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The observation of neutron stars with masses greater than one solar mass places severe demands on any
exotic neutron decay mode that could explain the discrepancy between beam and bottle measurements of
the neutron lifetime. If the neutron can decay to a stable, feebly interacting dark fermion, the maximum
possible mass of a neutron star is 0.7M⊙, while all well-measured neutron star masses exceed oneM⊙. The
existence of 2M⊙ neutron stars further indicates that any explanation beyond the standard model for the
neutron lifetime puzzle requires dark matter to be part of a multiparticle dark sector with highly constrained
interactions. Beyond the neutron lifetime puzzle, our results indicate that neutron stars provide unique and
useful probes of GeV-scale dark sectors coupled to the standard model via baryon-number-violating
interactions.
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The neutron lifetime anomaly, the discrepancy in the
beam [1,2] vs bottle [3–9] measurements of the lifetime of
the neutron, is a long-standing puzzle [10,11]. Briefly, the
bottle technique, an inclusive measurement of the neutron
lifetime, yields τbottle ¼ 879.6� 0.6 s, which is discrepant
at the 4σ level with the exclusive measurement of the
neutron lifetime via beam experiments, τbeam ¼ 888.0�
2.0 s [12]. In a recent Letter, Fornal and Grinstein [13]
made the intriguing suggestion that new decay channels of
the neutron n, in particular,

n → χ þ γ; n → χ þ eþe−; n → χ þ ϕ; ð1Þ
where χ is a dark matter fermion, ϕ is a dark matter boson,
and γ is a photon, could explain the shorter lifetime in the
bottle experiments. The amplitude for these processes must
be sufficiently large to allow a rate of Γ ∼ 10−5 s−1 to
explain the bottle-beam anomaly. This resolution to the
neutron decay puzzle faces a number of challenges. The
n → χ þ γ decay mode has been tested in a recent experi-
ment [14] that excluded all branching ratios that could
account for the lifetime anomaly. In addition, Ref. [15]
argues that recent measurements of the axial renormaliza-
tion constant gA likely point to a shorter standard model
(SM) lifetime of the neutron, more in line with the bottle
results.
With this suggestion in mind, we show that neutron stars

are powerful laboratories to test proposed dark decays of

baryons. The conversion of baryons to dark fermions
through processes of the form in Eq. (1) lead, in the
absence of strong self-interactions of the dark fermions,
χ, to a maximum neutron star mass much smaller than
observed masses. Thus, the existence of neutron stars with
masses up to 2M⊙ [16–18] allows us to draw broad and
generic conclusions about the type of baryon-number-
violating dark interactions of the neutron required for a
beyond the standard model (BSM) explanation of the
neutron lifetime puzzle.
The processes of Eq. (1) would convert a fraction of the

neutrons present into χ’s during the formation of a neutron
star. The χ’s would sit in the gravitational potential well of
the neutron star, in thermodynamic equilibrium with the
normal neutron star matter, and form a noninteracting
Fermi gas, similar to a noninteracting neutron gas. (The
105 s timescale for n → χ þ Y needed to resolve the
neutron lifetime puzzle is very short compared to inferred
neutron star ages, which range from hundreds to billions of
years [19].) The basic physics is that, except near nuclear
matter density, the interactions of neutrons with the neutron
star medium are effectively repulsive, and thus the con-
version of a neutron into a weakly interacting dark matter
particle is generally highly energetically favored. Figure 1
shows the baryon chemical potential μb vs the baryon
density nb, in units of n0, the nuclear matter saturation
density, ≃0.16 fm−3, for the modern quark-hadron cross-
over [QHC18(0.8,1.5)] neutron star matter equation of state
[20], for the “stiffer” Akmal-Pandharipande-Ravenhall
(APR) equation of state [21], and for free neutrons. The
QHC18 equations of state take quark degrees of freedom
in the interior into account consistently and allow 2 M⊙
neutron stars. They are in striking agreement with the
equation of state constraints deduced by LIGO from the
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recent binary neutron star merger [22]. The ingredients of
these equations of state are effectively: (i) the APR equation
of state for nuclear matter in beta equilibrium, up to a
baryon density of ≃2n0; (ii) above a baryon density of
∼5n0, a quark matter equation of state with a repulsive
contact interaction between the quarks with coupling
constant gv, equal here to 0.8G, and an effective BCS
pairing interaction between quarks with coupling constant
H, equal here to 1.5G, whereG is the Nambu–Jona-Lasinio
quark-quark coupling constant; and (iii) between the two
extremes, a smooth interpolation of P vs μb. For a given
nb, the conversion of neutrons to free fermions of equal
mass would generally gain of the order of hundreds of
MeV per neutron.
The interactions (1) are phrased in terms of the neutron

instead of the quarks comprising the neutron. Thus, to
describe the effects of these interactions on neutron stars,
it is simplest to use the language of neutron degrees of
freedom, although the calculations we present are valid for
more general baryon and quark degrees of freedom. We
calculate neutron star models in the presence of a generic
interaction n → χ þ Y, where Y is a possibly multiparticle
final state with zero net chemical potential μY ¼ 0. Such
interactions include the highly pertinent SM final states
Y ¼ γ, eþe− as well as a broad range of BSM possibilities
such as a dark photon. We assume for simplicity that the
χ’s have spin 1=2.
In a neutron star with noninteracting χ’s, a sea of

neutrons, with Fermi momentum kb and density nb ≡
k3b=3π

2, would be in equilibrium with a sea of χ ’s with
Fermi momentum kχ , density nχ ¼ k3χ=3π2, and chemical

potential μ2χ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

χ þ k2χ
q

. In equilibrium, the χ’s must

have the same chemical potential μb as that of the baryons.
To calculate the relative population of baryons and χ, we

write kχ ¼ ykb, where y is itself a function of kb. Although
we use relativistic kinematics in the numerical results
presented below, we provide here the nonrelativistic limits
to illustrate the physics most simply. Nonrelativistically,
chemical equilibrium leads to

y2 ¼ mχðμb −mχÞ
mnðμ0n −mnÞ

; μb ≥ mχ ; ð2Þ

where μ0n is the chemical potential of a free neutron gas
at density k3b=3π

2. We take for simplicity mχ ¼ mn in
addressing the Fornal and Grinstein proposition. Given that
μb > mn at high densities, we also show results for a range
of mχ > mn.
The total density of fermions is nF ¼ nb þ nχ ¼

nbð1þ y3Þ. For mχ ¼ mn, we find that, at total fermion
density nF ≃ n0 (nuclear matter saturation density), about
40% of the fermions are χ’s, while at nF ≃ 4n0 the number
of χ and normal baryons are approximately equal, and, at
nF ¼ 10n0, ∼70% of the fermions are χ’s (see Fig. 2). If the
baryon chemical potential is below mχ, no χ can be present
and y≡ 0.

The χ’s contribute only their rest mass and kinetic
energy to the total energy density ϵ of the matter; again
nonrelativistically for illustration

ϵ ¼ ϵbðnbÞ þmχnby3 þ
k5b

10π2mχ
y5; ð3Þ

while the total pressure is

P ¼ PbðnbÞ þ
k5b

15π2mχ
y5; ð4Þ

FIG. 1. Baryon (or neutron) chemical potential (including rest
mass) in MeV vs the baryon density in units of nuclear matter
density, n0 ¼ 0.16 fm−3, for the quark-hadron crossover equation
of state, QHC18(0.8,1.5) [20], for the stiffer APR equation of
state [21], and for noninteracting (free) neutrons. This figure
shows how much more expensive it would be for a baryon to
remain at high densities instead of turning into a weakly
interacting dark matter particle with mχ < μb.

FIG. 2. Number density of dark matter fermions χ in chemical
equilibrium as a function of the total number of fermions,
nF ¼ nb þ nχ , in units of nuclear matter density n0, for the
QHC18 neutron star equation of state and for different dark
matter fermion masses:mχ ¼ mn,mχ ¼ 1.2mn,mχ ¼ 1.5mn, and
mχ ¼ 2mn. The small flattening in themχ ¼ mn curve reflects the
onset of pion condensation in the APR equation of state [21].
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where ϵb is the energy density and Pb the pressure of
normal matter. The χ’s increase the energy density more
than the pressure and, thus, at high densities soften the
equation of state and lower the maximum neutron star
mass.
Figure 3 shows the pressure PðϵÞ calculated numerically

for baryons and χ’s in chemical equilibrium, for normal
matter described by both the QHC18 and APR equations of
state, as well as for these two equations of state without χ,
and for free neutrons. The pressure of the equilibrium
baryon-χ mixture does not depend noticeably on the baryon
equation of state here. At high densities, where the pressure
is lowered to essentially that of a free neutron gas, the
matter is dominated by χ’s, while, at densities below 2n0,
the QHC18 and APR equations of state are identical by
construction. We show in Fig. 4 the dependence of the total
pressure of the coupled system for different mχ ; the
pressure follows the normal equation of state up to energy
densities where χ’s are first allowed kinematically and
then flattens.
The resulting neutron star masses, found by integrating

the Tolman-Oppenheimer-Volkov equation [23,24], are
shown in Fig. 5 as a function of the central energy density
for QHC18 as well as for APR in equilibrium with χ’s
for mχ ¼ mn (again, the results are indistinguishable at the
resolution of the figure), for APR and QHC18 alone, and
for free neutrons. The maximum neutron star mass for the
coupled matter is reduced from ∼2M⊙ to ∼0.7M⊙, even
below that for free neutrons; this reduction is a consequence
of the QHC18 equation of state at low densities being softer
than that of free neutrons (Fig. 3). In Fig. 6, we show, for
QHC18 coupled to χ’s, neutron star masses for a range of
mχ ; in Fig. 7, we show the mass-radius relations for the

same range of mχ . As mχ increases to 2mn, the impact on
the neutron star composition is negligible: There exist
relatively few χ’s and only at high densities. We conclude
that the assumed coupling of baryons to noninteracting
dark matter lowers the maximum neutron star mass to well
below that observed, and thus the proposed exotic neutron
decay mode is physically untenable unless the dark matter
equation of state satisfies very demanding conditions,
which we now discuss.
In order to increase the mass of neutron stars with normal

matter coupled to dark matter, the dark matter fermions
would not only have to be strongly interacting among

FIG. 3. The equation of state for baryons coupled to χ’s, with
mχ ¼ mn, and for the QHC18(0.8,1.5), APR, and free neutron
equations of state. As explained in the text, at the resolution of
this graph, the corresponding curves for baryons with the QHC18
and APR equations of state in equilibrium with χ’s are indis-
tinguishable. Even though the APR equation of state is stiffer at
higher densities than QHC18, in chemical equilibrium the core of
the star would contain primarily dark fermions in either case. At
nuclear matter density, ϵ ≃ 150 MeV=fm3.

FIG. 5. Neutron star masses vs central density for baryons with
the QHC18(0.8,1.5) equation of state in chemical equilibrium
with χ’s having mχ ¼ mn and for the QHC18(0.8,1.5), APR, and
free neutron equations of state. This figure shows how coupling
of baryons to weakly interacting dark matter precludes an
explanation of the existence of neutron stars from 1M⊙ to
2M⊙. At the resolution of this graph, the corresponding curves
for baryons with the QHC18 and APR equations of state in
equilibrium with χ’s are indistinguishable.

FIG. 4. The QHC18(0.8,1.5) equation of state in chemical
equilibrium with dark matter fermions of different masses:
mχ ¼ mn, mχ ¼ 1.2mn, mχ ¼ 1.5mn, and mχ ¼ 2mn. One sees
here the dramatic softening induced by coupling to χ’s. For larger
mχ , the onset of the softening is pushed to higher ϵ, where it
becomes energetically favorable for a baryon to be converted
to a χ.
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themselves, but the self-interactions would be strongly
constrained. Sizable short-range dark matter self-
interactions are not impossible; the most stringent astro-
physical constraint comes from the Bullet Cluster, which
allows cross sections σχ ≲ ð66=GeVÞ2 ∼ 10−24 cm2—on
the scale of low-energy baryonic cross sections—for a
particle with the mass of a neutron [25]. As a first scenario,
one might imagine that dark matter fermions exactly mirror
normal matter. Then the energy density and pressure in a
neutron star in equilibrium with dark matter, with total
fermion density 2nF, would be just twice that of the normal
matter alone at density nF, leading to a reduction in the
maximum neutron star mass by

ffiffiffi
2

p
(see Appendix A of

Ref. [20]), that is, a maximum mass of the order of 1.4M⊙,
below observations. A second possibility could be that the
dark matter has sufficiently repulsive interactions to over-
come the softening of the equation of state due to adding a
second species, thus accommodating 2M⊙ neutron stars.
Such a scenario makes very specific demands on the dark
matter self-interaction strength as a function of the dark
matter fermion density. The construction of models that
would yield the requisite self-interacting dark matter is left
as a problem for the future.
If the neutron decays to multiple dark states, e.g.,

n → χ þ ϕ, where ϕ is a dark boson, our results hold
when the ϕ do not carry a conserved charge and, thus, their
chemical potential μϕ must vanish; if ϕ is a dark photon
γD, for instance, obtaining 2M⊙ neutron stars would still
require χ’s to have strong repulsive self-interactions.
Requiring the dark states to carry a conserved charge,
and thus be part of a multiparticle dark sector, would allow
μϕ ≠ 0 and possibly permit a resolution of the neutron
lifetime puzzle as well as the construction of dark matter
equations of state consistent with 2M⊙ neutron stars. Such
a scenario, an alternative to the dark matter sector having
strong repulsive interactions, would also require some
nonminimal multistate dark sector.
Beyond the immediate motivation provided by the

neutron lifetime puzzle, the present study demonstrates
that neutron stars are powerful probes of baryon-violating
n − χ couplings for χ’s as heavy as 2 GeV. We stress that
the present analysis considers only baryon-number-
violating couplings, in contrast to analyses of dark matter
capture by neutron stars which focus on elastic scattering of
dark matter on baryons [26–38]. The class of interactions
we consider here can easily have elastic baryon-χ cross
sections orders of magnitude below what can be tested
with gravitational capture; in the regime mχ ≲mn relevant
for the neutron lifetime puzzle, the bottle measurements
stringently constrain the relevant coupling (implying
σnχ ∼ 10−54 cm2). Indeed, our results apply for all cou-
plings large enough for baryon-χ conversion to reach
equilibrium within the neutron star; even conversion times
of years, many orders of magnitude longer than that
required to address the neutron lifetime puzzle, would lead
to equilibrium.
Nonzero strangeness in the quark matter phase in the

interior of neutron stars would also allow analogous tests of
a baryon-number-violating coupling of χ to hyperons. As
strange baryons are far less abundant in nature than
neutrons, a χ-hyperon coupling would be far more chal-
lenging to test in the lab, making neutron stars even more
valuable probes.
As we have shown, neutron stars can be used to constrain

dark matter models in ways that are simply inaccessible to
other probes, whether cosmological or terrestrial, and thus
provide a vital new window onto GeV-scale dark sectors.

FIG. 6. Neutron star mass as a function of the central energy
density with baryons in chemical equilibrium with dark matter
fermions for different masses: mχ ¼ mn, mχ ¼ 1.2mn, and
mχ ¼ 1.5mn. At larger mχ, the conversion of baryons to dark
matter is kinematically forbidden at lower densities, as shown in
Fig. 2. Therefore, the neutron star mass shown here is indepen-
dent of the dark matter mass for a sufficiently low central density.
For mχ ¼ 2mn, the neutron star mass is essentially unaffected by
the small number of χ ’s present for this range of central densities.

FIG. 7. Neutron star mass as a function of the neutron star
radius for baryons with the QHC18 equation of state in chemical
equilibrium with χ’s of mass mχ ¼ mn, mχ ¼ 1.2mn, and
mχ ¼ 1.5mn. Again, the QHC18 curves with no dark matter
and for mχ ¼ 2mn are essentially indistinguishable for this range
of central energy densities.
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Note added.—Recently, several related works have
appeared. Notably, Refs. [39,40] reach very similar con-
clusions to our own, while Ref. [41] describes a search for
neutron decays into χ þ eþe−, with negative results, and
Ref. [42] builds an equation of state for self-interacting
dark matter within a neutron star.
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