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a b s t r a c t

For two positive integers k, r , a (k, r)-coloring (or r-hued k-coloring) of a graph G is a
proper k-vertex-coloring such that every vertex v of degree dG(v) is adjacent to at least
min{dG(v), r} distinct colors. The r-hued chromatic number, χr (G), is the smallest integer
k for which G has a (k, r)-coloring. The maximum average degree of G, denoted bymad (G),
equals max{2|E(H)|/|V (H)|: H is a subgraph of G}.

In this paper, we prove the following results using thewell-known dischargingmethod.
For a graph G, if mad(G) < 12

5 , then χ3(G) ≤ 6; if mad(G) < 7
3 , then χ3(G) ≤ 5; if G has no

C5-components and mad(G) < 8
3 , then χ2(G) ≤ 4.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Graphs in this paper are simple and finite. Notations and terminology undefined here are referred to [1]. Let G be a graph
with vertex set V (G) and edge set E(G). The set of neighbors of a vertex v is denoted by NG(v). We use dG(v) and ∆(G) to
denote the degree of v and the maximum degree of G, respectively. A vertex of degree k (resp. at least k) is called a k-vertex
(resp. k+-vertex). Themaximum average degree of G, denoted bymad(G), equalsmax{2|E(H)|/|V (H)| : H is a subgraph of G}.
A graph G is r-regular if each vertex of G has degree r . We use cycles to denote the connected 2-regular graphs and a cycle of
length k is denoted by Ck.

A path P = u0u1 · · · ukuk+1 is a k-thread of a graph G, if u1, . . . , uk are 2-vertices and u0, uk+1 are 3+-vertices. Vertices
u0 and uk+1 are called endpoints of P . The collection of l-threads with l ≥ k are k+-threads. Two vertices u and v are loosely
adjacent if u and v are contained in some k-thread P .

A k-vertex-coloring (or simply a k-coloring) of a graph G is a mapping c : V (G) → S, where S is a set of k colors. In general,
S is taken to be {1, . . . , k}. If a vertex adjacent to u is colored i, then we say that u sees i. Otherwise, we say that u misses i. If
W ⊆ V (G), denote by c(W ) the set of colors received by at least one vertex of W . A k-coloring is proper if no two adjacent
vertices receive the same color. As we are only concerned about the proper coloring, we refer to a proper coloring simply as
a coloring. A (k, r)-coloring (or r-hued k-coloring) of a graph G is a k-coloring such that each vertex v is adjacent to at least
min{dG(v), r} distinct colors. The r-hued chromatic number of a graph G, denoted χr (G), is the minimum k for which G has a
(k, r)-coloring. A list assignment L of a graph G is a function that assigns to every vertex v of G a set L(v) of positive integers.
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Fig. 1. G0 with mad(G) =
7
3 but χ3(G0) = 6.

Given a list assignment L of G, a (L, r)-coloring of G is a coloring c such that each vertex v is adjacent to at least min{dG(v), r}
distinct colors and c(v) ∈ L(v). The r-hued choice number of a graph G is the minimum k such that G has a (L, r)-coloring
where |L(v)| = k for each vertex v ∈ V (G), and is denoted by chr (G).

The concept of (k, r)-colorings was introduced by Lai et al. [5], and an upper bound of χ2 was first studied in the same
paper. In [6], Song et al. showed that, for K4-minor free graphs, χr (G) ≤ r + 3 if 2 ≤ r ≤ 3 and χr (G) ≤ ⌊3r/2⌋ + 1 if r ≥ 4.
Song et al. [7] proved that χr (G) ≤ r + 5 if G is a planar graph of girth at least 6. For any planar graph G, χ2(G) ≤ 5 was
proved by Chen et al. [2], and they conjectured that with the exception of C5, χ2(G) ≤ 4 for all planar graphs. Kim, et al. [3]
verified this conjecture in 2013.

Motivated by above results, we use a discharging method and give upper bounds on the 2-hued and 3-hued chromatic
numbers for graphs with different maximum average degree constraints in this paper.

Theorem 1.1. If G is a graph with mad(G) < 12
5 , then χ3(G) ≤ 6.

In fact, we prove a slightly stronger result that ch3(G) ≤ 6 for graphs with mad(G) < 12
5 . See the remark at the end of

Section 2.1.

Theorem 1.2. If G is a graph with mad(G) < 7
3 , then χ3(G) ≤ 5.

Remark.

(1) The bound of mad(G) < 7
3 is sharp since G0 as shown in Fig. 1 satisfies that mad(G0) =

7
3 but χ3(G0) = 6.

(2) The bound χ3(G) ≤ 5 is the best possible bound for which there are infinitely many graphs satisfying mad(G) < 7
3 and

χ3(G) = 5. The following are two special cases and the construction of more such graphs.
(a) C5 and a graph obtained from two edge-disjoint C5 joining at exactly one vertex.
(b) In general, we define a family of connected graphs

F = {G: G contains a bridge e such that G − {e} has a C5 component}.

We claim that each member of F has 3-hued chromatic number at least 5. Assume G ∈ F has an edge xy such that
G − {uv} has a C5 = vxyzwv as a component. For any 3-hued coloring c of G, |{c(x), c(w), c(v), c(u)}| = 4 and
{c(y), c(z)} ∩ {c(x), c(w), c(v)} = ∅. Hence, |c(C5)| = 5 and χ3(G) ≥ 5. Combined with Theorem 1.2, each graph G
of F with mad(G) < 7

3 has χ3(G) = 5 and we have infinitely many of such graphs in F .

In [4], Kim and Park submitted a proof that a graph Gwithmad(G) < 8
3 satisfies χ2(G) ≤ 4. Observe that χ2(C5) = 5while

mad(C5) = 2 < 8
3 , which reveals a gap in their results. In this paper, we also fix the proof in [4] and prove the following

result.

Theorem 1.3. Let G be a graph with no C5-components. If mad(G) < 8
3 , then χ2(G) ≤ 4.

Remark. In [4], Kim and Park showed that the bound of mad(G) < 8
3 is sharp. Let G be the graph obtained by subdividing

every edge of K5 once. It is easy to verify that mad(G) =
8
3 but χ2(G) = 5.

2. 3-hued colorings

Lemma 2.1. Let k be an integer where k ≥ 4 and m ≥ 2 be a real number. If a graph G is a graph with minimum number of
vertices such that χ3(G) ≥ k + 1 andmad(G) ≤ m, then G is connected and has no 1-vertex.

Proof. IfG has two ormore components, then each of the components ofG has a (3, k)-coloring and so doesG, a contradiction
to the choice of G.

Suppose that G has a vertex u with dG(u) = 1 and uv ∈ E(G). Denote G′
= G − {u}. Then mad(G′) ≤ m and thus G′ has a

(3, k)-coloring c since |V (G′)| < |V (G)|. If v sees three colors in G′, we have k − 1 ≥ 3 available options to color u. If v sees
two or fewer colors, then there are at least k − 3 ≥ 1 available options to color u. In both cases, we can extend the coloring
c to u, a contradiction to the choice of G. ■
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Lemma 2.2. Let G be a graph with ∆ ≤ 2, then χ3(G) ≤ 5.

Proof. Since themaximum degree of G is at most 2, G is a union of vertex-disjoint cycles and paths. It is easy to see that each
path has a 3-hued coloringwith three colors and each cycle has a 3-hued coloringwith atmost five colors. Thusχ3(G) ≤ 5. ■

2.1. Proof of Theorem 1.1

Let G be a counterexample to Theorem 1.1 with |V (G)| minimized.

Claim 2.1. G has no two adjacent 2-vertices.

Proof. Suppose that G has two adjacent 2-vertices x and y. Note that G is connected by Lemma 2.1 and ∆(G) ≥ 3 by
Lemma 2.2. We can choose x and y with the property that x is adjacent to a 3+-vertex u. Let v be the other neighbor of
y and denote G′

= G − {x, y}. Therefore, G′ has 3-hued 6-coloring c since |V (G′)| < |V (G)| and mad(G′) ≤ mad(G). Let us
extend the coloring c to x first. If dG(u) ≥ 4, then |c(NG′ (u))| ≥ 3 nd thus only c(u) and c(v) are the forbidden colors for x. If
dG(u) = 3, then |c(NG′ (u))| ≤ 2, thus c(NG′ (u)) ∪ {c(u), c(v)} is the set of forbidden colors for x. Thus we first extend c to x.
In the resulting coloring, y has at most five forbidden colors, {c(u), c(x), c(v)} ∪ c(NG′ (v)) when dG(v) = 3 or at most three
forbidden color {c(u), c(v), c(x)} if dG(u) ̸= 3. Hence, we can further extend c to y and the resulting coloring will contradict
the assumption that G is a counterexample. ■

Initial Charge: M(x) = d(x) − 12/5 for each vertex x in G. Since mad(G) < 12/5, we have
∑

x∈V (G)M(x) < 0. It follows from
Lemma 2.1 and Claim 2.1 that, G has no 1-vertices and each 2-vertex is adjacent to two 3+-vertices. Note that each k-vertex
where k ≥ 3 is adjacent to at most k 2-vertices. Hence, we can redistribute the charge of the vertices of G as follows.

Discharging Rule: Each 2-vertex receives 1/5 from each neighbor.
Denote this new charge byM ′(x). Hence,

∑
x∈V (G)M

′(x) =
∑

x∈V (G)M(x) < 0.

(1) For each 2-vertex u, M ′(u) = 2 − 12/5 + 2 × 1/5 = 0.
(2) For each k-vertex v where k ≥ 3,M ′(v) ≥ k − 12/5 − k × 1/5 = (4k − 12)/5 ≥ 0.

Therefore, M ′(x) ≥ 0 for each x ∈ V (G) and 0 >
∑

x∈V (G)M(x) =
∑

x∈V (G)M
′(v) ≥ 0, a contradiction. This completes the

proof of Theorem 1.1. ■

Remark. Note that in Claim 2.1, the choice of available colors for x and y do not depend on the set of colors. Therefore, the
above result could be generalized to ch3(G) ≤ 6 for a graph Gwith mad(G) < 12

5 . That is, for every list assignment of size six,
there is a 3-hued 6-coloring of G such that each vertex is assigned with a color from its list.

2.2. Proof of Theorem 1.2

Let G be a counterexample to Theorem 1.2 with |V (G)| minimized.

Claim 2.2. G has no 3+-threads.

Proof. Suppose that G has a 3+-thread u0u1 · · · uk−1uk where k ≥ 4. Let G′
= G − {u1, u2, u3}. Then G′ has a 3-hued

5-coloring c since |V (G′)| < |V (G)| and mad(G′) ≤ mad(G). Let us extend the coloring c to u1 first. Observe that u1 has
at most three forbidden colors. Therefore we have at least two available options to color u1. In the resulting coloring, u3
has at most four forbidden colors and then we can further extend c to u3. After that, u2 has at most four forbidden colors
{c(u0), c(u1), c(u3), c(u4)}. In the last step, we extend the coloring c to u2 to obtain a 3-hued 5-coloring of G, a contradiction
to the choice of G. ■

Claim 2.3. If P = uxyv is a 2-thread of G, then dG(u) = dG(v) = 3.

Proof. Suppose that P = uxyv be a 2-thread of G in which either dG(u) ≥ 4 or dG(v) ≥ 4. Without loss of generality, assume
dG(u) ≥ 4. Let G′

= G − {x, y}. So G′ has a 3-hued 5-coloring c by the minimality of G. Let us color y first. The worst case is
that v has degree three in G and then ywould have at most four forbidden colors {c(u), c(v)}∪ c(NG′ (v)). Thus we can always
extend the coloring c to y. In the resulting coloring, u has already seen three colors in c , so x has at most three forbidden
colors. Hence, we can further extend the coloring c to x, a contradiction to the choice of G. ■

Claim 2.4. Let P = uxyv be a 2-thread of G and G′
= G − {x, y}. If c is a 3-hued 5-coloring of G′, then we can always extend c

to G except when c(NG′ (u)) = c(NG′ (v)) and c(u) ̸= c(v).

Proof. Suppose that c is a 3-hued 5-coloring of G′ such that either c(N(u)) ̸= c(N(v)) or c(u) = c(v). Let us color x first. By
Claim 2.3, dG′ (u) = dG′ (v) = 2. Thus x has at most 4 forbidden colors c(NG′ (u)) ∪ {c(u), c(v)} and we can color x with one of
the available options. In the resulting coloring, the set of forbidden colors of y is c(NG′ (v)) ∪ {c(u), c(x), c(v)}.
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Fig. 2. Configuration of Claim 2.5.

If c(u) = c(v), then |c(NG′ (v)) ∪ {c(u), c(x), c(v)}| ≤ 4. If c(NG′ (u)) ̸= c(NG′ (v)), then we can recolor x such that
c(x) ∈ c(NG′ (v)) − c(NG′ (u)), and therefore |c(NG′ (v)) ∪ {c(u), c(x), c(v)}| ≤ 4. In both cases, we can extend the coloring
c to y, a contradiction to the choice of G. ■

Claim 2.5. No 3-vertex is loosely adjacent to five or more 2-vertices.

Proof. Let u be a 3-vertex of G such that u is loosely adjacent to at least five 2-vertices. Since G has no 3+-threads by
Claim 2.2, u is a common endpoint of either three 2-threads or two 2-threads and 1-thread (see Fig. 2). Hence, dG(x1) =

dG(x2) = dG(y1) = dG(y2) = dG(z) = 2. By Claim 2.3, dG(x3) = dG(y3) = 3. Let G′
= G − {u, x1, x2, y1, y2}. Then G′ has a

3-hued 5-coloring c by the minimality of G.
If c(z) ̸∈ c(NG′ (y3)), then we can extend the coloring c to u first since u has at most two forbidden colors. In the resulting

coloring, x2 has at most four forbidden colors, {c(u), c(x3)} ∪ c(NG′ (x3)). Thus we can extend the coloring to x2 with one of
the available options. Then x1 will have at most four forbidden colors {c(z), c(u), c(x2), c(x3)}, and we can further extend the
coloring to x1. After that, c(NG′ (u)) ̸= c(NG′ (y3)) since c(z) ̸∈ c(NG′ (y3)). By Claim 2.4, we can extend the coloring to {y1, y2},
a contradiction to the choice of G. If c(z) ̸∈ c(NG′ (x3)), we can extend the coloring to G by symmetry. Hence, we can assume
that c(z) ∈ c(NG′ (x3)) ∩ c(NG′ (y3)). Then {c(x3), c(z)} ∪ c(NG′ (y3)) ={c(x3)} ∪ c(NG′ (y3)).

We first extend the coloring c to x1 by coloring x1 with a color not in {c(x3)} ∪ c(NG′ (y3)), then color x2 with a color not in
{c(x1), c(x3)} ∪ c(NG′ (x3)) and then further extend the coloring to u by coloring it with a color not in {c(x1), c(x2), c(z), c(w)}.
Thus the resulting coloring is a 3-hued 5-coloring ofG−{y1, y2} and it satisfies c(NG′ (u)) ̸= c(NG′ (y3)) since c(x1) ̸∈ c(NG′ (y3)).
By Claim 2.4, we can finally extend the coloring to {y1, y2}, a contradiction to the choice of G. ■

Initial Charge:M(x) = d(x) − 7/3 for each vertex x in G.
Since mad(G) < 7/3,

∑
x∈V (G)M(x) < 0. G has no 1-vertices by Lemma 2.1. Claim 2.5 says that each 3-vertex is loosely

adjacent to at most four 2-vertices. By Claims 2.2 and 2.3, each k-vertex where k ≥ 4 can only be the endpoint of 1-thread
and therefore is loosely adjacent to at most k 2-vertices. Now we can redistribute the charge as follows.

Discharging Rule: Each 2-vertex u receives 1/6 from each endpoint of the thread containing u.Denote the new charge byM ′(x).
Hence,

∑
x∈V (G)M

′(x) =
∑

x∈V (G)M(x) < 0.

(1) For each 2-vertex u, M ′(u) = M(u) + 2 × 1/6 = 2 − 7/3 + 1/3 = 2 − 6/3 = 0.
(2) For each 3-vertex v,M ′(v) ≥ M(v) − 4 × 1/6 = 3 − 7/3 − 2/3 = 0.
(3) For each k-vertex w with k ≥ 4,M ′(w) ≥ M(w) − k × 1/6 = (5k − 14)/6 > 0.

Hence, M ′(x) ≥ 0 for each x ∈ V (G). So
∑

x∈V (G)M(x) =
∑

x∈V (G)M
′(x) ≥ 0, a contradiction. We complete the proof of

Theorem 1.2. ■

3. Proof of Theorem 1.3

Let G be a counterexample to Theorem 1.3 with |V (G)| + |E(G)| minimized. Then G must be connected. Otherwise, each
component of G (not a C5) has a 2-hued 4-coloring, and so does G. This would contradict the choice of G.

Claim 3.1. G contains no cycle C as a subgraph such that C = uwxyzu and w, x, y, z are 2-vertices of G.

Proof. Suppose that G contains a cycle C = uwxyzu where w, x, y, z are 2-vertices. Since G ̸= C5, dG(u) ≥ 3. Let
G′

= G − {w, x, y}. Since G is connected, so is G′. This implies that G′
̸= C5 since dG′ (z) = 1. Hence, G′ has a 2-hued

4-coloring c by the minimality of G. Let us extend the coloring by assigning c(w) = c(z), c(x) = a, c(y) = b where a ̸= b
and a, b ̸∈ {c(u), c(z)}. It is easy to verify that the resulting coloring is a 2-hued 4-coloring of G. This contradicts the choice
of G. ■

Claim 3.2. G has no 1-vertex.
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Fig. 3. Configurations when G′
= C5 in Claim 3.4.

Proof. Suppose that G has a vertex uwith dG(u) = 1 and uv ∈ E(G). Denote G′
= G − {u}. Then G′ is connected and G′

̸= C5
for which would contradict Claim 3.1. Therefore, G′ has a 2-hued 4-coloring c by the minimality of G. Note that u has at least
two available colors. Thus we can extend the coloring c to u. This contradicts the assumption that G is a counterexample. ■

Claim 3.3. ∆(G) ≥ 3.

Proof. Suppose ∆(G) ≤ 2. Claim 3.2 says that G has no 1-vertex. Since G is connected, G must be a Ck where k ̸= 5. Note
that, except for C5, every cycle can be 2-hued colored with four or fewer colors. This contradicts the choice of G. ■

Claim 3.4. G has no two adjacent 2-vertices.

Proof. Suppose that G has two adjacent 2-vertices x and y. Since ∆(G) ≥ 3 by Claim 3.3, we can choose x and y in a way that
x is adjacent to a 3+-vertex u. Let v be the other neighbor of y and denote G′

= G − {x, y}. Now we consider the following
two cases.

Case 1. G′
= C5.

By Claim 3.1, u and v are distinct vertices in C5. G must be one of the configurations in Fig. 3. The corresponding 2-hued
4-colorings have been labeled in Fig. 3. This contradicts to the choice of G.

Case 2. G′
̸= C5.

If G′ is disconnected, then G′ has no C5-components by Claim 3.1. If G′ is connected, G′
̸= C5 by assumption. In both cases,

G′ has no C5-components. By the minimality of G. G′ has a 2-hued 4-coloring c. Let us color y first. Note that y has at most
three forbidden colors and therefore we can extend c to y. Note that u has already seen at least two distinct colors in c since
dG′ (u) ≥ 2. Hence, x has at most three forbidden colors, c(u), c(y), and c(v), and therefore we can further extend c to x. This
contradicts the choice of G. ■

Claim 3.5. Each 3-vertex in G is loosely adjacent to at most two 2-vertices.

Proof. Suppose thatGhas a 3-vertex xwhich is loosely adjacent to at least three 2-vertices. By Claim3.4,Ghas no 2+-threads.
Thus x is adjacent to three 2-vertices, say {y1, y2, y3}, and each yi is contained in a 1-thread xyivi for each i = 1, 2, 3, where
v1, v2, and v3 are all 3+-vertices.

We claim that x is not a cut-vertex. Otherwise, assume that x is a cut-vertex. Then at least one of {y1, y2, y3} is a cut-
vertex. Without loss of generality, let y1 be a cut-vertex of G. Then xy1 is a cut-edge. By Claim 3.1 and since one component
has minimum degree 1, no components of G1 = G − {xy1} is a C5. By the minimality of G, G − {xy1} has a 2-hued 4-coloring
c. Note that c(y1) ̸= c(v1) and x is in a component that does not contain y1 and v1. Thus wemay assume c(x) ̸∈ {c(y1), c(vi)}.
Observe that in G1, both x and v1 are 2+-vertices. Thus c is a 2-hued 4-coloring of G, a contradiction to the choice of G. This
proves that x is not a cut-vertex.

Let G′
= G− {x, y1, y2, y3}. Since G is connected and x is not a cut-vertex, G′ is also connected. We consider the following

two cases.

Case 1. G′
= C5.

If v1 = v2 = v3, then G will satisfy the configuration in Claim 3.1, a contradiction. So vi ̸= vj for some 1 ≤ i < j ≤ 3.
Hence, G must be one of the configurations in Fig. 4. The corresponding 2-hued 4-coloring has been labeled in Fig. 4. This
contradicts to the choice of G.

Case 2. G′
̸= C5.

Since G′ is connected, G′ has no C5 components. Therefore, G′ has a 2-hued 4-coloring c by theminimality of G. Since there
are 4 colors, we can first extend c to x by coloring it with a color not in {c(v1), c(v2), c(v3)}. Note that each of vi has degree
at least two in G′ and thus sees at least two colors. We first color y1 with a color not in {c(x), c(v1)} and then color y2 with a
color not in {c(x), c(y1), c(v2)} and finally color y3 with a color not in {c(x), c(v3)}. It is easy to check that the extension of c
is a 2-hued 4-coloring of G, a contradiction to the choice of G. ■
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Fig. 4. Configurations when G′
= C5 in Claim 3.5.

Fig. 5. Configurations when G′
= C5 in Claim 3.6.

Claim 3.6. Each 3-vertex in G is loosely adjacent to at most one 2-vertex.

Proof. By Claim 3.5, suppose that G has a 3-vertex x such that x is loosely adjacent to exactly two 2-vertices, say y1 and y2.
Since G has no 2-threads, x is adjacent to y1 and y2, and each yi is contained in a 1-thread xyivi for each i = 1, 2. Let v3 be the
third neighbor of x. Thus v1, v2, v3 are all 3+-vertices.

With a similar argument as in Claim 3.5, we can show that x is not a cut-vertex. Let G′
= G − {x, y1, y2}. Thus G′ is

connected. We consider the following two cases.

Case 1. G′
= C5.

If v1 = v2 = v3, then G will satisfy the configuration in Claim 3.1, a contradiction. So vi ̸= vj for some 1 ≤ i < j ≤ 3.
Hence, G must be one of the configurations in Fig. 5. The corresponding 2-hued 4-coloring has been labeled in Fig. 5. This
contradicts to the choice of G.

Case 2. G′
̸= C5.

Since G′ is connected, G′ has no C5 components. Therefore, G′ has a 2-hued 4-coloring c by the minimality of G. Note that
for each i = 1, 2, 3, dG′ (vi) ≥ 2 and thus vi sees at least two colors. We first color x with a color not in {c(v1), c(v2), c(v3)},
then color y1 with a color not in {c(v1), c(x), c(v3)}, and then color y2 with a color not in {c(x), c(v2)}. It is easy to see that
this is a 2-hued 4-coloring of G, a contradiction to the choice of G. ■

Initial Charge:M(x) = d(x) − 8/3 for each vertex x in G.
Since mad(G) < 8/3,

∑
x∈V (G)M(x) < 0. By Claim 3.2, G has no 1-vertices. By Claim 3.4, each 2-vertex is adjacent to two

3+-vertices. Claim 3.6 says that each 3-vertex is adjacent to at most one 2-vertex. By Claim 3.4, each k-vertex with k ≥ 4 is
adjacent to at most k 2-vertices. Now let us redistribute the charge as follows.

Discharging Rule: Each 2-vertex receives 1/3 from its two neighbors.
Denote the new charge byM ′(x). Hence,

∑
x∈V (G)M(x) =

∑
x∈V (G)M

′(x) < 0.

(1) For each 2-vertex x, M ′(x) ≥ 2 − 8/3 + 2 × 1/3 = 0.
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(2) For each 3-vertex y,M ′(y) ≥ 3 − 8/3 − 1/3 = 0.
(3) For each k-vertex z with k ≥ 4, M ′(z) ≥ k − 8/3 − k × 1/3 = (2k − 8)/3 ≥ 0.

For any x ∈ V (G), M ′(x) ≥ 0 and therefore
∑

x∈V (G)M(x) =
∑

x∈V (G)M
′(x) ≥ 0, a contradiction. This completes the proof

of Theorem 1.3. ■
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