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We present measurements of two-particle angular correlations between high-transverse-momentum (2 < pr <
11 GeV/c) n° observed at midrapidity (|| < 0.35) and particles produced either at forward (3.1 < 1 < 3.9)
or backward (—=3.7 < n < —3.1) rapidity in d + Au and p + p collisions at /s, = 200 GeV. The azimuthal
angle correlations for particle pairs with this large rapidity gap in the Au-going direction exhibit a characteristic
structure that persists up to pr ~ 6 GeV/c and which strongly depends on collision centrality, which is a similar
characteristic to the hydrodynamical particle flow in A + A collisions. The structure is absent in the d-going
direction as well as in p + p collisions, in the transverse-momentum range studied. The results indicate that
the structure is shifted in the Au-going direction toward more central collisions, similar to the charged-particle

pseudorapidity distributions.

DOI: 10.1103/PhysRevC.98.014912

I. INTRODUCTION

Azimuthal anisotropy in the multiparticle production from
high-energy nucleus-nucleus collisions has been the subject of
a great deal of study. These final-state momentum anisotropies
are believed to be the result of both spatial anisotropies in
the initial geometry and hydrodynamic-like behavior in the
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subsequent evolution of the medium. The final-state patterns
that can be modeled this way are thus often referred to as
flow-like correlations, for which a central characteristic is that
the majority of produced light-flavor hadrons will exhibit cor-
relations with the initial collision geometry. The measurement
of azimuthal correlations of particles with a large rapidity gap
(e.g.,|An| > 3)is particularly useful to extract the signal of the
true flow contribution. The near-side enhancement of the long-
range correlation function is often called a “ridge” structure,
where the large relative pseudorapidity cut suppresses other
sources of angular correlations, such as resonance decays or
jet fragmentation, that are usually confined within |An| ~ 3.
Analysis of flow-like correlations with hydrodynamical
models has provided strong evidence for the creation of the
quark-gluon plasma (QGP) state in the high-energy collisions
of large nuclei, such as Au+Au and Cu+Cu at the Relativistic
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Heavy Ion Collider (RHIC) and Pb+Pb at the Large Hadron
Collider (LHC) [1,2]. Great interest was sparked when flow-
like behavior was first observed in small collision systems,
including high-multiplicity p + p and p + Pb at the LHC [3—
8] and d + Au at RHIC [9-11]. Previously, these systems had
been regarded as control systems where only non-QGP effects
would be present. Since then, similar flow-like observations
have also been made in other small systems, including p + Au
and *He + Au. The debate continues over whether the QGP
is actually being created in this class of collisions [12,13],
and even at lower /s, [14,15]. Possible explanations of these
observations include hydrodynamics [16—19] and color-glass-
condensate (CGC) models [20]. The hydrodynamic models
include both initial and final state effects, while the CGC-
motivated models are based mainly on physics present in the
initial state. Interestingly, the kinetic transport model AMPT
[21] also reproduces the observed flow structure fairly well
[13—15]. Similarly to hydrodynamics, AMPT can translate the
initial geometry into final-state momentum anisotropy, but via
a very different mechanism, namely the anisotropic probability
of partons to escape the partonic scattering stage [22].

The PHENIX experiment has previously measured az-
imuthal correlations in d + Au and p + p between charged
particles produced at midrapidity (pseudorapidity || ~ 0) and
energy deposits in a forward calorimeter (|n| ~ 3.5) [10].
In those analyses, the reach in charged particle pr was
statistically limited to pr < 3.5 GeV/c. Measurements of az-
imuthal anisotropy at low pr are useful to study the collective
behavior of the QGP medium. However, at high pr, azimuthal
anisotropy signals can no longer be attributed to the collective
expansion of the bulk. Measurements in p 4 Pb at the LHC
[7,23] have shown that v, decreases sharply in the range 4 <
pr < 8 GeV/c, reaching a small near-constant value above
that point. It has been suggested that this high-p; behavior
might originate from jet quenching. Therefore, the present
paper extends the measurements of two-particle correlations at
RHIC to this kinematic region where nonhydrodynamic effects
dominate. We use the PHENIX high-energy photon trigger in
the midrapidity region, and explore mid-forward(backward)
correlations in d + Au and p + p up to py = 11 GeV/c with
identified 7° at midrapidity.

In large collision systems, the appearance of a near-side
enhancement in azimuthal two-particle correlations is con-
sidered a hallmark signature of QGP collectivity. Thus, early
searches for collectivity in small collision systems focused on
observing near-side enhancement. However, unlike in A + A
collisions, elementary processes cannot be neglected when
analyzing small systems. Thus, even if collectivity exists, it
may not be necessarily observed as a near-side enhancement
because the ratio of quadrupole to dipole contributions is
decreasing with multiplicity. This is particularly true for p + p
and peripheral d 4+ Au collisions, as the “smallest” of the small
systems considered in the present analysis. In light of this, the
paper presents a wealth of data and attempts to characterize the
shape of the two-particle correlation functions by investigating
the behavior of the coefficients of the Fourier series fit, in
relation to the appearance of a near-side enhancement.

In addition to measuring flow by the correlation of indi-
vidual particles to the reaction plane, it is also possible to

measure flow by the correlation of two particles to each other.
The advantage of this method is that one does not have to
determine the reaction plane. If we write the azimuthal angle
distribution of two particles A and B, which are correlated to
a reaction plane as

dN* A A

apr L+ ) 2v cosln(@” — w,)], M
B

% o 1+ ZZv,f cos[n(¢” — W), )

then the azimuthal angle distributions for the two particle
correlations can be written as
d NAB

R > 2vfvf cosln(@? — ¢”)] 3)

=1+ Z 2¢, cos[n(p? — ¢P)). 4)

Instead of measuring v,, this paper presents measurements of
¢, the coefficient of the Fourier fit to the correlation functions,
because the factorization ¢, = v*v® holds only at low pr,
where the two particles are correlated with the same event
plane [24]. This relation breaks down when considering high-
pr particles that are coming from the nonflow contributions
such as jet fragmentation.

II. EXPERIMENT AND DATASET

A detailed description of the PHENIX detector system
can be found elsewhere [25]. The principal detectors used in
this analysis are the beam-beam counters (BBCs), the muon-
piston calorimeter (MPC) and the electromagnetic calorimeter
(EMCal). The BBCs are located north (BBCN, 3.1 < n < 3.9,
d-going) and south (BBCS, —3.9 <n < —3.1, Au-going)
of the interaction point, covering the full azimuth and are
sensitive to charged particles. In d + Au collisions, the Au
ions are accelerated in the Au-going direction. The MPCs,
which are high resolution electromagnetic calorimeters, are
also located north (MPCN, 3.1 < n < 3.9) and south (MPCS,
—3.7 < n < —3.1) of the interaction point, in front of the
BBCs, and cover the full azimuth. The south (north) MPC
comprise 192 (220) PbWOy crystal towers with 20.2 X, or
0.89 A; [26]. The EMCal is located in the central (CNT) arms
with pseudorapidity range |n| < 0.35 and covering two /2
segments of the full azimuth. Figure 1 shows the acceptance of
each relevant PHENIX detector subsystem in ¢-1 coordinates.

The d + Au and p + p collision data used in this analysis
were recorded in 2008 at RHIC. The events triggered by a
high energy deposit in a 4 x 4 tower region of the EMCal in
coincidence with the minimum bias (MB) requirement were
selected in both the p + p and d + Au data sets. The MB
trigger was defined as the coincidence of at least one hit in the
BBCS and BBCN. A z-vertex cut of |z| < 30 cm is applied,
using the vertex calculated from the BBC timing information.
The energy threshold of the 4 x 4 towers is set to be 2.8 GeV;
however, due to the energy smearing effect, the towers also
sample hits with lower energies but with lower efficiency. The
number of recorded events was 2.85x 108 (9.64x10'° MB
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Centralf
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q

-3.9-3.7 -3.1

FIG. 1. Configuration in azimuth and pseudorapidity (¢-1) coordinates of the PHENIX detector subsystems used in this analysis. The BBC
and MPC detectors each cover 27 in azimuth in the forward and backward directions, while the two PHENIX central arms each subtend 77 /2

in azimuth.

equivalent) for the p + p and 6.51x10% (1.40x10'" MB
equivalent) for the d 4+ Au collisions, which made it possible
to measure the m°-triggered long-range correlations up to
pr = 11 GeV/c. In the case of d + Au collisions, centrality
was defined by the total charge deposited in BBCS (Au-going
direction). Seven partially overlapping centrality bins have
been considered, from the most central (0%—5%) to the most
peripheral (60%—88%) collisions [27].

III. ANALYSIS

The long-range two-particle correlation functions are con-
structed by pairing a high-py 7° (“trigger” particle) found
in the PHENIX EMCal with the energy deposit Egep in each
tower of one of the MPCs (“associated” hit). In the following
sections we describe (i) the 7° identification, (ii) construction
of the initial azimuthal correlation functions, (iii) correction
for combinatoric background in the 7° sample, and (iv) fitting
the corrected correlation functions with a harmonic expansion.
Throughout this paper the results for central-MPC south (CNT-
MPCS) and central-MPC north (CNT-MPCN) correlations are
shown separately.

A. ¥ selection

Each trigger 7° was measured in the EMCal via the 7° —

yy decay channel using photon showers reconstructed using
the standard PHENIX method [28-30]. The photon showers
were identified using a shower-shape cut [31]. A cut on the
energy asymmetry of the photon pair o = |E| — E»|/(E| +
E,) < 0.7 has been applied to reduce the combinatoric back-
ground. A sample yy invariant mass plot is shown in Fig. 2
for pairs with pair p; > 3GeV/c. The 7° mass region was
defined as 0.12 < m,,,, < 0.16 GeV/c?, and every measured
pair in this range was used in compiling the initial correlation
functions, binned according to pair pr.

As shown in Fig. 2, the 7° peak is quite prominent in the pair
mass spectrum, on top of a small background continuum due
primarily to combinatoric pairs. We estimated the level of this
background in terms of the signal/background ratio S/ B within
the chosen 7° mass window as shown in Fig. 3. The ratio was
used for subtracting the combinatoric background contribution
in the correlation functions, as explained in Sec. IITC.

B. Initial correlation functions

The procedure used to construct the initial 7°-MPC cor-
relation functions is essentially the same as was used in our
earlier analysis of correlation of central-arm charged tracks

T 10
> E
2 0-88% d+Au, p'>3 GeV/c
! C (ERT data)
] L
S L
3
i Net 1%'s
105}  Estimated
E combinatoric .
C background Sideband
10% =
0 0.25 0.3 0.35

yy invariant mass (GeV/c?)

FIG. 2. Invariant mass distribution for yy pairs from d + Au
collisions as measured in the PHENIX central arm EMCal. The (red)
shaded “Net 7% peak is clearly visible above a small (yellow) shaded
“Estimated combinatoric background” in the same mass window
0.12 <m,, < 0.16 GeV/c* (note the semilogarithmic scale). We
estimate the combinatoric background by interpolating linearly be-
tween two points outside the peak, as shown by the (blue) line, which
is obtained by fitting around the peak with a combined Gaussian and
linear function. The purely combinatoric pairs in the shaded (green)
“Sideband” region are used to correct the correlation functions for the
effects of background pairs in the peak region (see Sec. IIIC).
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FIG. 3. Centrality and yy pr dependence of the signal to com-
binatoric background ratio (S/B) for pairs in the 0.12 < m,,, <
0.16 GeV/c? mass window.

with MPC towers ind + Au and p + p collisions [10]. Over a
selected event sample and 7% p; bin, we compile the relative
azimuthal angle distribution, S(A¢, pr), between yy pairs in
a given mass window and MPC towers in the same event:

yy(pr)—tower
d(wtower NSame event )

dAd

where A¢ = ¢, — ¢rower is the azimuthal opening angle
between the yy pair-sum momentum direction and a line to
the center of the MPC tower. We choose the weighting for each
tower to be the transverse energy Wower = Edep Sin (Grower)s
where Egep is the energy deposit in that tower and Gyyer is
the angular position of the tower with respect to the beam
line. The wywer introduces a pr spectrum weight on the
hit frequency in the MPC. The MPC towers with deposited
energy Eqp > 0.3 GeV were selected to avoid the background
from noncollision noise sources (=75 MeV) and to cut out
the deposits by minimum ionizing particles (=245 MeV). To
maximize statistics the energy is lowered compared to the one
used in a previous publication [10].

In addition to physical pair correlations from the collisions,
the shape of the same-event distribution S(A¢, pr) will reflect
the effects of detector acceptance, detector inefficiencies, and
kinematic cuts. We estimated these instrumental effects by
constructing a mixed-event distribution M(A¢, pr) [Eq. (5)],
but using yy pairs from one event and MPC towers from a
different event in the same event class (centrality and 7% pr).
We then correct for instrumental effects by constructing the
correlation function CX(A¢, pr), for any particular choice X
of yy pair selection criterion

S¥(A¢.pr) [ MY (A¢, pr)dAd
MX(A¢,pr) [ S¥(A¢,pr)dAd

Both the same-event numerator and the mixed-event denomi-
nator have been normalized by their respective integrals.

S(A¢.pr) =

. &)

C*(A¢.pr) = ©6)

C. Combinatoric sideband correction

The initial correlation function is constructed using all pairs
in the 7° mass window, which necessarily includes an admix-

ture of both true 7° pairs and background pairs. Therefore, it
will not reflect simply the true 7°-MPC correlation but rather a
weighted average of the correlations of true ¥ pairs and those
of background pairs. Though the background is typically a
small fraction of the signal, as shown in Fig. 3, we carried
out the following correction to remove any influence from the
background pairs.

We denote the initial correlation function constructed using
all photon pairs in the 7° mass peak region as C5*2(Ag, pr),
because it contains correlations from both signal and back-
ground pairs. We then approximate the correlation function
CB(A¢g,pr) that would result from using the background
pairs only, by constructing a correlation function according to
Eq. (6), but with pairs chosen from the “sideband” mass region
0.20 < m,, <0.25 GeV/c? (see Fig. 2). We then derive the
true w%-MPC correlation function C(A¢, py), which would
result from including only the true 7° decay pairs, by inverting
the weighted average via

B B
C(A¢.pr) = (1 + §>CS+B(A¢J7T) - ECB(Adhpr),
(7

where B/ S is the background-to-signal ratio in the peak region,
which is the reciprocal of the number shown in Fig. 3. In
practice, this correction for background pairs is very small;
it does not change the harmonic amplitudes of the correlation
function (see Sec. IIID) by more than a few percent of their
value in the lowest S/B cases and becomes negligible as S/B
increases toward higher pr.

D. Harmonic expansion fitting

Our objective in this analysis is to examine the shapes of
the w°-MPC correlation functions across 7° p7 and collision
system centrality classes. We quantify each correlation func-
tion by fitting them to an expansion in Fourier terms over A¢
up to fourth order via

4
C(Ap.pr) = Bo<1 + chn@ncos(mqb)). ()

n=1

The fits were optimized using only the statistical errors in the
final correlation functions. The fit for each pr and event class
combination has five parameters: the four ¢, and an overall
normalization. Each correlation function was compiled in 20
bins of A¢, leaving 15 degrees of freedom (NDF) for each
fit. The C(A¢, pr) with fit functions are shown in Sec. IV
and in the Appendix. The x2/NDF goodness-of-fit values are
compiled and shown in Fig. 4. There is no particular structure
seen with 77° pr or event class, and the distribution agrees with
what would be expected for a x? estimator.

When we fit the correlation functions with ¢, fixed to zero,
the x2/NDF’s are found to be as high as ~40 around pr =
3 GeV/c, and do not reach x> /NDF = 4 before pr =~ 6 GeV/c,
for both 0%—5% central d + Au and p + p collisions. This
shows that the correlation functions have a significant second-
order component.
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FIG. 4. (a) Goodness-of-fit parameter x2/NDF for the harmonic
fits in Eq. (8) to the corrected 7°-MPCS correlation functions, for
different centrality and 7° pr selections, and (b) their projection to
the y axis.

E. Estimation of systematic errors

The systematic uncertainties of the measurement have been
estimated as follows. The width of the 7° extraction window
as well as the location and width of the sideband have been
varied in five different combinations as listed in Table I. Note
that the case O corresponds to the standard windows in this
analysis.

In the sixth case the original windows were kept as case 0 but
the asymmetry cut was changed to « < 0.5. Following the ex-
act same procedure for obtaining the true 7°-MPC correlation
functions as described in the previous sections, the correlation
functions for the six cases were obtained and the values of ¢,
and —c,/c; were re-calculated. The deviations for the case-0
values, with respect to the standard result, were calculated
and averaged over the six cases. The averaged deviations are
the systematic uncertainties. The resulting uncertainties on
¢y are 2% for p + p (all pr), and for the 0%—5% d + Au
(worst case) they are 8% at 2 GeV/c and 3% at 6 GeV/c
for CNT-MPCS (Au-going). The uncertainty for the —c;/c)
is very similar to that of ¢, owing to a smaller uncertainty of
ci. This study was also performed for CNT-MPCN (d-going)
correlations, obtaining 4% (2 GeV/c) and 2% (6 GeV/c)
for p+ p and 12% (2 GeV/c) and 3% (6 GeV/c) for the
0%-5% d + Au. Both CNT-MPCS and CNT-MPCN show
consistent systematic uncertainties given the large statistical
uncertainties in the CNT-MPCN correlations. Considering the

TABLE I. Combination of 7% extraction and sideband windows
for estimating systematic errors. Note that case 0 corresponds to the
standard windows in this analysis.

Case 7% window (GeV/c?) Sideband window (GeV /c?)
0 0.12-0.16 0.20-0.25

1 0.12-0.16 0.25-0.30

2 0.12-0.16 0.06-0.09

3 0.12-0.16 0.06-0.09 + 0.20-0.30

4 0.10-0.18 0.20-0.25

5 0.13-0.15 0.20-0.25

better statistical precision for the CNT-MPCS correlations, we
quoted the errors for them as the systematic uncertainties for
the final results. There is a possible systematic uncertainty
associated with the mixed event distributions M (A¢, pr). This
uncertainties are effectively folded during the procedure of the
systematic uncertainty estimate described above.

IV. RESULTS AND DISCUSSIONS

We present the corrected correlation functions [Eq. (7)], to-
gether with the four-term Fourier fit functions [Eq. (8)], across
a range of collision systems and 7° p; bins, for both CNT-
MPCS (Au-going) and CNT-MPCN (d-going) combinations.
Representative samples for the bins 3 < pr < 3.5 GeV/c and
5 < pr < 6 GeV/c appear in Figs. 5 and 6, while the full sets
are shown in the Appendix.

The correlation functions are largely dominated by a dipole
component (n = 1), and higher components (n > 1) contribute
to form a near-side enhancement structure in the near side
(A¢ =~ 0) of the functions. The dipole component is usually
attributed to the back-to-back dijet contribution and momen-
tum conservation in the system. With the large psuedorapidity
gap employed (|An| > 3), the near-side particles of the dijet
triggered by 7° (|n| < 0.35) will not form a peak at A¢ ~ 0
in the MPCs (3.1 < |n| < 3.9). Therefore, the near-side en-
hancement is formed by other sources, possibly a quadrupole
flow from a bulk medium. The characteristic structure is clearly
visible for CNT-MPCS (Au-going), but not for CNT-MPCN
(d-going). In addition, the structure is more prominent in the
more central collisions (e.g., see the first plot in the Appendix),

1.10E(a) d+Au 0-20% 3 E(b) d+Au 0-20% E
1.08 Au-going: -3.7<n, __  <-3.1 § | d-going: 3.1<n _ <3.9 1
1.06F (MPCS) 3 F (MPCN) E
1.04F pHENIX 7 [ PHENIX

1.02F .

1.00F:- N e e

0.98 J— 1+>:chcos(nA¢)E e =

0.96 .- 1+2c,cos(A9) 7 --- 1+2c,c08(3A¢)
094+ ‘ L 1+2c,cos(2A¢) 4 ‘ ‘ ---- 1+2c,c0s(4A¢)
1.105(c) d+Au 40-60% - -(d) d+Au40-60% = -

C(a9)

. | R T R B
A¢ [rad]

FIG. 5. Centrality dependence of correlation functions for d +
Au and p + p collisions at /s, =200 GeV for 7% in [Miig| < 0.35
(CNT). (a), (c), (e) w° are associated with the towers in MPCS (Au-
going direction) and (b), (d), (f) MPCN (d-going direction), for 3 <
pr <3.5GeV/c.
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FIG. 6. The same as Fig. 5, except for 5 < pr < 6 GeV/c.

and it gradually disappears with both decreasing centrality
and increasing pr. The trend in the CNT-MPCS correlation
hints that the structure has a characteristic similar to the
hydrodynamical particle flow in A 4+ A collisions. Looking
at the evolution of the individual Fourier-components ¢; with
centrality and pr provides a richer and more quantitativxe
picture. As seen in Figs. 5 and 6, the ¢z and ¢4 are both very
small, and are found to be consistent with zero within uncer-
tainties. Therefore, we discuss here only the centrality and pr
dependence of the dipole (c;) and quadrupole (c;) coefficients.

The ¢; (dipole) values for CNT-MPCS correlations are
summarized in Fig. 7(a). They exhibit a definite ordering
with system size: the largest negative values are observed in
p + p, the smallest ones in the most central d + Au. Similar
ordering, albeit with smaller absolute differences, can be seen
for CNT-MPCN in Fig. 8. This trend is similar to the decrease
of the absolute value of ¢; with increasing multiplicity that
was observed in Ref. [11]. If the negative c; at large An is
indeed a consequence of a dijet fragmentation into the CNT
and MPC regions, then we would expect the effect to be diluted
as the underlying event multiplicity increases. Because the
overall multiplicity on the d-going side is smaller, we would
also expect a larger magnitude for ¢; there compared with
the Au-going direction, as seen in the data. Interestingly, the
¢ coefficients vary with pr and have a maximum magnitude
around 4-5 GeV/c. It may be related to the fact that this is the
pr region where hard scattering becomes dominant over bulk
phenomena that govern particle production at lower pr.

The p7 and centrality dependence of ¢, (quadrupole) values
in CNT-MPCS and CNT-MPCN correlations are shown in
panel (b) of Figs. 7 and 8, along with their pr-correlated
systematic uncertainties in panel (d). For p + p collisions the
two distributions are compatible, as expected for the symmetric

- | (a) d+Au, p+p,|sy=200GeV  Au-going
© ol T l03s E;in-3.7<n___ <-3.1 (MPCS)
E PO IR I ¢ ¢ N
- o
T30 -
[ |
102 = @ g @ g @ g 5 v
& - (b)
102 = RS ¢
10° = ﬁ;
) L (©) ®0-5%  []5-10% PHENIX
oY - +0-20% <) 10-20%
' 06— + 020-40% M 40-60%
r lij. + 1160-88% ¢ P+p
04 E!T %- ¢ [ +
L b0 Z .
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SRR R 4
Ok n L n Eﬁjl L L L n L L
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0.1 . . , . , . .
1 2 3 4 5 6 7 8 9
pf (GeV/c)

FIG. 7. Fourier fit coefficients for CNT-MPCS (Au-going) corre-
lations, as a function of collision system and 7° p;: (a) the negative of
the dipole coefficient, —cy; (b) the quadrupole coefficient c;; (c) the
ratio —cy/cy; (d) fractional systematic uncertainty on the quadrupole
coefficient ¢, for d + Au (lines) and p + p (band). The dotted (blue)
line at 0.25 in panel (¢) marks the nominal threshold, above which
the correlation function would exhibit a near-side local maximum (see
text).

system. The ¢, in p + p collisions are roughly double those
seen in d 4+ Au (including the most peripheral bin), and the
pr dependence of their magnitudes is similar to that of
the ¢;. For d + Au the ¢, for CNT-MPCN and CNT-MPCS
correlations are similar in magnitude, but with the CNT-MPCN
showing a greater spread with centrality. The ¢, are small
and decreasing as a function of p7, but nonvanishing in the
available py range, proving that the quadrupole component is
present.

To gauge the magnitude of characteristic-structure corre-
lations as a measure of a bulk property of the system, we
calculated —c, /¢y, the ratio of ¢, (quadrupole) to —c; (dipole),
for all p + p and d + Au systems, as shown in Fig. 7(c).
For the CNT-MPCS correlations [Fig. 7(a)] the data exhibit
a well-defined ordering with system centrality, within errors,
from the most central d + Au down to the most peripheral
(60%—88%) which is consistent with the p + p. We then see a
smooth evolution from the most central collisions observed at
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FIG. 8. The same as Fig. 7, except for CNT-MPCN (d-going)
correlations.

lowest pr, where the near-side correlations are most prominent
and which would be expected to have the largest contribution
from a collective source, to the more peripheral and higher py
limit, where the near-side correlation vanishes and elementary
processes are expected to dominate. The trend is very different
for CNT-MPCN correlations [Fig. 8(b)]. Here all the —c;,/c)
ratios are consistent for both d + Au and p + p collisions,
indicating no additional near-side correlations in d + Au over
p + p collisions for any system across the entire 7° pr range
studied here. There is also no visible ordering of —c;/c;
with system centrality for py > 2.5 GeV/c, in contrast to the
CNT-MPCS case, within uncertainties.

The ¢; and ¢, for the symmetric p + p collisions are
somewhat different between CNT-MPCS and CNT-MPCN,
which results from the difference of psuedorapidity coverage
in MPCN (3.1 < n < 3.9) versus MPCS (—-3.7 < n < —3.1).
The fact that the —c; /¢, are very consistent indicates that the
same phenomenon is observed in each direction.

Recently, attempts have been made to develop methods
that effectively subtract the nonflow contributions present in
two-particle correlations, as measured in p/d + A collisions
[4,8,32,33]. Despite their differences, all of these methods
rely on the assumption that one can identify a class of events
(usually p + p or peripheral p/d + A) with low enough multi-

plicity such that the corresponding correlation function can be
attributed entirely to nonflow. However, there is currently no
consensus in the field regarding how the subtraction procedure
should be carried out. This paper therefore focuses on the
shape analysis of the correlation functions, leaving nonflow
subtraction outside of the scope. However, we point out that the
quantity —c;/c; encodes some information about the relative
strength of nonflow, and its comparison between collision
systems can provide useful insight.

Another shape study of the near-side correlations can be per-
formed by examining the second derivative of d N /d(A¢). If
we approximate then > 2 coefficients as negligible (c3 &~ ¢4 ~
0), then the condition of having a local maximum at A¢ = 0
corresponds to

0%/0APH) AN /dAp) x —c| — 4cy < 0. 9)

The observed positive ¢, and negative c¢; lead us to use the
threshold of —c;/c; > 0.25 as the condition indicating that a
near-side correlation with a local maximum is present in the
correlation function, as also pointed out in the literature [34].
The dotted lines in panel (c) in Figs. 7 and 8 indicate this
threshold. For the CNT-MPCS correlations the data are clearly
above the threshold for the more central d + Au collisions,
out to 20%, and for pr < 6 GeV/c, indicating that the shapes
have a local maximum. For the CNT-MPCN correlations,
all the —cy/c; ratios consistently lie below 0.25 for both
d + Au and p + p collisions, indicating no local maximum.
It should be noted that the absence of a local maximum does
not necessarily imply that the near-side contribution is absent.

We now examine the system and centrality dependence of
the correlation functions. Figure 9 shows ¢, ¢, and —cp /¢y asa
function of the mean number of collision participants Npay [27]
for the two selected py ranges 3-3.5 GeV/c and 5-6 GeV/c.

The values for both CNT-MPCS and CNT-MPCN are
shown. The smooth decrease of ¢ with Ny is clearly seen for
both pr selections, but the decrease of ¢ for the CNT-MPCS
is more rapid compared to that of CNT-MPCN. In contrast,
¢, is flat or exhibits little increase (decrease) as a function
of Npaw for CNT-MPCN (CNT-MPCS) correlations, except
for the lowest Npa. In —cy/cy, where individual —c; and ¢,
trends are combined, the data for CNT-MPCS show a smooth
rising trend, stronger for the lower p7 selection, while —c, /¢
for CNT-MPCN correlations displays no evolution with Ny
at all from p + p to the most central d + Au collisions.
This observation clearly shows again that the characteristic
structure is clearly seen in the Au-going direction, rather than
in the d-going direction, and ceases at high pr, which is a
characteristic similar to the hydrodynamical particle flow in
A + A collisions.

The centrality dependence of —c;/c, can be understood in
terms of the asymmetry of the charged particle pseudorapidity
distributions with respect to n = 0 in d + Au collisions [35].
When going to greater centrality, the results indicate that the
characteristic structure is shifted in the Au-going direction,
similar to the charged-particle pseudorapidity distributions.
This is consistent with the findings of the STAR experiment
[11] in the region where the pr ranges overlap. There is
a possible fluctuation of the event plane as a function of
psuedorapidity as observed by the CMS experiment at the LHC
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FIG. 9. System centrality dependence of correlation coefficients
(a) —cy, (b) 2, and (c¢) the ratio —c, /c; as a function of Np,. Results
for both CNT-MPCS (Au-going direction) and CNT-MPCN (d-going
direction) correlations are each shown for two py regions. The box
(green) shows the systematic uncertainty on the —c, /¢ ratio, which
is constant with Np.. The uncertainties on the Np, estimates are
shown on each data point as horizontal error bars.

[36]. Although this may partly explain the centrality-dependent
difference between CNT-MPCN and CNT-MPCS, our mea-
surements lack the precision to gauge the effect. These results
provide a strong argument for studying long-range correlations
in asymmetric systems separately in the forward/backward
directions.

V. SUMMARY

We have measured long-range azimuthal correlations be-
tween high-transverse-momentum (2 < pr < 11 GeV/c) m°
observed at midrapidity (|| < 0.35) and particles produced
either at forward (3.1 < n < 3.9) or backward (—3.7 < n <
—3.1) rapidity in d + Au and p + p collisions at /s, =
200 GeV. The centrality- and pr-dependent two-particle cor-
relations were fitted with a Fourier series up to the fourth term.
While the third and fourth coefficients (c3,c4) were consistent
with zero within uncertainties, the c; (dipole) values exhibit a
definite ordering with the system size both in the Au-going
and d-going directions. The ¢, (quadrupole) values exhibit
similar magnitudes for both directions. However, —c;/c;

values exhibit well-defined ordering with system centrality
and decrease with increasing pr in the Au-going direction,
while the values are consistent over all systems and p7 in
the d-going direction. This implies that the characteristic
structure clearly exists in the Au-going direction, rather than
in the d-going direction, and ceases at high pr, which is
a characteristic similar to the hydrodynamical particle flow
in A+ A collisions. The difference of the behavior in the
Au-going and the d-going directions can be understood from
the fact that the characteristic structure is shifted in the Au-
going direction toward more central collisions, similar to the
charged-particle pseudorapidity distributions. This suggests
that looking at two directions in asymmetric systems is
essential.
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APPENDIX

Figures 10—13 show data points of the normalized cor-
relation functions in CNT-MPCS and CNT-MPCN for all
d + Au centralities and in pr bins of the trigger 7° in CNT
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(Inwigl < 0.35), along with the fitted Fourier-components and
their sum. Note the changes in y scale from Figs. 10 and 12 to
Figs. 11 and 13. Although the correlation functions are shown

up to pr = 11 GeV/c, it is clear that the statistical precision
is poor for the 9—11 GeV/c data. Therefore, the c;, ¢;, and
—cy/cy in this paper are shown only up to 9 GeV/c.
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