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Abstract— The National Aeronautics and Space Administra-
tion’s Soil Moisture Active Passive (SMAP) mission Level 4
Carbon (L4C) product provides model estimates of the Net
Ecosystem CO2 exchange (NEE) incorporating SMAP soil mois-
ture information. The L4C product includes NEE, computed as
total ecosystem respiration less gross photosynthesis, at a daily
time step posted to a 9-km global grid by plant functional type.
Component carbon fluxes, surface soil organic carbon stocks,
underlying environmental constraints, and detailed uncertainty
metrics are also included. The L4C model is driven by the SMAP
Level 4 Soil Moisture data assimilation product, with additional
inputs from the Goddard Earth Observing System, Version 5
weather analysis, and Moderate Resolution Imaging Spectrora-
diometer satellite vegetation data. The L4C data record extends
from March 31, 2015 to present with ongoing production and
8–12 day latency. Comparisons against concurrent global CO2
eddy flux tower measurements, satellite solar-induced canopy
florescence, and other independent observation benchmarks show
favorable L4C performance and accuracy, capturing the dynamic
biosphere response to recent weather anomalies. Model exper-
iments and L4C spatiotemporal variability were analyzed to
understand the independent value of soil moisture and SMAP
observations relative to other sources of input information. This
analysis highlights the potential for microwave observations to
inform models where soil moisture strongly controls land CO2
flux variability; however, skill improvement relative to flux towers
is not yet discernable within the relatively short validation
period. These results indicate that SMAP provides a unique and
promising capability for monitoring the linked global terrestrial
water and carbon cycles.
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I. INTRODUCTION

SOIL moisture is a fundamental requirement of life on
land. Plants and microorganisms alike require moisture

for growth and turgor; accordingly, soil moisture availability
plays a major role in explaining the spatial and temporal
variability of the global land CO2 sink. The land and global
ocean CO2 sinks provide a roughly 50% offset of anthro-
pogenic atmospheric emissions with seasonal and interannual
variability driven by land [1]. Attributing land sink variability
is therefore key to understanding interannual changes and
feedbacks to the atmospheric CO2 growth rate. Previous
studies have indicated the dominant role played by water-
limited ecosystems in determining global land sink interannual
variability [2]–[6]. However, quantifying global soil moisture
carbon cycle interactions has been obscured by a lack of
continuous, accurate soil moisture observations with global
coverage at appropriate spatial and temporal resolution.

Understanding linkages between the global water and car-
bon cycles using global estimates of soil moisture is a major
objective of the National Aeronautics and Space Administra-
tion’s Soil Moisture Active Passive (SMAP) mission [7], [8].
Using soil moisture observations to improve global estimates
of land CO2 flux and evapotranspiration are a major means to
this end [9]. SMAP observations are expected to have greater
sensitivity to soil moisture than previously available higher
frequency observations, such as those from the Advanced
Scanning Microwave Radiometer and similar instruments [7].
Beginning on March 31, 2015, the SMAP satellite began
providing L-band microwave brightness temperature (TB)
(1.41 GHz) observations with global land surface coverage
every three days. SMAP TB observations, which typically
represent conditions in the top 5 cm of the soil, are assimilated
into the NASA Goddard Earth Observing System, Version
5 (GEOS-5) Catchment land surface model to produce daily
surface and root-zone soil moisture (SMRZ) and temperature
estimates as part of the SMAP Level 4 Soil Moisture (L4SM)
data product [10]–[14]. Using L4SM and other input data
from GEOS-5 and the Moderate Resolution Imaging Spec-
troradiometer (MODIS), the SMAP Level 4 Carbon (L4C)
data product provides daily global estimates of terrestrial car-
bon (CO2) fluxes and underlying climatic controls [15], [16].
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Soil moisture availability controls key biological processes
including plant photosynthetic activity and growth, soil litter
decomposition, and heterotrophic respiration (RH). Photosyn-
thesis and gross primary production (GPP) are the primary
pathways of ecosystem CO2 uptake, whereas ecosystem res-
piration (RE), the sum of plant autotrophic respiration (RA)
and soil RH, releases CO2. Photosynthesis supplies the raw
carbohydrate building blocks for biomass production, which
eventually falls as litter and is converted into soil organic
carbon (SOC). SOC is metabolized by soil microorgan-
isms at a rate inversely proportional to the SOC carbon-
to-nitrogen (C:N) ratio, or more directly the ratio of lignin
to nitrogen (lignin:N), and modulated by soil moisture and
temperature conditions as primary environmental control fac-
tors [17]–[19]. Whereas GPP is sensitive to plant-available
soil moisture within the rooting depth profile, soil litter decom-
position and RH are primarily influenced by soil moisture
and temperature within the surface (0–5 cm) soil layer, where
labile litter substrate (low C:N) and abundant oxygen are avail-
able [20], [18]. The physiological details of these processes
are closely tied to the dominant vegetation land cover or plant
functional type (PFT).

Previous satellite data-driven ecosystem modeling
approaches have relied on various proxies to represent
moisture constraints to ecosystem productivity and
respiration, including vapor pressure deficit (VPD) to represent
atmospheric moisture stress or precipitation-driven bucket
models to represent plant-available soil moisture [21], [22].
The MODIS MOD17 operational GPP product uses VPD as
the sole moisture constraint to vegetation productivity without
accounting for its interaction with SMRZ [23]. The NASA
Carnegie Ames Stanford Approach (CASA) model estimates
net ecosystem CO2 exchange (NEE) and SOC dynamics
at a monthly time step and relatively coarse (0.5°) spatial
resolution using a precipitation-driven bucket model to define
soil moisture dynamics and environmental controls [17], [24].
The L4C product extends these previous satellite-based
ecosystem models by incorporating SMAP L4SM surface
and SMRZ and soil temperature information as primary
environmental controls for estimating daily carbon fluxes and
SOC dynamics. L4C model processing is conducted globally
at 1-km resolution consistent with MODIS land cover and
vegetation inputs [25]; model outputs are posted to a coarser
9-km global grid, while preserving subgrid (1-km resolution)
PFT spatial heterogeneity within each grid cell.

Although soil moisture retrievals from microwave remote
sensing have been available for more than a decade, rel-
atively coarse resolution (≥25 km), intermittent data cov-
erage, large uncertainty, and variable data quality generally
precluded their use within ecosystem models. Additionally,
microwave measurements reflect conditions in only the sur-
face (0–5 cm depth) soil layer. The L4SM product addresses
these limitations by providing timely (latency <3 days),
global, and temporally continuous estimates of surface-to-root
zone (0–100 cm depth) soil moisture and temperature over
a 9-km resolution grid, propagating surface soil information
from SMAP over the entire soil profile using the GEOS-5
Catchment model [11], [14]. The L4C product integrates

L4SM information within a calibrated, data-driven carbon
flux model using GEOS-5 daily surface meteorology, MODIS
MOD12Q1 land cover, and MOD16A2 eight-day composite
observations of fraction of photosynthetically active radia-
tion (FPAR) (the canopy-intercepted FPAR) as primary inputs.
Resulting L4C product variables include NEE, GPP, RH, and
surface SOC content. Additional L4C diagnostic variables
include primary environmental control factors underpinning
the daily carbon flux estimates and detailed quality assurance
metrics describing estimated model NEE performance for
every grid cell—with random error quantified as unbiased root-
mean-square error (ubRMSE). Thus, the L4C product provides
a new tool connecting ecosystem–atmosphere CO2 exchange
to underlying vegetation, soil moisture, and climate variability.

The overarching goals of this work are as follows:
1) To link SMAP soil moisture data to inform ecosystem

CO2 exchange and underlying environmental controls
on vegetation growth, soil litter decomposition, and
respiration processes using flux tower observations;

2) To determine NEE and component carbon flux sensitiv-
ity to global soil moisture variability;

3) To determine whether SMAP observations provide
added value over other sources of information for esti-
mating NEE and component carbon fluxes, including
GPP and RH.

These objectives are addressed by investigating output from
the L4C model after calibration to historic (pre-launch)
tower flux measurements, by performing model sensitivity
analyses and by evaluating the accuracy of the operational
L4C data product against contemporaneous tower carbon flux
measurements and other independent, global observational
benchmarks.

II. DATA AND METHODS

A. L4C Data Product
The L4C product fields are summarized in Table I.

Each L4C hierarchical data format Version-5 (HDF5) daily
granule contains estimates of global land–atmosphere CO2
flux (g·C·m−2·d−1), including NEE, GPP, and RH. Other L4C
product fields include SOC, diagnostic environmental con-
straint (EC) multipliers, quality control (QC) flags, and NEE
ubRMSE estimates for quality assessment (QA ubRMSE) [15],
[16]. The L4C model uses a 1-km resolution EASE Grid v2
(EGv2) projection format as its native computational resolu-
tion, L4C results are posted to a coarser 9-km grid while rep-
resenting major PFT categories within each grid cell averaged
from the nested 1-km processing [26]. The L4C processing
runs operationally within the SMAP Level 4 Science Data Sys-
tem of the NASA Global Modeling and Assimilation Office.
The L4C system provides consistent global daily outputs with
8–12 day latency suitable for global monitoring and associated
applications. Whereas L4SM latency is <3 days, L4C latency
is further constrained by and varies with the availability of
MOD16A2 FPAR eight-day composites. If MOD16A2 tiles
are not received within 12 days, L4C treats the unavailable
tiles as missing data and fills the missing area with an ancillary
FPAR climatology. For this study, we use data from the
Version 2.0, “Validated Release” L4C data product (Science
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TABLE I

L4C PRODUCT DATA SETS

Version ID Vv2040; [15]). Three L4C data sets were used in
this study: the operational L4C data set (publically available
as cited above) and two scientific data sets (available upon
request). Specifically, the three data sets are as follows:

1) The postlaunch operational data products(L4C Ops)
spanning March 31, 2015 to present [15];

2) A prelaunch calibration, initialization, and climatolog-
ical reference simulation (L4C Calib) representing the
period from January 1, 2001 to December 31, 2012;

3) An “open-loop” simulation (L4C Open Loop) used to
evaluate the impact of SMAP observations on postlaunch
operations spanning March 31, 2015 to present [27].

Details about these data sets are provided in the following
section.

B. L4C Input Data sets

L4C inputs required for model processing are summarized
in Table II. The L4C model requires 1-km EGv2 static
PFT and eight-day canopy FPAR maps. The L4C model
also uses daily 9-km EGv2 inputs of surface soil mois-
ture (SMSF; 0–5 cm depth), SMRZ (0–100 cm depth), surface
soil temperature (TSOIL; 0–10 cm depth, except 5–15 cm
for evergreen broadleaf vegetation), mean daily incoming
PAR, minimum daily air temperature at 2-m height (TMIN),
and mean daily VPD. The L4C Ops, L4C Calib, and
L4C Open-Loop data sets derive their 9-km inputs from
several native sources, including L4SM; an L4SM-emulation
data set termed Nature Run Version 4 (NRv4), which is

not informed by SMAP observations [10], [28]; the GEOS-5
forward processing (GEOS-5 FP) system; and the Modern
Era Retrospective Reanalysis (MERRA). The L4SM, NRv4,
MERRA, and GEOS-5 FP products all use similar versions of
the Catchment model [29].

The native source formats of the L4C inputs are given
in Table III. The L4C Ops simulation uses TSOIL and
SMSF inputs from L4SM, and PAR, TMIN, and VPD from
GEOS-5 FP. The L4C Calib simulations use TSOIL and
SMRZ inputs from NRv4, and PAR, TMIN, and VPD from
MERRA because L4SM and GEOS-5 FP data are not available
for the SMAP prelaunch period. The L4C Open-Loop simu-
lations use TSOIL and SMRZ inputs from NRv4, and PAR,
TMIN, and VPD from GEOS-5 FP to isolate the impact of
SMAP observations on L4C Ops. MODIS provides static PFT
and eight-day FPAR inputs for each L4C simulation.

The L4SM data assimilation system provides a 3-h TSOIL
and SMRZ estimates in EGv2 9-km format [11]. The 3-h
L4SM data are aggregated to daily averages as an L4C pre-
processing step. SMRZ in percent saturation units is rescaled
to SMRZrsc, separately for each grid cell, using the following
normalized log transforms:

SMRZnorm = 100∗
(

SMRZ − SMRZwp

max (SMRZ) − SMRZwp

)
+ 1 (1)

SMRZrsc = 95∗ ln (SMRZnorm)

ln(101)
+ 5 (2)

where max(SMRZ) is the maximum recorded soil moisture for
a given grid cell and SMRZwp is the plant wilting point mois-
ture level determined by ancillary soil texture data provided
by L4SM. The above rescaling improved the model calibration
fit by increasing the SMRZ dynamic range, especially in arid
regions where sparse rainfall may not fully saturate soil, but
soil water is still accessible to arid-adapted plants.

The SMAP L4 processing system uses an Ensemble Kalman
Filter (EnKF) to assimilate SMAP Level 1C orbital swath TB
observations (∼36 km resolution) into the Catchment model,
coupled with an L-band emission model and driven with
GEOS-5 FP meteorological forcing fields [30]. Simulated soil
moisture values are specific to the land model used to generate
them and are typically biased with respect to the (unknown)
true soil moisture [31]–[33]. This model bias in soil moisture
was addressed in two steps. First, the L4SM L-band emission
model was calibrated to the long-term mean of L-band TB
observations from the L-band Soil Moisture Ocean Salin-
ity (SMOS) mission [34]. The TB observations were then
rescaled before the assimilation to match the seasonally vary-
ing long-term climatology of the SMOS data [35], [10]. Taken
together, this means that the L4SM soil moisture analysis is
driven with TB anomalies from the seasonal cycle and there-
fore (mostly) unbiased by construction. Because SMAP and
SMOS TB observations are not cross-calibrated, some minor
bias is unavoidable in the current L4SM version. Eventually,
this minor bias is expected to further decrease as more SMAP
data become available for model recalibration. In this study,
we used input data from the Version 2 “Validated Release”
L4SM data product (Science Version Vv2030) including the
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TABLE II

L4C MODEL INPUT DATA

TABLE III

L4C INPUT DATA SOURCE NATIVE FORMAT SUMMARY

geophysical (“gph”; [11]), analysis update (“aup”; [12]), and
land model constant (“lmc”; [13]) series.

The NRv4 data set was created to support the scientific
development and the evaluation of SMAP Level 4 products and
provides a temporally consistent data set for prelaunch model
calibration and initialization and for postlaunch evaluation of
the impact of SMAP observations [10], [28]. The NRv4 record
was derived from 2000 to present using an identical land
model to L4SM (i.e., Catchment model), but is not informed
by SMAP TB observations. That is, NRv4 does not include
data assimilation adjustments to the model soil moisture and
temperature fields—hence, the “open-loop” designation of the
corresponding L4C simulation.

The GEOS-5 FP [36] provides 3-h surface meteorological
fields in 1/4° × 5/16° geographic grid format, including net
incoming short wave radiation (SWGDN), air temperature
at 2-m height (T2M), surface skin temperature (TSURF),
surface air pressure (PS), and water vapor mixing ratio at 2-m
height (QV2M). The L4C preprocessor aggregates the GEOS-
5 FP meteorology to a daily time step consistent with model
processing. Daily PAR was estimated as a proportion (45%) of
SWRAD and used with MODIS eight-day FPAR inputs to esti-
mate canopy-absorbed PAR (APAR) on a daily basis. TMIN
was computed as the daily minimum of 1-h temperature. Daily
landscape freeze-thaw (FT) status was computed from TSURF

using a simple pure water freezing-point threshold (273.15 K).
L4C originally used SMAP radar-based FT observations, but
this was abandoned due to the failure of the SMAP radar
emitter on July 7, 2015. Alternative FT retrievals derived from
the SMAP TB observations may be used in the future L4C
versions. Daily average VPD was computed using the remain-
ing GEOS-5 FP fields. Similar to GEOS-5 FP, MERRA input
fields are available in a coarser (1/2° × 2/3°) geographic grid
for the 1980–2015 record [29]. All MERRA and GEOS-5 FP
fields are converted to the same 9-km EGv2 projection prior
to L4C processing using nearest-neighbor resampling.

MODIS provides the fine-resolution (1 km) data used
within L4C, including global land cover (MOD12Q1) and
eight-day Collection 5 FPAR (MOD15A2) information avail-
able on 500-m and 1-km sinusoidal grids, respectively. The
MOD12Q1 PFT (Type 5) classification [37] is resampled to
1-km EGv2 format and used in L4C model processing; the
temporally static MOD12Q1 land cover classification currently
used for L4C operational processing distinguishes up to eight
different global PFT classes. The PFT classes were used to
stratify the L4C model parameters and environmental response
characteristics for different biomes. The L4C simulation was
also summarized by the 1-km PFT classifications, allowing
differential environmental responses within each 9-km grid
cell. The MOD15A2 (Collection 5) product [38] is resampled
to the 1-km EGv2 and used to define dynamic (eight days)
canopy FPAR variability for L4C processing. Missing or low-
quality (QC) FPAR data for a given 1-km pixel were filled
prior to L4C processing using an ancillary average eight-
day best QC climatology established from the MODIS his-
torical (2001–2012) record. L4C simulations were performed
only for vegetated pixels (PFT classes 1–8) with an available
FPAR climatology. If MODIS 1-km FPAR observations were
not available for a given eight-day period, then the ancillary
1-km FPAR climatology was substituted. Climatological FPAR
substitution rates are flagged within the QA bit fields of each
L4C granule if substitution rates exceed >50% for a given
9-km grid cell.

C. L4C Model Logic
NEE is defined as total RE less GPP, i.e.,

NEE = RE − GPP, where a negative sign convention
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denotes net ecosystem uptake of atmospheric CO2. RE is
computed as the sum of RA and RH. The L4C product
employs a light-use-efficiency (LUE) model within a Jarvis-
Stewart constraint framework for estimating GPP [39]–[42].
Many previous LUE formulations are available [43]; however,
the L4C model combines LUE and soil decomposition models
to determine a more comprehensive daily carbon budget,
using daily rescaled SMRZ inputs to constrain GPP, daily
SMSF inputs to constrain RH, and employs model calibration
using historical daily CO2 flux observations from the global
tower (FLUXNET) observation network. The L4C LUE
model is as follows:

GPP = APAR∗εmax
∗Emult (3)

Emult = fEC(VPD) fEC(TMIN) fEC(SMRZ) fEC(FT) (4)

where canopy-APAR is defined as the product of PAR and
FPAR; εmax is a maximum LUE parameter defined for indi-
vidual PFT classes under optimal (nonlimiting) environmental
conditions; and Emult is the relative reduction in estimated
photosynthetic LUE from its potential (εmax) due to subop-
timal environmental conditions. Limiting conditions include
excessive VPD, low TMIN, frozen conditions, or low SMRZ.
Emult is defined as the product of equally weighted dimen-
sionless (0–1) scalar multipliers representing PFT-specific
responses to each environmental variable. The fEC(x) terms
in (4) are described using linear ramp functions ranging from
optimal (1) to fully constrained (0) conditions [23] for each
environmental variable

fEC(x) =

⎧⎪⎨
⎪⎩

1 if x ≥ xmax,

0 if x ≤ xmin,

(x − xmin)/(xmax − xmin) otherwise

(5)

where x is VPD, TMIN, or SMRZ, with xmin and xmax
as model parameters specified for each PFT class [25].
These parameters determine the effective slope of fEC(x)
between fully constrained ( fEC(x) = 0), and fully uncon-
strained ( fEC(x) = 1) conditions, and do not necessarily
correspond with the absolute minimum and maximum values
of x . The FT constraint fEC(FT) is either zero if frozen or unity
if nonfrozen. RA is then computed as the PFT prescribed
fraction ( faut) of estimated GPP (i.e., RA = faut GPP; [44]).

RH is estimated using a three-pool soil decomposition
model with cascading SOC quality and associated decom-
position rates. Carbon fixed from atmospheric CO2 by GPP
enters the SOC pools as litterfall (Lfall) specified as a constant
daily fraction of estimated mean annual net primary produc-
tivity (NPP = GPP − RA). Daily SOC change for each of the
three SOC pools is specified as [25], [42], [45]

dC(t)fast

dt
= Lfallffast − RH(t)fast (6)

dC(t)med

dt
= Lfall(1 − ffast) − RH(t)med (7)

dC(t)slow

dt
= fmedRH(t)med − RH(t)slow (8)

where subscripts denote typical SOC decay rates relating to
labile (e.g., leaves and fine roots with low C:N), structural
(e.g., coarse woody roots with moderate C:N and high lignin

content), and recalcitrant (e.g., high C:N, tannins, phenols,
SOC bound in clay, and permafrost) SOC pools, respectively.
RH is computed for the i th SOC pool in (6)–(8) using SMSF
and soil temperature as primary controls on SOC decomposi-
tion [42]

RHi (t) = fEC(TSOIL) fEC(SMSF)ki Ci (t) (9)

where fEC(TSOIL) is an Arrhenius exponential function of
TSOIL from [46]; fEC(SMSF) is a ramp function of SMSF
(0–5 cm); and ki is the optimal decay rate for the i th SOC
pool. Total RH is derived as the sum of RHi , including the
adjustment RH2 = (1 − fmed)RHmed to account for material
transferred into the slow pool during humification [17].

Random error uncertainty estimates for NEE–indicated by
the ubRMSE metric–are produced using analytical error prop-
agation. We define the ubRMSE of two random variables as
the variance of the residuals of their least-squares regression.
We then compute the Jacobian (J) by taking derivatives of
NEE of the above model with respect to each input data
set. We then assign a diagonal input error covariance matrix
(Einput) as part of the L4C calibration process (Section II-C).
The estimated NEE error is then computed as

ENEE(t) = J(t)EinputJT(t) (10)

for each 1-km pixel and daily time step. The now scalar
quantity ENEE term is spatially averaged using the sum of
squares within each 9-km grid cell and the NEE ubRMSE
QA metric is computed as the square root of this average.

D. Model Calibration and Initialization

The L4C model was calibrated during the mission prelaunch
phase using a global network of in situ tower eddy covari-
ance CO2 flux measurement records (2000–2008) from the
FLUXNET La Thuile Collection [47], [48]. This data set
consists of 238 flux tower locations, representing the major
global biomes and PFT classes, although spatial coverage
heavily favors temperate forest and cropland ecosystems in
the United States and Europe [48]. We used only tower
sites having at least two years of observations, leaving
228 remaining sites (Fig. 1). We used daily NEE, GPP, and
RE computed from half-hourly NEE as reported by the La
Thuile site investigators. Daily GPP and RE estimates were
partitioned from half-hourly NEE measurements based on
the short-term temperature response of respiration to night-
time NEE [49], [50]. Since gap filling of flux data requires
preassigned meteorological responses, we used only daily data
values reported as nongap filled.

Model calibration proceeded in three steps using daily
eddy covariance CO2 flux observations from the 228 tower
calibration sites stratified by their dominant PFT coverage:

1) The L4C GPP model outputs were fitted to the selected
tower GPP observations.

2) The RE model outputs were then fitted to the tower RE
observations using the new estimates from the calibrated
GPP model.

3) The NEE ubRMSE estimates were then fitted to NEE
RMSE computed using the newly calibrated model NEE
versus the tower NEE observations.
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Fig. 1. CVS and calibration tower sites used for evaluating operational
L4C results and for prelaunch the L4C model calibration, respectively. Base
map shows global PFTs from the MODIS Collection 5 global land cover
classification (MOD12Q1 Type 5). PFT abbreviations (as in Tables I and III):
WAT = water; ENF = evergreen needleleaf forest; EBF = evergreen broadleaf
forest; DNF = deciduous needleleaf forest; DBF = deciduous broadleaf forest;
SHR = shrubland; GRS = grassland; CCR = cereal crops; BCR = broadleaf
crops; URB = urban; ICE = permanent snow/ice; and BAR = barren.

The three steps were repeated for each of the eight vege-
tated PFT categories. The L4C model fitted parameters for
GPP included εmax, VPDmin, VPDmax, TMINmin, TMINmax,
SMRZmin, and FTmult; the model RE fitted parameters
included Faut, and SMSFmin. The model parameters were
confined to predefined realistic bounds and were fixed at
default values if extremes were not well represented by the
tower calibration sites (e.g., VPD for tropical EBF rarely
exceeds 3 kPa). Tower flux data from multiple locations were
pooled according to the dominant (highest coverage) PFT of
the 9-km model grid cell overlying each tower location, and
model parameters were calibrated separately for each PFT
class. The towers used for the model calibration were also
screened to ensure consistency between the dominant PFT
represented within the tower footprint and the overlying 9-km
model grid cell. All optimizations were fitted using nonlinear
least-squares regression.

The L4C model SOC values were initialized to steady-state
conditions during the SMAP prelaunch phase using the daily
input mean seasonal cycle across years (i.e., climatology). The
resulting L4C NEE source/sink strength thus depends on the
effective differences of current conditions versus those from
the recent (2001–2012) period used to define the SOC pool
available for decomposition and RH. Because most ecosystems
are not in steady state [48], [51], L4C tends to underestimate
the effective carbon sink strength indicated from tower obser-
vations. Therefore, L4C RE and NEE are high biased and
low biased, respectively, relative to most tower observations
in undisturbed ecosystems [51]. To mitigate these site-to-site
biases when calibrating RE against tower data, we determine
the 95th percentile of RE from each tower site and substitute
this quantity as a constant effective SOC factor (C̄) during
L4C model calibration

C̄ ∼=
∑

ki Ci . (11)

Summing (11) and substituting (9), total RH can now be
expressed as

RH(t) = fEC(TSOIL) fEC(SMSF)C̄ (12)

which simplifies calibration by combining unidentifiable rate
and effective storage parameters until a single constant factor
for each site. This procedure is imperfect because Cfast is
seasonally dynamic (i.e., has subannual turnover time), but for
practical purposes, it reduces the effective model bias during
calibration.

After calibration, L4C SOC levels were initialized to steady-
state conditions using two steps. In the first step, we ana-
lytically solved (6)–(8) using the L4C Calib inputs. This
solution provided steady-state annual mean SOC values. In the
second step, these values were used to initialize a numerical
solution (i.e., “spin-up”), which cycles the input MERRA,
NRv4, and FPAR climatologies until the annual NEE is
within ±1 g·C·m−2·y−1. Since the analytical values were
quite close to the numerical steady state (closer for Cslow
than Cfast, because Cfast has a larger seasonal cycle), this
procedure usually required only a few (≤10) annual cycles.
This is resulted in a global 1-km SOC map for each day of a
climatological year, which was then used to initialize L4C Ops
for the March 31, 2015 beginning of the SMAP operational
record.

E. Multitier Validation Strategy

The targeted performance metric for the L4C product is
to estimate NEE at the level of uncertainty commensurate
with in situ tower measurement-based observations (ubRMSE
≤ 1.6 g·C·m−2 d−1 or 30 g·C·m−2·y−1). The L4C product
accuracy was primarily assessed against independent CO2
flux measurement-based observations from a global network
of 26 core tower validation sites (CVS) having concurrent
overlapping observations with the L4C operational record for
the March 31, 2015 to December 31, 2015 period (Table IV;
Fig. 1). The L4C operational product was also verified
against other similar global observational benchmarks, includ-
ing Solar-Induced canopy Fluorescence (SIF) from the ESA
GOME-2 sensor on the MetOp-A and MetOp-B satellites,
which was used as a proxy for GPP [52]. GOME-2 pro-
vides Level 3 global monthly 734 –758 nm (Channel 4,
version 26) SIF retrievals on a 0.5° × 0.5° grid extend-
ing from 2007 to present [53]. The GOME-2 record was
selected for this study over other SIF observations, includ-
ing the NASA Orbiting Carbon Observatory (OCO2) [54],
because of the longer record and consistent global gridding
available from GOME-2. We also compared L4C effective
NEE source/sink patterns against alternative NEE estimates
derived from NOAA CarbonTracker atmospheric transport
model inversions of global CO2 flask measurements [24]. Car-
bonTracker estimates continental-scale land and ocean carbon
flux magnitudes using an EnKF to assimilate atmospheric
CO2 flask measurements into TM-5 wind transport simulations
using estimates of anthropogenic and fire CO2 emissions.
CarbonTracker’s biospheric flux subcontinental spatial patterns
are based on the GFED-CASA land model, which provides
both NEE prior conditions and estimated fire CO2 emissions,
whereas continental-scale flux magnitudes are adjusted for
individual ecoregions using the CarbonTracker atmospheric
inversion [24], [55]. Comparing L4C NEE with CarbonTracker
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TABLE IV

TOWER CVS USED FOR L4C VALIDATION ASSESSMENT

biospheric flux provides an atmospheric perspective and a
means for evaluating L4C potential to inform the future
inversion studies.

The L4C SOC outputs were compared with independent
SOC estimates derived from global and regional soil inventory
records, including the International Geosphere-Biosphere Data
and Information System (IGBP-DIS) global [56] and the
Northern Circumpolar Soil Carbon Database (NCSCD) SOC
maps [57]. Within the soil column, the largest SOC levels
are generally found within surface soil layers, declining expo-
nentially with depth [58]. The IGBP-DIS and NCSCD SOC
values represent the top 1-m soil layer and were systematically
decreased by a factor of 1/3 to approximate surface (<10 cm)
soil conditions represented by the L4C SOC outputs.

We performed two types of model sensitivity analyses to
quantify the impact of soil moisture on the L4C-derived global
carbon fluxes. First, we ran L4C Calib using the daily climatol-
ogy inputs and removed the model soil moisture constraints to
investigate their individual impact on the L4C estimated annual
GPP and RH fluxes. Since RE is impacted by both GPP and
RH, we focus on GPP and RH (rather than RE) to decouple
their differential responses to soil moisture. Second, to assess
the impact of SMAP observations on the carbon model cal-
culations, we compared the L4C Ops record against L4C
Open-Loop simulations derived using NRv4 inputs without
the influence of SMAP [27]. The L4C Ops, L4C Open Loop,

and L4C Calib results were then evaluated against the CVS
tower daily carbon flux observations. A guiding hypothesis for
the model sensitivity analysis was that the SMAP informed
L4C Ops simulations should show similar or better accuracy
than the L4C Open-Loop simulations derived without the
benefit of SMAP observations. Likewise, L4C Ops should also
outperform the L4C Calib climatological predictions. A similar
approach was employed by the L4SM team to evaluate impacts
of the L4SM data assimilation [14]. Combining these two
types of analysis, we also compute the global interannual
variance of L4C Calib and compare this quantity to global dif-
ferences between L4C Ops and L4C Open Loop to investigate
how SMAP information may inform L4C global interannual
variability.

III. RESULTS

A. Comparison With Core Flux Sites

The L4C Ops overall mean NEE RMSE was
1.04 g·C·m−2·d−1, and NEE ubRMSE was 0.79 g·C·m−2·d−1

relative to the CVS tower carbon flux benchmark
measurements (Table V). The SMAP L4C-targeted accuracy
threshold is ubRMSE ≤ 1.6 g·C·m−2·d−1 mean across all
sites, so the overall site mean NEE ubRMSE is within
this threshold. The L4C GPP results showed the highest
correlation with the tower observations, followed by RE,
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TABLE V

L4C VALIDATION SUMMARY STATISTICS FROM THE CVS COMPARISONS

Fig. 2. Time series of L4C Ops fields and tower observations (if available) for
selected tower locations: US-Ivo (Alaska arctic tundra) and US-SRM (Arizona
desert shrubland). Fields include (a) and (b) NEE, (c) and (d) GPP, and
(e) and (f) L4C EC, including GPP LUE constraint from (1), Emult. RE soil
temperature and moisture constraints from (6), Tmult and Wmult , respectively.
Shaded bars represent L4C frozen soil classification.

while NEE showed the lowest correlations relative to the
tower observations. The RMSE differences were generally
proportional to the size of the carbon flux, with GPP and NEE
having the highest and lowest RMSE levels, respectively. NEE
shows a somewhat larger though nonsignificant ( p > 0.05)
correlation increase than GPP when the L4C Ops and L4C
Calib climatology results are compared, whereas RE was
generally consistent between the L4C Ops and L4C Calib
results. Likewise, no significant correlation skill differences
were observed between L4C Ops and L4C Open Loop.
Example L4C Ops time series for two tower locations with
widely different climate and moisture conditions (US-Ivo and
US-SRM) indicate that L4C Ops reproduces both the seasonal
cycle and shorter term variability of the tower carbon flux
observations (Fig. 2).

Two sites (CA-Oas and US-PFa) exceed the targeted
(1.6 g·C·m−2·d−1) ubRMSE performance threshold for L4C
Ops NEE, with respective ubRMSE differences of 2.06 and
2.13 g·C·m−2·d−1 (Fig. 3). Two other sites (AU-ASM and
AU-Stp) show negative correlations between L4C and tower
observations for GPP and NEE, respectively (R = −0.23
and −0.19; Fig. 3). Both CA-Oas and US-PFa towers are

Fig. 3. CVS statistical summaries of tower observation agreement for the
daily L4C Ops record including (a) Pearson’s correlation (R), (b) RMSE,
and (c) ubRMSE. Negative correlations (not shown) include AU-ASM (NEE)
and AU-Stp (GPP). Sites AU-GWW and FI-Sod did not report RE observa-
tions. Sites sorted from left to right in order of increasing annual carbon flux
magnitude from the L4C NRv4 climatology. Shaded bars indicate spatially
adjacent tower sites within the same L4C 9-km grid cell. Dashed line indicates
L4C NEE ubRMSE target accuracy (1.6 g·C·m−2 ·d−1).

Fig. 4. L4C QA ubRMSE error estimates versus ubRMSE calculated using
L4C NEE and tower site observed NEE. (a) Fitted L4C Calib average daily
NEE ubRMSE (g·C·m−2 ·d−1) QA metric relative to ubRMSE calculated
using NEE from calibration tower sites. (b) L4C Ops average daily NEE
ubRMSE (g·C·m−2 ·d−1) QA metric relative to ubRMSE calculated using
independent CVS tower NEE observations. Symbols denote dominant PFT
classification of each tower location.

located in productive deciduous broadleaf forests. CA-Oas is
located within an aspen grove surrounded by spruce forest,
so the L4C model classifies the overlying 9-km tower grid
cell as ENF dominant based on the MODIS land cover inputs.
The US-PFa site is surrounded by wetlands which are not
identified in the MODIS PFT classification, although the L4C
model classifies the 9-km tower grid cell as DBF dominant.
Small negative correlations for the AU-ASM and AU-Stp sites
occur because the primary growing season at these arid sites
is between January and March, which falls outside of the
April–December study period such that the GPP and NEE
observations are near zero with little variability.

Comparison of the NEE ubRMSE QA metric against
observed model and tower ubRMSE differences for the
tower calibration sites shows favorable correspondence for
ubRMSE ≤ 2 g·C·m−2·d−1 [Fig. 4(a)]. However, the estimated
ubRMSE QA metric shows apparent saturation and degraded
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Fig. 5. Mean daily L4C Calib NEE QA ubRMSE (g·C·m−2 ·y−1) computed
as the annual mean sum of squares of the daily QA ubRMSE estimates. Areas
outside of the L4C model domain are denoted in white.

performance at higher error levels (above ≈2 g·C·m−2·d−1),
especially for relatively productive ENF, DBF, CCR, and
BCR cover types. Nevertheless, a similar comparison against
the independent CVS observations shows favorable model
correlation (R2 = 0.71; p < 0.01), indicating that the NEE
ubRMSE QA metric provides a reasonable indicator of the
site-to-site variability in the L4C model accuracy [Fig. 4(b)].

The global L4C NEE QA pattern indicates that model
ubRMSE accuracy tends to scale proportionally with over-
all ecosystem productivity (Fig. 5). The estimated ubRMSE
results suggest that the targeted 1.6 g·C·m−2·d−1 accuracy
threshold for NEE is met for 66% of the global domain
and 83% of the northern domain (≥45° N). The high-
est estimated ubRMSE occurs in relatively productive crop-
lands, temperate deciduous forests, and tropical evergreen
broadleaf forests, where the NEE ubRMSE typically exceeds
1.6 g·C·m−2·d−1. However, redefining estimated model
uncertainty as a proportion of the estimated total carbon flux
indicates that a 30% relative error (i.e., NEE ubRMSE over
the sum of GPP and RE) threshold is met for 82% of the
global model domain; these results indicate that the L4C
product provides meaningful accuracy in many productive
areas although the estimated NEE ubRMSE levels may exceed
the 1.6 g·C·m−2·d−1 threshold.

B. GOME-2 SIF Comparison

The L4C Calib GPP- and GOME-2 SIF-derived seasonal cli-
matology results had generally consistent global patterns and
mean latitudinal gradient (R = 0.83 globally across months
and grid cells), although L4C had a somewhat longer growing
season for some regions [Fig. 6(a) and (b)]. Poleward of 35° N,
GOME-2 SIF, and GPP closely agree for growing season
onset, peak, and duration. From 20° N to 35° N, the L4C
results show a longer and more persistent growing season
than GOME-2 SIF, with increasing difference toward the
tropical southern portion of this region. From 5° S to 15° N,
the L4C results had peak growing season productivity during
August and September, while the GOME-2 SIF results indicate
a seasonal productivity minimum during this period. Poleward
of 5° S, the L4C GPP, and GOME-2 SIF results show similar
peak timing and seasonality, although L4C showed a slightly
longer growing season in the 35° S–45° N region.

Fig. 6. Monthly climatological (2000–2012) zonal averages for
(a) GOME-2 SIF, (b) L4C Calib GPP, (c) CarbonTracker (CT2013B), and
(d) L4C Calib NEE. CarbonTracker and L4C Calib NEE assigned differing
color scaling to show variability (see Section II-D).

C. CarbonTracker Bioflux Comparison

The L4C Calib NEE and CarbonTracker biological fluxes
had a coherent climatology for all latitudes and similar lati-
tudinal gradients (R = 0.60 globally across months and grid
cells). However, the timing, length and depth of the estimated
CO2 uptake periods are most consistent poleward of 30° S
with notable L4C and CarbonTracker differences elsewhere
[Fig 6(c) and (d)]. Poleward of 30° N, the CarbonTracker
results indicate earlier CO2 uptake onset, earlier peak uptake,
and larger fall CO2 release relative to L4C NEE. Between
0° and 30° N, CarbonTracker showed greater CO2 release
prior to CO2 uptake onset. Between 0° and 30° S, the L4C
Calib NEE results showed a longer and deeper CO2 uptake
period directly followed by peak CO2 release from August to
September, whereas CarbonTracker indicated a relatively short
and shallow uptake period followed by peak CO2 release from
October to November.

D. SOC Comparison

The L4C Calib results generally reproduced the global SOC
patterns when compared to the IGBP-DIS and NCSCD soil
inventories, including relatively higher SOC stocks in the
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Fig. 7. Comparison of L4C Calib initialized SOC (representing <10 cm
depth) to global and high-latitude inventory-based SOC (depth adjusted to
<10 cm depth) data sets including (a) differences between L4C initialized
steady-state SOC and IGBP-DIS (i.e., L4C−IGBP) and (b) zonal mean SOC
for L4C, NCSCD (>50 N only), and IGBP-DIS. Nonvegetated areas outside
of the L4C model domain in (a) are denoted in white. Shading in (b) indicates
± standard deviation for latitude zone.

high northern latitudes relative to the mid-latitudes (Fig. 7).
However, there were notable differences. In tropical and arctic
regions, L4C SOC stocks were somewhat less than indicated
by the IGBP-DIS and NCSCD inventories. Throughout many
portions of the circumpolar boreal latitudes, L4C SOC stocks
were greater than those in the IGBP-DIS and NCSCD inven-
tories. In general, the L4C SOC distribution peaked in the
boreal forest zone (50°–60° N), whereas the SOC distributions
from IGBP and NCSCD peaked near 65°–70° N. The low bias
of L4C SOC l relative to IGBP in boreal and artic regions
(50°–70° N) may be related to the prevalent spatial distri-
bution of extensive wetlands characterized by thick organic
sediments which contain old soils and wetland characteristics
not represented in L4C or Catchment model [57]. Although the
inventory records showed a similar mean SOC polar latitudinal
gradients, considerable differences in SOC spatial patterns
also occur between the IGBP-DIS and NCSCD records. The
NCSCD record may be more accurate since it contains addi-
tional ground samples, and includes estimation focused on
high-latitude conditions particularly including wetland soil
types [57].

E. L4C Model Sensitivity Analysis

The L4C Calib climatological model sensitivity analysis
indicated that SMRZ had substantial impact on annual GPP
(≥30% annual difference) over approximately 12% of the
global model domain and some impact (≥5% annual differ-
ence) over 38% of the global domain. These areas of impact
are particularly over drier climate regions [Fig. 8(a)]. The
GPP results reflect the impact of soil moisture on estimated
productivity in addition to contributions from model FPAR and
VPD inputs, which also correlate with moisture availability.
Atmospheric VPD has relatively more widespread impact
on estimated GPP than SMRZ, with notable importance for
tropical “dry” (seasonal) forests including Africa, semiarid,
and arid Australia and also for boreal forests, particularly in
North America [Fig. 8(b)]. Moisture constraints from SMRZ
and VPD show little impact on GPP for broadleaf crops,
deciduous needleleaf forests, and tropical forests (with the

Fig. 8. Global metrics indicating the impact of soil moisture sensitivity
analysis and operational SMAP observations on L4C Calib flux climatology
fields. Percentage decrease in annual (a) GPP computed using SMRZ versus
without SMRZ, (b) GPP computed using VPD versus without VPD, and
(c) RH computed using SMSF versus without SMSF. (d) Standard deviation
of the L4SM SMSF analysis increment (data assimilation update minus
model forecast) in percent saturation units. Nonvegetated areas outside of
the L4C model domain in (a)–(c) are denoted in white.

exception of central Africa), although the L4C flux tower
calibration data set lacked DNF tower site representation.

The impact of SMSF on RH is more widespread than the
impact of SMRZ on GPP [Fig. 8(a) and (c)]. These results are
consistent with the larger number of environmental controls
influencing the L4C GPP (and RA) calculations, whereas only
SMSF and soil temperature are used as the primary environ-
mental controls on model estimated SOC decomposition and
RH. SMSF has a little impact on RH in equatorial tropical
forests which lack a pronounced wet season.

The standard deviation of the L4SM soil moisture analysis
increments indicates that SMAP observations most impact
L4SM in arid and semiarid regions, which generally align with
higher L4C soil moisture sensitivity [Fig. 8(a), (c), and (d)].
However, L4SM SMSF analysis increment variability (i.e.,
data assimilated SMSF versus forecast SMSF) is relatively
small compared to overall soil moisture variance because the
L4SM data assimilation affects only TB anomalies and there-
fore mostly affects subseasonal soil moisture variations. Con-
sequently, the largest differences between L4C Ops and L4C
Open-Loop differences occur in arid regions [Fig. 9(b) and (d)]
and align with regions of high L4C Calib interannual vari-
ability (Fig. 9). GPP shows a relatively larger soil moisture
sensitivity and higher interannual variability than NEE because
the GPP and RH responses partially offset each other in the
residual NEE term [Fig. 9(a) and (c)]. Although the L4C
NEE response patterns were generally similar to GPP and of
lower magnitude, the circumpolar boreal forest was a notable
exception where RH influenced the NEE sensitivity pattern
[Fig. 9(d)].

IV. DISCUSSION

A. Uncertainty Evaluation

The CVS comparisons indicate that the L4C Ops results
capture daily-to-seasonal variations and regional patterns
in tower observed terrestrial carbon fluxes spanning a
broad range of global climate and vegetation conditions
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Fig. 9. Comparison of L4C Calib interannual anomaly variability with
SMAP impact as measured by difference variance between L4C Ops and L4C
Open-Loop simulations. Shown are L4C Calib interannual anomaly standard
deviations (for 2000–2012) for (a) GPP and (c) NEE compared with L4C Ops
versus L4C Open-Loop root-mean-square difference (from March 31, 2015 to
December 31, 2015) and for (b) GPP and (d) NEE. Variances expressed in
average daily carbon flux units (g·C·m−2 ·d−1). Nonvegetated areas outside
of the L4C model domain are denoted in white.

(Table IV and Figs. 1 and 2). The L4C Ops-derived GPP
seasonality was generally proportional to RE, resulting in a rel-
atively lower NEE seasonality (Fig. 3). The NEE generally had
lower RMSE than GPP or RE relative to the tower observations
because of smaller characteristic magnitude of the residual
NEE flux (Table V). Likewise, higher correlations between the
tower observations and L4C results for GPP and RE relative
to NEE were largely due to the smaller seasonal cycle of NEE
rather than actual model skill differences (Fig. 3). However,
somewhat lower correlations between measured and modeled
RE and NEE relative to GPP were partially impacted by model
SOC mismatches relative to local site conditions which affect
both L4C-derived carbon fluxes and estimated error (ubRMSE)
variance. Larger-than-expected model carbon flux ubRMSE
and negative correlations with tower observations for some
CVS locations were attributed to land cover (PFT) differences
between the local tower footprint and the MODIS 1-km
land cover map used to define PFT heterogeneity in the
L4C model, or to the limited (April–December 2015) study
period that missed the primary growing season for some
sites (AU-ASM and AU-Stp). More productive tower sites
(CA-Oas and US-PFa) also had relatively larger carbon fluxes
and associated ubRMSE levels, although relative model error,
expressed as a proportion of the total estimated carbon flux
magnitude, indicated meaningful model accuracy across a
broad range of global vegetation, productivity, and climate
conditions (Fig. 3).

The NEE ubRMSE QA results for L4C Ops and L4C
Calib simulations indicate a general increase of model
error with estimated carbon flux magnitude over the global
domain (Figs. 4 and 5). However, the model calibration results
indicate that the explanatory power of the NEE QA metric
saturates for higher ubRMSE levels beyond ≈2 g·C·m−2·d−1,
which is generally characteristic of productive croplands and
forests [Fig. 4(a)]. Croplands often contain diverse crop
types, riparian areas, and fallow fields, whereas forestland is
often interspersed with cropland and pasture, and composed
of different age classes and recovery stages from land-use

change, burning, or harvesting. The resulting subgrid spatial
heterogeneity in vegetation and soil conditions will tend to
increase both random and bias errors in estimated carbon
fluxes, leading to degraded ubRMSE accuracy. Other factors
such as subgrid PFT spatial heterogeneity and disturbance
history likely dominated overall model uncertainty for such
locations. Despite these limitations, the CVS results indicate
that the L4C Ops ubRMSE QA metric provides a relatively
robust measure of model NEE uncertainty [Fig. 4(b)]. Previous
studies using similar satellite data-driven LUE models [59]
indicate that model input uncertainty is a major source of
model error (up to 30%), whereas the L4C QA metric provides
a daily estimate of the aggregate effects of model inputs and
assumptions on product accuracy.

B. Evaluation Relative to Other Global Data sets

The L4C Calib- and CarbonTracker-derived NEE clima-
tologies were generally consistent over the global domain
[Fig. 6(c) and (d)]. However, some areas showed different
NEE spatial and temporal patterns, which may reflect model
differences in seasonal litterfall regimes. Model differences in
underlying climatic drivers and control factors affecting GPP
and RE also impact these patterns but likely to a lesser extent.
The CASA land model used in CarbonTracker has a prescribed
litterfall phenology [60] and provides the estimated monthly
NEE priors used in the CarbonTracker inversion; CASA model
NEE priors are responsible for most of the CarbonTracker
subcontinental spatial variability. Unlike CASA, the L4C
model has a daily time step and evenly distributes litterfall
throughout the year. (That is, Lfall− in (6) and (7) is constant
for all t.) Since NEE peak uptake is mainly driven by GPP,
the relatively early CarbonTracker uptake onset and seasonal
peak for northern (>40° N) areas are at odds with both
GOME-2 SIF and L4C Calib GPP climatologies which suggest
that the ecosystem carbon uptake onset and peak should occur
later [Fig 6(a) and (b)]. Nevertheless, L4C Calib carbon flux
patterns generally align with typical GPP and NEE seasonal
trends indicated from the GOME-2 SIF and CarbonTracker
NEE benchmark data sets.

Changes in NEE trends over decades and longer will result
in measurable changes to SOC stocks. Although compar-
isons of dynamic models, such as L4C, with inventory-based
SOC maps are problematic, understanding spatial differences
potentially provides insight regarding model and sampling
uncertainty, and driving processes. The relative L4C under-
estimation of SOC in the high latitudes is attributable to a lack
of detailed information on wetlands and peatlands (Fig. 7). The
L4C Calib results show peak SOC accumulation in the boreal
latitudes because of the combination of moderate litterfall
and cold conditions favoring SOC accumulation. Matching the
larger SOC levels indicated from the soil inventory data would
therefore require lengthening of L4C effective SOC turnover
times for boreal and arctic latitudes. The apparent difference
in L4C derived versus effective turnover times may reflect the
prevalence of boreal and tundra wetlands and peatlands, and
associated anaerobic soil conditions, or differences in SOC
quality [45] that may not be effectively represented by the
model inputs and assumptions. Although SOC may provide
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some insight for improving L4C RH estimates, the potential
for improvement is ultimately limited by several factors.
SOC development generally occurs over long periods (i.e.,
thousands of years or more) subject to changing climate and
ecological conditions, so L4C model-based SOC estimates
derived from recent satellite and meteorological records are
expected to diverge from soil inventory records. Wetlands
and peatlands accumulate large SOC stocks, and are common
in boreal, arctic, and equatorial (tropical) biomes where a
relatively large model and inventory discrepancies were found.
These areas are not well represented by the global flux tower
network, and there is little available flux information for robust
L4C calibration of global wetland dynamics. Furthermore,
SOC characteristically shows large spatial heterogeneity in
wetland regions influenced by surface and sub-SMSF dynam-
ics that exist beneath the resolution of coarser scale SMAP
observations and model derived products (L4C and L4SM).
New fine-scale radar-based remote-sensing approaches for
estimating soil carbon indicate approximately 25% lower SOC
in some arctic areas than indicated from NSCDC inventory
records [61]. Considering such mismatches, inventory-based
SOC assessments may benefit from the comparison of climate-
induced dynamics and spatial covariance metrics provided by
the L4C product and other remote-sensing data sets.

C. Value of Soil Moisture and SMAP Observations

The L4C Calib model sensitivity analysis indicated the
widespread impact of soil moisture on terrestrial carbon
fluxes (Fig. 8). SMRZ primarily impacts GPP in arid regions,
whereas SMSF has a more widespread impact on RH. SMRZ
is used with VPD inputs to represent both soil water supply
and atmospheric moisture demand controls on GPP. SMRZ
provides an additional impact on GPP extending beyond VPD
controls over drier climates of the global domain, where the
SMAP observations have generally greater impact on the
GEOS-5 land model assimilation used to derive the L4SM soil
moisture and temperature inputs. The impact of SMSF on RH
was more widespread than that of SMRZ and GPP because
SMSF provides the sole moisture constraint to the model
RH calculations. RH also has an exponential dependence on
temperature in the L4C model so that dry conditions have a
relatively greater impact on respiration when co-occurring with
high temperatures. SMSF has generally larger dynamic vari-
ability than SMRZ such that RH shows larger daily variability
in response to rapid wetting/drying of the surface soil layer.

Other recent studies have highlighted the importance of arid
regions for controlling interannual variability of the global
land carbon flux [2]–[4]. This global variability is strongly
influenced by periodic wet and dry (drought) cycles, associated
fire events, and concomitant effects on vegetation growth
and NEE in dryland ecosystems, including grasslands, shrub-
lands, and savannahs [4]. In arid and seasonally arid regions,
RE rapidly responds to rainfall (i.e., the so-called “Birch
effect” [62]) and in both arid and nonarid ecosystems, root
exudates from trees and shrubs can provide “priming” effects
increasing RE after soil wetting [63]. Both effects underscore
the importance of daily soil moisture for modeling RE and
NEE fluxes. In contrast, carbon flux spatiotemporal variability

in more humid biomes, especially forests, may be relatively
more impacted by the interaction of drought with disturbance
(fire, harvesting, etc.) and recovery processes, which are not
explicitly modeled in the current L4C Ops product. Water
logged and saturated soils can inhibit RH by decreasing
oxygen availability and causing anaerobic conditions [64];
however, inclusion of an inverse-parabolic RH response curve
degraded the PFT-specific L4C calibration fit in relation to the
global tower calibration sites used in this study. The lack of an
apparent anaerobic response may be due one or more factors
including a general lack of wetland representation and flooding
in the FLUXNET tower site record used for model calibration;
the relatively coarse (9 km) resolution L4SM information used
to define model soil moisture conditions may not effectively
capture saturated or ephemerally flooded conditions, while
anaerobic conditions may also be partially offset by plant root-
mediated oxygen transport [65]. Lack of anaerobic response
also likely plays a role in L4C SOC low bias arctic, boreal,
and some tropical wetland locations (Fig. 7; Section IV-B.).

The full global range of vegetation and climate conditions,
including climate extremes, disturbance, and recovery, are
generally under-sampled by the available flux tower net-
work [65], [48]. Since tower data were used to calibrate the
L4C model, the above global soil moisture sensitivity analysis
is biased to the existing tower network [9], [66]. The relatively
short time period used in this study (March 31, 2015 to
December 31, 2015) restricts a more comprehensive soil
moisture sensitivity assessment because many locations (e.g.,
tropical evergreen broadleaf forests) may only respond to
extreme events that that occur infrequently and may not be
represented in the relatively recent (2001–2012) MODIS and
NRv4 records used to derive the L4C simulations. These
types of sampling biases affect all L4C results in this study,
have been noted by other global studies, and are largely
unavoidable [66], [67]. Additionally, methods used to par-
tition GPP and RE components of NEE from tower eddy
covariance CO2 flux measurements are modeled following
various assumptions and therefore do not truly represent
“observations [50].” Each tower’s effective spatial footprint
changes with wind direction and may be inconsistent with the
associated 1-km L4C modeling pixel. Effective SOC storage
mismatches between the L4C model steady-state initialization
cause further uncertainty. The use of model cross-comparisons
and rescaling with alternative observation benchmarks such as
GOME-2 SIF and CarbonTracker provide for additional model
validation, although these somewhat indirect comparisons can
also be difficult to interpret.

Our results indicate only a relatively small benefit of SMAP
observations on the L4C calculations based on the limited data
record examined in this study. The accuracy and performance
of L4C Ops were on par with the L4C Open Loop and only
marginally better than the L4C Calib climatology from the
CVS results (Section III A; Table V). The results are also
impacted by the inclusion of CVS locations where low soil
moisture is not generally limiting to ecosystem carbon fluxes.
The relatively early mission phase and associated short CVS
time record (<1 full year) currently limits capabilities for a
more robust assessment of the impact of SMAP observations
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on the L4C model skill relative to flux towers. Moreover,
the microwave emission model used for assimilating SMAP
observations and L4SM production was necessarily calibrated
using SMOS data during the SMAP mission prelaunch phase,
which limits which limits the use of SMAP TB observa-
tions in the L4SM system to the areas where SMOS is not
impacted by radio frequency interference. Similarly, the L4C
model was necessarily calibrated using NRv4 inputs (L4C
Calib), which may dampen or bias results when confronted
with SMAP informed L4SM soil moisture and temperature
inputs used in the L4C Ops product. Such relative biases are
particularly common for soil moisture data sets from both
model and remote-sensing sources [31]–[33], and perhaps
more pervasive than for other meteorological fields such as
air temperature and humidity [68]. This is because the global
soil moisture fields have been historically poorly observed, and
because soil moisture has generally large characteristic hetero-
geneity leaving the true global soil moisture field unknown and
absolute biases indeterminate. Such biases are problematic for
L4C (and all such models [31]), especially if the magnitude
of soil moisture bias exceeds its temporal variability, because
these biases can lead to model calibration errors affecting the
PFT-specific soil moisture constraint curves.

Despite the seemingly small benefit of SMAP observations
at CVS sites, L4C interannual variability is well aligned
with regions where SMAP provides the most information in
the L4SM data assimilation (Figs. 8 and 9). These regions
mostly include arid and semiarid regions, and also extend
to a few boreal locations. Furthermore, these regions also
coincide with where L4C is most sensitive to soil moisture.
Taken together, these results indicate that SMAP provides
its most useable information where soil moisture limitations
control GPP and NEE interannual variability and where L4C
is most sensitive to soil moisture limitation. This indicates
the potential of microwave-derived global soil moisture infor-
mation to estimate terrestrial CO2 fluxes, with larger impacts
in drier climates and areas with less vegetation cover where
SMAP observations have greater soil moisture sensitivity
and associated impact on land model data assimilation soil
moisture estimates. Planned model calibration refinements
and a continuing SMAP operational record are expected to
lead to further improvements in L4C global accuracy and
performance as indicated by CVS locations and global data
set intercomparisons.

V. CONCLUSION

The SMAP L4C product provides consistent, operational
global daily estimates of ecosystem-atmosphere carbon fluxes,
surface SOC stocks, and their underlying environmental con-
trols. Our initial global assessment using several indepen-
dent observation benchmarks indicates that the L4C model
accuracy and performance is consistent with product design
specifications and target accuracy requirements, and that the
L4C product is suitable for a range of science investigations,
including drought-related impacts on vegetation growth and
the terrestrial carbon cycle. The L4C product provides a new
tool for monitoring global land carbon dynamics informed by
model data assimilation of SMAP satellite observations with

enhanced L-band microwave sensitivity to soil moisture and
thermal conditions.

The L4C product suite includes internally consistent esti-
mates of NEE, component carbon fluxes (GPP and RH),
and surface SOC stocks. Additional product variables include
underlying environmental control factors influencing GPP and
RH, and NEE ubRMSE QA metrics that provide enhanced
diagnostic capabilities for analysis and attribution of estimated
carbon fluxes and driving processes. The L4C model outputs
are derived at a daily time step and 1-km resolution, capturing
weather-related daily variability at the level of a tower carbon
flux measurement footprint.

The results of this study document the L4C model accu-
racy relative to independent tower carbon flux observations
and indicate that SMAP observations are most useful where
soil moisture strongly controls land CO2 flux dynamics and
variability. The L4C results were also verified against other
available carbon observation benchmarks including satellite-
based SIF from GOME-2, used as a surrogate for GPP,
atmosphere transport model inversion-constrained NEE esti-
mates from CarbonTracker, and global soil carbon inven-
tory records. These results indicate that L4C performance is
within the targeted accuracy threshold for NEE (ubRMSE
≤ 1.6 g·C·m−2·d−1 or 30 g·C·m−2·y−1) over approximately
66% of the global domain, and with larger absolute error
but still meaningful accuracy (relative error ≤ 30%) over
82% of the global domain. The L4C product performance for
estimated carbon fluxes is generally commensurate with the
level of uncertainty associated with in situ tower carbon flux
observations.

Model comparisons with CarbonTracker indicate that the
L4C results contain potentially new information for inform-
ing global carbon flux inversions, including providing direct
links between NEE variability and underlying soil moisture
and thermal constraints to ecosystem productivity, respiration,
and terrestrial carbon storage processes. Model sensitivity and
variability analyses indicated that microwave-based soil mois-
ture potentially add useful new information for improving the
estimation of terrestrial carbon fluxes and underlying envi-
ronmental controls, especially for arid and semi-arid climate
regions, because such regions are where SMAP observations
inform the L4SM data assimilation and where water availabil-
ity largely controls land CO2 flux. Although benefits of using
SMAP data are not yet discernable relative to the short record
of CVS flux tower observations, the L4SM and L4C records
will continue to benefit from continuing SMAP operations
and ongoing sensor and model calibration refinements which
will likely improve detectability of SMAP impact as a longer
record becomes available. The L4C product provides the
means for addressing mission carbon cycle science objectives
to improve understanding of the purported missing carbon sink
on land, and link terrestrial water and carbon cycles.
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