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Abstract:

The aim of this study is developing and validating a Deep Neural Network (DNN) based method
for 3D pose estimation during lifting. The proposed DNN based method addresses problems
associated with marker-based motion capture systems like excessive preparation time,
movement obstruction, and controlled environment requirement. Twelve healthy adults
participated in a protocol and performed nine lifting tasks with different vertical heights and
asymmetry angles. They lifted a crate and placed it on a shelf while being filmed by two
camcorders and a synchronized motion capture system, which directly measured their body
movement. A DNN with two-stage cascaded structure was designed to estimate subjects’ 3D
body pose from images captured by camcorders. Our DNN augmented Hourglass network for
monocular 2D pose estimation with a novel 3D pose generator subnetwork, which synthesized
information from all available views to predict accurate 3D pose. We validated the results against
the marker-based motion capture system as a reference and examined the method performance
under different lifting conditions. The average Euclidean distance between the estimated 3D
pose and reference (3D pose error) on the whole dataset was 14.72+2.96 mm. Repeated measures
ANOV As showed lifting conditions can affect the method performance e.g. 60° asymmetry angle
and shoulder height lifting showed higher 3D pose error compare to other lifting conditions. The
results demonstrated the capability of the proposed method for 3D pose estimation with high
accuracy and without limitations of marker-based motion capture systems. The proposed method

may be utilized as an on-site biomechanical analysis tool.

1. Introduction:
Work-related Musculoskeletal Disorders (WMSDs) are commonly observed among workers
involved in material handling tasks such as lifting (Kuiper et al. 1999, da Costa et al. 2010). To
improve work place safety and decrease the risk of WMSD, it is necessary to analyze
biomechanical risk exposures associated with these tasks by capturing the body pose and

assessing joints kinematics and critical joints stress.

The most common motion capture technique is using marker-based motion capture systems.

These systems use reflective markers and a set of synchronized cameras to track the body
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movements: reflective markers are attached near the subject’s joints and the 3D position of each
joint is estimated using 3D coordinates of the reflective markers. Marker-based motion capture
systems are considered as a reliable and accurate system but their widespread use is limited due
to its drawbacks. First, they require a controlled environment to acquire high-quality data;
second, attaching markers to the subject’s body is time consuming and can also obstruct subject’s
activities.

Therefore, image-based motion capture techniques, have gained an increasing interest during the
past decades and a variety of computer vision and machine learning approaches have been
proposed for 3D human motion tracking and pose estimation (Bo et al. 2010, Amin et al. 2013,
Zhou et al. 2016). Despite the success of these approaches, they suffer from the fact that they utilize
hand crafted image features e.g. HOG (Dalal et al. 2005), SIFT (Miiller et al. 2010), etc. With the
emergence and advances of deep learning techniques, approaches that employ Deep Neural Networks
(DNN) to learn high-level and semantic image features, have become the standard in the domain of
vision tasks. DNNs consist of several hidden layers between the input and output layers and are capable
of modeling complex non-linear relationships by learning high-level and semantic features from the
data. They have achieved growing attention recently due to their high performance for several
vision tasks such as face recognition (Daneshzand et al. 2018, Iranmanesh et al. 2018, Iranmanesh et
al. 2018), human activity recognition (Baccouche et al. 2011, Yang et al. 2015), and human pose
estimation (Peng et al. 2018, Tang et al. 2018, Zhao et al. 2018). Therefore, success of DNNs
justifies investigation in other fields such as biomechanical analysis.

Previous literatures explored computer vision and machine learning algorithms and proposed
image-based methods for biomechanical analysis. In particular, Corazza et. al. (2006) and
Sandau et. al. (2014) developed a generative method to fit a predefined 3D body model to a
visual hull constructed from eight cameras. The fitting process was formulated as an
optimization problem and they used body part segmentation and least-squares optimization to
estimate the joint center positions. The same idea was taken to develop an underwater motion
capture system for the analysis of arm movements during front crawl swimming (Ceseracciu et
al. 2011). Despite the high accuracy of these methods, they critically rely on background
subtraction, which requires a controlled environment and lighting conditions. Furthermore, large
number of cameras is needed to construct a precise visual hull surface, which is not always

practical in the workplace. Drory et al. (2017), proposed a discriminative method to find a
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mapping directly from the image features i.e. HOG (Dalal et al. 2005) to body pose parameters
by utilizing training data. Their method was tested for full body kinematics estimation of a cyclist
and it was shown that it is capable of estimating 2D pose accurately. However; the method
performance was not tested for the 3D body pose estimation. In another study by Greene et al.
(2018), a video tracking method was developed for classifying lifting postures automatically from
video. They used a simple low-level image feature i.e. height and width of the silhouette obtained
from background subtraction and applied regression tree algorithm to classify the lifting postures.
Their method achieved high classification accuracy for three different lifting postures including
squatting, stooping, and standing, however; it was not able to track the body pose over the whole
video frames. These studies demonstrate the feasibility of computer vision and machine learning
approaches for biomechanical analysis, but it remains unknown if deep learning as the state-of-
the-art approach in the vision domain can be employed for this field. Therefore, the primary aim
of this study is to investigate the possibility of deep learning network employment for an image-
based 3D human pose estimation during lifting tasks. The secondary aim of this study is to

determine how lifting conditions can affect the accuracy of the results.

2. Methods and Materials:

A lifting dataset comprises of videos and corresponding 3D body joint annotations during
various symmetrical lifting tasks were derived in our previous studies (Mehrizi et al. 2017,
Mehrizi et al. 2018). The experimental setup of those studies, along with the newly added lifting

tasks (asymmetrical lifting), is described in this section.

2.1. Participants:
The dataset consists of 12 healthy males (age 47.50+11.30 years; height 1.74+0.07 meters;
weight 84.50+12.70 kg) performing various lifting tasks in a laboratory at self-selected speed
while being filmed by both camcorders and a synchronized motion tracking system that directly
measured the body movement. They lifted a plastic crate (39 x 31 x 22 cm) weighing 10 kg and
placed it on a shelf without moving their feet. All lifting trials started with participants standing
in front of a plastic crate. The initial horizontal distance of the plastic crate and the lifting speed
were chosen by lifters without constraint. They performed three vertical lifting heights ranges

from floor to knuckle (FK), knuckle to shoulder (KS) and floor to shoulder (FS). Each vertical
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lifting range was combined with three asymmetry angles (0°, 30° and 60°), which was defined
as the angle of the end position relative to the starting position of the crate (Fig. 1). A total of 9
lifts (3 lifting heights x 3 asymmetry angles) were performed by each participant in a full-
factorial design with random sequence. For each combination of lifting tasks, two repetitions
were performed and we used repetition one as training dataset and repetition two as testing
dataset. Because two video clips were missed during the data collecting (repetition two of FK

lifting with 0° and 30° asymmetry angles for subject 9), they were excluded from the dataset.

2.2. Data Acquisition:
24 Reflective markers were attached to the lifters” body segments (Cappozzo et al. 1995) and
3D positions of markers during the lifting tasks were measured by a motion tracking system with
a sampling rate of 100 Hz. The raw 3D coordinate data were filtered with a fourth-order
Butterworth low-pass filter at 8 Hz. Two digital camcorders with 720x480 pixel resolution,
synchronized with the motion tracking system also recorded the lifting from two views, 90
degree (side view) and 135 degree positions (Fig 1).

2.3. Data Processing:
Videos are down-sampled from 30 fps to 15 fps for both training and testing sets to reduce
redundancy and images are extracted from down-sampled videos. All images are cropped to a

fixed size (256%256 pixels) and are adjusted such that the subject is located at the center.

3D joints annotation are provided by a motion capture system. We define 14 joint centers
including head, neck, and left/right shoulders, elbows, wrists, hips, knees, and ankles, and only
use the trajectory of these joints for training the network. The coordinates of each joint is
normalized from zero to one over the whole dataset in order to ensure equal weightings across

joints.

2D joints annotation are provided by registering 3D joints annotation in motion capture

coordinate system, into image coordinates system. If x represents 3D annotation of joint j in
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motion capture coordinate system and y represents the 2D annotation of the same joint in image,

coordinate system, then the following relation holds:

x=Cy

, where C is the camera matrix. In order to calculate the camera matrix, first for a few images
we find 2D joints annotation manually. Then, having the corresponding 3D annotation for the
same joints, we solve the above equation and find matrix C. Finally, for the rest of the images,
2D joints annotation can be found using calculated camera matrix (C) and 3D joints annotation
available from motion capture system. We refer the reader to this work (Zhang 2000) for more
information about the camera matrix calculation.

After data processing, the data structure consists of about 21,000 cropped images and
corresponding normalized 3D joints annotation, and 2D joints annotation. Fifty percent of the

data are used as the training data and the other fifty percent are saved for the testing data.

2.4. Network Architecture
The aim of our proposed DNN is to predict the 3D body from multi-view RGB images. Figure
2 shows an overview of the proposed network, which consists of two subnetworks: a "2D pose
estimator" subnetwork and a "3D pose generator" subnetwork. The first subnetwork extracts 2D
pose from the input image independently from each view. The estimated 2D poses are
concatenated across all the views and are fed into the "3D pose generator” subnetwork to infer

the 3D pose.

Inferring a 3D body pose from 2D body pose as the only intermediate supervision is inherently
ambiguous. This ambiguity comes from the fact that there are usually multiple 3D poses
corresponded to a single 2D pose. In order to overcome this challenge, we propose to apply skip
connections from 2D pose estimator subnetwork to 3D pose generator subnetwork (Fig. 2). The
idea of skip connection was first introduced by He et. al. (2016) for image recognition. They
showed that in a very deep network, the gradients of the network's output with respect to the
parameters in the lower layers become very small and as a result the network cannot learn the
parameters effectively (gradient vanishing problem). The idea of skip connections is to provide
inputs of a lower layer available for a higher layer by adding a shortcut connection and letting

the network go back to an earlier time to pick up some information. We apply the same idea in
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our network by adding several skip connections between two subnetworks, which provide more

intermediate cues for 3D pose inference and decrease ambiguity (Mehrizi et al. 2018).

Figure 2

2.4.1. 2D Pose Estimator Subnetwork
The 2D pose estimator subnetwork takes RGB images as the input and estimates their
corresponding 2D pose for each view, independently. The 2D body pose is represented by J
heatmaps, where J is the number of body joints. Each value in heatmaps represents the probability
of observing a specific joint at the corresponding coordinates (Fig. 3). The advantage of heatmaps
over direct regression of joint coordinates is that it handles multiple instances in image and

represents uncertainty.

We use Hourglass network (Newell et al. 2016), which has achieved state-of-the-art performance
on large scale human pose datasets for 2D pose estimation. Hourglass network comprises of
encoder and decoder. The encoder processes the input image with convolution and pooling layers
to generate low resolution feature maps and the decoder processes low resolution feature maps
with up-sampling and convolution layers to construct the high resolution heatmaps for each joint.
More details about the network architecture can be found in the corresponding paper (Newell et

al. 2016).

Figure 3

2.4.2. 3D Pose Generator Subnetwork

The 3D pose generator subnetwork integrates information from multiple views to synthesize 3D
pose estimation. The input of this subnetwork is concatenation of the 2D pose estimator

subnetwork’s outputs for two different views and the output is the 3D pose.

3D pose generator subnetwork is designed as an encoder, which includes convolutional and max-
pooling layers (Fig. 4). The network starts with a convolutional layer with 256 channels and filter
size of 1 and is followed by a series of max-pooling layers and residual modules. Each residual

module consists of three convolutional layers and Rectified Linear Units (ReLUs) are used as the

7



O 00 N o u B W N -

W W N N N N N N NN NN P P P R P R R P R p
P O VW 0 N O U1 B W N P O W 0 N O U B W N P O

activation function in between each layer. The network ends with a fully-connected layer, which
outputs the 3D coordinates of each joint. As mentioned in the previous section, in order to provide
more intermediate cues for 3D pose generator subnetwork, we leverage skip connections between
two subnetworks by adding the feature maps before each pooling layer of the 2D pose estimator

subnetwork directly to the counterpart of the 3D pose generator subnetwork (Fig. 4).

Figure 4

2.5. Training Strategy:

The deep learning platform used in this study is Pytorch and training and testing are implemented
on a machine with NVIDIA Tesla K40c and 12 GB RAM. The network is trained in a fully-
supervised way with L2 loss function and using Adaptive Moment Estimation (Adam) (Kingma
et al. 2014) as the optimization method.

We propose a two-stage training strategy that we found more effective instead of an end-to-end
training for the whole network from the scratch. At the first stage, we use pre-trained Hourglass
model (Newell et al. 2016) and fine-tune it on our lifting dataset with learning rate of 0.00025
for five epochs. We utilize data augmentation i.e. scaling (0.8-1.2), and rotation (+/- 20 degrees)
to add variation into the training dataset and prevent overfitting. After data augmentation, each
original image in the training dataset is replaced by its scaled and rotated version and the total
number of images (dataset size) is kept fixed. Fine-tuning of this stage takes about 4000 seconds
per epoch (20,000 seconds total).

At the second stage, 3D pose generator subnetwork is trained from scratch on our lifting dataset
by using two-view images and corresponding normalized 3D pose skeleton. The network is
trained with learning rate of 0.0005 for 50 epochs. Training of this stage takes about 800 seconds
per epoch (40,000 seconds total).

2.6. Data Analysis
The performance of the proposed DNN based method is validated against the marker-based
method as a reference. 3D pose error is calculated based on the average Euclidean distance between

estimated 3D joints coordinates and corresponding ground-truth data obtained from a motion
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capture system for all of the joints. Let 13] = [X;, 9}, ;] and P; = [x;,y;, z;] represent estimated and

ground-truth 3D coordinates of joint j, respectively, then 3D pose error is calculated as follow:

]
Error =1/, % B, B
j=1

, where J is number of body joints and ||. || shows Euclidean distance.

Furthermore, in order to examine the effect of lifting conditions on accuracy of results, a repeated-
measures analysis of variance (ANOVA) test is conducted. We perform a two-way repeated
measures ANOVAs with type of lifting condition (height and asymmetry angle) as within subject

factors and 3D pose error as dependent variables.

3. Results:
Results of applying the proposed DNN based method is given in this section. The accuracy of the

estimated 2D pose landmarks obtained from the fine-tuned Hourglass model is around 97.55 %
using the standard metric PCKh@0.5 (Andriluka et al. 2014). PCKh@0.5 metric defines a
candidate landmark to be correct if it falls within a pixel threshold (50% of the head segment
length) of the ground-truth landmark. The accuracy of the estimated 3D pose is measured by
comparing the results with those are obtained from marker-based method in terms of 3D pose
error. Averaged 3D pose error is 14.72+2.96 mm on the whole dataset (table 1). For qualitative
results, we have provided representative 3D poses predicted by the proposed DNN based method
in figure 5. It can be seen that even for posture with self-occlusion, the proposed method is able to
predict the pose accurately.

In order to examine the effect of lifting conditions on the result accuracy, we have conducted an
ANOVA test (table 2). Overall 3D pose error are significantly different between lifting conditions
(height and asymmetry angle), but there is not a significant interaction between height and
asymmetry angle. Among three different asymmetry angles, 60° has the highest 3D pose error and
among lifting heights, the highest error is corresponded to FS (table 1).

Finally, we evaluate the performance of the proposed DNN based method for different body joints
separately. As shown in figure 6, head, elbows, and wrists have higher error compare to other

joints.
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Table 1 & 2 & Figure 5 & 6

4. Discussion:

In this study, we developed and validated a DNN based method for 3D pose estimation during
lifting. In agreement with the primary aim of this study, the results showed that the proposed
method is capable of estimating 3D body pose with high accuracy from only a multi-view image
and without attaching any markers on the subject’s body. It makes our proposed method an
alternative solution to the marker-based motion capture methods without being constrained to an
expensive laboratory with controlled environment conditions or obstructing subject movement by
attaching markers. The most important reason for the success of the DNNs is the ability of the
network to learn semantic and high level image features from the input data, compare to traditional
machine learning algorithms, which require hand crafted image features as an input. DNN has
been successfully applied in other biomechanical analysis. For example, Eskofier et. al. (2016) and
Camps et. al. (2017) employed a DNN to assess Parkinson’s movement disorder. In another study
by Hu et. al. (2018), a DNN was utilized for surface and age detection from walking pattern. Our
work was completely different with these studies, since they used IMU data, while we used RGB
images as the network input. Furthermore, our network design and domains of application of our
work was significantly different.

The second aim of this study was investigating the effect of lifting conditions i.e. vertical height
and asymmetric angle, on the proposed DNN based method performance. ANOVA results
revealed that there is a significant difference in 3D pose error between lifting conditions. Floor to
shoulder height lifting and 60° asymmetry angle showed the highest 3D pose error. This is likely
happening due to the higher pose variation for these lifting tasks. Moreover, most part of the
movement in lifting task happens in the sagittal plane, while for 60° asymmetry angle lifting, there
are small movements in frontal and rotation planes as well. Estimating body joints coordinates in
these planes is more difficult considering the position and number of the cameras. It is worth noting
that although the error difference from lifting conditions is significant, the magnitude of the error
was small for all of the lifting conditions (table 1).

Moreover, we evaluated the performance of our proposed method across different body joints.

Among all of the joints, left and right wrists exhibited the highest error (fig. 6). This is attributed

10



O 00 N o uu A W N P

N N NN RN N N N NN P P P B R P R Rk P R,
©W 00 N O U1 B W N P O W 0O N O U1 M W N L O

w
o

w
[

to the more self/object occlusion incidence for these joints during lifting e.g. when the subject
placed the box on the shelf, lower arms could be blocked either by the shelf or by the torso. This
is in agreement with other studies (Drory et al. 2017) showing that it is more challenging to
estimate the pose when a human-object interaction exists due to the occlusion. This problem can
be addressed by increasing number of cameras, which makes it less possible for a joint to be
occluded in all the views.

Besides the advantages of the proposed method there are several limitations that have to be
addressed. First, the effect of number and position of cameras was not explored. Camera number
and placement can highly influence the accuracy of results, especially in case of self or object
occlusion presence. It is likely that using more cameras placed all around the subject could provide
higher accuracy for arm joints, which are mostly blocked by the box or torso in the current setup.
Second, our study focused on lifting task. Generalization of these results should be done with
caution as it is unknown whether and how well this method can be extended for other tasks.
However, considering the strength of DNNs and present results, we believe that our proposed
method has the ability of generalization and it might only need a simple fine tuning for a new task.
Third, the presence of markers on the body may alter the natural appearance of the body and might
make the network to be trained to detect only the markers. One option to address this limitation
could be covering the markers locations by a pixel mask. Fourth, results showed that large
asymmetric lifting angle (60°) leads to higher 3D pose error, so we cannot exclude the larger error
might happen in other asymmetrical liftings with higher trunk rotation. It suggests investigating
the proposed method for other tasks in the follow up studies. Finally, one important aspect of the
biomechanical analysis for different activities including lifting, is the measurement of internal-
external joint rotation. Since in the proposed method, each segment is represented by only two
single points (distal and proximal joints), it may not be enough for the measurement of internal-
external joint rotation. As a future work, we plan to extend our proposed method to estimate full
3D body mesh, which represents the entire shape of the body with point clusters instead of a small
number of single points and makes this measurement possible. The ultimate goal of our research
is to provide an on-site biomechanical analysis tool by taking advantages of DNNs and the present

study can be considered as a starting point of the research along this direction.
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List of Tables:
Table 1- average 3D pose error (mm) for each subject and lifting condition. The first row shows
the lifting vertical height and second row presents the asymmetric angle. NA: video clips were

missed during the experiment. Standard deviations are shown in the parenthesis.

FK KS FS
Subject . . . . . . . . .
0 30 60 0 30 60 0 30 60
. 13.8 16.3 14.0 14.7 9.5 16.3 13.4 10.6 14.6
(5.6) (7.8) (4.2) (3.2) (2.9) (8.7) (4.4) (2.8) 4.7
5 12.5 10.4 14.2 10.2 16.8 14.8 16.9 17.0 19.7
(4.4) (3.5) (6.0) (3.4) (7.2) (8.5) 4.1) (4.4) (8.4)
13.0 14.6 19.2 15.5 14.7 14.7 24.3 14.7 18.0
> (3.5) (5.5) (7.7) (8.3) (4.4) (3.4) (5.2) (3.7) (5.7)
A 17.4 15.6 15.0 20.8 14.5 19.1 19.8 16.8 17.2
(3.0) (4.6) (4.4) (6.5) (3.0) (6.0) (7.3) (7.0) (4.8)
13.6 16.0 15.9 11.1 12.2 16.6 12.8 14.7 19.0
: (5.4) (7.6) (8.3) 2.1) (4.2) (6.7) (3.4) (6.1 (8.0)
12.6 11.0 15.0 15.8 13.7 14.8 154 14.2 17.6
¢ (5.1 (3.7) (3.3) (10.6) (3.1) (5.5) (4.8) (5.1) (4.8)
15.9 14.3 16.4 9.9 14.6 19.0 12.9 14.2 18.8
7 (7.6) (3.9) (7.2) (2.8) (6.7) (10.5) (4.2) (5.0) (7.9)
12.4 13.4 14.6 10.8 14.8 15.2 13.6 15.1 17.0
8 (3.7) (6.1 (4.2) (2.3) (7.2) (6.5) (4.6) (5.1 (6.8)
0 NA NA 16.3 13.0 14.4 16.4 12.2 20.4 21.4
(6.5) (3.4) (3.0) (4.8) (5.4) (8.0) (4.8)
0 10.8 10.8 13.0 13.1 7.7 10.3 13.6 11.5 12.5
(3.8) (3.8) (5.6) (3.8) (2.6) (5.1 (6.8) (5.5) (7.9)
. 15.3 15.3 14.2 11.9 10.5 11.3 12.6 12.5 14.4
(3.3) (3.3) (5.2) (1.8) (2.6) (5.9) (4.5) (4.9) (5.4)
0 11.1 11.1 18.0 12.8 11.5 16.9 17.4 17.7 14.5
(2.5) (2.5) (7.5) (2.0) (3.0) (6.2) (7.5) (5.6) (5.2)
Average 13.5 13.5 15.5 13.3 12.9 15.4 15.4 14.9 17.1
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Table 2- Outcomes of a two-way repeated measure ANOV As test for effect of lifting conditions

on 3D pose error. Bold numbers indicate significant differences (p<0.05). SS= Sum of Squares,

DF= Degree of Freedom, MS= Mean square.

Factor SS DF MS F Prob>F
Vertical height 76.74 2 38.37 5.38 0.0061
Asymmetry angle 102.35 2 51.17  7.18 0.0012
Vertical height x Asymmetry angle 1.91 4 0.48 0.07 0.9916
Error 691.31 97 7.13

14
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List of Figures:

Figure 1- Left: Starting and end position of the crate for the floor to shoulder height lifting task.
Top row shows the starting position of the crate and second to fourth rows show the end position
of the crate for 0°, 30°, and 60° asymmetric angles, respectively. Right: Experimental setup for
the simulated lifting tasks. Black dots on the subject’s body represents markers which were used
for capturing ground-truth motion data. Three of ten used digital cameras of motion tracking
system can be seen in this picture. One of two used digital camcorders which was installed on the

side view is also shown.

Figure 2- overview of the proposed deep learning network. "2D pose estimator" subnetwork
extracts 2D pose from the input image independently from each view. The estimated 2D poses are
concatenated across all the views and are fed to the "3D pose generator” subnetwork to infer the
3D pose. Skip connections are applied between "2D pose estimator" subnetwork and "3D pose

generator" subnetwork to provide more cues for 3D pose inference and decrease ambiguity.

Figure 3- The input image and corresponding estimated heatmaps for five selected joints. Each
value in the heatmaps presents the probability of observing a specific joint at the corresponding
coordinates. White dots show the ground-truth 2D joints annotation obtained by registration of 3D
joints annotation to image coordinates (section 2.3). The upper left of the image is the origin and
the first and second number in the parenthesis show the pixel coordinates in the horizontal and

vertical axis, respectively.

Figure 4- Network architecture of the proposed deep learning based method. “3D pose generator”
subnetwork starts with a convolutional layer, followed by a series of max-pooling layers and
residual modules, and ends with a fully-connected layer. The numbers inside each layer illustrate
the corresponding size of the feature maps (number of channels x resolution) for convolutional
layers and residual modules and the number of neurons for fully connected layers. Detailed design

of residual modules and layer annotations are shown in the right column.
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Figure 5- Representative 3D poses predicted by the proposed deep learning based method. Each
dashed box represents a scenario; Left: multi-view images, Middle: corresponding estimated 3D

pose, Right: corresponding ground-truth 3D pose obtained from the motion capture system.

Figure 6- Average of the individual 3D pose error for different body joints over the whole dataset.

Bars show standard deviation.
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