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 

Abstract— Goal: Lifting is a common manual material handling 

task performed in the workplaces. It is considered as one of the 

main risk factors for Work-related Musculoskeletal Disorders 

(WMSDs). An important criterion to identify the unsafe lifting 

task is the values of the net force and moment at L5/S1 joint. These 

values are mainly calculated in a laboratory environment, which 

utilizes marker-based sensors to collect 3D information and force 

plates to measure the external forces and moments. However, this 

method is usually expensive to setup, time-consuming in process, 

and sensitive to the surrounding environment. In this study, we 

propose a Deep Neural Network (DNN) based framework for 3D 

pose estimation, which address aforementioned limitations and we 

employ the results for L5/S1 moment and force calculation. 

Methods: At the first step of the proposed framework, full body 3D 

pose is captured using a DNN, then at the second step, estimated 

3D body pose along with the subject’s anthropometric information 

is utilized to calculate L5/S1 join’s kinetic by a top-down inverse 

dynamic algorithm. Results: To fully evaluate our approach, we 

conducted experiments using a lifting dataset consists of twelve 

subjects performing various types of lifting tasks. The results are 

validated against a marker-based motion capture system as a 

reference. The grand mean±SD of the total moment/force absolute 

errors across all the dataset was 9.06 ±7.60 Nm/4.85±4.85 N.  

Conclusion: The proposed method provides a reliable tool for 

assessment of the lower back kinetics during lifting and can be an 

alternative when the use of marker-based motion capture systems 

is not possible. 

Index Terms Deep neural network, Lower back loading, Lifting, 

Occupational biomechanics 

I. INTRODUCTION 

ork-related Musculoskeletal Disorders (WMSDs) are 

commonly observed among the workers involved in 

material handling tasks such as occupational lifting. In an 

epidemiology study by Manchikanti et. al. [1]   it was found that 

heavy lifting is a predictors of future back pain. Kuiper et. al. 

[2] and Da Costa et. al. [3] also showed with reasonable 

evidences that lifting is one of the main risk factors for lower 

back, hip and knee WMSD. 

To improve work place safety and decrease the risk of 

WMSDs, it is necessary to analyze biomechanical risk 

exposures associated with these tasks by capturing the body 

pose and assessing the critical joint stresses in order to compare  
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Fig. 1.  Workflow of the proposed DNN based method.  

 

the result with the limit of a person’s capacity. In recent years, 

several systems were developed to capture the 3D body pose 

and assess the movement of workers. These systems can 

roughly be categorized into two groups: direct measurement 

and observational systems [4]. 

Numerous studies have investigated lower back stress using 

direct measurement methods. There are reported values for a 

variety of tasks like lifting [5-10], balance recovery movement 

[11], and gait [12]. Direct measurement systems require 

markers or sensors attachment on the subject’s body and are 

performed in a laboratory environment. They can provide 

reliable and accurate estimation of the joints kinematics and are 

considered as the established state-of-the-art for human motion 

analysis [13]. However, these methods are limited since they 

require expensive equipment, controlled environment, and can 
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obstruct the subject’s natural patterns of movements due to 

interference with musculoskeletal structures. 

Observational systems like video-based coding system, on 

the other hand, use recorded videos of the subject and extract a 

few key frames from them. Then, raters estimate the body pose 

by making an optimal fit of a predefined digital manikin to the 

selected video frames. Finally, using the estimated body pose 

data and time information extracted from the videos, joints 

trajectory is generated for the entire task by applying a motion 

pattern prediction algorithm [14]. Xu et. al. [15] presented a 

video-based coding system to estimate 3D L5/S1 joint moments 

of lifting task on the basis of videos clips. Coenen et. al. [16] 

validated two versions of video analysis methods for estimation 

of the peak moment of the back load during lifting tasks. The 

results accuracy of the observational systems method rely on 

the experience of the rater, especially when joints angle become 

close to the posture boundaries [17]. Furthermore, they can 

easily become laborious as the number of key frames increases 

[18]. 

Advances in the field of computer vision, offer marker-less 

motion capture systems to overcome the limitations of the direct 

measurement and observational methods for biomechanical 

analysis. Even though, marker-less methods are considered as a 

potential substitute for the traditional marker-based method, 

they are not widely studied for biomechanical and clinical 

applications, which require higher accuracy and robustness in 

comparison with the other applications [13, 19]. There are few 

studies which proposed marker-less methods for biomechanical 

and clinical applications. In particular, [20] used the Microsoft 

Kinect for assessment of joints angles and calculating stride 

time for gait analysis. In another study by [21],  the Microsoft 

Kinect depth sensor was used for assessing spinal loading 

during twenty different actions. Despite the acceptable 

accuracy of these methods, there are two major disadvantages 

of using the Microsoft Kinect for workplace activity 

assessment. First, depth sensors can be only used in a short 

range of distance from the depth sensors, which may not allow 

them to be used in large space workplaces [22]. Second, depth 

sensors are sensitive to the environment illumination and would 

be difficult to use in outdoor environments [23]. In another 

study by [24] a marker-less framework was proposed to 

estimate human pose from RGB images and without depth 

information. They employed a discriminative method to learn a 

mapping from image features to the 3D body posture and 

improved the results accuracy by adding morphological 

constraints. The results were then employed for lower back 

loads estimation [25]. Using neural network for physical effort 

assessment in manual material handling task was proposed in a 

work by Zurada et. al. [26] They used a neural network method 

that takes several input variables included number of lift per 

hour, peak moment, etc. and classifies industrial jobs as low or 

high risk for low back disorders. Davis et. al. [27], employed a 

hybrid neuro-fuzzy system [28] to estimate spine loads during 

sagittal lifting. They used a fuzzy technique [29] to identify key 

input variables of the models and then fed the input variables to 

a neural network model to translate them into EMG signals. 

Hou et. al. [30] proposed a recurrent fuzzy neural network to 

predict spine forces directly from kinematics data and without 

EMG measurements. These studies demonstrate the feasibility 

of computer vision and neural network approaches for the 

biomechanical analysis. However, they are limited to a few 

types of motions and lifting as one of the most common motions 

in the workplaces and as an important risk factor for WMSD is 

not well studies. Additionally, deep learning, which is 

considered as the state of art approach in the domain of the 

vision tasks is not studied for the field of biomechanical 

application.  

In this study, we propose and validate a Deep Neural 

Network (DNN) based framework to estimate 3D L5/S1 joint 

kinetic (i.e. force and moment) during lifting. The workflow of 

the proposed method is summarized in Fig. 1. The proposed 

method uses advanced computer vision approaches, in 

particular DNN, to estimate the 3D body pose from a two-view 

image taken by optical cameras. The estimated 3D body pose 

along with the subject’s anthropometric information is then 

utilized to calculate joins’ kinetic by an inverse dynamic 

algorithm. Since our proposed method eliminates the need of 

attaching markers onto the subjects’ body segments or hiring 

raters to estimate the pose, it can overcome the limitations of 

direct measurement and observational systems. The results of 

our proposed method were compared with results obtained from 

a marker-based motion capture system as a reference and it was 

shown that the proposed method achieves promising results and 

can open new possibilities of deep learning application for 

biomechanical analysis with the aim of reducing WMSD in 

workplaces. To summarize our contributions are:  

 We propose a DNN-based method to estimate accurate 3D 

pose from multi-view images. 

 The proposed method is validated for L5/S1 joint kinetics 

estimation for well controlled symmetrical and 

asymmetrical lifting tasks. 

II. MATERIALS  

A. Participants and Procedure 

A group of 12 healthy males (age 47.50±11.30 years; height 

1.74±0.07 meters; weight 84.50±12.70 kg) participated in the 

experiment. Each participant performed various symmetric and 

asymmetrical lifting trials in a laboratory while being filmed by 

both camcorder and a synchronized motion tracking system that 

directly measured the body movement. All the participants 

wore black shorts. They lifted a plastic crate (39 × 31 × 22 cm) 

weighing 10 kg and placed it on a shelf without moving their 

feet. All the lifting trials started with the subjects standing in 

front of a plastic crate. The initial horizontal distance of the 

plastic crate and the lifting speed were chosen by the lifters 

without constraint. They performed three vertical lifting 

ranging from floor to knuckle (FK), knuckle to shoulder (KS) 

and floor to shoulder (FS) heights. Each vertical lifting range 

was combined with three end-of-lift angles (0, 30 and 60 

degree), which is defined as the angle of the end position 

relative to the starting position of the box. A total of 9 lifts (3 

lifting heights × 3 end-of-lift angles) were performed by each 

participant in a full-factorial design with random sequence. 

 



THMS-18-01-0033  3 

 
Fig. 2.  Cameras position in the experiment setup 

B. Data Acquisition 

45 Reflective markers were attached to the lifters` body 

segments and 3D coordination of markers during the lifting 

tasks were measured by a motion tracking system (Motion 

Analysis, Santa Rosa, CA) with a sampling rate of 100 Hz. The 

raw 3D coordinate data were filtered with a fourth-order 

Butterworth low-pass filter at 8 Hz. Two digital camcorders 

(GR-850U, JVC)  with resolution 720×480 pixel, synchronized 

with the motion tracking system also recorded the lifting from 

two views, 90 degree (side view) and 135 degree positions (fig. 

2). For asymmetrical lifting trials, participants turned away 

from the side view camera. 

III. METHODS 

In this work, we aim to predict the 3D L5/S1 joint kinetic 

from the multi-view RGB images. We proposed a DNN based 

framework for this purpose whose inputs are videos taken from 

two different views around the subject, and the output is the 

L5/S1 joint’s force and moment values. As shown in fig. 1, in 

the offline phase, the training dataset is preprocessed and used 

to train a DNN to estimate the 3D body posture i.e. 3D joints 

center coordination. In the online phase, testing dataset is 

introduced into the trained DNN, and estimated 3D body 

posture along with the subject’s anthropometric information are 

utilized to calculate body segments parameters. Finally, L5/S1 

joint kinetic is determined by a top-down inverse dynamic 

algorithm according to the estimated 3D body posture and body 

segments parameters.  

A. Data Pre-processing 

In order to prepare the data for the proposed deep learning 

method, images are extracted from videos. Each video includes 

200 frames with 30 fps rate. We down-sampled the video from 

30 fps to 15 fps for both the training and testing sets to reduce 

redundancy. All of the images are adjusted to 256×256 pixels 

and are cropped such that the subject is located at the center. 

3D joints annotation are provided by a motion capture 

system. We selected 24 markers to define 15 joint centers 

including head, neck, left/right shoulder, left/right elbow, 

left/right wrist, left/right hip, left/right knee, left/right ankle, 

and L5/S1 joint and only used the trajectory of these joints for 

training the network. The coordination of each joint is 

normalized from zero to one over the whole dataset. Given the 

camera parameters, 2D joints coordination are also calculated 

for each image. After pre-processing, the data structure consists 

of the cropped images and corresponding 2D joints annotation 

and normalized 3D joints annotation. 

B. DNN Model 

With the emergence and advances of deep learning 

techniques, approaches that employ deep convolutional neural 

networks to learn the image features, have become the standard 

in the domain of the vision tasks. DNN approaches have 

achieved the highest performance for several vision tasks such 

as human activity recognition [31, 32], face recognition[33, 34], 

and human pose estimation [35, 36]. In this study, the aim of 

the DNN model is to predict the 3D body pose (3D coordination 

of the body joints) from multi-view RGB images. Fig. 3 shows 

the architecture of the proposed DNN model, which consists of 

two networks: a "2D pose estimator" network and a "3D pose 

generator" network. The first network extracts both shape (2D 

pose) and hierarchical texture feature map independently from 

each view, while the second network synthesizes these 

information from all available views to generate the 3D pose. 

The DNN model has been reported in detail elsewhere [35]. To 

familiarize the reader, we will briefly explain each network. 

1) 2D Pose Estimator Network 

The 2D pose estimator network takes the RGB images as input 

and estimates its corresponding 2D pose for each view, 

independently. The 2D body pose is represented by J heatmaps, 

where J is the number of joints of the body. Each value in the 

heatmaps represents the probability of observing a specific joint 

at the corresponding coordination (fig. 4). The advantage of the 

heatmaps over direct regression of joint coordination is that it 

handles multiple instances in image and represents uncertainty. 

We use Hourglass network [36], which has achieved state-

of-the-art performance on large scale human pose datasets for 

2D pose estimation. As shown in fig. 3, Hourglass network [36] 

comprises of encoder and decoder. The encoder processes the 

input image with convolution and pooling layers to generate 

low resolution feature maps and the decoder processes low 

resolution feature maps with up-sampling and convolution 

layers to construct the high resolution heatmaps for each joint. 

In order to prevent the loss of high resolution information in the 

encoder, the feature maps before each pooling layer, which 

shares hierarchical texture feature, are directly added to the 

counterpart in the decoder. More details about the network 

architecture can be found in the corresponding paper [36]. 

Given an input RGB image for view i (𝒙𝑖 ∈ ℝ𝑊×𝐻×3), then 

2D pose estimator network (𝑓) for i-th view is a mapping as 

follow: 

({h1
i , … , hJ

i
} , {t1

i , … , tS
i }) = f(xi), (1) 

where ts
i ∈ ℝWs×Hs×Ls  {s = 1, … , S} is s-th texture feature map 

for view i, and hj
i ∈ ℝWh×Hh×L{j = 1, … , J} is j-th joint heatmap 

for view i. The network parameters are learned by minimizing 

the loss function defined by a pixel-wise heatmap loss: 

𝓛𝟐𝐝
𝐢 = 𝟏

𝐉⁄ ∑‖𝐡𝐣
𝐢 − 𝐡̂𝐣

𝐢‖,

𝐉

𝐣=𝟏

 (2) 

where ||.|| is Euclidean distance and ℎ𝑗
𝑖  is rendered from the 

ground truth 2D pose through a Gaussian kernel with mean 

equal to the ground truth and variance one.
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Fig. 3.  Left: Deep neural network architecture: input images go through 2D pose estimator network and turn into 2D joint heatmaps and hierarchical texture feature 

maps. . 2D pose estimator architecture is similar to Hourglass network [36] and compromises of encoder and decoder. 2D joints heatmaps are processed in the 3D 
pose generator network and hierarchical skip connections are summed at specific layers of 3D pose generator network. 3D pose generator architecture is similar to 

encoder part of the Hourlass network [36], which includes max-pooling layers and residual learning modules. The number on each layer illustrate the corresponding 

size of the feature maps (number of channels × resolution) for convolutional layers and residual modules and the number of neurons for fully connected layers.  
Right: Residual learning modules design. The number on each layer illustrate number of channels × filter size. Stride is equal to one in the whole residual modules.

 

Since the hierarchical texture feature maps of the network 

share useful information in different scales, they allow for a 

richer gradient signal and can provide more 3D cues compare 

to using only heatmaps [37]. So, we propose to employ them 

for a more efficient 3D generating by feeding them along with 

the 2D heatmaps to 3D pose generator network (fig. 3). 

2) 3D Pose Generator Network 

The purpose of the 3D pose generator network is to integrate 

information from multiple views to synthesize 3D pose 

estimation. The input of this network is the concatenation of the 

outputs of the 2D pose estimator network for N different views 

and the output is the 3D pose. 

We propose a bottom up data driven method that directly 

generates the 3D pose skeleton from the outputs of the 2D pose 

estimator network. 3D pose generator network is designed as an 

encoder similar to the first part of the 2D pose estimator 

network, which includes max-pooling layers and residual 

learning modules [38] (fig. 3). Each 3D pose skeleton 𝑝 ∈

ℝ3×𝐽 is defined as a set of joints center coordination in 3D 

space. So 3D pose generator network ( 𝑔)  is a mapping as 

follow: 

(𝑝̂) = 𝑔(C(ℎ1
i , … , ℎJ

𝑖)
𝑖=1

𝑁
, 𝐶 (𝑡1

i , … , 𝑡S
𝑖 )

𝑖=1

𝑁
), (3) 

where 𝐶(. )𝑖=1
𝑁  shows the concatenation across the views. 

Knowing that 3D joints center coordination are available for 

the training dataset by means of a maker-based motion capture 

system, network parameters are learned by minimizing the loss 

between the available 3D joints center coordination and the 

corresponding estimated values as: 

𝑳𝟑𝒅 = 𝟏
𝑱⁄ ∑‖𝒑𝒋 − 𝒑̂𝒋‖

𝑱

𝒋=𝟏

, (4) 

where 𝑝𝑗  and 𝑝̂𝑗  are ground truth and estimated 3D 

coordination of joint center j respectively. 

 

3) Training Strategy 

We propose a two-stage training strategy that we found more 

effective instead of an end-to-end training for the whole 

network from the scratch. At the first stage, we fine-tuned the 

2D pose estimator network on our lifting dataset with learning 

rate of 0.00025 for five epochs (750 iterations per epoch). At 

the second stage, 3D pose generator network was trained from 

scratch on our lifting dataset by using two-view images and 

corresponding normalized 3D pose skeleton. The models were 

trained with learning rate of 0.0005 for 50 epochs (900 

iterations per epoch). In both stages, all lifting trials of subjects 

1 to 10 were used as training dataset and all lifting trials of 

subjects 11 and 12 as testing dataset. 

C. Body Segments Parameters Calculator 

We define the human body with 11 body segments including 

head, trunk, pelvis, upper arms, forearms, thighs, and shanks. 

Distal and proximal joints of each segment are defined based 

on the approaches proposed by [39]. Given 3D coordination of 

the joints center, subject’s gender, and total body mass, all of 

the body segment parameters including segments length, mass, 

position of the center of mass (COM), and inertia tensor are 

calculated based on the suggested values by [39].  

The length of the segment i (𝑙𝑖) is calculated as the Euclidean 

distance between its corresponding distal and proximal joint 

centers. Let M be the subject’s total mass, and 𝑚𝑖  be the 

segment i mass, then: 

𝑚𝑖 = 𝑟̅𝑖
𝑚 × 𝑀, (5) 

where 𝑟̅𝑖
𝑚 is the mean relative mass of the segment i, given in 

the literatures [39]. The 3D position of the segment i's COM 

(𝑐𝑜𝑚𝑖) is located on the line that connects its corresponding 

distal (𝑝𝑑𝑠(𝑖))  and proximal (𝑝𝑝𝑟(𝑖))  joint center and can be 

calculated based on the mean longitudinal distance of the COM 

from its proximal joint center (𝑟̅𝑖
𝑐𝑚)[39], as follow: 

  

𝑐𝑜𝑚𝑖 = 𝑝𝑝𝑟(𝑖) + 𝑟̅𝑖
𝑐𝑚 × (𝑝𝑑𝑠(𝑖) − 𝑝𝑝𝑟(𝑖)). (6) 
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Fig.  4. The input image and corresponding heatmaps for five selected joints. 

Each value in the heatmaps presents the probability of observing a specific joint 

at the corresponding coordination. 

 

Finally, the inertial tensor of the segment i ( 𝐼𝑖) , can be 

calculated as follow: 

𝐼𝑖 = 𝑚𝑖 × (𝑙𝑖 × 𝑟̅𝑖)
2
, (7) 

 

where 𝑟̅𝑖 = [𝑟̅𝑖
𝑥 , 𝑟̅𝑖

𝑦
, 𝑟̅𝑖

𝑧] is the mean relative radius of gyration 

of the segment i about each axis [39]. 

D. Inverse Dynamics 

To calculate the joints kinetic information from the estimated 

joints kinematic information (position, velocity, and 

acceleration), a top-down inverse dynamics model [40]  was 

used. A global equation of motion was applied to estimate the 

net forces (𝐹𝐿5𝑆1) and moments (𝑀𝐿5𝑆1) at L5/S1 joint in the 

global coordinate system, as described by [40]: 

𝐹𝐿5𝑆1 = −𝐹𝑟 − ∑ 𝑚𝑖𝑔
𝑘

𝑖=1

+ ∑ 𝑚𝑖𝑎𝑖

𝑘

𝑖=1

 

(8) 

𝑀𝐿5𝑆1 = −(𝑟𝑟 − 𝑟𝐿5𝑠1) × 𝐹𝑟 − ∑[(𝑟𝑖 − 𝑟𝐿5𝑠1) × 𝑚𝑖𝑔]

𝑘

𝑖=1

 

                  + ∑ [(𝑟𝑖 − 𝑟𝐿5𝑠1) × 𝑚𝑖𝑎𝑖]𝑘
𝑖=1 +

∑ (𝐼𝑖 ∝𝑖),𝑘
𝑖=1   

 

(9) 

where 𝑟𝑟  and 𝑟𝐿5𝑆1 are the vectors to the position of the external 

force and L5/S1 joint respectively, and 𝐹𝑟 is the external force 

vector. 𝑟𝑖 is the vector to the COM of segment i, k is the number 

of segments of the upper body up to L5/S1 joint (i.e. head, 

trunk, upper arms, and forearms), and 𝑎𝑖 and ∝𝑖 are the linear 

and angular acceleration vectors of the COM of segment i, 

respectively. As it can be seen in the (8) and (9), in order to 

calculate 𝐹𝐿5𝑆1  and  𝑀𝐿5𝑆1 , external force information are 

required.  In the top-down model, external forces information 

can be calculated based on the mass and acceleration of the box. 

In bottom-up model, on the other hand, force plates data can be 

used to measure the external forces, external moments and their 

points of application. So using a top-down model instead of a 

bottom-up model for the inverse dynamics process seems more 

practical for an on-site biomechanical analysis, since it removes 

the need for the force plates [25]. 

IV. DATA ANALYSIS 

A. Validation 

The performance of our proposed method is validated against 

the reference in terms of the accuracy of estimated 3D L5/S1 

joint moment and force values. The validation is performed by 

calculating Root Mean Squared Error (RMSE) and Pearson’s 

correlation coefficient (R). Furthermore, for each of the lifting 

trial, absolute peak values over the whole lifting cycle was 

extracted from estimated L5/S1 moment and force series and 

was compared to the corresponding values obtained by the 

reference using RMSE and R. Finally, for absolute peak values 

of all lifting trials together, intra class correlation coefficients 

(ICC) were calculated. For all of the ICC calculation, ICCs  less 

than 0.40 were assumed poor, ICCs between 0.40 to 0.75 were 

good and ICCs greater than 0.75 were considered excellent [41] 

B. Lifting Cycle Normalization 

To evaluate the performance of the proposed method, 

independent of the subjects, estimated forces and moments 

were normalized with respect to the body mass and body mass 

× stature, respectively [12]. However, in order to make the 

kinetic values more clinically-meaningful, normalized kinetic 

values were multiplied by mean body mass and mean body × 

stature mass across subjects [42]. Finally, all kinetic values 

were time-normalized to a 100% of a lifting cycle. The lifting 

cycle is defined as the time that a subject grabs the box to the 

time that the box is left on the shelf. 

V. RESULTS 

A. L5/S1 Joint Moment Time Series 

Results show a good agreement between the estimated L5/S1 

joint moments in each of the three planes and the references. 

The grand mean (±SD) of the total moment absolute errors 

across all the subjects and trials was 9.06 (±7.60) Nm. Fig. 5 

presents a typical example of a lifting trial, showing the L5/S1 

joint moment time series calculated based on the proposed 

DNN based method and the reference. For dominant moment 

component (sagittal moment), R coefficient for all lifting trials 

were high (mostly above 0.95) and RMSE were small (mostly 

below 20 Nm) (table 1). For non-dominant L5/S1 moment 

components (lateral and rotation moment) on the other hand, R 

values were lower than dominant moment component. 

However, the RMSE were also small (less than 10 Nm). This 

likely happens due to a smaller moment in lateral and rotation 

planes during lifting, which leads to a small moment variance 

in this plane 

Figure 6 presents the average and standard deviation of the 

total moment across the subjects for each of the nine lifting 

tasks. It shows a good fit of the proposed method with the 

reference for all of the lifting tasks with no evidence of 

systematic overestimation or underestimation. Standard 

deviation across the subjects are also in a good agreement by 

the reference. 



THMS-18-01-0033  6 

TABLE 1 

COMPARISON OF THE L5/S1 JOINT’S KINETICS BETWEEN THE PROPOSED DNN BASED METHOD AND THE REFERENCE FOR EACH LIFTING TRIAL, SUBJECT, AND PLANE 

SEPARATELY. LAT.= LATERAL, SAG.= SAGITTAL, ROT.= ROTATION, ANT-POST= ANTERIOR POSTERIOR, MED-LAT= MEDIOLATERAL, VERT.= VERTICAL. LIFTING 

TRIALS ARE SHOWN AS THEIR “VERTICAL LIFTING RANGE _ END OF LIFT ANGLE”. RMSE= ROOT MEAN SQUARED ERROR, SD=STANDARD DEVIATION OF THE ERROR. 

R= PEARSON’S CORRELATION COEFFICIENT VALUES. S11: SUBJECT11, S12: SUBJECT 12. 
 

 L5/S1 Joint Moment L5/S1 Joint Force 

Plane Lat. Sag. Rot. Lat. Sag. Rot. Lat. Sag. Rot. 
ant-

post 

med-

lat 
Vert. 

ant-

post 

med-

lat 
Vert. 

ant-

post 

med-

lat 
Vert. 

Lifting Trial FK_00 FK_30 FK_60 FK_00 FK_30 FK_60 

RMSE 
S11 3.76 23.38 3.50 5.65 21.63 4.23 4.88 16.76 3.31 8.84 7.67 20.00 12.02 10.46 22.20 8.26 7.69 11.97 
S12 7.71 13.09 2.68 10.67 13.21 2.14 18.28 10.59 2.11 8.97 6.16 18.25 7.29 6.43 13.10 6.74 6.50 16.38 

SD 
S11 1.22 9.63 2.22 2.97 11.64 2.34 2.46 9.77 2.17 5.30 4.08 13.47 6.32 5.94 14.96 4.91 5.09 8.17 

S12 3.67 7.53 1.74 4.70 5.49 1.19 4.90 5.43 1.37 4.93 4.05 10.59 5.27 3.93 6.61 4.01 3.70 10.97 

R 
S11 0.92 0.94 0.65 0.98 0.97 0.54 1.00 0.99 0.82 0.80 0.05 0.90 0.54 0.46 0.88 0.63 0.82 0.91 

S12 0.41 0.85 0.52 0.99 0.96 0.58 1.00 0.99 0.90 0.78 0.70 0.85 0.78 0.85 0.90 0.79 0.85 0.89 

Lifting Trial KS_00 KS_30 KS_60 KS_00 KS_30 KS_60 

RMSE 
S11 3.40 5.22 0.96 5.34 6.12 1.17 5.19 4.04 1.23 7.99 5.19 6.33 7.36 5.58 8.84 7.38 3.92 7.62 
S12 3.03 4.15 1.14 7.69 5.89 1.39 4.61 4.45 1.33 7.01 5.19 12.15 8.30 8.19 16.31 6.09 6.77 8.43 

SD 
S11 1.62 2.87 0.67 3.56 3.34 0.69 2.68 2.51 0.79 5.01 3.60 3.44 3.55 3.50 5.60 3.98 2.63 5.12 

S12 1.67 2.79 0.63 3.33 3.51 0.77 2.39 2.69 0.77 4.54 2.96 6.35 4.36 5.16 11.17 3.47 4.40 4.98 

R 
S11 0.84 0.98 0.54 1.00 0.94 0.87 1.00 0.99 0.94 0.74 0.67 0.95 0.87 0.69 0.90 0.89 0.95 0.92 

S12 0.69 0.97 0.55 0.99 0.91 0.81 0.99 0.98 0.96 0.81 0.33 0.82 0.88 0.77 0.73 0.90 0.78 0.89 

Lifting Trial FS_00 FS _30 FS _60 FS_00 FS_30 FS_60 

RMSE 
S11 4.93 16.53 2.58 5.12 13.03 3.38 5.47 17.29 2.37 7.47 6.63 12.45 11.36 9.43 14.45 11.01 6.48 19.58 
S12 6.18 6.83 3.45 8.84 11.27 2.91 8.04 9.54 2.06 6.21 8.90 17.32 8.26 9.37 21.14 9.68 8.65 19.56 

SD 
S11 3.35 9.90 1.91 3.05 7.89 2.49 3.40 11.80 1.54 5.27 4.11 9.84 6.73 5.06 9.35 5.27 3.66 12.34 

S12 2.96 4.52 2.70 3.52 8.41 1.91 3.75 7.51 1.33 3.71 6.15 11.28 5.09 5.36 12.23 7.57 4.34 10.90 

R 
S11 0.76 0.99 0.90 0.99 0.99 0.82 1.00 0.99 0.84 0.70 0.17 0.96 0.64 0.60 0.68 0.64 0.79 0.91 

S12 0.95 0.98 0.45 0.97 0.99 0.51 0.99 0.99 0.64 0.88 0.26 0.51 0.87 0.73 0.86 0.52 0.79 0.79 

 
 

Fig. 5.  Estimated versus reference L5/S1 joint moment for floor-to-knuckle-

height and 60 degree end-of-lift angle lifting trial (left). The total moment is the 

vector summation of the L5/S1 moments at each three planes (right). 

 

 
Fig. 6.  Average estimated (dashed line) versus reference (solid line) L5/S1 joint 

total moment across the subjects for each lifting task. The vertical bars show 

the standard deviation for every 8 percent of the lifting cycle. 

 

 
 

Fig. 7.  Average of the peak L5/S1 joint moment across the subjects obtained 

from the reference (black) and the proposed DNN based method (white) for 

each of the lifting trial and plane separately. Lifting trials are shown as their 

“vertical lifting range _ end of lift angle”. Standard deviations are shown by 

error bars. 

 
Fig. 8.  Scatter plot shows the relation between peak moments estimated by the 

proposed DNN based method and the reference. Data are pooled over the whole 

testing dataset. The solid line is the linear regression line fits trough the data 

points and the dashed diagonal line is the identity line. ICC indicates the intra-

class correlation between the reference and estimated peak moments. 
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B. L5/S1 Joint Moment Peaks 

Absolute peak values extracted from the moment time series 

of the proposed method are compared to corresponding values 

of the reference across the whole lifting trials (fig. 7). The 

RMSE and R coefficient of the peak total moment were 6.14 

Nm and 0.96 respectively. Finally, ICCs of peak moments over 

all pooled video dataset (2 subjects, 9 lifting trials, and 3 planes) 

were about 0.99 between the reference and the proposed 

method, which is considered as excellent [41] (fig. 8). 

C. L5/S1 Joint Force Time Series 

For all of the lifting trials, the correspondence between 3D 

L5/S1 joint force obtained from the reference and estimated 

from the proposed method was good. For dominant force 

component (vertical force), R values were mostly above 0.80 

and RMS mostly below 20 N (table 1 and fig. 9). The grand 

mean (±SD) of the total force absolute errors across all the 

subjects and trials was 4.85 (±4.85) N. For non-dominant L5/S1 

force components (anterior-posterior and mediolateral force), 

both R values and RMSE were mostly smaller than dominant 

force component. 

Figure 10 presents the average and standard deviation of the 

total force across the subjects for each of the nine lifting tasks. 

It shows a good fit of the proposed method with the reference 

for all of the lifting tasks with no evidence of systematic 

overestimation or underestimation. 
 

 
 

Fig. 9.  Estimated versus reference L5/S1 joint force for floor-to-knuckle-

height and 60 degree end-of-lift angle lifting trial (left). The total force is the 

vector summation of the L5/S1 forces at each three planes (right). 

 

 
Fig. 10.  Average estimated (dashed line) versus reference (solid line) L5/S1 

joint total force across the subjects for each lifting task. The vertical bars show 

the standard deviation for every 8 percent of the lifting cycle. 

D. L5/S1 Joint Force Peaks 

Absolute peak values extracted from the force time series of 

the proposed method were compared to the corresponding 

values of the reference across the whole lifting trials (figure 11). 

The RMSE and R coefficient of the peak total force were 4.45 

N and 0.99 respectively. Finally, ICCs of the peak forces over 

whole pooled video dataset (2 subjects, 9 lifting trials, and 3 

planes) were about 0.99 between the reference and the proposed 

method, which is considered as excellent [41] (fig. 12). 
 

 
Fig. 11.  Average of the peak L5/S1 joint force across the subjects obtained 

from the reference (black) and the proposed DNN based method (white) for 

each of the lifting trial and plane separately. Lifting trials are shown as their 

“vertical lifting range _ end of lift angle”. Standard deviations are shown by 

error bars.  

 

 
Fig. 12.  Scatter plot shows the relation between peak forces estimated by the 

proposed DNN based method and the reference. Data are pooled over the whole 

testing dataset. The solid line is the linear regression line fits trough the data 

points and the dashed diagonal line is the identity line. ICC indicates the intra-

class correlation between the reference and estimated peak forces. 

VI. DISCUSSION 

In this work, we presented a DNN-based method for 3D 

human pose estimation and validated the results for L5/S1 joint 

kinetic estimation. We validated our method by comparing the 

results with the reference obtained from a marker-based motion 

capture system. The results show a strong correspondence 

between the methods for estimated L5/S1 joint kinetic during 

the whole lifting cycle as well as estimated peak kinetic values. 

The performance of the proposed method for L5/S1 joint 

moment estimation is comparable or better than the 

performance reported in previous studies using a video-based 

coding system [16] (Mean±SD of peak total moment of 

12.13±9.67 Nm compare to 28.27±4.49 Nm and 27.84±2.41 
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Nm for two different video systems) and Inertial sensors [43] 

(Mean±SD of extension moment of 7.0±7.1 Nm compare to 

11.5±7.4 Nm to 31.0±16.6 Nm for different lifting styles). To 

the best knowledge of the authors, the present study is the first 

work using deep learning for L5/S1 joint moment estimation. 

The performance of the proposed DNN based method was 

evaluated for each plane separately. For the non-dominant 

components (lateral and rotation moment and anterior-posterior 

and mediolateral force), the R coefficient of time series were 

smaller than dominant components (sagittal moment and 

vertical force). However considering the smaller RMSE for 

non-dominant components, this is most likely happening due to 

smaller moment and force variances in these planes than less 

accurate results. Previous studies have reported similar 

performance comparison for the dominant and non-dominant 

L5/S1 moment using a video coding system [15] and Inertia 

sensors [44].   

Furthermore, the results show a good fit of the proposed 

method with the reference for all of the lifting tasks. However, 

the average total L5/S1 joint moment and force difference 

across the whole dataset between the proposed method and the 

reference for KS lifting was smaller than FK and FS lifting 

(3.11 Nm compare to 9.43 Nm and 7.41 Nm for moment and 

3.93 N compare to 6.21 N and 5.66 N for force). It may be 

caused by the insignificant movement of the lower body for 

grabbing the box from knuckle height level in comparison with 

floor level, which leads to higher accuracy of the joints 

kinematic estimation. 

This study demonstrates the applicability of deep learning 

techniques in the context of biomechanical analysis and can be 

considered as a simple and relatively cheap solution for the 

drawbacks associated with the marker-based motion analysis 

methods. For future work, subjects with reported low back pain 

can be added to the dataset and a classification algorithm can 

be utilized to classify each lifting task as a safe or unsafe lifting 

based on the estimated L5/S1 kinetic values. This method can 

provide a reliable tool for detecting the risk of lower back 

injuries during occupational lifting. 

The present study is a starting point of the research along this 

direction. There are three limitations about this study that 

should be further investigated in the future research. First, the 

proposed method was validated for lifting without moving feet. 

The proposed method requires parameter fine-tuning for new 

tasks and may or may not work as well for an unseen task. 

Whether and how well this method can be extended for more 

general lifting tasks would be worth to investigate. Second, for 

calculating the external force in inverse dynamics, we assumed 

an equal weight distribution of the crate between the both 

hands, which is not accurate. Finally, although our proposed 

method is capable of handling occlusion, but the performance 

may not be as well in case of highly occluded images or using 

monocular images. 

VII. CONCLUSION 

The current study shows the applicability of deep learning as 

a viable tool for assessment of lower back loads during 

occupational lifting. The accuracy of the method is comparable 

with the marker-based motion tracking systems without the 

limitations associate with these systems. This simple and 

relatively cheap method can be used for on-site biomechanical 

analysis in order to decrease the risk of lower back injuries in 

the workplaces. 
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