

(ii) ⇒ (iii)
Now we show (ii) ⇒ (iii). Note that if k = 2, then (ii) implies (iii). We prove by contradiction. Let

G be a counterexample such that
(a) k is as small as possible;
(b) subject to (a), |E(G)| is as small as possible.
Since G is a counterexample, let C1 and C2 be a pair of edge-disjoint circuits with odd weight in G+.

Let Fi = F ∩ E(Ci) where each |Fi| is odd.
By (ii) (or (ii)′), there is a permutation π on [1, k] and a subset S ⊆ E(G) such that G/S is the

2k-circuit C = z1z2 . . . z2kz1 or a graph obtained from a 2-connected plane cubic graph by selecting
a facial circuit C and inserting the 2k vertices z1, z2, . . . , z2k in that cyclic order on edges of C , where
{zi, zk+i} = {x̂π (i), ŷπ (i)} for i ∈ [1, k].

Claim 6.7. G = G/S, G+
= C ∪ C1 ∪ C2, and F = F1 ∪ F2.

Proof of Claim 6.7. We first show G = G/S. Clearly, G+/S = G/S + F . Let X be a component of G+
[S].

Then X is contracted into a vertex of G+/S. Let C0 be a circuit of G+. Since G+/S is cubic, C0 ∩X is either
a null graph or is a segment of C0. Thus C0/E(C0 ∩X) is a circuit. This implies that C0/(E(C0)∩ S) is still
a circuit after contracting each component of G+

[S]. Since S ⊆ E(G), C0 and C0/(E(C0) ∩ S) have the
same number of edges in F . Hence C1/(E(C1) ∩ S) and C2/(E(C2) ∩ S) remain a pair of edge-disjoint
circuits with odd weight in G+/S. Therefore by the minimality of E(G), G = G/S.

Now we show that G+
= C ∪ C1 ∪ C2 and F = F1 ∪ F2. It is obvious that G+

= C ∪ C1 ∪ C2 implies
F = F1 ∪ F2. Let G′

= C ∪ C1 ∪ C2. Then G′ is a 2-edge-connected subgraph of G+. Since G+ is cubic and
the edges in F are chords of C , G′

−F is 2-connected. Note that C1 and C2 are still a pair of edge-disjoint
circuits with odd weight in G′. If G′ is a proper subgraph of G+, then G′

− F is a proper 2-connected
subgraph of G satisfying (ii) and (G′

− F )+ = G′, a contradiction to the minimality of G. Therefore
G+

= C ∪ C1 ∪ C2 and thus F = F1 ∪ F2. □

Note that C1 and C2 are vertex-disjoint sinceG+ is cubic and C1 is edge-disjoint from C2. For i = 1, 2,
let Pi be the set of |Fi| paths which consist of Ci − Fi. Then all paths in P1 ∪ P2 are pairwise vertex-
disjoint. Let P ∈ P1 ∪ P2. It is obvious that two ends of P both are in {z1, z2, . . . , z2k}. We denote P by
Pα,β if its end vertices are zα and zβ with β > α, and define the pace of Pα,β as

min{β − α, 2k − (β − α)}.

Let Pα′,β ′ be a path of P1 ∪ P2 with smallest pace. Without loss of generality, assume that Pα′,β ′ ∈ P1.
We further assume that k ≥ β ′ > α′

= 1.

Claim 6.8. β ′
= 2.

Proof of Claim6.8. Suppose to the contraryβ ′
≥ 3. SinceG+

= C∪C1∪C2 and F = F1∪F2 by Claim6.7,
z2 must be contained in some path P2,β ′′ ∈ P1∪P2. Then P2,β ′′ must cross the path P1,β ′ sinceG is plane
and P1,β ′ has the smallest pace, which contradicts the fact that G+ is cubic. This completes the proof
of the claim. □
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Claim 6.9. zk+1zk+2 ̸∈ E(C1 ∪ C2).

Proof of Claim 6.9. Since G+ is cubic and C1 passes through zk+1 and zk+2, the edge zk+1zk+2 ̸∈ E(C2).
If zk+1zk+2 ∈ E(C1∪C2), then zk+1zk+2 ∈ E(C1). Therefore, C1 = z1P1,2z2zk+2zk+1z1 is an even-weighted
circuit, a contradiction. This contradiction completes the proof of the claim. □

Let G∗
= G+

− {z1zk+1, z2zk+2} + zk+1zk+2, and F∗
= F − {z1zk+1, z2zk+2}. Then G∗ does contain a

pair of edge-disjoint odd-weighted circuits C ′

1 = C1 − zk+1z1P1,2z2zk+2 + zk+1zk+2 and C2.
Since z1, z2, . . . , z2k appear on C in this cyclic order, the segment zk+1Czk+2 contains no vertices in

{z1, z2, . . . , z2k} as internal vertices. Thus the circuit obtained from C by replacing zk+1Czk+2 with the
edge zk+1zk+2 is also a facial circuit in G∗

− F∗. Since |F∗
| = k − 2 < |F | = k, by the minimality of k,

G∗ contains no edge-disjoint odd-weighted circuits, a contradiction. This contradiction completes the
proof of (ii) ⇒ (iii) and thus the proof of Theorem 1.5.

7. Proof of Theorem 1.6

The aim of this section is to prove Theorem 1.6.
(ii) ⇔ (iii) follows from Theorem 1.5. We only need to show that (iii) ⇒ (i) ⇒ (ii).

(iii) ⇒ (i)
Let G be a counterexample with |E(G)| minimum. Let G′ be the contraction described in (iii). Then

by the minimality of G, for each vertex x̂ ∈ V (G′) \ {ẑ1, ẑ2, . . . , ẑ2k}, we have x̂ = x. By Theorem 1.5
((ii) ⇒ (iii)), G − N(G) contains some cut vertices. Let B be a leaf block of G − N(G). Since G′ is 2-
connected, B must be contained in W where W is the subgraph of G which was contracted into ẑi for
some i ∈ [1, 2k]. Moreover, B is also a block of G−{zizi+k} and V (B)∩{z1, . . . , zk, zk+1, . . . , z2k} = {zi}.
Thus zi is not a cut vertex of G − N(G) and G/E(B) is 2-connected since G is 2-connected. This implies
that every unbalanced circuit of G containing some edges of B must pass through the negative edge
zizi+k. Since G is a counterexample, let C1 and C2 be two edge-disjoint unbalanced circuits of G. Thus
C1/(E(C1)∩E(B)) and C2/(E(C2)∩E(B)) are two edge-disjoint unbalanced circuits of G/E(B). Therefore,
G/E(B) is also a counterexample but |E(G/E(B))| < |E(G)|, a contradiction to the minimality of G. This
proves that (iii) implies (i).

(i) ⇒ (ii)
Let G be a counterexample with |E(G)|minimum. By (i), there are no edge-disjoint (xi, yi)-path and

(xj, yj)-path for any 1 ≤ i < j ≤ k. Thus to obtain a contradiction it suffices to show that G − N(G) is
2-connected.

Suppose to the contrary that G−N(G) is not 2-connected. If there are two blocks of G−N(G) such
that each contains two ends of some negative edge, then it is obvious that G has two edge-disjoint
unbalanced circuits, a contradiction. Since G−N(G) is not 2-connected, it has at least two leaf blocks.
Thus it has a leaf block B which contains at most one end of each negative edge. Let z be the unique
cut vertex of G − N(G) in B and let N ′

⊆ V (B) be the set of vertices incident with a negative edge in G.
Clearly, |N ′

\ {z}| > 0 since G is 2-connected.
If |N ′

| = 1, then z is not adjacent to a negative edge and thus G′
= G/E(B) remains 2-connected

and still satisfies (i). Note that the negativeness is an invariant under contracting some positive edges.
Thus, by the minimality of G, there is S ⊆ E(G′) \N(G′) such that (G′

−N(G′))/S satisfies (ii). It follows
that S ∪ E(B) ⊆ E(G) \ N(G) and (G − N(G))/(S ∪ E(B)) = (G′

− N(G′))/S satisfies (ii), a contradiction.
Thus |N ′

| ≥ 2 and |V (B)| ≥ 2. Let x1y1 and x2y2 be two negative edges with x1, x2 ∈ N ′ and
y1, y2 ∈ V (G) \ V (B). If B = K2 = {e}, then x1 ̸= x2; otherwise {e, x1y1, x2y2} is a 3-edge-cut of G
and it contains two edges in N(G), a contradiction to Proposition 3.1. Since x1 ̸= x2 if B = K2 and B is
2-connected if B ̸= K2, there are edge-disjoint (x1, z)-path P1 and (x2, z)-path P2 in B.

Let H = G − N(G) − (V (B) \ {z}). Then H is connected since G − N(G) is connected and B is
a leaf block of G − N(G). We now claim that H contains edge-disjoint (z, y1)-path and (z, y2)-path.
Otherwise by Menger’s theorem, there is a cut-edge e in H (and thus in G − N(G)) separating z from
{y1, y2}. So {e, x1y1, x2y2} is a 3-edge-cut of G−N(G)+{x1y1, x2y2} and it contains two edges in N(G),
a contradiction to Proposition 3.1.

Let P ′

1 and P ′

2 be two edge-disjoint (z, y1)-path and (z, y2)-path in G − N(G) − (V (B) \ {z}),
respectively. Then x1P1zP ′

1y1x1 and x2P2zP ′

2y2x2 are two edge-disjoint unbalanced circuits in G, a
contradiction to (i). This proves that (i) implies (ii) and thus proves Theorem 1.6.
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