Enabling Multiple Applications to Simultaneously Augment
Reality: Challenges and Directions

Kiron Lebeck, Tadayoshi Kohno, Franziska Roesner
University of Washington
{kklebeck,yoshi,franzi}@cs.washington.edu

ABSTRACT

Augmented reality (AR) platforms are evolving to support immer-
sive 3D experiences. Most modern AR platforms support only a
single immersive app at a time, but users may also benefit from the
ability to engage with multiple apps at once. The ability of differ-
ent apps to simultaneously augment a user’s world raises critical
questions: how might apps visually conflict with each other, and
how can we design AR platforms to support rich behaviors while
mediating conflicts? In this work, we pose and explore these ques-
tions, identifying means of visual conflict as well as platform design
strategies to mediate conflicts. We then analyze state-of-the-art AR
platforms (HoloLens, Magic Leap One, and Meta 2) to understand
their trade-offs and identify unexplored gaps in the broader design
space. Our exploration reveals key guidelines and lessons to inform
future multi-app AR efforts.

ACM Reference Format:

Kiron Lebeck, Tadayoshi Kohno, Franziska Roesner. 2019. Enabling Multiple
Applications to Simultaneously Augment Reality: Challenges and Directions.
In The 20th International Workshop on Mobile Computing Systems and Appli-
cations (HotMobile ’19), February 27-28, 2019, Santa Cruz, CA, USA. ACM,
New York, NY, USA, 6 pages. https://doi.org/10.1145/3301293.3302362

1 INTRODUCTION

Augmented reality (AR) is ushering in a new era of immersive
computing, with devices that can understand a user’s physical world
and blend 3D content into the user’s view of the world. However,
most modern AR platforms do not allow users to engage with
multiple immersive apps simultaneously, and those that provide
multi-app support still have significant limitations. Consider a user
who wishes to engage with multiple apps while walking in a city,
such as an AR navigation app [5], an AR game [11], and social
apps that augment nearby people, e.g., by displaying their names
above their heads or 3D masks over their faces. On a single-app
platform, the user can only view and interact with one app at a
time. By contrast, a multi-app platform could allow the user to shift
their attention between apps — for example, periodically glancing
at directions without closing their game, while still seeing social
overlays on nearby people.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HotMobile ’19, February 27-28, 2019, Santa Cruz, CA, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6273-3/19/02...$15.00
https://doi.org/10.1145/3301293.3302362

Realizing the vision of multi-app AR will require identifying and
overcoming new challenges that stem from the unique capabilities
of AR platforms. In particular, rather than sharing the blank canvas
of a traditional computer screen and displaying content within
isolated windows, the output of immersive AR apps will exist atop
the backdrop of the user’s ever-changing world. These apps may
need to dynamically update their outputs in response to changes in
the user’s physical environment while simultaneously displaying
content alongside each other, raising fundamental questions: how
might immersive AR apps visually conflict with each other, and how
can multi-app AR platforms allow different apps to simultaneously
augment their shared world while mediating conflicts?

Prior AR-related efforts [1, 8, 9, 13] primarily focused on indi-
vidual apps negatively influencing users’ perceptions of the real
world, rather than on visual conflicts between multiple apps. We
currently lack a foundation for reasoning about these conflicts or
understanding the design challenges involved with supporting mul-
tiple immersive apps. In this work, we provide such a foundation by
conducting an intellectual investigation into the multi-app AR de-
sign space, deferring implementation and experimental evaluations
to future work. Specifically, we contribute the following:

1. Problem Identification: We identify the need to view the design
space of multi-app AR platforms with a critical eye towards
visual conflicts that may occur between the output of different
apps.

2. Design Space Exploration: We introduce a broad categorization
of approaches for multi-app AR platforms to handle conflicts,
and we uncover key trade-offs presented by different design
strategies.

3. AR Platform Analysis: We analyze the multi-app capabilities
of modern AR platforms to understand how they fit into the
broader design space.

4. Future Directions: Through our exploration and analysis, we
identify promising directions for future work. For example,
we encourage future work to implement and evaluate key
concepts set forth in this paper.

2 MOTIVATION

We begin with case study scenarios that highlight the possibilities
of multi-app AR, including risks that users may face from visual
interactions between apps.

Tourism. Alice uses Tour GUIDE while on vacation, which displays
floating icons above landmarks that she can select to read more
information. RESTAURANT ASSISTANT displays food safety and cus-
tomer ratings above nearby restaurants, which Alice can select to
read detailed reviews and menu options. NAVIGATION guides Alice
as she walks to a new destination by displaying directional arrows

on the ground, and for entertainment, an immersive POKEMON game
blends interactive 3D characters into Alice’s physical environment.
Unfortunately, multiple POKEMON characters inadvertently stand
atop Alice’s NAVIGATION arrows on the ground and prevent Alice
from seeing her directions. At the same time, Tour GUIDE has an
endorsement contract with a local café, and to discourage Alice
from eating elsewhere, it displays fake negative ratings above other
eateries that block the true ratings of RESTAURANT ASSISTANT.

Social Gatherings. Bob is attending a festival with friends and wishes
to connect with other attendees. SociaL MEDIA AR recognizes
nearby people in Bob’s extended network and displays their names,
mutual friends, and common interests above their heads. Since Bob
is interested in romantic connections, he also uses AR DATING,
which computes compatibility scores of other users, highlights
them, and displays the scores above their heads. Finally, Bob and
his friends use IMMERSIVE SNAPCHAT FILTERS to modify each other’s
appearances in fun ways, such as overlaying humorous costumes.

Bob notices that a friend-of-a-friend is also identified as a poten-
tial romantic connection, with SociAL MEDIA AR and AR DATING
both displaying information above their head. However, content
from both apps appears jumbled atop each other, and Bob cannot
disambiguate content from either app. AR DATING also identifies
other potential partners near Bob, but since SNAPCHAT has already
displayed full-body filters over them, AR DATING cannot highlight
them.

The Workplace. Carol and her colleagues use AR to improve pro-
ductivity at work, with CoLLABORATIVE WORKSPACE allowing them
to interact with shared 3D models and virtual whiteboards both
in the office and remotely. COLLEAGUE AsSISTANT displays helpful
reminders that float next to Carol’s coworkers (such as upcom-
ing meetings or recent emails), and AR CHAT allows Carol to stay
connected with her team by displaying real-time messages that
float next to her. Finally, AR ART lets Carol easily personalize her
workspace with virtual paintings, sculptures, and other artwork.

Carol finds COLLEAGUE AssISTANT helpful, but the app is compro-
mised and intentionally positions its reminders to obscure AR CHAT
messages. While AR ArT improves Carol’s workplace ambiance,
the app is buggy and creates 3D objects that interfere with Cot-
LABORATIVE WORKSPACE. Since there is no indication that AR ArT
created these objects, Carol believes COLLABORATIVE WORKSPACE
to be malfunctioning and disables it. Additionally, when an AR
CHAT message moves atop an AR ART piece on Carol’s desk, the
art is “knocked” to the ground.

A New Output Paradigm. The above scenarios raise a funda-
mental question: can a multi-app AR platform support the diverse
needs of immersive apps while also mitigating negative interac-
tions between them? As with apps on other computing platforms,
immersive AR apps may compete for resources such as memory,
CPU cycles, and network bandwidth. What sets these apps apart
are their output needs.

Consider a traditional desktop app, such as a video game, text
editor, or web browser. The outputs of these apps exist within inde-
pendent windows, and the behavior of these apps does not depend
upon the precise placement of their windows on the computer
screen (i.e., the user could reposition any of the windows and the

apps would behave the same). However, in AR, the behavior of an
app may depend directly on how its outputs are positioned in the
context of the user’s world. For example, the efficacy of Alice’s Nav-
IGATION app depends upon the app’s ability to precisely position
directional arrows on the ground, and Bob’s AR DATING and So-
cIAL MEDIA AR apps must be able to place overlays above specific
people’s heads. Furthermore, on a traditional desktop display, all
content shown on screen is controlled directly by either apps or
the OS. By contrast, users will view AR apps atop the backdrop
of the physical world rather than a blank screen. This external
environment may change unpredictably, introducing variability
that AR apps may need to contend with. For example, apps may
need to dynamically update their outputs in response to changes in
the user’s world itself (e.g., AR DATING must update the locations
of its overlays as people move throughout Bob’s field of view), as
well as changes in the user’s own position within the world (e.g.,
NAVIGATION must appropriately place new arrows on the ground
as Alice walks around and changes directions). AR presents a new
output paradigm from traditional displays, creating new challenges
that will require novel solutions.

Threat Model. In this work, we focus on the conflicts that stem
from visual interactions between immersive AR apps, leaving a
discussion of additional output modalities (e.g., audio) for Section 5.
Furthermore, we focus on users’ perceptions of AR content rather
than their interactions with apps. Output conflicts may lead to harm-
ful user interactions (e.g., AR “clickjacking"), but such issues depend
on the specific input capabilities provided by an AR platform, which
we consider out of scope.

Our threat model encompasses both apps that are malicious, as
well as apps that are honest-but-buggy and do not intentionally seek
conflict. We begin by considering a broad space of visual conflicts
that may arise, including the following:

e Occlusion. The output of one app might block the user from
seeing that of another. For example, Alice, Bob, and Carol all
encounter occlusion above. We exclude situations where the
user intentionally positions one app’s content to occlude other
apps, focusing on occlusion events that arise in the absence
of user intent.

o Placement Denial. By occupying a particular space, one app
might prevent another from generating content. For example,
Bob’s SNAPCHAT app prevents AR DATING from highlighting
certain individuals, by occupying the space around them with

full-body filters.

o Eviction. By moving content into a space occupied by another
app, an offending app might cause the victim’s content to be
removed or displaced, as Carol experiences when AR CHAT
knocks an AR ART object to the ground.

e Masquerading. One app might generate content that is mis-
taken for that of another. For example, Carol mistakenly per-
ceives buggy output from AR ART as output from CoLLABO-
RATIVE WORKSPACE.

e Content Modification. As we will see in Section 3.2, certain
conflict mediation mechanisms may modify the visual prop-
erties of app outputs, e.g., by adjusting transparency. Such
approaches raise an additional threat: one app may be able

to induce changes in the visual properties of another app’s
content.

3 DESIGN SPACE EXPLORATION

We now turn to our design exploration of multi-app AR platforms,
asking: how can these platforms mediate visual conflicts between
apps, and what are the trade-offs associated with different design
alternatives? We consider the ability of an AR platform to meet the
following criteria while remaining resilient to the above-mentioned
conflicts:

o Support for Multiple Applications. Does the platform allow
multiple apps to run simultaneously?

o Full Output Autonomy. Does the platform give apps full control
over the placement of their outputs in 3D space?

o Some Output Autonomy. Does the platform give apps at least
some positional control over their outputs?

e Limited User Burden. Does the platform require limited or no
user involvement in managing output?

o Limited Developer Burden. Does the platform limit the need
for app developers to handle unexpected interactions with
other apps?

Figure 1 summarizes key trade-offs that characterize the design
paths we discuss throughout this section.

3.1 Display Abstractions

The interface that an AR platform provides to apps for display-
ing content determines the space of available output behaviors.
Consider the following:

Single-App. Inter-app conflicts cannot occur if only one app can
display content at a time. While this approach is at odds with our
goal of supporting multiple apps, it is the only design in Figure 1 to
meet every other goal and may suffice for individual apps requiring
the user’s undivided attention.

Windows. One method for preventing output conflicts is to confine
apps to separate regions of space — a 3D analogue of the window ab-
straction used by desktop PCs. We consider a model where windows
are controlled by the user and cannot be created or repositioned
autonomously by apps. These properties allow windows to visually
isolate apps from each other, but in doing so, they trade-off the
ability for apps to dynamically generate content throughout the
user’s world. While our prior work argued for the insufficiency
of windows in AR due to such flexibility limitations [8], we find
their viability actually depends upon the needs of specific apps. For
example, Carol’s AR CHAT, AR ART, and other apps naturally fit
within bounded spaces, but Alice’s PokEMON and NAVIGATION apps
require more dynamic output capabilities.

Shared World. The final model we consider is a shared world that
allows multiple apps to simultaneously display content throughout
the user’s environment. This approach stands in contrast to win-
dows, sacrificing visual isolation to give apps the flexibility to place
AR content wherever they wish. As a result, one app may draw
in the same space as another app or otherwise occlude that app’s
output. We explore strategies for addressing such conflicts below.

3.2 Managing Output in a Shared World

When considering how to manage output conflicts in a shared
world, we must first determine who should shoulder this burden.
Thus, we explore opportunities for the OS, apps themselves, or the
user to take on this responsibility. While we present these design
paths individually, we note that they may be combined to manage
output in different ways.

3.2.1 OS-ENFORCED CONFLICT MEDIATION

As discussed above, giving apps the freedom to place content
wherever they wish may lead to occlusion conflicts. We thus begin
with two complementary design paths that enable the OS to pre-
vent occlusion. These designs leverage the AR object abstraction
proposed in our prior work [8]. AR objects are OS-managed primi-
tives that encapsulate AR output — for example, a single PokEmMoN
character would be one AR object. The OS can modify the visual
properties of AR objects (e.g., position or transparency) to prevent
occlusion. Specifically, we introduce the following approaches:

1. Runtime Policies. The OS prevents occlusion by observing vi-
sual interactions between AR objects at runtime and enforcing
policies that modify them in response. For example, the OS
could observe when one of Alice’s POKEMON objects occludes
a NAVIGATION arrow and turn the PokEMON object partially or
fully transparent to ensure that NAVIGATION’s arrow remains
visible.

2. Declarative Output. The OS provides apps with a language to
abstractly indicate their output needs, but it controls how these
needs are met to prevent occlusion. For example, Bob’s AR
DATING and SociAL MEDIA apps could request to display con-
tent above someone’s head, and the OS would determine an
appropriate layout. Similarly, Alice’s RESTAURANT ASSISTANT
app could place virtual signs in front of restaurants without
controlling the precise 3D coordinates of these objects.

Trade-off: Intelligent Mediation vs. App Freedom. Runtime
policies only allow the OS to identify occlusion after it has occurred,
and they provide no contextual information about how the OS
should respond to individual conflicts. By contrast, declarative
output ensures that apps do not conflict in the first place, and by
capturing the high-level needs of apps, it gives the OS the ability
to intelligently respond to app requests. Consider AR DATING and
SociaL MEDIA from above. If the OS understands that both apps
are attempting to augment the same person’s head, it could (for
example) arrange content so that both apps are visible above the
person’s head, rather than making one app’s objects invisible.

In providing more effective mediation capabilities, declarative
output trades off the ability to support fine-grained object place-
ment for apps. Declarative output naturally caters to apps that can
specify their output needs in terms of high-level visual relation-
ships to physical-world objects, such as AR DaTiNG. However, this
approach does not lend itself to apps such as Alice’s POKEMON game,
which needs to create and move characters at precise 3D locations
in Alice’s world. For apps such as PoxEMoN that cannot operate
under a declarative model, runtime policies provide the OS with a
potential fallback mechanism for mediating conflicts.

Output Conflicts Functionality Goals
& o o PR o go® a0 2%
oo® e«\le‘\ ot 9@ 00“'?0 00| TR \O° o S \9\)\ W et we® a
o ?\aco,e“\a\ i W “\O&K\Qa W ?\;\\)‘oﬁo :\\;O“O«\‘l \:G(ao‘ \,\‘(‘\%\)‘c\a

. g Single App v v v v v N Y Y Y Y
© = .
é— 8 Windows “ “ V X V Y N N N Y
0 § Shared World X v v X v Y Y Y Y Y
o |ggowm Y |V YV X X | Y N Y ¥ N
£ €2 o
= S5 eawu * v X X v Y N Y Y N
o2 :
§)§ %g E:\:};Eteflned V X V X V Y N Y Y N
g 83
c @ 8° P v v X X v Y N Y Y N
=8
50 Mg K ¥V ¥V X vV Y Y Y Y N
S omu o v v v X v | Y N | Y | N N

Figure 1: Potential design paths for multi-app AR platforms. Check marks indicate that a design can prevent a conflict; stars indicate that the
conflict is prevented when apps are trusted; and Xs indicate that a design cannot prevent the conflict.

Preventing Occlusion Can Enable New Conflicts. Preventing
occlusion in a shared world fundamentally requires the OS to con-
strain the output behaviors of apps. In doing so, the OS may enable
new forms of conflict. Recall the example runtime policy in which
Pok£MON’s object is made transparent when it occludes NaviGa-
TION’s arrow. This policy allows NAVIGATION to induce visual mod-
ifications in POKEMON’s objects by placing arrows behind them. A
declarative approach can also enable new conflicts — for example,
the OS may deny an app’s request to display content if it cannot de-
termine an acceptable layout that would accommodate this request
without causing occlusion.

As another cautionary example, consider a least-recently-used
(LRU) mechanism that identifies overlapping objects and removes
those that the user has interacted with least recently. When applied
as a runtime policy or declarative output tool, an LRU mechanism
enables even well-intentioned apps to inadvertently evict each other.
Furthermore, a malicious app could leverage an LRU runtime policy
to probe for the locations of other apps’ objects by observing when
its own objects are evicted, using this information to surround a
victim app’s objects and occlude them.

Limitation: Conflict Identification. A limitation of any OS-driven
approach is that the OS may not be able to unilaterally decide which
visual interactions are problematic. If the OS can determine a prior-
itization ordering for different apps, it can potentially decide which
apps to act upon when mediating conflicts, whether it employs
runtime policies, declarative output, or another strategy. However,
the notion of what constitutes a conflict may not always be obvious,
nor the decision of which app should receive priority. Note that
we previously explored the idea of OS-enforced runtime policies
in prior work [9]. However, that work focused primarily on visual
conflicts between AR objects and real-world objects, where the real

world was assumed to take priority, and it did not deeply consider
the viability of runtime policies for resolving multi-app conflicts.

3.2.2 APPLICATION SELF-MANAGEMENT

We next consider the potential for apps to collaborate in avoiding
conflicts by sharing information with one another and reacting to
each other’s requests. For example, if Alice’s NAVIGATION app could
provide the 3D locations of its directional arrows to PokEmon and
request that PokEMON not occlude them, then PokEmon could
adjust its behavior while still providing the user with the same
overall experience.

Application self-management allows apps to retain control over
their outputs and respond to conflicts in predictable ways, in con-
trast to OS-enforced policies that impose external modifications
on app content. The consequence of giving apps this level of con-
trol is that self-management is only viable under a threat model
where apps are trusted to avoid interfering with each other given
the information to do so (e.g., on a closed platform running well-
vetted apps that are designed to cooperate). A malicious app could
leverage any additional information given to it about other apps to
attack them — for example, if PoxEMoON was malicious and learned
precisely where NAVIGATIONs arrows were, it could strategically
generate objects that occlude those arrows.

3.2.3 USER-MANAGED OUTPUT

Ultimately, the user may be best positioned to determine which
conflicts are detrimental to their own AR experience. Thus, the final
design path we explore is one that leaves mediation to the user’s
discretion. An AR platform could provide the user with different
tools for this task — for example, to demote problematic apps to
more restrictive states (e.g., confining them to windows), to delete

(a) Microsoft HoloLens

(b) Meta 2

(c) Magic Leap One

Figure 2: Multi-app photos from three AR headsets, taken with an iPhone 6 through the lens of each device.

individual AR objects, or to provide apps with behavioral cues (e.g.,
to instruct an app to avoid displaying content in specific spaces).
The OS also has an opportunity to inform the user’s actions by
enabling the user to easily discern potential conflicts. Recall Carol’s
CoLLABORATIVE WORKSPACE app — Carol believed this app to be
misbehaving, but the OS could inform her that the problematic ob-
ject came from another app. Furthermore, the user may be unaware
that certain conflicts have actually occurred. For example, unbe-
knownst to Alice, her Tour GUIDE app displayed fake restaurant
ratings that hid the overlays of RESTAURANT AsSISTANT. The OS
could identify such visual interactions and provide Alice with this
information so that she can act according to her wishes.

3.3 Summary

Identifying and mediating visual conflicts between AR apps is chal-
lenging, and different design strategies present varying trade-offs,
as showcased in Figure 1. Our key insight is that any output media-
tion technique will infringe upon app functionality, and the precise
nature of this infringement differs between design paths. Addition-
ally, we observe that different techniques will be appropriate under
different trust models, and our exploration highlights the potential
for malicious apps to abuse well-intentioned capabilities.

4 AR PLATFORM ANALYSIS

In this section, we analyze the Microsoft HoloLens, Meta 2, and
Magic Leap One AR headsets, asking: how do they fit into the
broader design space above, and what unexplored directions may
warrant further investigation? Each platform supports an immer-
sive single-app mode that aligns with the first row of Figure 1, and
we thus focus our analysis on the platforms’ multi-app modes. Fig-
ure 2 depicts multi-app photos that we took through the lens of
each device.

HoloLens. The HoloLens’s multi-app mode supports Universal
Windows Platform (UWP) apps, which run within 2D windows
placed in 3D space by the user (Figure 2a). UWP apps run across
different Microsoft platforms, providing a familiar interface for both
users and developers. The window abstraction sacrifices support
for immersive output to allow the HoloLens to enforce strong visual
isolation between apps.

Meta 2. The Meta 2’s multi-app mode is similar to that of the
HoloLens, employing 2D windows placed in 3D space by the user
(Figure 2b). The device tethers to a desktop PC and supports virtual
“computer monitors" that enable the user to interact with their
desktop’s apps within AR windows.

Magic Leap One. By contrast, the Magic Leap One’s multi-app
mode supports multiple 3D apps at once. Apps may create “prisms” —
bounded 3D regions in which they can display content. To probe
the capabilities of prisms, we built multiple apps that display simple
geometric shapes, and we ran two simultaneously. Figure 2c depicts
two such apps: one displays a cube within a prism, and the other
displays a sphere within a separate prism.

Prisms can be placed by the user, but we discovered that prisms
from different apps are created atop each other by default. Apps
can specify their prisms’ sizes, but we could not determine if they
can also control prism positions. If an app can control prism sizes
and positions, then prisms act as a form of a shared world with-
out conflict mediation mechanisms. As shown in Figure 2c, this
design enables occlusion conflicts to occur. Furthermore, note that
the cube and sphere are interleaved in 3D space, rather than one
app receiving explicit rendering priority. Combining output from
different apps in this way does not make intuitive sense from a
user’s perspective, suggesting that this occlusion is not intended
behavior. We note that the Magic Leap developer guidelines suggest
that prisms are intended to act as well-defined 3D windows, but
this intention is not enforced by the platform.

5 DISCUSSION

Our design exploration and analysis establish a foundation for
understanding and addressing key multi-app AR challenges. Here,
we identify promising avenues for future work.

Output Management Techniques. Our analysis reveals a nascent
multi-app landscape among today’s AR platforms. Critically, no
platform provides a shared world abstraction endowed with addi-
tional conflict mediation capabilities. Of the mediation strategies
captured in Figure 1, we believe that declarative output is the most
compelling path for further exploration. A declarative approach can
prevent output conflicts even with malicious apps, and it strikes a
balance between app flexibility and conflict mediation. The OS can
handle app requests in a more predictable manner than runtime
policies allow, and apps can exercise more immersive behaviors
than a windowed display abstraction supports. Furthermore, this
approach does not impose the burden of output management on
users. Even though declarative output cannot support apps that
require arbitrary 3D placement, it is well-suited for apps tasked
with augmenting specific real-world objects (e.g., TourR GUIDE and
AR DATING).

Going forward, we propose that future work should validate the
conceptual directions laid out in this work, by investigating the

viability of declarative output (as well as the other above-mentioned
output management techniques) in greater depth. One path would
be to build a multi-application AR platform that supports different
mediation strategies, and to evaluate these strategies along a num-
ber of axes — for example, the performance overheads that each
technique imposes on applications; the ability of these techniques
to effectively resolve output conflicts; the functionality limitations
they place on application behaviors; and the burdens they place on
both developers and users. Evaluating these criteria will better illu-
minate the trade-offs presented by different design paths, and will
confirm (or contradict) our initial intuition regarding declarative
output as the most promising path forward.

Non-Visual Output. While this work lays a foundation for ad-
dressing conflicts between AR applications in terms of visual out-
put, AR platforms may provide additional output modalities as well,
such as aural or haptic feedback. Future work should investigate
conflicts that may arise between AR apps in terms of non-visual
output, determine if and where design strategies for preventing
visual conflicts can be adapted to non-visual settings, and identify
areas where new approaches will be required. Additionally, future
work should consider opportunities for AR platforms to leverage
combinations of multiple output modalities to mediate conflicts
(e.g., by incorporating both aural and visual cues to help users
contend with visual conflicts between apps).

Understanding User Perceptions of Conflict. Determining the
visual interactions that users find problematic can inform defensive
efforts, particularly for conflicts that cannot be fully prevented. For
example, as suggested in Figure 1, no design can truly prevent mas-
querading, which depends upon users’ perceptions of AR content.
An AR platform can attempt to prevent masquerading, just as early
windowing systems employed labeling techniques to indicate the
origins of different windows (e.g., [3]). However, a user may still
incorrectly perceive the origin of AR content. Future work is thus
needed to identify design strategies that effectively engage the user
and minimize the impacts of such conflicts.

6 RELATED WORK

Our analysis reveals limited multi-app support on today’s AR plat-
forms. Researchers have previously proposed AR systems that sup-
port multiple apps, but they have not rigorously explored the design
space or reasoned about conflicts that may arise. Argon [10] in-
stantiates a shared world with overlapping full-screen, transparent
windows for different apps, without conflict mediation. By contrast,
Studierstube [15] confines app outputs to bounded 3D windows
controlled by the user. Earlier non-AR efforts also considered secure
windowing (e.g., [3]), but as discussed, AR raises new challenges.

Researchers have also studied security and privacy for AR more
generally [2, 13]. Prior works consider output security (e.g., [1, 2,
8,9, 13]), focusing on ways that AR apps could negatively impact
users’ views of the world. Our work instead explores visual conflicts
between apps. Other efforts address input privacy, or preventing
apps from accessing sensitive information in a user’s environment
(e.g., [4,6,7,12, 14, 16, 17]) — our work is complementary.

7 CONCLUSION

Immersive multi-application AR platforms can enable users to in-
teract with apps that simultaneously blend digital content into the
physical world. However, AR apps may visually conflict with each
other as they navigate the dynamically-changing environment of
the user’s world. In this work, we identify the challenges of medi-
ating visual conflicts between apps without unduly infringing on
their intended behaviors. We explore the design space of multi-app
AR platforms and uncover key trade-offs presented by different
design alternatives. We then analyze the design choices of cur-
rent AR platforms and identify promising opportunities for future
work. Our lessons lay a foundation to guide multi-application AR
efforts, and we encourage future work to implement and evaluate
the directions set forth in this paper.

ACKNOWLEDGMENTS

We thank Niel Lebeck and Earlence Fernandes for many helpful
discussions and feedback on earlier drafts. We also thank our anony-
mous reviewers and our shepherd, Mahadev Satyanarayanan, for
their valuable guidance and feedback. This work was supported in
part by the National Science Foundation under Award CNS-1651230.

REFERENCES

[1] S. Ahn, M. Gorlatova, P. Naghizadeh, M. Chiang, and P. Mittal. Adaptive fog-
based output security for augmented reality. In Morning Workshop on Virtual
Reality and Augmented Reality Network, 2018.

[2] L. D’Antoni, A. Dunn, S. Jana, T. Kohno, B. Livshits, D. Molnar, A. Moshchuk,
E. Ofek, F. Roesner, S. Saponas, M. Veanes, and H. J. Wang. Operating system
support for augmented reality applications. In HotOS, 2013.

[3] J. Epstein, J. McHugh, R. Pascale, C. Martin, D. Rothnie, H. Orman, A. Marmor-
Squires, M. Branstad, and B. Danner. Evolution of a trusted b3 window system
prototype. In IEEE Computer Society Symposium on Research in Security and
Privacy, 1992.

[4] L.S. Figueiredo, B. Livshits, D. Molnar, and M. Veanes. Prepose: Privacy, security,
and reliability for gesture-based programming. In IEEE Symposium on Security
and Privacy, 2016.

[5] https://www.theverge.com/2018/5/8/17332480/google-maps-augmented-
reality-directions-walking-ar-street-view- personalized-recommendations-
voting.

[6] S. Jana, D. Molnar, A. Moshchuk, A. M. Dunn, B. Livshits, H. J. Wang, and
E. Ofek. Enabling fine-grained permissions for augmented reality applications
with recognizers. In USENIX Security Symposium, 2013.

[7] S.Jana, A. Narayanan, and V. Shmatikov. A scanner darkly: Protecting user
privacy from perceptual applications. In IEEE Symposium on Security and Privacy,
2013.

[8] K. Lebeck, T. Kohno, and F. Roesner. How to safely augment reality: Challenges
and directions. In HotMobile, 2016.

[9] K.Lebeck, K. Ruth, T. Kohno, and F. Roesner. Securing augmented reality output.
In IEEE Symposium on Security and Privacy, 2017.

[10] B. MacIntyre, A. Hill, H. Rouzati, M. Gandy, and B. Davidson. The argon AR web

browser and standards-based AR application environment. In ISMAR, 2011.

1] https://www.pokemongo.com/.

[12] N.Raval, A. Srivastava, A. Razeen, K. Lebeck, A. Machanavajjhala, and L. P. Cox.
What you mark is what apps see. In MobiSys, 2016.

[13] F.Roesner, T. Kohno, and D. Molnar. Security and privacy for augmented reality
systems. Communications of the ACM, 57(4), 2014.

[14] F. Roesner, D. Molnar, A. Moshchuk, T. Kohno, and H. J. Wang. World-driven
access control for continuous sensing. In ACM Conference on Computer & Com-
munications Security, 2014.

[15] D. Schmalstieg, A. Fuhrmann, G. Hesina, Z. Szalavari, L. M. Encarnagao, M. Ger-
vautz, and W. Purgathofer. The studierstube augmented reality project. Presence:
Teleoperators & Virtual Environments, 11(1), 2002.

[16] R.Templeman, M. Korayem, D. J. Crandall, and A. Kapadia. Placeavoider: Steering
first-person cameras away from sensitive spaces. In Network and Distributed
System Security Symposium, 2014.

[17] J. Vilk, D. Molnar, B. Livshits, E. Ofek, C. Rossbach, A. Moshchuk, H. J. Wang,
and R. Gal. Surroundweb: Mitigating privacy concerns in a 3D web browser. In
IEEE Symposium on Security and Privacy. IEEE, 2015.

[

