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1. Introduction

Let {x1, X2, ..., Xk, Y1, Y2, - .., Yk} be an ordered set of vertices of a graph G. The linkage problem
is to find vertex-disjoint paths joining some pairs x; and y;, while the weak linkage problem is to find
edge-disjoint paths joining some pairs x; and y;. The following is a summary of some weak linkage
problems.

Problem 1.1 (Weak 2-Linkage Problem). For k = 2, does the graph contain a pair of edge-disjoint paths
P; and P, such that P, joins x,, and y, foreach u = 1, 2?
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Problem 1.2 (Multiple Weak 2-Linkage Problem). For any integer k > 2, is there a pair of integers
1 <i < j < ksuch that the graph G contains a pair of edge-disjoint paths P; and P; such that P, joins
X, and y, foreach u =1, j?

Problem 1.3 (Weak Linkage Problem). For any integer k > 2, does the graph G contain a set of pairwise
edge-disjoint paths {Py, ..., Py} such that P, joins x, and y,,, foreach n € {1, ..., k}.

It is evident that both Problems 1.2 and 1.3 are generalizations of Problem 1.1 by simply letting
k = 2.Problem 1.1 was completely solved by Seymour and Thomassen independently in Theorem 1.4.

Let H be a contraction of Gand letx € V(G). We use X to denote the vertex in H which x is contracted
into.

Theorem 1.4 (Seymour [15], Thomassen [18]). Let G be a 2-connected graph and x1, x,, y1, ¥2 be vertices
in G. Then the following two statements are equivalent.

(') G does not contain edge disjoint (X1, y1)-path and (x3, y2)- path
cubic graph by selectlng a facial circuit and inserting the distinct vertices X1, X2, y1, J» in that cyclic
order on edges of that circuit.

Problem 1.3 is also called integer k-commodity flow problem which was studied recently by
Seymour [17].

In this paper, similar to [15] and [18], we will provide a complete characterization for graphs
with or without the multiple weak 2-linkage property. It is obvious that Problem 1.3 is stronger than
Problem 1.2.

Later in this paper, we will apply our characterization in the study of integer flow problems for
signed graphs (see Theorem 1.7).

The following is one of our main theorems.

Theorem 1.5. Let G be a 2-connected graph and x1, X2, . .., Xk, Y1, Y2, - - . » Yk (k > 2) be vertices in G.
Then the following are equivalent.

(i) Foranyi # j, G does not contain edge-disjoint (x;, y;)-path and (x], Yi)- path

(ii) The graph G can be contracted to the 2k-circuit C; on the vertices X1, ..., Xk, 1, - . . , Yi OF to a cubic
graph G’ which can be obtained from a 2-connected cubic plane graph by selecting a facial circuit C,
and inserting the vertices X1, . .., X, J1. - . . , Jx on the edges of C, in such a way that for every pair
{i,j} € {1,..., k}, the vertices X;, X;, J;, Jj are around C; or C; in this cyclic order.

(iii) Let (G*, w) be the weighted graph where G* is obtained from G by adding edges F = {x;y; : i €
[1, k1} and the weight w : E(GT) — {0, 1} such that w(e) = 0if e € E(G) and w(e) = 1if e € F.
Then G contains no pair of edge-disjoint circuits with odd weight.

Note that (ii) is equivalent to the following:

(ii) There is a permutation 7 on [1, k] and G is contractible to the 2k-circuit Z1Z, . . . ZyZ; or to a graph
obtained from a 2-connected plane cubic graph by selecting a facial circuit and inserting the 2k distinct
vertices 21, Za, . . . , Zyy in that cyclic order on edges of that circuit, where {z;, ziyi} = {Xx(i), Y=(i)} for each
iell,k].

Theorem 1.5 can be applied to characterize signed graphs without edge-disjoint unbalanced
circuits.

Theorem 1.6. Let G be a 2-connected signed graph with negativeness ¢(G) = k > 2 and with
IN(G)| = €(G), where N(G) = {X1y1, X2¥2, - - . , XkYk} is the set of all negative edges of G. Then the following
are equivalent.

(i) G contains no edge-disjoint unbalanced circuits.
(i) G—N(G)is contractible to a 2-connected graph containing no edge-disjoint (%;, ;)-path and (%;, y;)-
path for any i # j.
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(iii) The graph G can be contracted to a cubic graph G such that either G'—{x1y1, . . ., Xy« } is a 2k-circuit
C; on the vertices X1, ..., Xk, J1, . . ., yx or can be obtained from a 2-connected cubic plane graph
by selecting a facial circuit C, and inserting the vertices X1, ..., X, Y1, - . . , Ji on the edges of C, in
such a way that for every pair {i,j} C {1, ..., k}, the vertices X;, X;, y;, y; are around the circuit C,
or G, in this cyclic order.

The characterization of signed graphs without edge-disjoint unbalanced circuits can be further
applied to study integer flows of this family of signed graphs.

In 1983, Bouchet [3] proposed a flow conjecture which states that every flow-admissible signed
graph admits a nowhere-zero 6-flow. This conjecture remains open. Bouchet [3] himself proved that
such signed graphs admit nowhere-zero 216-flows. Zyka [26] further proved that such signed graphs
admit nowhere-zero 30-flows. DeVos [4] improved Zyka’s result to 12-flows.

In this paper, we confirm Bouchet’s conjecture for signed graphs containing no edge-disjoint
unbalanced circuits by applying Theorem 1.6.

Theorem 1.7. Every flow-admissible signed graph without edge-disjoint unbalanced circuits admits a
nowhere-zero 6-flow.

2. Notation and terminology

For terminology and notations not defined here we follow [2,5,20]. Graphs or signed graphs
considered in this paper are finite and may have multiple edges or loops.

Let G = (V, E) be a graph with vertex set V = V(G) and edge set E = E(G). For U C V, denote
8(U) = §¢(U) the set of edges with one end in U and the other in V \ U. If U = {u}, we write §({u}) for
8(u). A d-vertex is a vertex with degree d. For an edge e of a graph G, contracting e is done by deleting
e and then (if e is not a loop) identifying its ends. For S C E(G), we use G/S to denote the resulting
graph obtained from G by contracting all edges in S.

For Uy, U, C V(G), a (Uy, Uy)-path is a path which starts at a vertex in U; and ends at a vertex in
U,, and whose internal vertices belong to neither U; nor U,; if G; and G, are subgraphs of G, we write
(G1, Gy)-pathinstead of (V(Gy), V(G3))-path. Let C = vy ... vrvq be acircuit. A segment of C is the path
ViViy1 ... Vj—1v; (mod r) contained in C and is denoted by v;Cvj or v;C~v;.

For a plane graph G embedded in the plane 7, a face of G is a connected topological region (an open
set) of IT \ G. If the boundary of a face is a circuit of G, it is called a facial circuit of G. The facial circuit
bounding the infinite face is called the outer circuit.

A block of G is a maximal subgraph that does not contain a cut-vertex. The block tree B(G) of G is a
bipartite graph with bipartition (3, S), where B is the set of blocks of G, S is the set of cut vertices of
G, and a block B and a cut vertex v are adjacent in B(G) if and only if B contains v. Note that B(G) is a
tree. If G is not 2-connected, the blocks of G which correspond to leaves of its block tree are called leaf
blocks. An internal vertex of a block of G is a vertex which is not a cut vertex of G.

3. Signed graphs and flows
3.1. Signed graphs, switching operation, and orientations

A signed graph (G, o) is a graph G together with a signature o : E(G) — {£1}. If no confusion
arises, we write (G, o) as G and the signature o will be specified only when needed. An edge e € E(G)
is positive if o(e) = 1 and negative otherwise. For a subgraph H of G, denote N(H) the set of negative
edges in H. A circuit C of G is balanced if [N(C)| is even, and is unbalanced otherwise. A signed graph is
balanced if it does not contain an unbalanced circuit. A barbell is the union of two disjoint unbalanced
circuits joined by a path that meets the circuits only at its ends.

For a signed graph G, switching at a vertex u means reversing the signs of all edges incident with wu.
Obviously, the parity of the number of negative edges in a circuit is an invariant under the switching
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operation. Let X; be the set of signed graphs obtained from G via a sequence of switching operations.
The negativeness of G is defined by

€(G) = min{|N(G)| : G’ € xg).

The following two propositions directly follow from the definitions of switching operation and
negativeness.

Proposition 3.1. Let G be a signed graph. Then €(G) = |N(G)| if and only if |[N(G) N §(U)| < %|8(U)| for
every U C V(G).

Proposition 3.2. Let G be a signed graph and B be the set of blocks of G. Then

€(G) = Z €(B).

BeB

In a signed graph, every edge is composed of two half-edges, each of which is incident with one
end. Denote the set of half-edges of G by H(G) and the set of half-edges incident with v by H(v). For a
half-edge h € H(G), we refer to ej, as the edge containing h, and denote the other half-edge of e;, by h'.
An orientation of G is a mapping t : H(G) — {#£1} such that t(h)t(h’) = —o¢(ey) for each h € H(G).
It is convenient to think of T as an assignment of orientations on H(G). Namely, if t(h) = 1, hisa
half-edge oriented away from its end and otherwise towards its end.

3.2. Flows in signed graphs

For basic definitions, properties and results about Tutte’s Flow Theory, readers are referred to
standard textbooks or reference books, such as, [2,5,24], etc.

Definition 3.3. Let t be an orientation of a signed graph G and f : E(G) — Z be a mapping.

(1) The boundary of f is the function dof : V(G) — Z defined as of (v) = Zhemu)r(h)f(eh) for each
vertex v.

(2) Ifof(v) = 0foreach v € V(G) and |f(e)| < k for each e € E(G), (t, f) is called an integer k-flow
(or simply a k-flow) of G.

(3) If of(v) = 0 (mod k) for each v € V(G)and 0 < f(e) < k for each e € E(G), (z, f) is called a
modular k-flow (or simply a Z,-flow) of G.

(4) The support of f, denoted by supp(f), is the set of edges e with f(e) ~ 0. A flow (z, f) is said to
be nowhere-zero if supp(f) = E(G).

Flows on signed graphs arise naturally as duals of local tensions on non-orientable surfaces. More
discussions are referred to [1,7-14,21,25].

For the sake of convenience, a nowhere-zero k-flow (resp., nowhere-zero Z,-flow) is abbreviated
as a k-NZF (resp., a Zy-NZF). Observe that G admits a k-NZF (resp., a Z;-NZF) under an orientation t if
and only if it admits a k-NZF (resp., a Z,-NZF) under any orientation t’.

A signed graph G is flow-admissible if it admits a k-NZF for some k. Bouchet characterized all flow-
admissible signed graphs.

Proposition 3.4 (Bouchet [3]). A connected signed graph G is flow-admissible if and only if €(G) # 1and
there is no cut-edge b such that G — b has a balanced component.

The rest of the paper is organized as follows. Some lemmas on flows will be presented in Section 4.
The proof of Theorem 1.7 will be presented in Section 5, and the proofs of Theorems 1.5 and 1.6 will
be postponed to Sections 6 and 7, respectively.



40 Y. Lu et al. / European Journal of Combinatorics 69 (2018) 36-48

4. Some lemmas on flows

In this section we present some lemmas that will be used in the proof of Theorem 1.7.
A graph is even if the degree of each vertex is even. Tutte proved the following result.

Proposition 4.1 (Tutte [19]). A graph admits a 2-NZF if and only if it is even.

The following is a straightforward observation in network theory since, for every U C V(G),
Zeesw)‘f’(e) = Zeea(uf)¢(e) (by Definition 3.3).

Proposition 4.2. If (t, ¢) is a positive k-NZF of a graph G, then t is a strongly connected orientation of
G.

Let = be an orientation of a graph G and Eg € E(G). We denote 7z, the orientation of G obtained
from 7 by reversing the direction of every arcin Ey. Let f : E(G) — Z;bea mapping.fgo is the mapping
of E(G) defined as follows:

f(e) ife ¢ Eo,
on(e)={k_f(e) ife  Fo.

Lemma 4.3 (Younger [23]). If a graph G admits a Z,-NZF (z, f), then there is an edge subset Eq of G such
that (rgo, fgo) is a positive integer flow.

DeVos [4] proved the following extension lemma on modular flows.

Lemma 4.4 (DeVos [4]). Let G be a graph with an orientation t and assume that G admits a Zy-NZF. If a
vertex u of G has degree at most 3 and y : 8(u) — 7 \ {0} satisfies 9y (u) = 0 (mod k), then there is a
Zy-NZF (7, ¢) of G so that @y, = v, where ¢y is the restriction of ¢ on &(u).

We extend DeVos’s lemma to integer flows in the following lemma.

Lemma 4.5. Let G be a graph with an orientation t and assume that G admits a k-NZF. If a vertex u of
G has degree at most 3 and y : 8(u) — {£1,..., £(k — 1)} satisfies 9y (u) = O, then there is a k-NZF
(t, @) of Gso that Olswy = V-

Proof. Without loss of generality, assume that 0 < y(e) < k for each e € §(u). By Lemma 4.4, G has a
Z-NZF (7, ¢1) such that ¢1]s,) = y. By Lemma 4.3, there is a subset Ey C E(G) such that (rgo, ¢o)isa
positive k-NZF where ¢, = (é1)z,-

IfEg NS(u) = @, let ¢3(e) = —¢>2( e) for each e € Ey, and ¢3(e) = ¢,(e) for each e € E(G) \ Eo. Note
that ¢35,y = P1lsu) = v- Thus (7, ¢3) is a desired k-NZF.

Now we assume Eg N §(u) # @. Let s and t be the numbers of arcs in Eq N §(u) with their tails and
their heads at u under gy respectively. Then s + t > 1 since Eq N &(u) # . Note that each arc e with
tail at u under 7z, contributes k — ¢1(e) to d¢,(u) and —¢(e) to d¢1(u) since it has head at u under .
Similarly, each arc e with head at u under TE, contributes —(k — ¢1(e)) to d¢,(u) and ¢1(e) to dp(u).
Since both (7, ¢1) and (tz,, ¢) are flows of G,

0 = d¢py(u) = dp1(u) + sk —tk = oy (u) + (s — t)k = (s — t)k.

Since1 <s+t <d(u) <3,wehaves =t = 1.Let E; N §(u) = {e1, e2}, where e; = uu; with its tail
atu and e; = uu, with its head at u under 73

We first show that there is a directed circuit C containing e; and e, under 7z . If u; = uy, let C
be the directed circuit consisting of e; and e;. Now we assume u; # uy. Since (rgo, ¢,) is a positive
integer flow, 7z, is strongly connected by Proposition 4.2. Thus there is a directed path P from u; to u,.
Since d(u) < 3 and u,uuy is a directed path from u; to uy in 7, P does not contain u. Hence uuqPu,u
is a directed circuit containing e, and e, under TE, -

Let E; = E(C)AEq be the symmetric dlfference ofE(C)and Eo.Then§(u)NEy = Pand iz, = (w5, )5 @
Let ¢4 : E(G) — Z be the mapping such that ¢4(e) = ¢a(e)ife ¢ E(C)and ¢4(e) = k—¢y(e)ife E(Ci
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That is, (g, ¢4) is obtained from (g,, ¢2) by reversing the directions of all arcs in E(C) and replacing
the flow ¢,(e) with k — ¢,(e) for each arc e in C. Since C is a directed circuit and (g, #2) is a positive
k-NZF, (g, , ¢4) is also a positive k-NZF.

Let ¢5 : E(G) — Z be the mapping such that ¢s(e) = —¢p4(e) if e € E1 and ¢s(e) = ¢4(e) otherwise.
Then (7, ¢s) is the flow obtained from (zz, , ¢4) by reversing the directions of all edges in E; and then
negating their flow values. Since §(u) N E1 = ¥, we have ¢s|s,) = Palswy = (P1)f, 15wy = v- Hence
(t, ¢5) is a desired k-NZF. This completes the proof of Lemma 4.5. ®

To introduce and prove our second lemma, we need the following operation and several known
results. Let G be a signed graph. We define the following operation.

@), : add a balanced circuit or a barbell C into Gif |[E(C) \ E(G)| < k.

For a subgraph H of G, denote by (H), the maximum subgraph of G obtained from H via @;-operations.
The following is the well-known 6-flow theorem due to Seymour.

Theorem 4.6 (Seymour [16]). Every bridgeless graph admits a 6-NZF.

With a similar argument to the proof of Seymour’s 6-flow theorem, Zyka obtained the following
result.

Lemma 4.7 (Zyka [26]). Let G be a signed graph and H be a subgraph of G. If (H), = G, then G admits a
Z3-flow (7, f) such that E(G) \ E(H) < supp(f).

Unlike unsigned graphs, for signed graphs, admitting a Z;-NZF does not guarantee that the signed
graph admits a k-NZF. However, the following lemma gives a sufficient condition to guarantee the
existence of a 3-NZF if the signed graph admits a Z3-NZF.

Lemma 4.8 (Xu and Zhang [22]). Let G be a bridgeless signed graph. Then G admits a 3-NZF if and only if
G admits a Z3-NZF.

The following lemma was proved for unsigned graphs originally but can be easily extended to
signed graphs.

Lemma 4.9 (See [6] and [16]). Let G be a graph (or a signed graph) and kq, k, be two integers. If G admits
aky-flow (z, fi) and a ky-flow (T, f>) such that supp(f;)Usupp(fo) = E(G), then (z, f1 +k1f2) is a kik,-NZF
of G.

Lemma 4.10. Let G be a cubic signed graph with N(G) = {ujug41, ..., Ugla} (k > 2). If G — N(G) is
the 2k-circuit C = uy ... Ukl .. . Ugklq or a graph obtained from a 2-connected plane cubic graph by
selecting a facial circuit C and inserting the vertices uq, ..., Uy, Ugs1, . . . , Ugg in that cyclic order on edges
of C, and if every 2-edge-cut of G — N(G) is contained in E(C), then G admits a 6-NZF.

Proof. Let t be an orientation of G. Let H be an even subgraph of G containing C such that
(@) E(H) € E(G) \ N(G),
(b) subject to (a), (H) is connected and |E((H),)| is as large as possible.
Since H is an unsigned even subgraph of G, by Proposition 4.1 we have the following claim.

Claim 4.1. G admits a 2-flow (t, f1) with supp(f;) = E(H).

Claim 4.2. (H), =G.

Proof of Claim 4.2. Note that k > 2 and each negative edge in N(G) is a chord of the unsigned circuit C.
Thus N(G) C E((H),) and the unsigned subgraph (H), —N(G) is still connected since (H), is connected.

Denote U = V((H);) and W = V(G) — U. Then (H), = G[U]. To prove Claim 4.2, it is sufficient to
prove W = (.
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Suppose to the contrary W # ¢. Since (H), — N(G) is connected, by the maximality of |E({H),)|,
every vertex in W has at most one neighbor in U. Thus the minimum degree of G[W] is at least two
since G is cubic. Let L be a component of G[W]. If L has a bridge, choose a bridge e such that L — e has
a 2-edge-connected component Ly. If L is bridgeless, let Ly = L. Since the minimum degree of L is at
least two, Lg is nontrivial.

Since each 2-edge-cut of G is contained in E(C), we have |§¢(V(Lg))| > 3. Since [8;(V(Lp))| < 1,
there are two distinct edges xx’, yy’ where x,y € V(L) and X', ¥y’ € U. Since L is 2-edge-connected
and nontrivial, Ly has two edge-disjoint (x, y)-paths P; and P,. Let H' = HUP; UP,. By the definition of
®,-operation, xx', yy’ € E((H'),). Thus (H’), is connected and |E((H'),)| > |E({H),)|. This contradicts
the maximality of |[E({H),)| and thus completes the proof of the claim. O

By Claim 4.2 and Lemma 4.7, G admits a Zs-flow (z, f,) with E(G) \ E(H) < supp(f>).
Claim 4.3. G admits a 3-flow (t, f3) with supp(fs) = supp(f>).

Proof of Claim 4.3. Let G’ = G[supp(f>)]. Then G’ admits a Z3-NZF (7’, f,), where 7’ is the restriction
of T on G’. By Lemma 4.8, it is sufficient to prove that G’ is bridgeless. Note that by Theorem 1.6, G does
not contain two edge-disjoint unbalanced circuits, and neither does G'.

Suppose to the contrary that G’ has a bridge b. Then at least one component of G’ — b does not
contain unbalanced circuits and thus is balanced. Let Q be a balanced component of G’ — b, and switch
some vertices of Q such that all edges of Q are positive. We use G’ to denote the new signed graph
obtained from G'. Since G’ admits a Z3-NZF, so does G”. Let (7/, f;) be a Z3-NZF of G”. Since all edges
of Q are positive in G”,

el =1 afm)I=0 (mod 3),

veV(Q)

a contradiction. Thus G’ is bridgeless. O
By Lemma 4.9 and Claims 4.1 and 4.3, (z, fi 4+ 2f;) is a desired 6-NZF of G. W

5. Proof of Theorem 1.7

The aim of this section is to prove Theorem 1.7: Every flow-admissible signed graph without edge-
disjoint unbalanced circuits admits a nowhere-zero 6-flow.

Note that the balance property of a circuit and the existence of a k-NZF are two invariants under
switching operations. Because G is flow-admissible and does not contain edge-disjoint unbalanced
circuits, by Proposition 3.4 G is bridgeless and at most one block of G is unbalanced. If each block of
G is balanced, then G is balanced. By Theorem 4.6, G admits a 6-NZF. Hence we assume that G has
only one unbalanced block. By Proposition 3.2, the negativeness of this unbalanced block is equal to
€(G) (= 2). By Theorem 4.6, each balanced block admits a 6-NZF. Thus we may further assume that G
is 2-connected and €(G) = |N(G)| > 2.

Denote N(G) = {x1¥1, . . ., XkY«}. By Theorem 1.6, let H be a contraction of G — N(G) such that

(a) H isthe 2k-circuit C’ = Z12, . . . Zy;Z; or a graph obtained from a 2-connected plane cubic graph
by selecting a facial circuit C’ and inserting the 2k vertices Zi, 2y, . . ., Zy in that cyclic order on
edges of C’, where 7 is a permutation on [1, k] and {z;, zk+i} = {Xx(i), Y=()} for eachi € [1, k];

(b) subject to (a), [V(H)| is as small as possible.

Clearly, G; = H + N(G) is cubic and by the minimality of H, every 2-edge-cut of H (and thus G) is
contained in E(C’). Let T be an orientation of G. By Lemma 4.10, G; admits a 6-NZF (z1, f), where 7y is
the restriction of T on G.

Next we will prove that (ty, f1) can be extended to a 6-NZF of G. If G = Gy, then (4, f1) is a 6-NZF
of G. So we assume G # Gj.

Pick an arbitrary vertex x of H such that the subgraph B, of G contracted into x is nontrivial (such x
exists since G # Gy). Since G is cubic, denote 85(V(By)) = 8¢,(x) = {e1, ez, e3}, and for i € [1, 3], let
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h; be the half edge of e; whose end is in By. We add a new vertex u to B, + {hy, hy, h3} such that u is
a common end of all h;, and denote the new graph by G,. Then G, is a bridgeless unsigned graph and
thus admits a 6-NZF by Theorem 4.6.

Let 7, be the restriction of 7 on G, and define y(h;) = fi(e;) for each h;. Note that o(h;) = 71(h;)
for each h;. Since (71, f1) is a 6-NZF of G, we have 9y (u) = df;(x) = 0. By Lemma 4.5, there is a 6—NZF
(12, f2) of G such that f2|56 w=vY=h |5G , and thus f; can be extended to all edges in E(By). B
applying the same argument to every x with nontr1v1al By, one can extend (71, f1) to a 6-NZF of G. D

6. Proof of Theorem 1.5

The aim of this section is to prove Theorem 1.5. (iii) = (i) is trivial since (i) is a special case of (iii).
We only need to show that (i) = (ii) = (iii).

(i) = (ii)

We first show that (i) = (ii) by contradiction. Let k be the smallest integer such that there is a
counterexample to it and choose G to be a counterexample with |V(G)| 4 |E(G)| minimum. Then there
are 2k vertices X1, X2, . .., Xk, Y1, Y2, - . . , Yk such that G does not contain edge-disjoint (x;, y;)-path and
(x;, yj)-path for any i # j but (ii) does not hold. Denote 7 = {x1, X2, ..., X, Y1, Y2 . .., Yx}. Note that
k > 3 by Theorem 1.4.

By the minimality of G, we have the following claim.

Claim 6.1. If G has a subgraph B such that there is an edge xy € §c(V(B)) where x € V(B) such that B is
a leaf block of G — xy, then |V(B) N {x;,y; : i € [1, k]}| > 2 unless B is a K, in which case dg(x) = 2 and
xeT.

Proof of Claim 6.1. Let G; = G/E(B)if |[E(B)| > 2and |V(B)NT| < 1orif |[E(B)] = 1and x ¢ T. Since
Bis aleaf block of G — xy, G; remains 2-connected and satisfies (i). Thus by the minimality of G, G/E(B)
satisfies (ii) and so does G, a contradiction. This proves the claim. O

By the minimality of k, there is a permutation 7r on [1, k— 1] and G is contractible to a 2-connected
graph H with maximum degree at most 3 satisfying

()21, ..., Zk—1s Zkg1s - - - » Z2k—1 are distinct 2-vertices of H appearing in a facial circuit C; of H in
the cyclic order, where {z;, zx4i} = {Xx(), Y=)} fori e [1, k — 1].

We choose such H satisfying (1) and

(2) subject to (1), |[V(C1) N {Z; : i € [1, 2k]} N V,(H)| as large as possible where V,(H) is the set of
all 2-vertices in H.

Denote Ty = {21, ..., Zk—1, k15 - - - » Zok1} U {2k, 22} and let S € E(G) such that H = G/S. Note
that |V(C;) N 7p N Vo(H)| is the maximum among all contraction H of G satisfying (1).

Since G does not contain edge-disjoint (z;, zi1)-path and (z;, zj1«)-path for any i,j € [1, k] and
i # j, we have the following observation.

Claim 6.2. For any distinct i,j € [1, k], H does not contain vertex-disjoint (Z;, Zx+;)-path and (2;, Z;)-
path.

By applying Claim 6.1, for any 2-edge-cut {e;, e;} of G, every component of G — {eq, e} either
contains at least two vertices in 7 or is a single vertex in 7 which has degree 2 in G. Since each 2-
edge-cut in H is also a 2-edge-cut in G, the following claim holds.

Claim 6.3. If { e, ex}is a2- -edge-cut of H, then every component of H — {eq, e} either contains at least
two vertices in Ty = {Z; : i € [1, 2k]} or is a single vertex in Ty, which is a 2-vertex in H.

Since Z; € V(Cy) N V(H) foreachi € [1,k — 17U [k + 1, 2k — 1] by (1), we only need to show the
following statements:

o2y # Zyand Zy # Z;forany d € {k, 2k} andi € [1,k — 11U [k + 1, 2k — 1] (see Claim 6.4);

o {Zy, Zox} C V(Cy) (see Claim 6.5);

® {2, Zyk} C V(H) (see Claim 6.6).
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From the above three statements, it is not difficult to check that G satisfies (ii) and the suppressed
graph of H (contracting all 2-vertices in H) is a desired cubic plane graph which is a contradiction to
the minimality of G.

Claim 6.4. 2, # Zyc and z4 # Z; foreachd € {k, 2k} andi € [1,k — 1]U [k + 1,2k — 1].

Proof of Claim 6.4. Obviously, Z; # Z. Suppose to the contrary that z; = Z; for some d € {k, 2k} and
somei € [1,k — 1] U [k + 1, 2k — 1]. Without loss of generality, assume 2, = Zyy 1.

Let W be the connected subgraph of G that is contracted into Z. Since Zy 1 is a 2-vertex of H, let
8c(V(IW)) = 8y(Zke1) = {er, ex}, where ey, e; occur on Z,_1Cy1Z4o cyclically, and denote by hy, hy
the ends of e, e; on W, respectively. Note that h; # h, and G/E(W) is 2-edge-connected since G is
2-connected.

Since G is 2-connected, there are two edge-disjoint paths P; and P, in G joining {zq, z5,} to V(W)
(thus to {hy, hy}). Without loss of generality, assume that Py is a (z1, hy)-path and P; is a (z, hy)-path.

(6.4.1) There are no edge-disjoint (hy, z;)-path and (hy, zy+1)-path in W.

Otherwise let P} and P} be edge-disjoint (hy, zx41)-path and (hy, z;)-path in W, respectively. Then
the (zy, zi)-path P,h,P} is edge-disjoint from the (z1, zx41)-path P1hyP] in G, a contradiction to (i).
This proves (6.4.1).

(6.4.2) W is 2-connected.

Suppose to the contrary that W is not 2-connected. Since {eq, e,} is an edge-cut of G and G is 2-
connected, h; and h;, belong to distinct leaf blocks of W. Since |V(W) N 7| < 2, by Claim 6.1, each
leaf block is a K, in which case dg(h;) = 2 for eachi = 1, 2. Thus {hy, hy} = {z, zk+1} C T. Let
S’ =S\ {eleisin and is incident with or W hy h,} and let H' = G/S’. Then H' can be obtained from H
by simply splitting the vertex Z ; into two adjacent 2-vertices Z, and Zy ;. Let C; be the corresponding
facial circuit in H' to Cy. Then H' satisfies (1) but [V(C}) N 7 N Vo(H')| = 1+ [V(C1) N T N Va(H)|, a
contradiction to the choice of H. This proves (6.4.2).

By (6.4.1) and (6.4.2), we can apply Theorem 1.4 on W with the vertices hy, hq, zk, zk+1. That is,
W is contractible to a graph W’ which is either a 4-circuit C’ = h/ i 2,/{2,/<+1h/ or a graph which is
obtained from a 2-connected plane cubic graph by selecting the outer circuit €’ and inserting the
vertices h), h', Z, 2, in that cyclic order on edges of C’. Replacing 2 in H with W’ to obtain a new
contraction H' of G, the facial circuit C; obtained from C; by replacing the vertex Z; by the segment
1\C'2,C';., ,C'lty. Thus H' satisfies (1) but [V(C]) N T N Va(H)| = 1+ [V(C) N Ty N Va(H)), a
contradiction to the choice of H. This contradiction completes the proof of the claim. O

Denote the facial circuit C; = uju;, . .. ueuy and assume that u; = 2y, us = Zx_q, and uy = 2, with
1<s<t<d{sincezy,..., 21, Zkt1, - - - » Zok—1 occur in Cy in the cyclic order. Note that A(H) < 3
and dy(uq) = dy(us) = dy(u;) = 2. Let

a = minf{i : there is a (Z, u;)-path P in H — E(C;)},
b = max{i : there is a (2, u;)-path P in H — E(C;)}.

Note that if Z; is an isolated vertex of H — E(Cy), then Z, = u, = up.
Claim 6.5. {Z; : i € [1, 2k]} € V(Cy).

Proof of Claim 6.5. Since Z; € V(C;) for eachi € [1,k — 1] U [k + 1, 2k — 1], we only need to
show {Z, Zyx} C V(Cy). Suppose to the contrary Z, ¢ V(C;) (without loss of generality). Since H is
2-connected, there are two internally vertex-disjoint (2, C;)-paths, and thus a < b. Since z; & V(Cy),
d(us) = d(up) = 3 and thus u; # Zj forany i € {a, b} andj € [1, 2k].

Let P; be a (2, u;)-path in H — E(Cy) for each i € {a, b}. Let P be a (25, C;)-path in H and let u,, be
the other end of P on C;. Without loss of generality, assume that u, lies in the segment Z;C; 2.
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(6.5.1) u,Cquy, contains the vertex .

Suppose to the contrary that u,C;u, does not contain the vertex Z,. Then uj, also lies in the segment
21C125. Let e, = uglig_q and e, = upup, . Since C; is a facial circuit of H and the maximum degree of
H is at most 3, {e,, ey} is a 2-edge-cut of H by the definition of a and b. Note that the component of
H — {eq, e} containing Z, does not contain any other Z; than Z, and has at least three vertices. This
contradicts Claim 6.3 and this contradiction proves (6.5.1).

(6.5.2) Let {i, j} C {a, b, u} such that u e {i,j} and i < j. Then neither u;Cyu; nor u;Cyu; contains both
Zqg and Zgy forany d € [1, k — 1].

Suppose to the contrary that u;C;u; contains both 24 and Z4 for some d € [1, k — 1]. Without loss
of generality, assume i = a and j = p. Then Pju;Cyu;P; is a (2, Zx)-path which is vertex-disjoint from
the (24, Zg+«)-path 24C1 244k, a contradiction to Claim 6.2. So u;C;u; does not contain both 24 and 24«
foranyd € [1, k— 1]. By symmetry, we can show that u;C;u; does not contain both 24 and Z4 for any
d € [1, k — 1] and thus this proves (6.5.2).

Since u,q lies in the segment of Z;CZ,, u,, must lie in the segment of Z;1CZ, by (6.5.2). Since u,,
lies in the segment of Zy1CZy», by (6.5.2) again, u, must lie in the segment of Z;CZ,. Thus Z; does not
belong to the segment u,C;up, a contradiction to (6.5.1). This completes the proof of the claim. O

Claim 6.6. {3 : i € [1,2k]} C Vo(H). That is, dy(Z) = dy(Gax) = 2.

Proof of Claim 6.6. Suppose to the contrary dy(Z;) = 3 (without loss of generality). Z; is not an
isolated vertex of H — E(Cy). Since G is 2-connected, a # b. Since both 2,_; = us and Zy, | = u, are
isolated verticesin H — E(Cy),a # sand b # t.

(6.6.1) There is a (2, Zyx)-path P and an i € [1, k — 1] such that P and Z;C;Z;,x share only one common
vertex which is Zy.

Without loss of generality, we assume that Z; lies in the segment usCiu; = Z;_1C1Zxyq. Then
Z must lie in the segment Z,_1C;Z;. Otherwise it is easy to find vertex-disjoint (Z, Zox)-path and
(Zi, Zx4i)-path for some i € [1, k — 1], a contradiction to Claim 6.2. Note thata # sand b # t.

We first show that either a < s or b > t. Otherwise supposes < a < b < t.Lete, = ugu,_1 and
ep = Uplp,q. Note that C; is a facial circuit of H and the maximum degree of H is at most 3. By the
definition of a and b, {e,, e} is a 2-edge-cut of H. Moreover, Z is the unique vertex of {Z; : i € [1, 2k]}
in the component of H — {e,, ey} containing Z. This contradicts Claim 6.3 since the component is
nontrivial.

Ifa < s, let P, be a (%, uq)-path in H — E(Cy). Then the (2, Zx)-path ZxP,uaC; Zp¢ and the
(Zk—1, Zok—1)-path Z;_1C1Zox—1 only share the vertex Zy.

Ifb > t,let P, be a (Z, up)-path in H — E(C;). Then the (Zy, Zy )-path ZyPyu,C1Zy and the (21, Ziy1)-
path uCiu; = 21C;Zy1 only share the vertex Z,. This proves (6.6.1).

Without loss of generality, we take i = 1in (6.6.1). That is, there is a (Z, Zox)-path P such that P
and z;C;Zx1 share only one common vertex Z.

Let W be the subgraph of G that is contracted into Z. Denote §¢(V(W)) = 8y(Z) = {e1, ez, €3}
where e is not in C; and e, and e3 are in C;. Then e; € E(P) and both e, and e3 are in Z;CZ;1. Denote
the ends of eq, e,, e3 in W by hq, hy, hs, respectively.

(6.6.2) W does not contain edge-disjoint (zy, hy)-path and (h;, h3)-path.

If W contains edge-disjoint (zy, h1)-path and (h,, h3)-path, one can easily find edge-disjoint
(zk, Zok)-path and (zq, zx41 )-path since the (2, Zyk)-path P and Z;C;Zi1 share only one common vertex
Zy in H. This proves (6.6.2).

(6.6.3) W is 2-connected.

Suppose to the contrary that W is not 2-connected. Then it has at least two leaf blocks and thus
[E(W)| > 2. Since |§g(V(W))| = 3, there must be a leaf block of W which is incident with exactly
one of eq, e; and e3, denoted e;. Then W contains a leaf block of G — e;. By Claim 6.4, z; is the only
vertex in {z; : i € [1,2k]} = T contained in W. By Claim 6.1, dg(h;) = 2 and h; = z. Let e] be the
edge in W incident with h;. Then {e}, e, eg} is a 3-edge-cut where {«, 8} = {1, 2, 3} \ {i}. Let W' be
the component of G — {e], e,, eg} contained in W. Then W’ contains no z; for each i € [1, 2k] and
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|[E(W")| = |[E(W)| — 1. Moreover G/E(W') remains 2-connected and satisfies (i). By the minimality of
G, G/E(W’) satisfies (ii) and so does G, a contradiction. This proves (6.6.3).

By (6.6.2) and (6.6.3), we apply Theorem 1.4 on W with the vertices z, h, hy, h3. Then W is
contractible to a graph W, which is either the 4-circuit C' = hlhzﬁlihghl or a graph which is obtained
from a 2-connected plane cubic graph by selecting the outer circuit C" and inserting the vertices
hi, hy, 2,2, hs in that cyclic order on edges of C’. Without loss of generality, assume h’,C’h} contains 2,2.
Replace Z, in H with W; to obtain a new contraction H' of G. The facial circuit (} is obtained from C;
by replacing the vertex Z, with the segment fl’z C ’fzg which contains Zj, as a 2-vertex. Thus H’ satisfies
(1) but [V(C}) N T N Vo(H)| = 1+ [V(C;) N T N Vo(H)), a contradiction to the choice of H. This
contradiction completes the proof of Claim 6.6. O

(i) = (ii) follows from Claims 6.4, 6.5, and 6.6.

(ii) = (iii)

Now we show (ii) = (iii). Note that if k = 2, then (ii) implies (iii). We prove by contradiction. Let
G be a counterexample such that

(a) k is as small as possible;

(b) subject to (a), |[E(G)| is as small as possible.

Since G is a counterexample, let C; and C, be a pair of edge-disjoint circuits with odd weight in G*.
Let F; = F N E(G;) where each |F;| is odd.

By (ii) (or (ii)'), there is a permutation 7 on [1, k] and a subset S C E(G) such that G/S is the
2k-circuit C = z1z; ... zy,z; or a graph obtained from a 2-connected plane cubic graph by selecting
a facial circuit C and inserting the 2k vertices z1, z», . . . , Zo; in that cyclic order on edges of C, where
{zi, Zkti} = {Ra(iy, J=(iy} fori € [1, k1.

Claim6.7. G=G/S,Gt =CUCG UG, andF = F{ UF,.

Proof of Claim 6.7. We first show G = G/S. Clearly, G* /S = G/S + F. Let X be a component of G [S].
Then X is contracted into a vertex of G* /S. Let Cy be a circuit of G*. Since G* /S is cubic, Co N X is either
anull graph or is a segment of Cy. Thus Cy/E(Co N X) is a circuit. This implies that Co/(E(Co) N S) is still
a circuit after contracting each component of G*[S]. Since S € E(G), Cy and Cy/(E(Co) N S) have the
same number of edges in F. Hence C;/(E(C;) N'S) and C;/(E(C;) N S) remain a pair of edge-disjoint
circuits with odd weight in G /S. Therefore by the minimality of E(G), G = G/S.

Now we show that GT = C U C; U G, and F = F; U F. It is obvious that GT = C U C; U G, implies
F =F UF,.Let G = CUC; UG,.Then G’ is a 2-edge-connected subgraph of G*. Since G* is cubic and
the edges in F are chords of C, G’ —F is 2-connected. Note that C; and C, are still a pair of edge-disjoint
circuits with odd weight in G'. If G’ is a proper subgraph of G, then G’ — F is a proper 2-connected
subgraph of G satisfying (ii) and (G’ — F)* = G, a contradiction to the minimality of G. Therefore
Gt = CUC] UCZ and thus F :F1 UF2. (|

Note that C; and G, are vertex-disjoint since G is cubic and C; is edge-disjoint from C,. Fori = 1, 2,
let P; be the set of |F;| paths which consist of C; — F;. Then all paths in P; U P, are pairwise vertex-
disjoint. Let P € P; U P,. It is obvious that two ends of P both are in {z1, z5, .. ., zo¢}. We denote P by
P, g if its end vertices are z, and zg with 8 > «, and define the pace of P, 4 as

min{f8 — o, 2k — (8 — a)}.
Let P, g be a path of P; U P, with smallest pace. Without loss of generality, assume that P, g € Py.
We further assume thatk > 8’ > o’ = 1.

Claim 6.8. 8’ = 2.

Proof of Claim 6.8. Suppose to the contrary 8’ > 3.Since Gt = CUC;UC, and F = F,UF, by Claim 6.7,
z, must be contained in some path P, g» € P;UP,. Then P, g» must cross the path P g since G is plane
and Py g has the smallest pace, which contradicts the fact that G* is cubic. This completes the proof
of the claim. O
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Claim 6.9. Z11Zk+2 ¢ E(C] U Cz).

Proof of Claim 6.9. Since G is cubic and C; passes through z,, 1 and zy,», the edge zy1zx12 &€ E(C).
Ifz 112142 € E(C1UG), then zgi1zk12 € E(Cq). Therefore, Cy = z1P1 22224221121 1S an even-weighted
circuit, a contradiction. This contradiction completes the proof of the claim. O

Let G* = G — {Z1Zk41, Z2Zk42} + Zks1Zks2, and F* = F — {21241, Z2Zk42}. Then G* does contain a
pair of edge-disjoint odd-weighted circuits C{ = C; — zx1121P1,222Zk+2 + Zk412k42 and G,.

Since z1, z3, . . ., Zo, appear on C in this cyclic order, the segment z;, 1Cz,,, contains no vertices in
{z1, 72, ..., z} as internal vertices. Thus the circuit obtained from C by replacing zj.1Czy» with the
edge zy1 12y is also a facial circuit in G* — F*. Since |F*| = k — 2 < |F| = k, by the minimality of k,
G* contains no edge-disjoint odd-weighted circuits, a contradiction. This contradiction completes the
proof of (ii) = (iii) and thus the proof of Theorem 1.5.

7. Proof of Theorem 1.6

The aim of this section is to prove Theorem 1.6.
(ii) « (iii) follows from Theorem 1.5. We only need to show that (iii) = (i) = (ii).

(iii) = (i)
Let G be a counterexample with |[E(G)| minimum. Let G’ be the contraction described in (iii). Then
by the minimality of G, for each vertex X € V(G') \ {Z1, 22, ..., Zok}, we have X = x. By Theorem 1.5

((ii) = (iii)), G — N(G) contains some cut vertices. Let B be a leaf block of G — N(G). Since G’ is 2-
connected, B must be contained in W where W is the subgraph of G which was contracted into Z; for
somei € [1, 2k]. Moreover, Bis also a block of G — {z;z; 1} and V(B)N{z1, . . ., Zk, Zks 1, - - - » 2ok} = {Zi}.
Thus z; is not a cut vertex of G — N(G) and G/E(B) is 2-connected since G is 2-connected. This implies
that every unbalanced circuit of G containing some edges of B must pass through the negative edge
Zizi1k- Since G is a counterexample, let C; and G, be two edge-disjoint unbalanced circuits of G. Thus
C1/(E(C1)NE(B))and G, /(E(C2) NE(B)) are two edge-disjoint unbalanced circuits of G/E(B). Therefore,
G/E(B) is also a counterexample but |E(G/E(B))| < |E(G)|, a contradiction to the minimality of G. This
proves that (iii) implies (i).

(i) = (ii)

Let G be a counterexample with |E(G)| minimum. By (i), there are no edge-disjoint (x;, y;)-path and
(x;, yj)-path forany 1 < i < j < k. Thus to obtain a contradiction it suffices to show that G — N(G) is
2-connected.

Suppose to the contrary that G — N(G) is not 2-connected. If there are two blocks of G — N(G) such
that each contains two ends of some negative edge, then it is obvious that G has two edge-disjoint
unbalanced circuits, a contradiction. Since G — N(G) is not 2-connected, it has at least two leaf blocks.
Thus it has a leaf block B which contains at most one end of each negative edge. Let z be the unique
cut vertex of G — N(G) in Band let N’ C V(B) be the set of vertices incident with a negative edge in G.
Clearly, [N"\ {z}| > 0since G is 2-connected.

If IN’| = 1, then z is not adjacent to a negative edge and thus G' = G/E(B) remains 2-connected
and still satisfies (i). Note that the negativeness is an invariant under contracting some positive edges.
Thus, by the minimality of G, there is S C E(G’) \ N(G') such that (G’ — N(G'))/S satisfies (ii). It follows
that S U E(B) € E(G) \ N(G) and (G — N(G))/(S U E(B)) = (G’ — N(G"))/S satisfies (ii), a contradiction.

Thus |[N’] > 2 and |V(B)| > 2. Let x;y; and x,y, be two negative edges with x;,x, € N’ and
y1,¥2 € V(G)\ V(B).If B = K; = {e}, then x; # x,; otherwise {e, x1y1, X2y-} is a 3-edge-cut of G
and it contains two edges in N(G), a contradiction to Proposition 3.1. Since x; # X, if B= K, and B is
2-connected if B # Kj, there are edge-disjoint (x1, z)-path P, and (x;, z)-path P, in B.

Let H = G — N(G) — (V(B) \ {z}). Then H is connected since G — N(G) is connected and B is
a leaf block of G — N(G). We now claim that H contains edge-disjoint (z, y;)-path and (z, y,)-path.
Otherwise by Menger’s theorem, there is a cut-edge e in H (and thus in G — N(G)) separating z from
{y1,y2}.So {e, x1y1, X2¥>} is a 3-edge-cut of G — N(G) + {x1y1, X2y} and it contains two edges in N(G),
a contradiction to Proposition 3.1.

Let P; and P; be two edge-disjoint (z, y;)-path and (z, y,)-path in G — N(G) — (V(B) \ {z}),
respectively. Then x;P1zP]y1x; and x,P,zP}y,x, are two edge-disjoint unbalanced circuits in G, a
contradiction to (i). This proves that (i) implies (ii) and thus proves Theorem 1.6.
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