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a b s t r a c t

Jaeger, Linial, Payan and Tarsi (JCTB, 1992) introduced the concept of group connectivity
as a generalization of nowhere-zero flow for graphs. In this paper, we introduce group con-
nectivity for signed graphs and establish some fundamental properties. For a finite abelian
group A, it is proved that an A-connected signed graph is a contractible configuration for A-
flow problem of signed graphs. In addition, we give sufficient edge connectivity conditions
for signed graphs to be A-connected and study the group connectivity of some families of
signed graphs.
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1. Introduction

The notion of nowhere-zero flows of ordinary graphswas introduced by Tutte [15,16] as a dual problem to vertex coloring
of graphs embedded on an orientable surface. The definition of nowhere-zero flows of signed graphs naturally comes from
the study of embeddings of graphs in non-orientable surfaces, where nowhere-zero flows emerge as the dual notion to local
tensions.

The group connectivity, as a generalization of the flow problem, is a concept introduced by Jaeger, Linial, Payan and
Tarsi [5]. Furthermore, graphs with certain group connectivity are contractible configurations for flow problems.

In this paper, the concept and results about group connectivity [5] for ordinary graphs are extended to signed graphs.

1.1. Group connectivity for ordinary graphs

Throughout the paper, we consider finite graphs. Loops and multiple edges are allowed. We refer [21] for undefined
notations and terminology on nowhere-zero flows.

LetAbe a non-trivial (additive) abelian groupwith additive identity 0, and letA∗
= A\{0} be the set of nonzero elements in

A. Let D be an orientation of G. Define F (G, A) = {f |f : E(G) ↦→ A} and F∗(G, A) = {f |f : E(G) ↦→ A∗
}. For each f ∈ F (G, A), the

boundary of f is the function ∂ f : V (G) ↦→ A defined by ∂ f (v) =
∑

e∈E+

D (v)f (e)−
∑

e∈E−

D (v)f (e) for each vertex v ∈ V (G). (D, f )
is called an A-flow if ∂ f = 0, and is called a nowhere-zero A-flow if moreover f ∈ F∗(G, A). If A = Z and 1 ≤ |f (e)| ≤ k− 1 for
each e ∈ E(G), the flow (D, f ) is called a nowhere-zero k-flow. Tutte’s flow conjectures are some of the major open problems
in graph theory. The 3-flow conjecture states that every 4-edge-connected graph admits a nowhere-zero 3-flow and the 5-flow

* Corresponding author.
E-mail addresses: lijiaao@nankai.edu.cn (J. Li), rluo@math.wvu.edu (R. Luo), mahp@jsnu.edu.cn (H. Ma), cqzhang@math.wvu.edu (C.-.Q Zhang).

https://doi.org/10.1016/j.disc.2018.08.007
0012-365X/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.disc.2018.08.007
http://www.elsevier.com/locate/disc
http://www.elsevier.com/locate/disc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.disc.2018.08.007&domain=pdf
mailto:lijiaao@nankai.edu.cn
mailto:rluo@math.wvu.edu
mailto:mahp@jsnu.edu.cn
mailto:cqzhang@math.wvu.edu
https://doi.org/10.1016/j.disc.2018.08.007


3228 J. Li et al. / Discrete Mathematics 341 (2018) 3227–3236

conjecture claims that every bridgeless graph admits a nowhere-zero 5-flow. The readers are referred to [9] for a recent survey
on this topic.

Jaeger, Linial, Payan and Tarsi [5] introduced the concept of group connectivity as a generalization of nowhere-zero flows
of graphs. It is obvious that

∑
v∈V (G)∂ f (v) = 0 for any f ∈ F∗(G, A). This motivates the definition of A-boundary function. A

mapping b : V (G) ↦→ A is called an A-boundary of G if
∑

v∈V (G)b(v) = 0. Let Z(G, A) be the collection of all A-boundaries of G.
G is A-connected if, for any b ∈ Z(G, A), there is a function f ∈ F∗(G, A) such that ∂ f = b, that is, for every vertex v ∈ V (G),

∂ f (v) =

∑
e∈E+

D (v)

f (e) −

∑
e∈E−

D (v)

f (e) = b(v).

Jaeger et al. [5] conjectured that every 5-edge-connected graph is Z3-connected, and every 3-edge-connected graph is Z5-
connected. These two conjectures imply Tutte’s 3-flow conjecture and 5-flow conjecture, respectively. Jaeger et al. [5] proved
that every 4-edge-connected graph is A-connected for any abelian group A with |A| ≥ 4. Thomassen’s breakthrough result
in [14] confirmed the conjecture of Jaeger et al. for 8-edge-connected graphs, and it was later improved by Lovász et al. [10]
that every 6-edge-connected graph is Z3-connected. In this paper, we will introduce the concept of group connectivity for
signed graphs and extend the above mentioned results to signed graphs with slightly higher edge-connectivity.

1.2. Preliminary for signed graphs

A signed graph is a graph G with a mapping σ : E(G) ↦→ {1, −1}. An edge e ∈ E(G) is positive if σ (e) = 1 and negative if
σ (e) = −1. The mapping σ , called signature, is sometimes implicit in the notation of a signed graph and will be specified
when needed. Both negative and positive loops are allowed in signed graphs, while positive loops do not affect any flow
property. We use E+

σ (G) and E−
σ (G) to denote the set of positive edges and the set of negative edges in G, respectively. If no

confusion occurs, we simply use E+
σ for E+

σ (G) and E−
σ for E−

σ (G). An orientation τ assigns each edge of (G, σ ) as follows: if
e = xy is a positive edge, then the edge is either oriented away from x and toward y or away from y and toward x; if e = xy
is a negative edge, then the edge is oriented either away from both x and y or towards both x and y. We call e = xy a sink
edge (a source edge, respectively) if it is oriented away from (towards, respectively) both x and y.

Let τ be an orientation of (G, σ ). For each vertex v ∈ V (G), letHG(v) be the set of half edges incidentwith v. Define τ (h) = 1
if the half edge h ∈ HG(v) is oriented away from v, and τ (h) = −1 if the half edge h ∈ HG(v) is oriented towards v. Denote
d+

τ (v) = |E+
τ (v)| (d−

τ (v) = |E−
τ (v)|, respectively) to be the outdegree (indegree, respectively) of (G, σ ) under orientation τ ,

where E+
τ (v)(E−

τ (v), respectively) denotes the set of outgoing (ingoing, respectively) half edges incident with v.
The switch operation ζ on an edge-cut S is a mapping ζ : E(G) ↦→ {−1, 1} such that ζ (e) = −1 if e ∈ S and ζ (e) = 1

otherwise. Two signatures σ and σ ′ are equivalent if there exists an edge-cut S such that σ (e) = σ ′(e)ζ (e) for every edge
e ∈ E(G), where ζ is the switch operation on the edge-cut S. For a signed graph (G, σ ), let X denote the collection of all
signatures equivalent to σ . The negativeness of (G, σ ) is denoted by ϵN (G, σ ) = min{|E−

σ ′ (G)| : ∀σ ′
∈ X }. We use ϵN for

short if the signed graph (G, σ ) is understood from the context. A signed graph is called k-unbalanced if ϵN ≥ k. Note that
1-unbalanced signed graph is also known as unbalanced signed graph.

A circuit is balanced if ϵN = 0 and is unbalanced otherwise (i.e. ϵN = 1). A signed graph (G, σ ) is called a barbell if either
• G consists of two unbalanced circuits C1, C2 with |V (C1) ∩ V (C2)| = 1, or
• G consists of two vertex disjoint unbalanced circuits C1, C2 and a path P , which has one end in V (C1) and one end in

V (C2) and has no interior vertices in V (C1) ∪ V (C2).
A signed circuit is either a balanced circuit or a barbell.
The signature is usually implicit in the notation of a signed graph if no confusion occurs. We define contraction in signed

graphs as follows. For an edge e ∈ E(G), the contraction G/e is the signed graph obtained from G by identifying the two
ends of e, and then deleting the resulting positive loop if e ∈ E+

σ , but keeping the resulting negative loop if e ∈ E−
σ , For

X ⊆ E(G), the contraction G/X is the signed graph obtained from G by contracting all edges in X . If H is a subgraph of G, we
use G/H for G/E(H). An immediate observation is that the contraction operation does not decrease negativeness. That is,
ϵN (G/H) ≥ ϵN (G) for any subgraph H of G.

1.3. Group connectivity of signed graphs

Let A be an abelian group, 2A = {2α : α ∈ A}, and A∗
= A \ {0}. For a signed graph G, we still denote F (G, A) = {f |f :

E(G) ↦→ A} and F∗(G, A) = {f |f : E(G) ↦→ A∗
}. Let τ be an orientation of (G, σ ). For each f ∈ F (G, A), the boundary of f is the

function ∂ f : V (G) ↦→ A defined by

∂ f (v) =

∑
h∈HG(v)

τ (h)f (eh),

where eh is the edge of G containing h and ‘‘
∑

’’ refers to the addition in A. If ∂ f = 0, then (τ , f ) is called an A-flow of G. In
addition, (τ , f ) is a nowhere-zero A-flow if f ∈ F∗(G, A) and ∂ f = 0.
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For any f ∈ F (G, A), eachpositive edge contributes 0, each sink edge e contributes 2f (e), and each source edge e contributes
−2f (e) to

∑
v∈V (G)∂ f (v). Thus we have∑

v∈V (G)

∂ f (v) =

∑
e is a sink edge

2f (e) −

∑
e is a source edge

2f (e) ∈ 2A. (1)

In particular, if G is an ordinary graph, that is E−
σ = ∅, then

∑
v∈V (G)∂ f (v) = 0 for any f ∈ F (G, A). This motivates the

zero-sum A-boundary function in the group connectivity of ordinary graphs defined by Jaeger et al. [5] as introduced earlier.
For signed graphwith E−

σ ̸= ∅,
∑

v∈V (G)∂ f (v) may not be zero but is always equal to 2α for some element α ∈ A by Eq. (1).
We introduce the following definition of group connectivity of signed graphs.

Definition 1.1 (Group Connectivity of Signed Graphs). Let (G, σ ) be a 2-unbalanced signed graph with orientation τ and A be
an abelian group.

(i) A mapping b : V (G) ↦→ A is called an A-boundary of (G, σ ) if∑
v∈V (G)

b(v) = 2α for some α ∈ A.

Let Z(G, A) be the collection of all A-boundaries.
(ii) (G, σ ) is A-connected if, for every b ∈ Z(G, A), there is a function f ∈ F∗(G, A) such that ∂ f = b. That is, for every vertex

v ∈ V (G),

∂ f (v) =

∑
h∈HG(v)

τ (h)f (eh) = b(v).

Remark. 1. A signed graphGwith ϵN (G, σ ) = 0 can be switched to an ordinary graph, which allows us to study the nowhere-
zero flow property and group connectivity property by analyzing its equivalent ordinary graph. In particular, we say a signed
graph Gwith ϵN (G, σ ) = 0 is A-connected if and only if its switch equivalent ordinary graph is A-connected.

2. It is obvious that a signed graph (G, σ )with Eσ = {e0}does not admit a nowhere-zero integer-valued flowor a nowhere-
zero A-flow if |A| is odd.

For that reason, we only consider the group connectivity for 2-unbalanced signed graphs. It is also noted that in a 2-
unbalanced signed graph, the sum of boundaries in Eq. (1) could be any element in 2A, instead of zero for ordinary graphs.

2. Basic properties of group connectivity of signed graphs

In this section we present several basic properties on A-connectedness of signed graphs.

Proposition 2.1. Each of the following holds.
(a) A-connectedness does not depend on the orientation.
(b) A-connectedness is invariant under switch operation.
(c) Let G be a 2-unbalanced signed graph. If |A| is even and G is A-connected, then G is connected. If |A| is odd, then G is

A-connected if and only if each component of G is A-connected.

Proof. (a) is straightforward by the definition.
(b) Let (G, σ ) be a 2-unbalanced A-connected signed graph with orientation τ . As every switching operation can be

composed from the switching operations on trivial edge-cut, it is sufficient to verify (b) for the switch operation ζ on the
trivial edge-cut S = EG(u) for any vertex u. Denote σ ′

= σζ the equivalent signature of σ . Let τ ′ be the orientation of (G, σ ′)
such that τ ′(h) = −τ (h) if h ∈ HG(u) and τ ′(h) = τ (h) otherwise. We are to show that (G, σ ′) is A-connected.

Let b′
∈ Z(G, A) be an A-boundary and define a mapping b : V (G) ↦→ A to be b(u) = −b′(u) and b(v) = b′(v), ∀v ∈

V (G) \ {u}. Since
∑

v∈V (G)b
′(v) ∈ 2A, we have∑

v∈V (G)

b(v) = −b′(u) +

∑
v∈V (G)\{u}

b′(v) =

∑
v∈V (G)

b′(v) − 2b′(u) ∈ 2A.

Thus b ∈ Z(G, A) is also an A-boundary of (G, σ ). Since (G, σ ) is A-connected, there exists a function f ∈ F∗(G, A) such that,
for every vertex v ∈ V (G),

∂ f (v) =

∑
h∈HG(v)

τ (h)f (eh) = b(v).

By the setting of τ ′ in (G, σ ′), we have ∂ f (v) =
∑

h∈HG(v)
τ ′(h)f (eh) = b(v) = b′(v) for any vertex v ∈ V (G) \ {u}. In addition,

∂ f (u) =

∑
h∈HG(u)

τ ′(h)f (eh) =

∑
h∈HG(u)

−τ (h)f (eh) = − b(u) = b′(u).
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Therefore, ∂ f = b′ in the signed graph (G, σ ′) with orientation τ ′. Since b′ is arbitrary, (G, σ ′) is A-connected.
(c) If |A| is even, then there is an element β ∈ A \ 2A. Suppose that G is not connected. Let G1 be one component. Let

b ∈ Z(G, A) be an A-boundary function such that
∑

v∈V (G1)
b(v) = β , and

∑
v∈V (G)\V (G1)

b(v) = β . Then there is no f ∈ F∗(G, A)
such that ∂ f = b by Eq. (1). Thus G is connected.

If |A| is odd, then 2A = A. Hence everymapping b : V (G) ↦→ A is an A-boundary. Thus it is easy to see thatG is A-connected
if and only if each component of G is A-connected. ■

By Proposition 2.1(c), we only discuss A-connectedness for connected signed graphs for convenience.
A connected base of a signed graph is a maximal spanning connected subgraph which contains neither balanced circuits

nor barbells. In other words, a connected base T of an unbalanced signed graph (G, σ ) is a spanning tree of its underlying
ordinary graph plus an extra edge such that T contains a unique unbalanced circuit. It plays the same role as spanning trees
in ordinary graphs. The concept of bases is from signed graphic matroid introduced by Zaslavsky [19,20].

The following two propositions are originally proved for ordinary graphs in [5] and they can be extended to unbalanced
signed graphs.

Proposition 2.2. Let (G, σ ) be an unbalanced signed graph containing a connected base and A be an abelian group. Let τ be an
orientation of (G, σ ). Then, for each b ∈ Z(G, A), there is a function f ∈ F (G, A) such that ∂ f = b.

Proof. By the definition of Z(G, A), Proposition 2.2 is preserved under switch operation. Hence it is sufficient to consider the
case when (G, σ ) itself is a connected base with a unique negative edge. That is, E+

σ (G) induces a spanning tree. Let e = v1v2
be the unique negative edge in the unbalanced circuit of (G, σ ).

Let b ∈ Z(G, A) with
∑

v∈V (G)b(v) = 2α. Denote G′
= G − e and define b′

: V (G′) ↦→ A by b′(v1) = b(v1) − α,
b′(v2) = b(v2) − α and b′(v) = b(v) if v ∈ V (G′) \ {v1, v2}. Then b′ is a zero sum boundary in the ordinary graph G′.
Applying Proposition 2.1 of [5], there exists f ∈ F (G′, A) such that ∂ f = b′ in G′. Extend f to E(G) by setting f (e) = α if e is a
sink edge, f (e) = −α if e is a source edge. Then we have ∂ f = b. ■

Proposition 2.3. Let (G, σ ) be a connected 2-unbalanced signed graph with orientation τ and A be an abelian group. Then the
following statements are equivalent:

(i) (G, σ ) is A-connected.
(ii) Given any f ∈ F (G, A), there exists an A-flow f such that f (e) ̸= f (e) for every e ∈ E(G).
(iii) Given two functions f ∈ F (G, A) and b ∈ Z(G, A), there is a function f ∈ F (G, A) which satisfies ∂ f = b and f (e) ̸= f (e)

for every e ∈ E(G).

Proof. The proof of Proposition 2.3 is a straightforward application of Proposition 2.2 and thus omitted. See [5] for a similar
proof of this property in ordinary graphs. ■

For ordinary graphs, Jaeger et al. [5] pointed out that the monotonicity of group connectivity fails by presenting
some graphs which are Z5-connected but not Z6-connected. It is unknown that whether A1-connectedness implies A2-
connectedness for two nonisomorphic groups A1, A2 with |A1| = |A2|. It was even unknown for Z4 and Z2 × Z2 until very
recently Hušek et al. [4] constructed two graphs and used a computer to verify that their Z4-connectedness and Z2 × Z2-
connectedness are distinct. For signed graphs we have the following proposition.

Proposition 2.4. There are signed graphs that are Z4-connected but not Z2 × Z2-connected.

Proof. Let (G, σ ) be the signed graph obtained from K2 by adding one negative loop at each vertex. We will show that (G, σ )
is Z4-connected but not Z2 × Z2-connected.

For Z2 × Z2-connectedness, since 0 ∈ Z(G,Z2 × Z2), set b(v) = 0 for each vertex v. Then there is no f ∈ F∗(G,Z2 × Z2)
such that ∂ f = b. Thus, (G, σ ) is not Z2 × Z2-connected. It is easy to verify (G, σ ) is Z4-connected by checking all possible
Z4-boundaries in Z(G,Z4). ■

3. Contractible configuration and reduction

Let P be a signed graphic property. A signed graph (H, σ ) is a contractible configuration of P if, for every signed graph
(G, σ ′) containing (H, σ ) as a subgraph, G/H has the property P if and only if G has the property P . For ordinary graphs, it
is well-known that A-connected graphs are contractible configurations for nowhere-zero A-flow problems. The following
theorem shows that A-connected signed graphs are contractible configurations for nowhere-zero A-flow problems and A-
connected problems of signed graphs.

Theorem 3.1. Let A be an abelian group and let (H, σ ) be a signed graph. Assume that either E−
σ (H) = ∅ and H is A-connected

as an ordinary graph or (H, σ ) is a 2-unbalanced A-connected signed graph. Then, for each 2-unbalanced signed graph (G, σ ′)
containing (H, σ ) as a subgraph, we have the following.

(a) G admits a nowhere-zero A-flow if and only if G/H admits a nowhere-zero A-flow;
(b) G is A-connected if and only if G/H is A-connected.



J. Li et al. / Discrete Mathematics 341 (2018) 3227–3236 3231

Proof. We only prove (b) since the proof of (a) is similar to the proof of (b) by setting the A-boundary b = 0.
The necessity in (b) is obvious since the group connectivity is preserved under contraction.We now prove the sufficiency.
Let τ be an orientation of (G, σ ′) and b ∈ Z(G, A) be an A-boundary function. We still use τ to denote the corresponding

orientation in G/H . Denote vH to be the vertex in G/H which H is contracted into. For convenience let E−
σ (H) denote the

set of all negative edges of (H, σ ), as well as the set of negative loops incident with vH in G/H obtained by contracting H .
Define b1(vH ) =

∑
v∈V (H)b(v) and b1(v) = b(v) if v ∈ V (G/H) \ {vH}. Then b1 ∈ Z(G/H, A). Since G/H is A-connected, there

exists f1 ∈ F∗(G/H, A) such that ∂ f1 = b1. (τ , f1) extends to G such that f1 inherits the corresponding value for any edge in
(E(G) − E(H)) ∪ E−

σ (H) and 0 otherwise.
For each vertex v ∈ V (H), denote the set of half edges incident with v in E(G) − E(H) and in E−

σ (H) by X1(v) and X2(v),
respectively. Define b2 : V (H) ↦→ A by

b2(v) = b(v) −

∑
h∈X1(v)

τ (h)f1(eh). (2)

Since ∂ f1 = b1 in G/H , we have∑
v∈V (H)

∑
h∈X1(v)∪X2(v)

τ (h)f1(eh) = ∂ f1(vH ) = b1(vH ) =

∑
v∈V (H)

b(v).

Hence, by Eq. (2),∑
v∈V (H)

b2(v) =

∑
v∈V (H)

b(v) −

∑
v∈V (H)

∑
h∈X1(v)

τ (h)f1(eh)

=

∑
v∈V (H)

∑
h∈X2(v)

τ (h)f1(eh)

=

∑
e∈E−

σ (H)

±2f1(e) ∈ 2A.

Thus b2 ∈ Z(H, A). In the case of E−
σ (H) = ∅, b2 is a zero sum function. Since H is A-connected and by definition, there exists

f2 ∈ F∗(H, A) such that ∂ f2 = b2. Let f ′

1 be the restriction of f1 on E(G)− E(H) and f = f ′

1 + f2. Then, for each vertex v ∈ V (H),
it follows from Eq. (2) that

∂ f (v) = ∂ f ′

1(v) + ∂ f2(v)

=

∑
h∈X1(v)

τ (h)f1(eh) + b2(v)

=

∑
h∈X1(v)

τ (h)f1(eh) + [b(v) −

∑
h∈X1(v)

τ (h)f1(eh)]

= b(v).

Therefore, ∂ f = b and f ∈ F∗(G, A). By definition, (G, σ ′) is A-connected. ■

Let K−t
1 be the graph obtained from K1 by adding t negative loops. It is easy to see that K−t

1 is A-connected for any abelian
group of order |A| ≥ 3 if t ≥ 2. Theorem 3.1 leads to a reduction method for verifying A-connectedness of 2-unbalanced
signed graphs, which is an extension of Catlin’s reduction method on ordinary graphs (see [1,8]).

Lemma 3.2. A 2-unbalanced signed graph (G, σ ) is A-connected if and only if it can be contracted to K−t
1 for some integer t ≥ 2

by contracting its A-connected subgraph recursively.

The following lemma follows immediately as an application of Theorem 3.1(b) and Lemma 3.2.

Lemma 3.3. Let (G, σ ) be a 2-unbalanced signed graph.
(i) If G[E+

σ ] is spanning and A-connected as an ordinary graph, then (G, σ ) is A-connected.
(ii) Suppose that G is 2-edge-connected. If G − v is a 2-unbalanced A-connected signed graph, then (G, σ ) is A-connected.

These methods will be applied in the next two sections to verify group connectivity of various signed graphs.

4. Group connectivity of highly connected signed graphs

4.1. A-connectedness for |A| ≥ 4

Jaeger et al. [5] investigated the relation of edge-connectivity and group connectivity. They showed that every 4-edge-
connected graph is A-connected for any abelian group of order |A| ≥ 4 and every 3-edge-connected graph is A-connected
for |A| ≥ 6. We obtain analogous results for signed graphs with slightly higher edge-connectivity.
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Theorem 4.1. Let G be a 2-unbalanced signed graph.
(i) If G is 4-edge-connected, then G is A-connected for any abelian group A with order |A| = 4 or |A| ≥ 6.
(ii) If G is 6-edge-connected, then G is A-connected for any abelian group A with order |A| ≥ 4.

It is unknown whether every 4-edge-connected 2-unbalanced signed graph is Z5-connected or not.
Theorem 4.1 is a corollary of Theorem 4.3 below, together with a theorem of Raspaud and Zhu [13] on the number of edge

disjoint connected bases in highly edge-connected signed graphs.

Theorem 4.2 (Raspaud and Zhu [13]). Let (G, σ ) be a k-unbalanced signed graph. If G is 2k-edge-connected, then (G, σ ) has k
edge disjoint connected bases.

Theorem 4.3. Let (G, σ ) be a 2-unbalanced signed graph with orientation τ .
(i) If G has two edge disjoint connected bases, then (G, σ ) is A-connected for any abelian group Awith order |A| = 4 or |A| ≥ 6.
(ii) If G contains three edge disjoint connected bases, then (G, σ ) is A-connected for |A| ≥ 4.

To prove Theorem 4.3, we also need the following theorem due to Cheng et al. [2], which extends a Z2-flow to an integer-
valued 3-flow by adding an appropriate T -join to connect the support of Z2-flow.

Theorem 4.4 (Cheng et al. [2]). If a signed graph (G, σ ) is connected and admits a Z2-flow f1 such that supp(f1) = {e : f1(e) ̸= 0}
contains an even number of negative edges, then it also admits an integer-valued 3-flow f2 with supp(f1) = {e ∈ E(G) : f2(e) =

±1}.

A graph (signed graph) is even if the degree of each vertex is even. A graph (signed graph) is eulerian if it is even and
connected.

Theorem 4.5 (Xu and Zhang [18]). A connected signed graph (G, σ ) admits a nowhere-zero 2-flow if and only if it is eulerian and
contains even number of negative edges.

Now we are ready to prove Theorem 4.3.

Proof of Theorem 4.3. (i) Let A be an abelian group with order |A| = 4 or |A| ≥ 6. Let b ∈ Z(G, A). We will show that there
is a function f ∈ F∗(G, A) such that ∂ f = b. Let B1 and B2 be two edge disjoint connected bases of (G, σ ). Since (G, σ ) is
unbalanced, each Bi is a spanning tree (of ordinary graph) plus one additional edge to make a unique unbalanced circuit.

Pick x ∈ A∗. Let f2 ∈ F (G, A) with f2(e) = x if e ∈ E(G) − B1 and f2(e) = 0 if e ∈ B1. Then
∑

v∈V (G)∂ f2(v) = 2kx ∈ 2A for
some integer k, and so −∂ f2 + b ∈ Z(G, A). By Proposition 2.2, there is a function f1 ∈ F (B1, A) such that ∂ f1 = −∂f2 + b.

Denote E ′
= {e ∈ B1|f1(e) = 0}. For each e ∈ E ′, B2 + e contains a unique signed circuit, which is either a balanced circuit

Ce of (G, σ ), or a barbell of (G, σ ), consisting of two edge disjoint unbalanced circuits C1
e , C2

e and a path Pe (possibly of length
0) connecting the two circuits. Clearly, e ̸∈ E(Pe) if the signed circuit is a barbell. In the former case, let C(e) = Ce; in the later
case, let C(e) = C1

e ∪ C2
e . In any case, C(e) is an even subgraph with even number of negative edges, i.e. σ (C(e)) = 1.

Let G′
= △e∈E′C(e). Then G′ is an even subgraph of H = G[B2 ∪ E ′

] and thus admits a nowhere-zero Z2-flow. Since
σ (G′) =

∏
e∈E′σ (C(e)) = 1, G′ contains an even number of negative edges. Since H is connected, by Theorem 4.4, H admits a

3-flow f3 such that |f3(e)| = 1 if and only if e ∈ E(G′).
Pick y ∈ A∗ such that y ̸= ±x and 2y ̸= ±x. We first show that such y does exist. Obviously if |A| ≥ 6 or x = −x, such y

exist. If |A| = 4 and x ̸= −x, then A ∼= Z4, x = 1 or 3, and thus 2a ̸∈ {x,−x} for every element a ∈ A∗. Thus in each case, such
y does exist.

Let f = f1 + f2 + yf3. Then f (e) ∈ {x,±y, x ± y, x ± 2y} ⊆ A∗. Thus f ∈ F∗(G, A). Moreover, ∂ f = ∂ f1 + ∂ f2 = b. Therefore
(G, σ ) is A-connected.

(ii) The argument is very similar to that of (i). Because of the connected base B3, the graph G′ is connected and thus
by Theorem 4.5, it admits a nowhere-zero 2-flow. This would eliminate the constraint 2y ̸= ±x in the proof of (i). In the
following we give some details to show how to find such a connected graph G′.

Let B1, B2, B3 be three edge disjoint connected bases. Pick x ∈ A∗. We first define f2 ∈ F (G, A) such that f2(e) = x if
e ∈ E(G) − B1 − B3 and f2(e) = 0 otherwise. By Proposition 2.2, there is a function f1 ∈ F (B1, A) such that ∂ f1 = −∂ f2 + b.
Denote E ′

= {e ∈ B1|f1(e) = 0} ∪ B3. Then G′
= △e∈E′C(e) is connected since it contains the connected base B3. ■

Note that, in Theorem 4.1(ii), if ϵN = 2, then (G, σ ) does not contain three edge disjoint bases, but this case is easy. We
may switch (G, σ ) to an equivalent signed graph (G′, σ ′) with |E−

σ ′ (G′)| = 2. Then E+

σ ′ induces a 4-edge-connected ordinary
graph, which is A-connected for any |A| ≥ 4 by a theorem of Jaeger et al. [5]. By Lemma 3.3(i), (G′, σ ′) is A-connected for any
|A| ≥ 4, and so does (G, σ ) by Proposition 2.1(b).

4.2. Z3-connectedness

Z3-connectedness of ordinary graphs has been studied extensively (see [8,9]). The following is a basic property extended
from ordinary graphs to signed graphs, whose proof is straightforward by definition (see [8] for a similar proof for ordinary
graphs).
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Proposition 4.6. Let (G, σ ) be a 2-unbalanced signed graph. The following are equivalent.
(i) (G, σ ) is Z3-connected.
(ii) For any b ∈ Z(G,Z3), there exists an orientation τ such that, for every vertex v ∈ V (G),

d+

τ (v) − d−

τ (v) ≡ b(v) (mod 3).

(iii) For any b ∈ Z(G,Z3), there exists an orientation τ such that d+
τ (v) ≡ b(v) (mod 3) for every vertex v ∈ V (G).

The following proposition characterizes Z3-connected signed graphs with exactly two negative edges.

Proposition 4.7. Let (G, σ ) be a 2-unbalanced signed graph with E−
σ = {e1, e2}. Then (G, σ ) is Z3-connected if and only if

G − e1 − e2 is Z3-connected (as an ordinary graph).

Proof. ‘‘⇐’’ follows from Lemma 3.3(i). We are to show ‘‘⇒’’.
For every vertex v ∈ V (G), denote c(v) to be the number of half edges in E−

σ incident with v. Then we have
∑

v∈V (G)c(v) =

4. Note that c(v) ∈ {0, 1, 2, 3, 4} since negative loops are allowed in (G, σ ).
Let G′

= G − e1 − e2. For any zero sum boundary function b′ of G′, we will show there exists an orientation D′ of G′ such
that d+

D′ (v) − d−

D′ (v) ≡ b′(v) (mod 3) for every vertex v ∈ V (G′). Set b(v) = b′(v) − c(v) for every vertex v ∈ V (G). Then
b ∈ Z(G,Z3) and∑

v∈V (G)

b(v) ≡

∑
v∈V (G′)

b′(v) −

∑
v∈V (G)

c(v) ≡ −1 (mod 3).

Since (G, σ ) is Z3-connected and by Proposition 4.6(ii), there exists an orientation τ of (G, σ ) such that d+
τ (v) − d−

τ (v) ≡

b(v) (mod 3) for every vertex v ∈ V (G). It follows that
∑

v∈V (G)(d
+
τ (v) − d−

τ (v)) ≡ −1 (mod 3). Note that every sink edge
contributes 2 and every source edge contributes −2, while each positive edge contributes zero to the sum

∑
v∈V (G)(d

+
τ (v) −

d−
τ (v)). Thus, e1 and e2 are both oriented as source edges. Let D′ be the restriction of τ on E+

σ . Then, for every v ∈ V (G′),

d+

D′ (v) − d−

D′ (v) = d+

τ (v) − d−

τ (v) + c(v) ≡ b′(v) (mod 3).

Hence D′ is the orientation as desired. ■

The proof of the theorem of Lovàsz et al. [10] shows every graph obtained from 6-edge-connected graph deleting three
edges is still Z3-connected (see [17]). Therefore, we obtain the following result by Lemma 3.3(i).

Corollary 4.8. Every 6-edge-connected signed graph with ϵN ∈ {0, 2, 3} is Z3-connected.

The following theorem was proved by Zhu [22] for 3-unbalanced signed graph. In fact, we show it holds for all 2-
unbalanced signed graphs as a corollary of Corollary 4.8 and Lemma 3.3(i).

Theorem 4.9. Every 11-edge-connected 2-unbalanced signed graph is Z3-connected.

Proof. By Proposition 2.1(b) that A-connectedness is an invariant under switch operation, wemay assume that |E−
σ (G)| = ϵN .

Since (G, σ ) is a 11-edge-connected signed graph with minimal number of negative edges in the switch equivalent class,
|S ∩ E−

σ (G)| ≤
|S|
2 for each edge-cut S. Therefore E+

σ is 6-edge-connected and hence is Z3-connected by Corollary 4.8. By
Lemma 3.3(i), G is Z3-connected. ■

It would be interesting to reduce the edge-connectivity condition. We believe 6-edge-connectivity (or even 5) should be
able to guarantee Z3-connectedness for signed graphs.

Conjecture 4.10. Every 5-edge-connected 2-unbalanced signed graph is Z3-connected.

In particular, Conjecture 4.10, if true, would imply the conjecture of Jaeger et al. that every 5-edge-connected ordinary
graph isZ3-connected by Proposition 4.7, and thus implies Tutte’s 3-FlowConjecture by Kochol’s result in [7]. The next section
verifies Conjecture 4.10 for some families of signed graphs.

5. Group connectivity of some families of signed graphs

In this section, we study group connectivity of signed K4-minor free graphs and signed complete graphs. Specifically, by
applying the reductionmethod introduced in Section 3,wewill verify Conjecture 4.10 for 5-edge-connected signedK4-minor
free graphs, signed complete graphs, and signed k-trees with k ≥ 5.

Theorem 5.1. Every 5-edge-connected 2-unbalanced signed K4-minor free graph is A-connected for any abelian group A with
|A| ≥ 3.

Theorem 5.2. Every 2-unbalanced signed Kn with n ≥ 6 is A-connected for any abelian group A with |A| ≥ 3.
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Fig. 1. Non Z3-connected signed series–parallel graph and signed K5 .

An ordinary graph G is series–parallel if it can be obtained from K2 by a sequence of series and parallel extensions. Signed
series–parallel graphs are obtained from ordinary series–parallel graphs by assigning signatures. Kaiser and Rollová [6]
proved that every 2-unbalanced signed series–parallel graph admits a nowhere-zero 6-flow provided that it has a nowhere-
zero integer flow. It is known that a series–parallel graph is K4-minor free. Thus by Theorem 5.1, we have the following.
By the result of Xu and Zhang [18] on the equivalence of Z3-flow and integer 3-flow on 2-edge-connected signed graphs,
Theorem 5.1 strengthens Kaiser and Rollová’s 6-flow result to 3-flow if the edge connectivity increases to 5.

Theorem 5.3. Every 5-edge-connected 2-unbalanced signed series–parallel graph admits a nowhere-zero 3-flow.

Similarly Theorem 5.2 implies the following result by Máčajová and Rollová [12] on signed complete graph.

Theorem 5.4. Every 2-unbalanced signed Kn with n ≥ 6 admits a nowhere-zero 3-flow.

Let k ≥ 1 be an integer. A graph on n vertices is called a k-tree if either it is a clique with order n = k+ 1, or it is obtained
from a k-tree Tn−1 on n − 1 vertices by adding a new vertex which is adjacent to a k-clique of Tn−1, and is non-adjacent to
any of the other vertices of Tn−1. A signed k-tree is obtained from an ordinary k-tree by assigning signatures.

The following is an immediate corollary of Theorem 5.2 together with Lemma 3.3, which verifies Conjecture 4.10 for
signed k-trees.

Corollary 5.5. Every 2-unbalanced signed k-tree with k ≥ 5 is Z3-connected and thus admits a nowhere-zero 3-flow.

Remark. 1. In Theorem 5.1, the 5-edge-connectivity cannot be reduced to 4-edge-connectivity. Wu et al. [17] constructed
a 4-edge-connected 2-unbalanced signed K4-minor free graph which does not admit a nowhere-zero 3-flow (and hence is
not Z3-connected). See Fig. 1(a), where the thick lines represent negative edges.

2. It is proved by Lai et al. (see [8]) that every ordinary complete graph with at least 5 vertices is Z3-connected. However
not every 2-unbalanced signed K5 is Z3-connected. For example, the signed graph in Fig. 1(b) (the thick lines represents
negative edges) is not Z3-connected by Proposition 4.7.

5.1. Proofs of Theorems 5.1 and 5.2

The following lemma will be used in the proofs of Theorems 5.1 and 5.2.

Lemma 5.6. (i) [5] The circuit Cn of length n is A-connected if and only if n + 1 ≤ |A|.
(ii) [11] The wheel W4 and the graph G1 on 6 vertices in Fig. 2 are Z3-connected.
(iii) [3] Every K4-minor free simple graph has a vertex of degree at most 2.

Now we are ready to prove Theorem 5.1.

Proof of Theorem 5.1. Let (G, σ ) be a counterexample with V (G) minimum.Wemay assume |E−
σ (G)| = ϵN . Clearly, any K−t

1
is A-connected for |A| ≥ 3 and t ≥ 2. So |V (G)| ≥ 2 and |E+

σ | > 0.
Denote G0 to be the underlying ordinary simple graph of G. Since G0 contains no K4-minor, by Lemma 5.6(iii), G0 contains

a vertex of degree at most 2, say v. Since G is 5-edge-connected, there are at least three positive edges incident with v. Thus
there is a digon C2 with two positive edges containing v. By Lemma 5.6, the digon C2 is A-connected for |A| ≥ 3. By the
minimality of (G, σ ), G/vv1 is A-connected for |A| ≥ 3. Hence (G, σ ) is A-connected for |A| ≥ 3 by Theorem 3.1. ■
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Fig. 2. The graphs W4 and G1 .

Fig. 3. 16 nonisomorphic signed complete graphs on 6 vertices.

Let (G, σ ) be a signed graph and uv1, uv2 ∈ E(G). (G[u,v1v2], σ
′) is the signed graph obtained from (G, σ ) by deleting

uv1, uv2, keeping the sign of other edges and adding a new edge v1v2 with sign σ ′(v1v2) = σ (uv1)σ (uv2).
The lifting lemma below follows easily from the definition, and thus the proof is omitted.

Lemma 5.7 (Lifting). Let (G, σ ) be a 2-unbalanced signed graph and uv1, uv2 ∈ E(G). If (G[u,v1v2], σ
′) is a 2-unbalanced A-

connected signed graph, then (G, σ ) is A-connected.

Máčajová and Rollová classified all nonisomorphic signed K6 in [12].

Lemma 5.8 (Máčajová and Rollová [12]). There are 16 nonisomorphic signed complete graphs on 6 vertices, depicted in Fig. 3.

Proposition 5.9. Every 2-unbalanced signed K6 is A-connected for any A with |A| ≥ 3.

Proof. Since a circuit of length 2 or 3 is an A-connected ordinary graph for |A| ≥ 4 by Lemma 5.6(i), it is easy to check E+
σ is

A-connected for |A| ≥ 4 for each of them. By Lemma 3.3(i), every 2-unbalanced signed K6 is A-connected for |A| ≥ 4. We are
to verify Z3-connectedness below.

(1)–(10) are Z3-connected since E+
σ is Z3-connected and spanning and by Lemma 3.3(i). In particular, for E+

σ in (4) or (8),
it is either isomorphic to G1 or contains G1 as a spanning subgraph. By Lemma 5.6(ii), G1 is Z3-connected, and so (4) and (8)
are Z3-connected by Lemma 3.3(i).

For the rest, we apply lifting lemma to show Z3-connectedness by lifting two negative edges to obtain an extra positive
edge. For (11), lift v1v2, v2v3 to obtain a graph G′

= G[v2,v1v3]. By Lemmas 3.2 and 5.6(i), E ′+

σ ′ is Z3-connected by contracting
2-cycles consecutively. So, by Lemmas 3.3(i) and 5.7, (11) is Z3-connected.
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For (12), lift v1v2, v2v3 to obtain a graph G′
= G[v2,v1v3], and then lift v4v5, v5v6 to obtain a graph G′′

= G′

[v5,v4v6]
. Then G′′

is Z3-connected with ϵN = 2 since E ′′+

σ ′′ is isomorphic to G1. Hence (12) is Z3-connected by Lemmas 3.3(i) and 5.7.
For (13) and (14), lift v1v6, v5v6 to obtain a graph G′

= G[v6,v1v5]. By Lemmas 3.2 and 5.6(i), E ′+

σ ′ is Z3-connected by
consecutively contracting 2-cycles. Then G′ is a 2-unbalanced Z3-connected signed graph, and so (13) and (14) are Z3-
connected by Lemma 5.7. This completes the proof. ■

Proof of Theorem 5.2. Prove by induction on n. It is true for n = 6 by Proposition 5.9. Assume n ≥ 7 and the statement is
true for any positive integers smaller than n. Let (G, σ ) be a 2-unbalanced signed Kn. Wemay further assume ϵN (G, σ ) = |E−

σ |

as A-connectedness is invariant under switch operation by Proposition 2.1(b). If ϵN (G, σ ) = 2, then (G, σ ) is A-connected
for |A| ≥ 3 as E+

σ is A-connected and by Lemma 3.3(i). Otherwise, assume ϵN (G, σ ) ≥ 3. Let v be a vertex in G such that the
number of negative edges incident with v minimum. Then G − v is 2-unbalanced. So G − v is A-connected for |A| ≥ 3 by
induction hypothesis. Therefore, by applying Lemma 3.3(ii), (G, σ ) is A-connected for |A| ≥ 3. The proof is completed. ■
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