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Abstract 1 

Work-related musculoskeletal disorders (WMSD) are commonly observed among the workers 2 

involved in material handling tasks such as lifting.  To improve work place safety, it is necessary 3 

to assess musculoskeletal and biomechanical risk exposures associated with these tasks.  Such an 4 

assessment has been mainly conducted using surface marker-based methods, which is time 5 

consuming and tedious.  During the past decade, computer vision based pose estimation techniques 6 

have gained an increasing interest and may be a viable alternative for surface marker-based human 7 

movement analysis. The aim of this study is to develop and validate a computer vision based 8 

marker-less motion capture method to assess 3D joint kinematics of lifting tasks. Twelve subjects 9 

performing three types of symmetrical lifting tasks were filmed from two views using optical 10 

cameras.  The joints kinematics were calculated by the proposed computer vision based motion 11 

capture method as well as a surface marker-based motion capture method.  The joint kinematics 12 

estimated from the computer vision based method were practically comparable to the joint 13 

kinematics obtained by the surface marker-based method. The mean and standard deviation of the 14 

difference between the joint angles estimated by the computer vision based method and these 15 

obtained by the surface marker-based method was 2.31±4.00 degree.  One potential application of 16 

the proposed computer vision based marker-less method is to noninvasively assess 3D joint 17 

kinematics of industrial tasks such as lifting. 18 

1. Introduction 19 

 Lifting is one of the common manual material handling tasks performed in the workplaces. 20 

It is considered as one of the main risk factors for low back disorders (Kuiper et al. 1999, da Costa 21 

et al. 2010, Nimbarte et al. 2010).  In order to improve work place safety, it is necessary to analyze 22 

musculoskeletal and biomechanical risk exposures associated with lifting by measuring the joint 23 

kinematics and assessing the critical joint stress through biomechanical analysis.  24 

 The most common method for measuring joint kinematics is the surface-marker based 25 

motion capture method.  This method uses reflective surface markers and optical motion capture 26 

systems to track the body movements: the surface markers are attached near the joints of the subject 27 

and the 3D positions of each joint are estimated using the 3D coordinates of these surface markers.  28 

This method is limited since it requires expensive optical motion capture equipment; and attaching 29 

surface markers to human body is time consuming and tedious.   30 
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Non-invasive computer vision-based marker-less motion capture systems have recently 1 

gained an increasing interest for pose estimation.  A variety of computer vision algorithms have 2 

been proposed for 3D human pose estimation (Gavrila 1999, Mündermann et al. 2006, Poppe 2007, 3 

Holte et al. 2012).  These algorithms can be categorized into two types of approaches, generative 4 

(model-based) and discriminative (model-free) approaches. Generative approaches use an a priori 5 

model of the subject including body dimensions and kinematic trees; and perform a local search 6 

around an initial pose estimate. Disadvantages of this type of approaches are the need of 7 

initialization and high computational cost.  Discriminative approaches use training data to predict 8 

the pose directly and are computationally efficient compared to the generative approaches.   9 

 Most of these computer vision algorithms for human pose estimation are designed for 10 

activity recognition; and their accuracy and robustness are not sufficient for 3D joint kinematics 11 

assessment and biomechanical analysis. There are only few studies proposing computer vision 12 

based marker-less methods for joint kinematics assessment. Drory et al. (2017) presented a 13 

discriminative computer vision based method for marker-less estimation of the full body 14 

kinematics for a cyclist. Their method is capable of estimating the pose in 2D space accurately, 15 

however; its performance is not tested for the 3D body pose estimation.  Several studies 16 

(Mündermann et al. 2005, Saboune 2005, Corazza et al. 2006, Ceseracciu et al. 2014, Sandau et 17 

al. 2014) proposed generative computer vision based methods for joint kinematics assessment 18 

during gait, which have been validated against the joint kinematics obtained by the surface marker-19 

based method.  These studies used eight cameras to capture images from different views around 20 

the subjects and converted the captured images data to 3D surface meshes by applying background 21 

subtraction and constructing visual hulls. Pose estimation was then performed by fitting the 22 

predefined 3D body models to the 3D surface meshes. In order to achieve the results comparable 23 

to the surface marker-based system, these studies required a substantial number of cameras.  The 24 

data processing of points fitting was computationally expensive.  Little research has been 25 

conducted for assessing 3D joint kinematics for work-related activities including lifting using 26 

computer vision-based marker-less methods although manual lifting is a common task in the 27 

workplace and associated injuries are substantial.   28 

This paper proposes a computer vision-based marker-less motion capture method for 29 

estimating and assessing full-body kinematics and validates the method for symmetrical lifting. In 30 

this method, we integrate a discriminative approach for pose estimation with morphological 31 
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constraints to achieve the accuracy and robustness sufficient for 3D joint kinematics assessment. 1 

We tested our method on three types of manual lifting with different starting and ending heights.  2 

The joint kinematics estimated from the computer vision based method were practically 3 

comparable to the joint kinematics obtained by the surface marker-based method.  Therefore, the 4 

proposed computer vision method can be potentially considered as a simpler and faster substitute 5 

for the surface marker-based systems.  6 

 7 

2. Methods  8 

2.1. Data Acquisition  9 

 The data set  (Mehrizi et al. 2017) consists of 12 healthy males (age 47.50±11.30 years; 10 

height 1.74±0.07 meters; weight 84.50±12.70 kg) performing various symmetric lifting tasks in a 11 

laboratory at self-selected speed while being filmed by both camcorder and a synchronized motion 12 

tracking system that directly measured the body movement. They lifted a plastic crate (39 × 31 × 13 

22 cm) weighing 10 kg and placed it on a shelf without moving their feet. They performed three 14 

vertical lifting ranges from floor to knuckle height (FK), knuckle to shoulder height (KS) and floor 15 

to shoulder height (FS). 16 

 45 Reflective markers (Cappozzo et al. 1995) were attached to the lifters` body segments 17 

and 3D positions of markers during the lifting tasks were measured by a motion tracking system 18 

(Motion Analysis, Santa Rosa, CA) with a sampling rate of 100 Hz. The raw 3D coordinate data 19 

were filtered with a fourth-order Butterworth low-pass filter at 8 Hz. Two digital camcorder (GR-20 

850U, JVC, Japan) with 720×480 pixel, synchronized with the motion tracking system resolution 21 

also recorded the lifting from two views, 90 degree (side view) and 135 degree positions.  22 

2.2. Computer Vision Method for Joint Kinematics Assessment  23 

In this study, we propose a computer vision based marker-less method using a discriminative 24 

approach for joint kinematics assessment.  The workflow of the proposed method consists of three 25 

steps including feature extraction, 3D pose reconstruction, and angle calculation, which are 26 

summarized in Figure 1. The input of this system is the video (image sequence) recorded by digital 27 

camcorders.   28 

--------------------------------------------- 29 

Insert Figure 1 about here 30 
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--------------------------------------------- 1 

2.2.1. Feature Extraction 2 

 In the first step, the recorded images are converted to image features.  The descriptor of the 3 

image feature used in this study is Histogram Orientation Gradient (HoG) (Dalal et al. 2005), 4 

which characterizes the distribution of gradient directions of images and has been widely used for 5 

object recognition and human detection (Suard et al. 2006, Zhu et al. 2006, Yang et al. 2011).   6 

 In order to extract the HoG features, the input image is divided into cells, i.e. small groups 7 

of connected pixels.  A histogram of gradient orientation is calculated for pixels within the cell.  8 

The histograms are contrast-normalized by calculating a measure of intensity across a larger region 9 

of an image and then using this measure to normalize all the cells within this region.  The 10 

descriptors of the HoG features are the concatenation of the histograms for the input image.  Since 11 

we want to use captured images from both views in our data for pose estimation, the HoG features 12 

extracted for each view are concatenated to make a longer image descriptor.  The HoG feature 13 

extraction is now implemented as a standard function in Matlab.  It took around 0.05 second per 14 

image (480×720 pixels) to complete the HoG feature extraction for a PC with a 3.4 GHz i7 15 

processor and 8 GB of RAM.    16 

2.2.2. 3D Pose Reconstruction 17 

 A modified algorithm based on Twin Gaussian Process (TGP) (Bo et al. 2010) is proposed 18 

to extract the 3D pose from each frame of the videos.  TGP (Bo et al. 2010) is a discriminative 19 

approach, which maps directly from image features to a human pose as follows.  Assume that we 20 

have a set of inputs e.g. image feature observations (𝑅 = (𝑟1, 𝑟2, … , 𝑟𝑁) ) and a set of the 21 

corresponding outputs e.g. 3D pose measures ( 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑁) ).  Since the Gaussian 22 

distribution of the inputs (𝑁𝑅)  is known, we can calculate the offset between the estimated 23 

Gaussian distribution of outputs (𝑁𝑋), including the unknown pose for a testing image, and the 24 

homologous input distribution using Kullback-Leibler divergence function (𝐷𝐾𝐿). Then, for a 25 

testing image, we can estimate the corresponding 3D pose measure (𝑥∗) by minimizing Kullback-26 

Leibler divergence: 27 

𝑥∗ = argmin⁡(𝐷𝐾𝐿(𝑁𝑋||𝑁𝑅)) 28 

The TGP method can be applied on either a monocular image or multi view images for 29 

predicting whole-body 3D poses.  Note that the 3D pose measures can be a set of estimated virtual 30 
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markers defining the body joints.  In this study, we used the 3D coordinates of 45 estimated 1 

‘virtual’ markers as the 3D pose measures, which matched with the definitions proposed by 2 

(Cappozzo et al. 1995). 3 

Since the errors of predicted 3D poses from the TGP method (Bo et al. 2010) could be 4 

extremely high  and may not be good for joint kinematics assessment, we propose a modified TGP 5 

method by introducing the morphology constraints of the upper limb segment lengths to the 6 

original TGP algorithm, since lifting tasks involve significant upper limb motion.  These 7 

morphology constraints enforce the consistency of upper limb segment lengths, i.e., the Euclidian 8 

distances between shoulder-elbow and elbow-wrist should be constant over all frames.  With these 9 

constraints, the differences between predicted segment lengths and the constant length values are 10 

added as penalties to the Kullback-Leibler divergence cost function, which should be minimized. 11 

By adding these constraints to the algorithm, the search space is much smaller and thus more 12 

accurate pose estimation can be achieved.  13 

 The TGP algorithm requires a training dataset to train the model parameters used for 14 

calculating the Kullback-Leibler divergence. Bo et al. (2010) have examined the effect on pose 15 

estimation results of two type of training, jointly training and separately training.  Jointly training 16 

trained the model parameter on the motions of all subjects (the whole data set) while separately 17 

training trained the model on the motions of individual subject separately. They have reported no 18 

significant difference between the two types of training on pose estimation. Since jointly training 19 

uses a bigger training data set and is computationally more expensive, separately training was 20 

employed to train the model for each subject in this study.  Accordingly, the k-fold cross validation 21 

technique was used to test our modified TGP method for each subject, i.e., we divided the videos 22 

and corresponding marker based motion data into four partitions, and then used three of them to 23 

train the model and the remaining partition for testing each time.  By repeating the test four times, 24 

we obtained the results for the whole dataset. 25 

2.2.3. Angle Calculation 26 

 Once the 3D pose measures (3D coordinates of 45 estimated ‘virtual’ markers) were 27 

estimated at each frame, we used OpenSim (Delp et al. 2007) to perform inverse kinematics to 28 

calculate the joint kinematics.  Both our proposed modified TGP algorithm and the surface marker 29 

based method output a set of marker trajectories:  45 estimated ‘virtual’ marker trajectories for the 30 
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modified TGP algorithm (our proposed computer vision based marker-less method) and 45 surface 1 

marker trajectories (the surface marker based method).   2 

The use of OpenSim for computing joint kinematics from these estimated ‘virtual’ or surface 3 

marker motions required the creation of a subject-specific musculoskeletal model via scaling of a 4 

generic model.  The musculoskeletal model developed by Hamner et al. (Hamner et al. 2010) was 5 

chosen as the generic model.  An internal Marker Set defined by (Cappozzo et al. 1995) was placed 6 

on the model. The scaling procedure utilized the Scale Model tool in OpenSim, which adjusted the 7 

body segment lengths of a generic model to best match the internal markers and the corresponding 8 

experimental surface markers captured during a standing posture or the corresponding ‘virtual’ 9 

markers estimated from the computer vision based marker-less method.  After scaling, the inverse 10 

kinematics tool embedded in OpenSim (Delp et al. 2007) was used to solve for the joint angles 11 

such that the discrepancy between experimentally measured surface markers and virtual markers 12 

on the model was minimized.   13 

2.3. Data Analysis and Validation 14 

 The proposed computer vision based marker-less method was validated against the surface 15 

marker-based method.  For each frame of the video, the average Euclidean distance between the 16 

estimated ‘virtual’ marker positions and the corresponding experimental surface marker positions 17 

was calculated as the 3D pose measure error for the frame.  The 3D pose reconstruction error was 18 

calculated as the average of the 3D pose measure errors over all the frames.  We also calculated 19 

the joint angle difference between the marker-less and marker-based method.  Paired t-tests were 20 

performed to examine whether the joint angles estimated from the marker-less and marker-based 21 

method were significantly different.  All the preceding data analyses were performed using 22 

MATLAB® programs (The MathWorks, Boston, MA).   23 

3. Results 24 

Our proposed computer vision based marker-less method successfully estimated the 3D 25 

human pose as illustrated in Figure 2.  The grand mean±SD of the 3D pose reconstruction error 26 

with the modified TGP algorithm was 9.52±7.95 mm (Table 1). 27 

--------------------------------------------- 28 

Insert Table 1 and Figure 2 about here 29 

-------------------------------------------- 30 



8 
 

For all of the lifting trials, there is a good agreement of joint angle trajectories estimated by the 1 

computer vision based marker-less and surface marker-based methods as illustrated by Figure 3.   2 

The joint angle differences between the two methods are presented in Table 2.  The mean±standard 3 

deviation of the joint angle differences over the whole data set was 2.31±4.00 degree.  The joint 4 

angle differences for three lifting styles are similar (2.31±2.01 degree for FK, 2.33±1.87 degree 5 

for KS, and 2.30±1.68 degree for FS), but the joint angle differences vary across subjects, from 6 

1.66±1.03 degree to 3.58±2.96 degree.   7 

--------------------------------------------- 8 

Insert Table 2 & Figure 3 about here 9 

-------------------------------------------- 10 

For the symmetrical lifting, the joint angle differences between the computer vision based 11 

marker-less method and the surface marker-based method for the left- and right- side joints of the 12 

body are comparable (Figure 4). 13 

--------------------------------------------- 14 

Insert Figure 4 about here 15 

-------------------------------------------- 16 

 Joint angle differences between the computer vision based marker-less method and the 17 

surface marker-based method vary across body joint angles as shown in Table 3.  The maximum 18 

difference was observed for the elbow flexion with the mean±standard deviation of 5.08±6.38 19 

degree (3.38% of the range motion).  No significant difference was observed in joints angle 20 

difference between the two methods for most joint angles except the arm adduction.  However, 21 

there is no systematic error of the joint angle estimation as illustrated by Figure 5 based on the 22 

distribution of the joint angle differences. 23 

--------------------------------------------- 24 

Insert Table 3 & Figure 5 about here 25 

-------------------------------------------- 26 

 27 

 28 

http://www.sciencedirect.com/science/article/pii/S0021929011004362#f0025
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4. Discussion 1 

 The present study proposed and validated a computer vision based marker-less method for 2 

assessing 3D joint kinematics during symmetrical lifting.  The whole body 3D pose during 3 

symmetrical lifting was successfully reconstructed by the proposed computer vision based marker-4 

less method.  The success of our proposed method in 3D pose reconstruction results from the 5 

integration of morphological constraints and the discriminative computer vision approach. The 6 

average 3D reconstruction error for the original TGP (Bo et al. 2010) without integrating with the 7 

morphological constraint, was much higher (40 mm vs. 9.52 mm, unpublished result).  The 8 

integration of morphological constraints prevented the infeasible solutions with large 9 

reconstruction errors. Thus, our proposed method was able to achieve a low reconstruction error, 10 

which enabled us to estimate 3D joint angles with reasonable accuracies.  The 3D joint kinematics 11 

estimation from the proposed method were practically comparable to the 3D joint kinematics from 12 

the surface marker-based method. 13 

 The performance of our proposed method may be activity-dependent and be affected by 14 

self-occlusion and object-occlusion.  We have shown that the joint angle estimation accuracy 15 

varies across body joints for the proposed computer vision based marker-less method.  Among all 16 

of the joints, the elbow flexion angle exhibited the highest difference between the proposed 17 

marker-less method and the surface marker-based method.  This may be attributed to the self-18 

occlusion and object-occlusion during lifting.  When the subject placed the box on the shelf, lower 19 

arms could be blocked by the shelf (Figure 2) and the arms could be occluded by the torso.  20 

However, the joint angle estimation accuracy for the left- and right- side of the body were very 21 

similar, which may be caused by that  all of the lifting motions were symmetrical in this study.   22 

Our proposed method can estimate 3D joint kinematics accurately with a low cost setup.  23 

Many computer vision based approaches (Bodor et al. 2003, Mikić et al. 2003, Oreifej et al. 2013) 24 

have been developed and successfully applied for human tracking and activity recognition based 25 

on a small number of optical cameras, however, their accuracy for the 3D joint kinematics 26 

estimation may not be sufficient for biomechanics research. On the other hand, the studies 27 

(Mündermann et al. 2005, Saboune 2005, Corazza et al. 2006, Ceseracciu et al. 2014, Sandau et 28 

al. 2014) capable of achieving suitable accuracy for the 3D joint kinematics estimation, usually 29 

use a large number of cameras, which is not always practical in the workplace.  Our proposed 30 

method seem to work well with a low cost setup, which includes two low-resolution optical 31 
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cameras.  This may result from the image features used in the methods.  The HoG features were 1 

required to be normalized to the contrast, which can minimize the effect of image quality and 2 

account for changes in illumination.  Recently depth sensors such as Kinect have been also used 3 

for joint kinematics assessment (Dutta 2012, Diego-Mas et al. 2014, Plantard et al. 2016).  4 

However, there are two major disadvantages of using Kinect for workplace activity assessment. 5 

First, depth sensors can be only used in a short range of distance from the depth sensors, which 6 

may not allow them to be used in large space workplaces and fields (Weerasinghe et al. 2012). 7 

Second, depth sensors are sensitive to the environment illumination and would be difficult to use 8 

in outdoor environments (Andersen et al. 2012). Since the proposed method uses a simple 9 

experimental setup with only two regular optical cameras, it has the potential to be a viable 10 

noninvasive alternative of the surface marker based method, especially for outdoor environments.   11 

 The ultimate goal of our research is to provide a field noninvasive biomechanical analysis 12 

and joint kinematics assessment tool by taking the advantages of advanced computer vision 13 

techniques.  The present study is a starting point of the research along this direction.  There are 14 

three limitations about this study that should be further investigated in the future research. First, 15 

the proposed method was mainly developed for symmetrical lifting tasks.  Whether and how well 16 

this method can be extended for measuring the 3D joint kinematics of other common workplace 17 

activities, such as asymmetrical lifting, pushing, and pulling would be worth to investigate.  18 

Second, the effects of clothing and image quality on the accuracy of the 3D pose estimation have 19 

not been investigated.  Finally, the proposed method requires training for individual subjects in 20 

order to personalize subject-specific models.  A more generalized method with a less restricted 21 

training requirement will be more favorable.  22 
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List of Tables 1 

 2 

Table 1- Mean±SD (mm) of Euclidean distance between the estimated ‘virtual’ marker positions 3 

obtained from our proposed method and the corresponding experimental surface marker positions 4 

 5 

Subject FK KS FS Average  

1 14.57±8.71 10.42±9.67 8.72±7.51 11.24±9.47 

2 9.63±7.29 7.90±6.79 11.83±6.75 9.79±7.63 

3 7.79±7.06 9.30±7.00 7.89±6.99 8.32±7.58 

4 7.64±6.23 10.31±7.96 6.96±5.61 8.30±7.19 

5 7.45±5.32 6.82±5.91 6.41±3.89 6.89±5.73 

6 6.77±4.39 10.02±4.56 6.84±4.21 7.88±4.94 

7 7.09±4.76 10.95±6.77 8.30±5.46 8.78±6.27 

8 8.34±5.73 7.99±6.36 9.22±6.71 8.52±7.02 

9 12.66±10.41 15.96±15.81 12.32±11.14 13.65±14.74 

10 7.08±3.10 8.35±6.69 6.86±3.51 7.43±5.56 

11 5.10±3.07 5.54±3.73 5.29±2.74 5.31±3.52 

12 6.81±3.67 9.55±5.69 6.83±3.76 7.73±4.88 

Average 8.41±7.35 9.42±9.11 8.12±7.16 9.52±7.95 
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 7 
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 10 
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 17 
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Table 2- Mean±SD of the joint angle differences between the proposed marker-less method and 1 

the surface marker-based methods.  2 
 3 

Subject 

FK KS FS 

Average Mean±SD 

(Degree) 

Mean±SD 

(Degree) 

Mean±SD 

(Degree) 

1 2.90±2.21 2.83±2.08 2.76±2.18 2.83±2.16 

2 2.26±1.52 2.38±2.19 2.78±1.72 2.48±1.85 

3 2.01±1.62 2.53±2.03 2.49±1.90 2.35±1.87 

4 2.18±1.65 2.32±1.50 2.73±2.35 2.41±1.89 

5 1.53±0.96 1.71±1.30 1.86±1.48 1.70±1.27 

6 1.49±0.81 2.07±1.47 2.07±1.39 1.88±1.29 

7 2.00±1.12 2.53±1.96 2.34±1.43 2.29±1.56 

8 5.92±3.41 2.26±1.66 2.55±1.90 3.58±2.96 

9 2.32±1.56 2.99±2.50 2.24±1.36 2.52±1.90 

10 2.09±1.22 2.45±1.97 1.86±1.15 2.13±1.51 

11 1.40±0.72 1.80±1.20 1.77±1.08 1.66±1.03 

12 1.62±0.84 2.09±1.67 2.17±1.21 1.96±1.31 

Average 2.31±2.01 2.33±1.87 2.30±1.68 2.31±4.00 

 4 

 5 

 6 

 7 
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Table 3- Mean±SD of the joint angle differences, and p-values of paired t-tests between the 1 

computer vision based marker-less method and the surface marker-based method. Hip, knee, ankle, 2 
arm, and elbow angles differences are calculated based on the average of the differences on the 3 
left- and right- side of the body.  4 

 5 

Joint Angle 
Mean±SD 

(Degree) 
p-value 

Hip 

Flexion 2.01±2.86 0.643 

Adduction 0.53±0.67 0.060 

Rotation 0.75±1.07 0.899 

Knee Flexion 2.55±4.07 0.498 

Ankle Flexion 1.17±1.57 0.260 

Lumbar 

Extension 1.87±2.77 0.253 

Bending 0.57±0.69 0.150 

Rotation 0.74±1.02 0.051 

Arm 

Flexion 3.47±5.39 0.723 

Adduction 1.91±2.32 0.029 

Rotation 4.66±6.32 0.084 

Elbow 
Flexion 5.08±6.38 0.071 

Rotation 2.90±3.20 0.140 

 6 

  7 
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List of Figures 1 

 2 

Figure 1. Workflow of the proposed computer vision based marker-less method 3 

 4 

Figure 2. Estimated full-body 3D posture from the proposed computer vision base marker-less 5 
method for selected frames of a representative subject performing a FK lifting for both views (90 6 
and 135 degree). Activities from top to down: grabbing the box from the floor, putting the box on 7 
the shelf, in the standing position. 8 

 9 

Figure 3. Joint angles calculated from the marker-based (red line) and the proposed computer 10 
vision base marker-less method (blue line) for a representative subject performing a FK lifting. 11 

The lifting task begins in a straight upright position and ends in the same position. Vertical axis 12 

shows the joint angles in degree and horizontal axis shows the time in second. 13 

 14 

Figure 4. Comparison of the mean joint angle differences of the left- and right- side of the body. 15 
Boxes represent the mean values and bars show the standard deviation. 16 

 17 

Figure 5. Distribution of the joint angles difference. Middle line is the median and boxes represents 18 
25 and 75 percentile and bars show the minimum and maximum values. Whisker size is set to two 19 

percent. 20 
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