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ARTICLE INFO ABSTRACT

Articl_e history: For two positive integers k, r, a (k, r)-coloring (or r-hued k-coloring) of a graph G is a
Received 26 November 2015 proper k-vertex-coloring such that every vertex v of degree dg(v) is adjacent to at least
Accepted 29 November 2017 min{dg(v), r} distinct colors. The r-hued chromatic number, x,(G), is the smallest integer

AvailablEonlineooot k for which G has a (k, r)-coloring. The maximum average degree of G, denoted by mad (G),

equals max{2|E(H)|/|V(H)|: H is a subgraph of G}.

K ds:

( Ify:;/_ocr()lsoring In this paper, we prove the following results using the well-known discharging method.
Maximum average degree For a graph G, if mad(G) < 1, then x3(G) < 6; if mad(G) < Z, then x3(G) < 5; if G has no
Discharging method Cs-components and mad(G) < % then x»(G) < 4.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Graphs in this paper are simple and finite. Notations and terminology undefined here are referred to [1]. Let G be a graph
with vertex set V(G) and edge set E(G). The set of neighbors of a vertex v is denoted by Ng(v). We use dg(v) and A(G) to
denote the degree of v and the maximum degree of G, respectively. A vertex of degree k (resp. at least k) is called a k-vertex
(resp. k™ -vertex). The maximum average degree of G, denoted by mad(G), equals max{2|E(H)|/|V(H)| : H is a subgraph of G}.
A graph G is r-regular if each vertex of G has degree r. We use cycles to denote the connected 2-regular graphs and a cycle of
length k is denoted by C;.

A path P = uguy - - - uglip, 1 is a k-thread of a graph G, if uq, ..., uy are 2-vertices and ug, uy, 1 are 3*-vertices. Vertices
up and uy, ¢ are called endpoints of P. The collection of I-threads with | > k are k*-threads. Two vertices u and v are loosely
adjacent if u and v are contained in some k-thread P.

A k-vertex-coloring (or simply a k-coloring) of a graph G is a mapping ¢ : V(G) — S, where S is a set of k colors. In general,
Sistakentobe {1, ..., k}.If a vertex adjacent to u is colored i, then we say that u sees i. Otherwise, we say that u misses i. If
W C V(G), denote by c(W) the set of colors received by at least one vertex of W. A k-coloring is proper if no two adjacent
vertices receive the same color. As we are only concerned about the proper coloring, we refer to a proper coloring simply as
a coloring. A (k, r)-coloring (or r-hued k-coloring) of a graph G is a k-coloring such that each vertex v is adjacent to at least
min{d(v), r} distinct colors. The r-hued chromatic number of a graph G, denoted x;(G), is the minimum k for which G has a
(k, r)-coloring. A list assignment L of a graph G is a function that assigns to every vertex v of G a set L(v) of positive integers.
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Fig. 1. Go with mad(G) = I but x3(Go) = 6.

Given a list assignment L of G, a (L, r)-coloring of G is a coloring ¢ such that each vertex v is adjacent to at least min{dg(v), r}
distinct colors and c(v) € L(v). The r-hued choice number of a graph G is the minimum k such that G has a (L, r)-coloring
where |L(v)| = k for each vertex v € V(G), and is denoted by ch,(G).

The concept of (k, r)-colorings was introduced by Lai et al. [5], and an upper bound of y, was first studied in the same
paper. In [6], Song et al. showed that, for K4-minor free graphs, x,(G) <r +3if2 <r < 3and x(G) < |3r/2] + 1ifr > 4.
Song et al. [7] proved that x,(G) < r + 5 if G is a planar graph of girth at least 6. For any planar graph G, x2(G) < 5 was
proved by Chen et al. [2], and they conjectured that with the exception of Cs, x2(G) < 4 for all planar graphs. Kim, et al. [3]
verified this conjecture in 2013.

Motivated by above results, we use a discharging method and give upper bounds on the 2-hued and 3-hued chromatic
numbers for graphs with different maximum average degree constraints in this paper.

Theorem 1.1. If G is a graph with mad(G) < % then x3(G) < 6.

In fact, we prove a slightly stronger result that ch3(G) < 6 for graphs with mad(G) < % See the remark at the end of
Section 2.1.

Theorem 1.2. If G is a graph with mad(G) < % then x3(G) < 5.

Remark.

(1) The bound of mad(G) < % is sharp since Gy as shown in Fig. 1 satisfies that mad(Gy) = % but x3(Go) = 6.

(2) The bound x3(G) < 5 is the best possible bound for which there are infinitely many graphs satisfying mad(G) < % and
x3(G) = 5. The following are two special cases and the construction of more such graphs.
(a) Cs and a graph obtained from two edge-disjoint Cs joining at exactly one vertex.
(b) In general, we define a family of connected graphs

F = {G: G contains a bridge e such that G — {e} has a Cs component}.

We claim that each member of F has 3-hued chromatic number at least 5. Assume G € F has an edge xy such that
G — {uv} has a CGs = wvxyzwv as a component. For any 3-hued coloring ¢ of G, |{c(x), c(w), c(v), c(u)}| = 4 and
{c(y), c(2)} N {c(x), c(w), c(v)} = @. Hence, |c(C5)] = 5 and x3(G) > 5. Combined with Theorem 1.2, each graph G
of F with mad(G) < % has x3(G) = 5 and we have infinitely many of such graphs in F.

In [4], Kim and Park submitted a proof that a graph G with mad(G) < % satisfies x»(G) < 4. Observe that x,(Cs) = 5 while

mad(Gs) = 2 < %, which reveals a gap in their results. In this paper, we also fix the proof in [4] and prove the following
result.

Theorem 1.3. Let G be a graph with no Cs-components. If mad(G) < % then x»(G) < 4.

Remark. In [4], Kim and Park showed that the bound of mad(G) < % is sharp. Let G be the graph obtained by subdividing

every edge of Ks once. It is easy to verify that mad(G) = % but x,(G) = 5.

2. 3-hued colorings

Lemma 2.1. Let k be an integer where k > 4 and m > 2 be a real number. If a graph G is a graph with minimum number of
vertices such that x3(G) > k + 1 and mad(G) < m, then G is connected and has no 1-vertex.

Proof. If G has two or more components, then each of the components of G has a (3, k)-coloring and so does G, a contradiction
to the choice of G.

Suppose that G has a vertex u with ds(u) = 1 and uv € E(G). Denote G’ = G — {u}. Then mad(G’) < m and thus G’ has a
(3, k)-coloring c since [V(G')] < [V(G)]. If v sees three colors in G/, we have k — 1 > 3 available options to color u. If v sees
two or fewer colors, then there are at least k — 3 > 1 available options to color u. In both cases, we can extend the coloring
c to u, a contradiction to the choice of G. H
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Lemma 2.2. Let G be a graph with A < 2, then x3(G) < 5.

Proof. Since the maximum degree of G is at most 2, G is a union of vertex-disjoint cycles and paths. It is easy to see that each
path has a 3-hued coloring with three colors and each cycle has a 3-hued coloring with at most five colors. Thus x3(G) < 5. B

2.1. Proof of Theorem 1.1
Let G be a counterexample to Theorem 1.1 with |V(G)| minimized.
Claim 2.1. G has no two adjacent 2-vertices.

Proof. Suppose that G has two adjacent 2-vertices x and y. Note that G is connected by Lemma 2.1 and A(G) > 3 by
Lemma 2.2. We can choose x and y with the property that x is adjacent to a 3*-vertex u. Let v be the other neighbor of
y and denote G' = G — {x, y}. Therefore, G’ has 3-hued 6-coloring c since |V(G')| < |V(G)| and mad(G') < mad(G). Let us
extend the coloring c to x first. If dg(u) > 4, then |c(Ng(u))| > 3 nd thus only c(u) and c(v) are the forbidden colors for x. If
dg(u) = 3, then |c(Ng(u))| < 2, thus c(Ng(u)) U {c(u), c(v)} is the set of forbidden colors for x. Thus we first extend c to x.
In the resulting coloring, y has at most five forbidden colors, {c(u), c(x), c(v)} U ¢(Ng(v)) when dg(v) = 3 or at most three
forbidden color {c(u), c(v), c(x)} if dg(u) # 3. Hence, we can further extend c to y and the resulting coloring will contradict
the assumption that G is a counterexample.

Initial Charge: M(x) = d(x) — 12/5 for each vertex x in G. Since mad(G) < 12/5, we have erv(G)M(x) < 0. It follows from
Lemma 2.1 and Claim 2.1 that, G has no 1-vertices and each 2-vertex is adjacent to two 3™ -vertices. Note that each k-vertex
where k > 3 is adjacent to at most k 2-vertices. Hence, we can redistribute the charge of the vertices of G as follows.

Discharging Rule: Each 2-vertex receives 1/5 from each neighbor.
Denote this new charge by M'(x). Hence, _, ,M'(x) = >, .y M(x) < 0.

(1) Foreach2-vertexu, M'(u)=2—-12/5+2x1/5=0.
(2) For each k-vertex v where k > 3, M'(v) > k — 12/5 —k x 1/5 = (4k — 12)/5 > 0.

Therefore, M’(x) > 0 for eachx € V(G)and 0 > erv(c)M(x) = erv(G)M/(v) > 0, a contradiction. This completes the
proof of Theorem 1.1. W

Remark. Note that in Claim 2.1, the choice of available colors for x and y do not depend on the set of colors. Therefore, the
above result could be generalized to ch3(G) < 6 for a graph G with mad(G) < % That is, for every list assignment of size six,
there is a 3-hued 6-coloring of G such that each vertex is assigned with a color from its list.

2.2. Proof of Theorem 1.2
Let G be a counterexample to Theorem 1.2 with |V(G)| minimized.
Claim 2.2. G has no 3*-threads.

Proof. Suppose that G has a 3*-thread ugu; - - - ug_qu; where k > 4. Let G = G — {uj, uy, us3}. Then G’ has a 3-hued
5-coloring ¢ since |V(G')] < |V(G)| and mad(G’') < mad(G). Let us extend the coloring c to u; first. Observe that u; has
at most three forbidden colors. Therefore we have at least two available options to color u;. In the resulting coloring, us
has at most four forbidden colors and then we can further extend c to us. After that, u, has at most four forbidden colors
{c(up), c(uq), c(us), c(ug)}. In the last step, we extend the coloring c to u, to obtain a 3-hued 5-coloring of G, a contradiction
to the choice of G. W

Claim 2.3. If P = uxyv is a 2-thread of G, then dg(u) = dg(v) = 3.

Proof. Suppose that P = uxyv be a 2-thread of G in which either dg(u) > 4 or dg(v) > 4. Without loss of generality, assume
dg(u) > 4.Let G’ = G — {x, y}. So G’ has a 3-hued 5-coloring c by the minimality of G. Let us color y first. The worst case is
that v has degree three in G and then y would have at most four forbidden colors {c(u), c(v)} U c(Ng(v)). Thus we can always
extend the coloring c to y. In the resulting coloring, u has already seen three colors in c, so x has at most three forbidden
colors. Hence, we can further extend the coloring c to x, a contradiction to the choice of G. ®

Claim 2.4. Let P = uxyv be a 2-thread of G and G' = G — {x, y}. If c is a 3-hued 5-coloring of G/, then we can always extend c
to G except when c(Ng (1)) = c(Ng/(v)) and c(u) # c(v).

Proof. Suppose that c is a 3-hued 5-coloring of G’ such that either c(N(u)) # ¢(N(v)) or c(u) = c(v). Let us color x first. By
Claim 2.3, dg/(u) = dg(v) = 2. Thus x has at most 4 forbidden colors c¢(Ng (1)) U {c(u), c(v)} and we can color x with one of
the available options. In the resulting coloring, the set of forbidden colors of y is c(N¢(v)) U {c(u), c(x), c(v)}.
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Fig. 2. Configuration of Claim 2.5.

If c(u) = c(v), then |c(Ng(v)) U {c(u), c(x), c(v)}| < 4. 1f c(Ng(u)) # c(Ng(v)), then we can recolor x such that
c(x) € c¢(Ng(v)) — c(Ng(u)), and therefore |c(Ng(v)) U {c(u), c(x), c(v)}| < 4. In both cases, we can extend the coloring
c toy, a contradiction to the choice of G. ®

Claim 2.5. No 3-vertex is loosely adjacent to five or more 2-vertices.

Proof. Let u be a 3-vertex of G such that u is loosely adjacent to at least five 2-vertices. Since G has no 3*-threads by
Claim 2.2, u is a common endpoint of either three 2-threads or two 2-threads and 1-thread (see Fig. 2). Hence, dg(x;) =
dg(xy) = dg(y1) = dg(y2) = dg(z) = 2. By Claim 2.3, dg(x3) = dg(y3) = 3.Let G’ = G — {u, X1, X2, ¥1, y»}. Then G’ has a
3-hued 5-coloring ¢ by the minimality of G.

If c(z) & c(Ng/(y3)), then we can extend the coloring c to u first since u has at most two forbidden colors. In the resulting
coloring, x, has at most four forbidden colors, {c(u), c(x3)} U c(Ng(x3)). Thus we can extend the coloring to x, with one of
the available options. Then x; will have at most four forbidden colors {c(z), c(u), c(x2), c(x3)}, and we can further extend the
coloring to x;. After that, c(Ng (1)) # c(Ng/(y3)) since c(z) € c(Ng(y3)). By Claim 2.4, we can extend the coloring to {y1, ¥2},
a contradiction to the choice of G. If ¢(z) &€ c(N¢(x3)), we can extend the coloring to G by symmetry. Hence, we can assume
that ¢(z) € ¢(No(x3)) N (N (¥3)). Then {c(x3), c(z)} U c(Ne(y3)) ={c(x3)} U (N (y3)).

We first extend the coloring c to x; by coloring x; with a color not in {c(x3)} U c¢(Ng(y3)), then color x, with a color not in
{c(x1), c(x3)} Uc(Ng(x3)) and then further extend the coloring to u by coloring it with a color not in {c(x1), c(x3), c(z), c(w)}.
Thus the resulting coloring is a 3-hued 5-coloring of G—{y1, ¥»} and it satisfies c(Ng/ (1)) # c(Ng (y3)) since c(x1) & c(Ng'(y3)).
By Claim 2.4, we can finally extend the coloring to {y1, y-}, a contradiction to the choice of G. W

Initial Charge: M(x) = d(x) — 7/3 for each vertex x in G.

Since mad(G) < 7/3, erv(c)M(X) < 0. G has no 1-vertices by Lemma 2.1. Claim 2.5 says that each 3-vertex is loosely
adjacent to at most four 2-vertices. By Claims 2.2 and 2.3, each k-vertex where k > 4 can only be the endpoint of 1-thread
and therefore is loosely adjacent to at most k 2-vertices. Now we can redistribute the charge as follows.

Discharging Rule: Each 2-vertex u receives 1/6 from each endpoint of the thread containing u. Denote the new charge by M’(x).
Hence, Y, .y M'(x) = 3,y oM(x) < 0.

(1) Foreach 2-vertex u, M'(u) =M(u)+2x1/6=2-7/34+1/3=2-6/3=0.
(2) For each 3-vertex v, M'(v) > M(v) —4x1/6=3-7/3—-2/3=0.
(3) For each k-vertex w with k > 4, M'(w) > M(w) — k x 1/6 = (5k — 14)/6 > 0.

Hence, M'(x) > 0 for each x € V(G). So erv(c)M(x) = erv(c)M’(x) > 0, a contradiction. We complete the proof of
Theorem 1.2. W

3. Proof of Theorem 1.3

Let G be a counterexample to Theorem 1.3 with |V(G)| + |E(G)| minimized. Then G must be connected. Otherwise, each
component of G (not a Cs) has a 2-hued 4-coloring, and so does G. This would contradict the choice of G.

Claim 3.1. G contains no cycle C as a subgraph such that C = uwxyzu and w, X, y, z are 2-vertices of G.

Proof. Suppose that G contains a cycle C = uwxyzu where w, x,y, z are 2-vertices. Since G # Cs, dg(u) > 3. Let
G = G — {w,x,y}. Since G is connected, so is G'. This implies that G' # Cs since dz(z) = 1. Hence, G’ has a 2-hued
4-coloring ¢ by the minimality of G. Let us extend the coloring by assigning c(w) = c(z), c(x) = a, c(y) = b wherea # b
and a, b € {c(u), c(z)}. It is easy to verify that the resulting coloring is a 2-hued 4-coloring of G. This contradicts the choice
of G. m

Claim 3.2. G has no 1-vertex.

Please cite this article in press as: ]. Cheng, et al, r-hued coloring of sparse graphs, Discrete Applied Mathematics (2017),
https://doi.org/10.1016/j.dam.2017.11.033.




J. Cheng et al. / Discrete Applied Mathematics 1 (11E1) IEI-E10 5

4 1

3 2 3 3

1 3 2 4

Fig. 3. Configurations when G’ = Cs in Claim 3.4.

Proof. Suppose that G has a vertex u with dg(u) = 1 and uv € E(G). Denote G’ = G — {u}. Then G’ is connected and G’ # Cs
for which would contradict Claim 3.1. Therefore, G’ has a 2-hued 4-coloring ¢ by the minimality of G. Note that u has at least
two available colors. Thus we can extend the coloring c to u. This contradicts the assumption that G is a counterexample. B

Claim 3.3. A(G) > 3.

Proof. Suppose A(G) < 2. Claim 3.2 says that G has no 1-vertex. Since G is connected, G must be a C, where k # 5. Note
that, except for Cs, every cycle can be 2-hued colored with four or fewer colors. This contradicts the choice of G. B

Claim 3.4. G has no two adjacent 2-vertices.

Proof. Suppose that G has two adjacent 2-vertices x and y. Since A(G) > 3 by Claim 3.3, we can choose x and y in a way that
x is adjacent to a 3"-vertex u. Let v be the other neighbor of y and denote G = G — {x, y}. Now we consider the following
two cases.

Case 1.G' = Gs.
By Claim 3.1, u and v are distinct vertices in Cs. G must be one of the configurations in Fig. 3. The corresponding 2-hued
4-colorings have been labeled in Fig. 3. This contradicts to the choice of G.

Case 2.G' # GCs.

If G’ is disconnected, then G’ has no Cs-components by Claim 3.1. If G’ is connected, G’ # Cs by assumption. In both cases,
G’ has no Cs-components. By the minimality of G. G’ has a 2-hued 4-coloring c. Let us color y first. Note that y has at most
three forbidden colors and therefore we can extend c to y. Note that u has already seen at least two distinct colors in ¢ since
dg(u) > 2. Hence, x has at most three forbidden colors, c(u), c(y), and c(v), and therefore we can further extend c to x. This
contradicts the choice of G. ®

Claim 3.5. Each 3-vertex in G is loosely adjacent to at most two 2-vertices.

Proof. Suppose that G has a 3-vertex x which is loosely adjacent to at least three 2-vertices. By Claim 3.4, G has no 2" -threads.
Thus x is adjacent to three 2-vertices, say {y1, Y2, ¥3}, and each y; is contained in a 1-thread xy;v; for eachi = 1, 2, 3, where
v1, V2, and v3 are all 37 -vertices.

We claim that x is not a cut-vertex. Otherwise, assume that x is a cut-vertex. Then at least one of {y{, y2,y3} is a cut-
vertex. Without loss of generality, let y; be a cut-vertex of G. Then xy; is a cut-edge. By Claim 3.1 and since one component
has minimum degree 1, no components of G; = G — {xy1} is a Cs. By the minimality of G, G — {xy} has a 2-hued 4-coloring
c. Note that c(y;) # c(vy) and x is in a component that does not contain y; and v;. Thus we may assume c(x) & {c(y1), c(v;)}.
Observe that in Gy, both x and v; are 2" -vertices. Thus c is a 2-hued 4-coloring of G, a contradiction to the choice of G. This
proves that x is not a cut-vertex.

Let ¢’ = G — {x, y1, ¥2, ¥3}. Since G is connected and x is not a cut-vertex, G’ is also connected. We consider the following
two cases.

Case1.G' = Gs.

If vi = v, = v3, then G will satisfy the configuration in Claim 3.1, a contradiction. So v; # v; forsome 1 <i < j < 3.
Hence, G must be one of the configurations in Fig. 4. The corresponding 2-hued 4-coloring has been labeled in Fig. 4. This
contradicts to the choice of G.

Case 2.G' # Gs.

Since G’ is connected, G’ has no Cs components. Therefore, G’ has a 2-hued 4-coloring ¢ by the minimality of G. Since there
are 4 colors, we can first extend c to x by coloring it with a color not in {c(v1), c(v2), c(v3)}. Note that each of v; has degree
at least two in G’ and thus sees at least two colors. We first color y; with a color not in {c(x), c(v;)} and then color y, with a
color not in {c(x), c(y1), c(v2)} and finally color y3 with a color not in {c(x), c(v3)}. It is easy to check that the extension of ¢
is a 2-hued 4-coloring of G, a contradiction to the choice of G. ®
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Fig. 4. Configurations when G’ = Cs in Claim 3.5.
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Fig. 5. Configurations when G’ = Cs in Claim 3.6.

Claim 3.6. Each 3-vertex in G is loosely adjacent to at most one 2-vertex.

Proof. By Claim 3.5, suppose that G has a 3-vertex x such that x is loosely adjacent to exactly two 2-vertices, say y; and y,.
Since G has no 2-threads, x is adjacent to y; and y,, and each y; is contained in a 1-thread xy;v; for eachi = 1, 2. Let v3 be the
third neighbor of x. Thus vq, v,, v3 are all 3*-vertices.

With a similar argument as in Claim 3.5, we can show that x is not a cut-vertex. Let ¢’ = G — {x, y1, ¥2}. Thus G’ is
connected. We consider the following two cases.

Case 1.G' = Gs.

If v1 = v, = v3, then G will satisfy the configuration in Claim 3.1, a contradiction. So v; # v; forsome 1 <i < j < 3.
Hence, G must be one of the configurations in Fig. 5. The corresponding 2-hued 4-coloring has been labeled in Fig. 5. This
contradicts to the choice of G.

Case2.G' # Gs.
Since G’ is connected, G’ has no Cs components. Therefore, G’ has a 2-hued 4-coloring ¢ by the minimality of G. Note that
foreachi = 1, 2, 3, dg(v;) > 2 and thus v; sees at least two colors. We first color x with a color not in {c(v1), c(v2), c(v3)},

then color y; with a color not in {c(vy), c(x), c(v3)}, and then color y, with a color not in {c(x), c(v,)}. It is easy to see that
this is a 2-hued 4-coloring of G, a contradiction to the choice of G. ®

Initial Charge: M(x) = d(x) — 8/3 for each vertex x in G.

Since mad(G) < 8/3, erv(c)M(x) < 0. By Claim 3.2, G has no 1-vertices. By Claim 3.4, each 2-vertex is adjacent to two
3*-vertices. Claim 3.6 says that each 3-vertex is adjacent to at most one 2-vertex. By Claim 3.4, each k-vertex with k > 4 is
adjacent to at most k 2-vertices. Now let us redistribute the charge as follows.

Discharging Rule: Each 2-vertex receives 1/3 from its two neighbors.
Denote the new charge by M'(x). Hence, ), .y oyM(X) = >_,cy(oM'(x) < 0.

(1) Foreach 2-vertexx, M'(x) >2—8/3+2x 1/3=0.
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(2) For each 3-vertexy, M'(y) >3 —-8/3—1/3 =0.
(3) For each k-vertex z with k > 4, M'(z) > k—8/3 —k x 1/3 =(2k—8)/3 > 0.

For any x € V(G), M’(x) > 0 and therefore erv(G)M(x) = erv(c)M’(x) > 0, a contradiction. This completes the proof
of Theorem 1.3. W
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