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ABSTRACT

The Neoproterozoic sulfur isotope (5**S) record is characterized by anomalously high 3**Spyriee
values. Many &S,y values are higher than the contemporaneous 3**Sgume (i.€., 8**Spyrite>0>*Ssulfate),
showing reversed fractionation. This phenomenon has been reported from the Neoproterozoic post-glacial
strata globally and is called “Neoproterozoic superheavy pyrite”. The commonly assumed biogenic
genesis of superheavy pyrite conflicts with current understanding of the marine sulfur cycle. Various
models have been proposed to interpret this phenomenon, including extremely low concentrations of
sulfate in seawaters or porewaters, or the existence of a geographically isolated and geochemically
stratified ocean. Implicit and fundamental in all these published models is the assumption of a biogenic
origin for pyrite genesis, which hypothesizes that the superheavy pyrite is syngenetic (in water column) or
early diagenetic (in shallow marine sediments) in origin and formed via microbial sulfate reduction
(MSR). In this study, the Cryogenian Datangpo Formation in South China, which preserves some of the
highest 8*Syyie values up to +70%o, is studied by secondary ion mass spectrometry (SIMS) at
unprecedented spatial resolutions (2 um). Based on textures and the new sulfur isotope results, we

propose that the Datangpo superheavy pyrite formed via thermochemical sulfate reduction (TSR) in
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hydrothermal fluids during late burial diagenesis, and therefore lacks a biogeochemical connection to the
Neoproterozoic sulfur cycle. Our study demonstrates that SEM-SIMS is an effective approach to assess
the genesis of sedimentary pyrite using combined SEM petrography and pm-scale §**S measurements by
SIMS. The possibility that pervasive TSR has overprinted the primary 8**S,ye signals during late
diagenesis in other localities may necessitate the reappraisal of some of the 3**Syyrie profiles associated

with superheavy pyrite throughout Earth's history.
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INTRODUCTION

The Neoproterozoic Era (1000-541 Ma) marks a transitional period in Earth's history that is
characterized by a considerable rise in atmospheric oxygen, a gradual transformation in ocean redox
conditions, and the rise of animal life (Halverson and Shields-Zhou, 2011; Narbonne et al., 2012; Shields-
Zhou et al., 2012; Xiao, 2014). Notably, the Cryogenian Period (ca. 720-635 Ma) witnessed two episodes
of global-scale low-latitude glaciation: the Sturtian glaciation (717-660 Ma) and the Marinoan glaciation
(>639-635 Ma) (Hoffman et al., 1998; Rooney et al., 2015; Hoffman et al., 2017). These glaciations have
been widely regarded as among the most profound ice ages in Earth's history. Sedimentological and
paleomagnetic studies suggest that glaciers during the Cryogenian glaciations may have approached the
equatorial latitudes, forming a "Snowball Earth" (Kirschvink, 1992; Hoffman et al., 1998; Hoffman and
Schrag, 2002). Although the Neoproterozoic fossil record shows an Ediacaran (635-541 Ma) emergence
of early animal life (Xiao et al., 2016), molecular clock studies suggest that the origin of the animal phyla
may have occurred in early Neoproterozoic (Runnegar, 1982; Peterson et al., 2004). Therefore, a precise
biogeochemical reconstruction of the Neoproterozoic Era is critical to understanding the environmental

context of early animal life evolution.

A remarkable feature of the Neoproterozoic chemostratigraphy is the anomalously high pyrite
sulfur isotope (8**Spyrie) values, many of which are higher than the inferred contemporaneous seawater
8**Ssuie values (i.e., 8**Spyrite > 8**Ssuirae) that are reconstructed from coexisting sulfate phases (e.g.,
anhydrite, carbonate-associated sulfate) (Fig. 1; Appendix 1). These pyrites are commonly known as
"superheavy pyrite" (Liu et al., 2006; Ries et al., 2009; Fike et al., 2015). The biogeochemical origin and
palacoenvironmental implications of the Neoproterozoic superheavy pyrite have puzzled geochemists for
decades (Hayes et al., 1992; Fike et al., 2015). In marine sulfur cycles, 8**Spyice signals can never be

higher than coexisting **Ssue signals (Canfield, 2001a; Béttcher, 2011; Canfield and Farquhar, 2012),
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therefore the occurrence of superheavy pyrite challenges the canonical understanding of the sulfur isotope

systems.

Multiple studies have reported anomalously high §**S values in the Cryogenian Period (Fig. 1;
Appendix 1), including the Datangpo Formation in South China (Wu et al., 2016 and references therein),
the Tapley Hill Formation in Australia (Hayes et al., 1992; Gorjan et al., 2000), the Court and Rasthof
formations in Namibia (Hurtgen et al., 2002; Gorjan et al., 2003), the Bonahaven Dolomite Formation in
Scotland (Parnell and Boyce, 2017), and the Arena Formation in East Greenland (Scheller et al., 2018).
Notably, reported superheavy pyrites in these formations all overlie the Sturtian glacial diamictite, leading
to the speculation of a potential linkage between the superheavy pyrite and the Sturtian glaciation (Gorjan

et al., 2000; Hurtgen et al., 2002).

Largely based on the post-glacial occurrence of the superheavy pyrites, a tantalizing hypothesis
links the genesis of superheavy pyrite to a Snowball Earth glaciation (Gorjan et al., 2000; Hurtgen et al.,
2002). In this scenario, the ocean during the Sturtian glaciation was covered with a thick ice sheet,
therefore terrestrial sulfate input by riverine fluxes was significantly reduced or shut off. Continuous
pyrite burial via microbial sulfate reduction (MSR) in the subglacial ocean drove seawater &°*Sgyifate tO
extremely high values. During deglaciation, the high-3°*Ssugme water mass generated and maintained
during the Snowball Earth upwelled onto continental shelf environments, causing the precipitation of

superheavy pyrite in post-glacial successions at a global scale.

The above hypothesis is attractive in that it links the genesis of superheavy pyrites to the Sturtian
glaciation. If correct, then extremely high seawater 3**Ssume values hypothesized in the terminal Sturtian
oceans are expected to be reflected in syngenetic or early authigenic pyrite in diamictite intervals
assuming a certain fractionation between 8*Sgme and 8**Ssurde. Insofar as pyrite authigenesis could
represent a broad spectrum of conditions from syndepositional to postdepositional, pyrites can be
remarkably zoned or heterogeneous. Therefore, conventional >mm-scale &**Syyiee analysis of mineral
concentrates extracted from bulk samples may be useful in constraining the 8**Ssume signals of
contemporaneous seawater. To test this hypothesis, it is critical to target early authigenic pyrite in

diamictite samples and analyze the 8**Syyriee values in situ at micron-scale.

The focus of this study is the Cryogenian strata in South China (Fig. 2). Superheavy pyrite has
been widely reported from the Cryogenian Datangpo Formation in South China with anomalously high
8%Spyrite values up to ca. +70%o (Liu et al., 2006; Li et al., 2012; Wu et al., 2016). The post-Sturtian
seawater 5°*Squme value is estimated to be ca. +26%o based on nodular and “chicken wire” anhydrite in

Australia (Gorjan et al., 2000), or no more than ca. +50%o0 based on carbonate-associated sulfate (CAS)
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analysis of the Cryogenian carbonates in Australia, Namibia (Hurtgen et al., 2005) and South China (Lang,
2016). Based on these 8**Syme constraints, many of the published 6°*Spyie values from the Cryogenian

Datangpo Formation are much higher than the inferred coeval seawater 8**Sgue values (Fig. 1; Appendix

1.
INTERROGATING THE SUPERHEAVY PYRITE

To understand the origin of the superheavy pyrite, two outstanding questions should be addressed.
First, how to create and maintain a high-6°*Ssuie reservoir? Based on current knowledge of sulfur isotope
systems, to generate high-6*S,y:ie values requires a sulfate reservoir with even higher 6**Sgue. Therefore,
the existence of a sulfate reservoir with extremely high-8**Ssume has been invoked in multiple models.
Models for such high-6**Sgue reservoirs show a wide spectrum of geological settings: an ice-covered
ocean during a hard snowball-Earth glaciation (Gorjan et al., 2000; Walter et al., 2000; Gorjan et al., 2003;
Parnell and Boyce, 2017), a restricted basin with limited access to the open ocean (Li et al., 2012), an
isolated porewater system (Chen et al., 2008), a sulfate minimum zone in the water column (Logan et al.,
1995), a stratified ocean with substantial burial of pyrite in the euxinic deep ocean (Logan et al., 1995;
Canfield, 2004), or a local euxinic water mass with active emissions of low-8**Sr, organic sulfur (Lang,

2016; Lang et al., 2016).

Second, how to reverse sulfur isotope fractionations (A**Ssuifate-suifige) t0 negative values? During
microbial sulfate reduction (MSR), 8*S,yiee can approach, but not be higher than, the coexisting 8**Ssuifate
signals. Therefore, to produce reversed A**Sqinesusice values, the sulfur reservoirs of 8**Saume and
8*S,uiige, respectively, have to be decoupled. In other words, two coexisting, but separated, sulfur
reservoirs are needed to explain the reversed values of A**Sgyifue-suifice. Such conditions are uncommon in

marine environments.

Implicit among most of the published models is the notion that the superheavy pyrite formed via
MSR. However, this assumption has not been tested. To test this assumption and reevaluate published
models, an integrated approach that combines both basin-scale field observation and pm-scale SIMS
8%Spyrite analysis coupled to SEM-based petrography is required. For example, pyrite formed in seawater
(i.e., open system) vs. in pore waters (i.e., restricted system) could result in different patterns of 83*Syrice
at um scale when Rayleigh fractionation occurs. Higher 3°*Syrie values are expected to be strongly zoned
in late-stage overgrowths of pyrite if it forms in an increasingly fractionated pore-water system. In
contrast, pyrite formed in the marine water column should record relatively low &**Spyriee values without
strong heterogeneity in 8**Spyie at um scale. In addition, pyrite formed during early syndepositional

diagenesis vs. late burial diagenesis could also be reflected in paragenesis, and revealed by petrography.
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In this study, we aim to test published models for the genesis of Neoproterozoic superheavy
pyrite in South China using the novel SEM-SIMS approach. Detailed petrographic observations by
scanning electron microscopy (SEM) and in situ pm-scale §**S,yie analysis by secondary ion mass
spectrometry (SIMS) were performed for the pyrite samples. The SIMS §**S,yie analyses are coupled
with detailed petrographic observations by scanning electron microscopy (SEM) and trace elements by
electron-probe microanalysis (EPMA). Based on these new results, a 6**Ssufiqe constraint that is directly
based on early authigenic pyrites for the Sturtian glacial ocean was achieved for the first time. These data
evaluate if the seawater 8**Syiiqe signal during the terminal Sturtian glaciation was as heavy as inferred by
previous studies (Gorjan et al., 2000; Hurtgen et al., 2002). Alternatively, we will test if superheavy pyrite
formed via thermochemical sulfate reduction (TSR) during a post-depositional hydrothermal event. This
is in strong contrast with the widely accepted assumption, held for decades, of a microbial sulfate

reduction (MSR) origin for the Neoproterozoic superheavy pyrite in South China.

BACKGROUND

Current interpretations of the deep-time 8**S records apply fractionations of sulfur isotopes
between sulfate and sulfide (A**Ssufae-suifice = 0> *Ssuitate — 0°*Ssuifiee). Before fully investigating the

Neoproterozoic superheavy pyrite, a brief review of sulfur isotopes is necessary.

Microbial sulfate reduction (MSR)

Microbial sulfate reduction is the dominant mechanism that fractionates sulfur isotopes in marine

environments. It is often expressed as the following simplified reactions:
2CH,0 + S04 — 2HCO;5 + H2S €))
CH4+ SO+ — HCO5; + HS + H,O (2)

Most MSR occurs at temperatures lower than ~100 °C (Jergensen et al., 1992). During MSR,
sulfate-reducing bacteria reduce sulfate to sulfide and form pyrite with 8*S values lower than the
coexisting sulfate (i.e., 3**Ssuide < 6°*Ssuitae) (Kaplan and Rafter, 1958; Kaplan and Rittenberg, 1964;
Canfield, 2001a; Bottcher, 2011). MSR-induced sulfur isotope fractionation A3*Sgyitute-suifice Up to +40%o
has been produced in lab experiments (Canfield, 2001b). More recently, experiments with pure cultures of
sulfate reducers show a maximal A**Sgfe-suiige Of +66%o at sulfate concentrations ([SO4*7]) similar to
modern seawater at 28 mM (Sim et al., 2011a). Even larger A3*Squge-suride values of up to +72%o have

been found in natural samples (Wortmann et al., 2001; Canfield et al., 2010; Sim et al., 2011a).
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Sulfate concentrations ([SO4>7]) in solutions can strongly influence the magnitude of A3*Sgyfate-
sulfide. EXxperimental studies of microbial cultures demonstrate that the degree of MSR-induced sulfur
isotope fractionation in both seawater and freshwater can be increasingly suppressed as [SO4>] decreases,
and A**Sguae-suide approaches zero when [SO4*7] is less than 200 uM (Habicht et al., 2002). However, a
more recent study based on Lake Matano (Indonesia) suggests large fractionations (>20%o) at sulfate

levels below 200 uM (Crowe et al., 2014).

In addition, environmentally controlled experiments suggest that the magnitude of MSR-induced
sulfur isotope fractionation is also related to strain-specific factors (Fike et al., 2015; Bradley et al., 2016),
intracellular metabolite levels (Wing and Halevy, 2014), and sulfate reduction rate that is dependent on
the availability of organic substrates as electron donors (Canfield et al., 2010; Leavitt et al., 2013; Leavitt,
2014; Fike et al., 2015; Gomes and Hurtgen, 2015). The magnitude of A**Sgyfe-suride is found to be
inversely proportional to the cell-specific sulfate reduction rate (csSRR) (Harrison and Thode, 1958;
Kaplan and Rittenberg, 1964; Chambers et al., 1975; Sim et al., 2011a; Sim et al., 2011b; Sim et al., 2012;
Leavitt et al., 2013; Fike et al., 2015). This inverse relationship between A3*Sguesuifice and csSRR is
consistent with observations in modern marine sediments, particularly in the sulfate—methane transition
zone (SMTZ) where MSR rate reaches a maximum in the presence of an upward methane flux and a
downward sulfate flux (Jergensen et al., 2004; Lin et al., 2016b). Additionally, sedimentation rate could
also play a role in controlling the expression of A3*Sgue-suifice. Studies suggest that higher sedimentation
rate could cause smaller A**Sguge-surise and higher 8**S,y:ie values, and conversely, lower sedimentation
rate could cause larger A**Sguge-sufice and lower 8**S,yrie values (Goldhaber and Kaplan, 1975; Claypool,

2004; Pasquier et al., 2017).

In marine environments, bacterial sulfur disproportionation (BSD) could also play a significant
role in fractionating the sulfur isotopes. During BSD, sulfides produced through MSR are re-oxidized to
elemental sulfur, and then subsequently disproportionated to sulfate and sulfide, by coupling with the
reduction of O,, NOs™, iron or manganese compounds (Canfield and Thamdrup, 1994; Canfield and Teske,
1996; Canfield, 2001a; Fike et al., 2015). Disproportionation reactions can significantly augment the
fractionation of sulfur isotopes, resulting in isotopic contrasts between reactant sulfate and product sulfide
with A**Suifae-suifige greater than +70%o. The involvement of BSD has been proposed to occur in the rock
record of multiple geological intervals (Canfield and Teske, 1996; Johnston et al., 2005; Fike et al., 2006;
Wu et al., 2015b; Cui et al., 2016b; Kunzmann et al., 2017).

Published studies of MSR-derived pyrite in sedimentary rocks typically show strong
heterogeneity in 8>Sy values at pm scales (Machel et al., 1997; Kohn et al., 1998; Machel, 2001;
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Wacey et al., 2010; Williford et al., 2011; Lin et al., 2016b; Meyer et al., 2017; Peng et al., 2017; Gomes
et al., 2018; Marin-Carbonne et al., 2018). This is largely due to a biogenic nature of MSR and the
involvement of Rayleigh fractionation in restricted pore waters (Kohn et al., 1998; McLoughlin et al.,
2012; Wacey et al., 2015). As MSR proceeds in pore water environments, the restricted flow of
porewaters and Rayleigh fractionation causes progressively lower A**Sgue-sufide, higher 8*#Sgume, and
consequently higher &**Ssuse values (Kaplan and Rafter, 1958; Kaplan and Rittenberg, 1964; Canfield,
2001a).

Rayleigh fractionation of sulfur isotopes can be expressed at both stratigraphic meter-to-
kilometer- and micrometer-scales. (1) Stratigraphically, 6**S values of both porewater sulfate and
authigenic pyrite typically increase with greater burial depth (Goldhaber and Kaplan, 1980; Borowski et
al., 2000; Canfield, 2001a; Fike et al., 2015); (2) At micrometer scales, as pyrite grains continuously grow
during diagenesis, the late-stage pyrite overgrowth typically records higher °*Spyrite values than the early-
stage pyrite (e.g., Raiswell, 1982; McKibben and Riciputi, 1998; Ferrini et al., 2010; Williford et al., 2011;
Fischer et al., 2014; Drake et al., 2015; Lin et al., 2016b; Drake et al., 2017). Both phenomena reflect the
occurrence of Rayleigh fractionation in the broad spectrum of post-depositional process. Therefore, strong

heterogeneity in 8**Spyrice is predicted to be common in MSR-dominated environments.

Taken together, MSR could cause significant fractionation between sulfate and sulfide. The
controlling factors of A**Sgimte-sulfide in Marine environments are non-unique. Multiple factors may play a
role, including sulfate concentration, MSR rate, organic carbon availability, and sulfide re-oxidation.
Rayleigh fractionation of sulfur isotopes in restricted pore waters could cause strong 3**S heterogeneity at

both stratigraphic and mineral scales.

Thermochemical sulfate reduction (TSR)

Thermochemical sulfate reduction is an abiotic process by which sulfate is reduced by organic
matter during heating. The temperatures of TSR are typically higher than 110 °C (Goldstein and
Aizenshtat, 1994; Machel et al., 1995; Worden et al., 1995; Machel, 2001; Jiang et al., 2015). The
reactants and products of TSR and MSR can be very similar, therefore distinguishing these two sulfate-
reduction pathways is not straightforward and often requires multiple lines of evidence (Machel et al.,
1995; Machel, 2001).

The A**Sguifae-suifice induced by TSR remains poorly constrained compared with that of the MSR.
Lab experiments show that the TSR rate is strongly dependent on temperatures (Kiyosu, 1980; Kiyosu
and Krouse, 1990). The TSR-induced values of A**Squue-suiice caused by hydrocarbons at T > 200°C are
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typically around 25%o (Ohmoto and Goldhaber, 1997). However, disequilibrium A**Sgyipe-suifice values
ranging from +20.8%0 to —5.0%0 have also been reported in TSR experiments using amino acids
(Watanabe et al., 2009). Published lab experiments suggest that the A**Squfae-suide value at equilibrium is
~40%o (Friedman and O'Neil, 1977) or ~30%o, (Ohmoto and Lasaga, 1982; Ohmoto, 1986; Ohmoto and
Goldhaber, 1997; Seal, 2006) at the temperature of ~200 °C.

The occurrence of TSR has been widely reported in hydrocarbon reservoirs (Orr, 1974; Orr, 1977,
Machel, 1987; Heydari and Moore, 1989; Worden et al., 1995; Riciputi et al., 1996; Worden and Smalley,
1996; Worden et al., 2000; Cai et al., 2001; Cai et al., 2003; Cai et al., 2004; Zhu et al., 2007a; Zhu et al.,
2007b; Hao et al., 2008; Machel and Buschkuehle, 2008; Jiang et al., 2014; King et al., 2014; Cai et al.,
2015; Jia et al., 2015; Jiang et al., 2015; Zhu et al., 2015; Biehl et al., 2016; Fu et al., 2016; Liu et al.,
2016; Olanipekun and Azmy, 2018). It was revealed that TSR can play a significant role in enhancing the

secondary porosity and permeability of carbonate reservoirs (Jiang et al., 2018).

TSR has also been invoked as an important process in ore deposits (Rye and Ohmoto, 1974;
Powell and Macqueen, 1984; Ghazban et al., 1990; Tompkins et al., 1994; Randell and Anderson, 1996;
Alonso et al., 1999; Cooke et al., 2000; Peevler et al., 2003; Kelley et al., 2004a; Kelley et al., 2004b;
Basuki et al., 2008; Gadd et al., 2017; So$nicka and Liiders, 2018). Hydrothermal sulfate-bearing fluids

that percolated through preexisting evaporites could react with organic matter and form pyrite deposits.

TSR could also be critical in interpreting the sulfur isotope records of the early Earth. It has been
found that TSR could produce anomalous mass-independent fractionation (MIF) signals of sulfur isotopes
(A*S = +0.1 to +2.1%0 and A*S=—1.1 to +1.1%o) by using specific amino acids (Watanabe et al., 2009,
Oduro et al., 2011), which may have been largely overlooked in the study of the early Earth (Watanabe et
al., 2009; Ohmoto et al., 2014). In a more recent study, 8**Syyiee signals up to +90%o have been found in
the early Paleoproterozoic succession (2.415 Ga) in South Africa, which have been interpreted as

resulting from late fluids during burial metamorphism and late diagenesis (Johnson et al., 2013).

In summary, the occurrence of TSR has been widely reported from hydrocarbon reservoirs and
ore deposits. TSR has also been invoked in the study of sulfur isotope signals of the deep-time records.
The TSR-induced A**Sgyifae-sufide 1S relatively less constrained than that of the MSR, but A*Suae-suifide are

dependent on temperatures with smaller fractionations in higher temperatures.

Page 8



GEOLOGICAL SETTINGS

Stratigraphy and paleogeography

The focus of this study is the Cryogenian Tiesi'ao and Datangpo formations in South China (Fig.
2A—C). The Tiesi'ao and Datangpo formations have been widely regarded as a glacial-postglacial
transition in South China. The Tiesi'ao Formation is a glacial diamictite interval of the Sturtian glaciation.
The overlying Datangpo Formation is typically subdivided into three members by local mining companies,
which are, in ascending order, Member 1 black shale with basal Mn-rich carbonate intervals, Member 2
gray shale, and Member 3 siltstone (Fig. 2C) (Xu et al., 1990; Zhou et al., 2004; Qin et al., 2013; Zhu et
al., 2013; Xie et al., 2014; Wu et al., 2016). The Mn-rich carbonate interval in the basal Datangpo
Formation has been proposed to be the Sturtian "cap carbonate" (Yu et al., 2017) and is the main target for

Mn mining in South China (Wu et al., 2016).

Paleogeographic reconstructions in previous studies reveal that a southeast facing (present
direction) passive margin on the Yangtze block was developed during the breakup of the Rodinia
supercontinent (Fig. 2A, B) (Jiang et al., 2003; Wang and Li, 2003; Hoffman and Li, 2009; Li et al.,
2013). Therefore a rift basin was formed in South China during the Cryogenian Period (Fig. 2C). The
Datangpo Formation is mainly distributed in the slope and basinal facies (Xu et al., 1990; Xiao et al.,

2014; Wu et al., 2016).

Age constraints

The ages of the Neoproterozoic strata in South China are relatively well constrained. Based on a
TIMS U-Pb age of 662.9 + 4.3 Ma (Zhou et al., 2004) and a SIMS U—Pb age of 667.3 £9. 9 Ma (Yin et
al., 2006) analyzed from zircons in the tuff beds within the Mn-rich carbonate interval of the basal
Datangpo Formation (Fig. 2C), the Tiesi'ao diamictite and Mn-rich carbonate couplet is constrained to be

of the Sturtian age (Zhou et al., 2004; Yin et al., 20006).

Stratigraphically upward, the Datangpo Formation is overlain by the Cryogenian Nantuo
diamictite, and then the Ediacaran Doushantuo (635-551 Ma) and Dengying (551-541 Ma) formations. A
SIMS U-Pb age of 654.5 + 3.8 Ma from an ash bed immediately below the Nantuo Formation provides a
maximum age for the upper boundary of the Datangpo Formation (Zhang et al., 2008). Based on a TIMS
U-Pb age of 635.2 + 0.6 Ma analyzed from a tuff bed within the cap dolostone right above the Nantuo
diamictite, the Nantuo Formation is constrained to be a Marinoan counterpart (Condon et al., 2005). The

ages from South China and other basins suggest that the Cryogenian glaciations are synchronous at a
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global scale (Calver et al., 2013; Lan et al., 2015a; Lan et al., 2015b; Rooney et al., 2015; Song et al.,
2017).

Distribution of the superheavy pyrite

Superheavy pyrites with bulk §**S values up to ca. +70%o have been reported in the postglacial
Datangpo Formation (Fig. 1) (Wang et al., 1985; Tang, 1990; Li et al., 1996; Chu et al., 1998; Li et al.,
1999a; Tang and Liu, 1999; Chu et al., 2001; Yang et al., 2002; Chu et al., 2003; Liu et al., 2006; Zhou et
al., 2007; Chen et al., 2008; Feng et al., 2010; Li et al., 2012; Zhang et al., 2013; Zhu et al., 2013; Zhang,
2014; Wu et al., 2015a; Wang et al., 2016; Wu et al., 2016). A comprehensive compilation of the
distributions of the Datangpo superheavy pyrite at a basin scale reveals a close association with ancient
faults (see Fig. 12 in Wu et al., 2016). Similarly, the Datangpo manganese deposits are also associated
with ancient faults (Qin et al., 2013; Zhou et al., 2013). Field studies of the Datangpo Formation show
abundant textures that suggest pervasive overprint by hydrothermal fluids triggered by tectonic events.
These textures include faulting, host rock breccia, sharp-sided quartz veins, calcite, gypsum, and barite
infillings and veins (Xu et al., 1990; Chen and Chen, 1992; He et al., 2013a; He et al., 2013b; Zhang et al.,
2013; Pan et al., 2016).

SAMPLES

Most chemostratigraphic studies analyze 8**Spyriee from mg-size aliquots of powder obtained
at >mm-scale by crushing or drilling samples. These procedures homogenize samples that may be zoned
or heterogeneous at pm-to-mm scale. In contrast, the SIMS analysis of this study sputtered 2-pm diameter
pits (~1-um deep) in situ from polished surfaces that had been imaged by SEM, representing samples over
a million times smaller than in conventional analysis (<ng vs. >mg). By SIMS, it is only practical to
examine a relatively small number of hand samples, but SEM examination makes it possible to select
representative or critical regions and a large amount of data can be efficiently obtained at this scale. The
information density per sample can be extraordinarily high by SIMS yielding information that is
inaccessible by other means (Eldridge et al., 1989; Valley and Kita, 2009; Williford et al., 2016; Cui et al.,
2018). Thus, the best-preserved, most-representative samples were selected for detailed analysis in this

study.

The studied drill core (ZK1105, drilled in September 2015) is composed of the Cryogenian
Tiesi'ao Formation and Datangpo Formation at the Daotuo mine (28°07'04"N, 108°52'26"E), Songtao
County, eastern Guizhou Province in South China (Fig. 2B). The Daotuo mine represents the largest

known Mn ore reserve (up to 142 Mt in carbonates) in China (Qin et al., 2013; Zhu et al., 2013; Wu et al.,
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2016), and records bulk §**S,yie values as high as ca. +70%o (Fig. 1) (Zhu et al., 2013; Wu et al., 2016),
providing a good opportunity for the study of superheavy pyrite and Mn metallogenesis.

Four samples were selected from the ZK1105 drill core for detailed SEM-SIMS §**S,yrite study
(Figs. 2C, 3, 4). Sample 1 (drill core Hy59) is a diamictite specimen from the uppermost Tiesi'ao
Formation. Sample 2 (drill core Hy55) is a Mn-rich carbonate specimen from the lower Member 1 of the
Datangpo Formation. Sample 3 (drill core Hy31) is black shale from the upper Member 1 of the Datangpo
Formation. Sample 4 (drill core Hyl) is from lower Member 2 of the Datangpo Formation. These four
samples cover the main lithologies (diamictite, Mn-rich carbonates, and shale) and pyrite morphology
(including pyrite framboids, pyrite overgrowth, and euhedral to subhedral pyrite grains, respectively) (Fig.
4). Individual pyrite grains were imaged by SEM with back-scattered electrons (BSE) and secondary
electrons (SE) prior to SIMS analysis. Mineral chemistry was verified by SEM energy-dispersive
spectrometry (EDS) and electron-probe microanalysis (EPMA).

METHODS

SIMS analysis

Samples in this study were analyzed by a CAMECA IMS 1280 at the WiscSIMS (Wisconsin
Secondary Ion Mass Spectrometry) Lab, Department of Geoscience, University of Wisconsin—Madison.
The analyses include three SIMS sessions. During session 1 (Oct. 18-19, 2016) and session 3 (June 8,
2017), sulfur two-isotopes (**S, **S) were measured with a 2-um-diameter beam size. During session 2

(May 22, 2017), sulfur three isotopes (*2S, S, 3S) were measured with a 10-um-diameter beam size.

The UWPy-1 standard (pyrite from the Balmat Mine, NY, §**S = 16.04 = 0.18%o, A**S = —0.003
+ 0.009%o, 2SD, V-CDT) (Ushikubo et al., 2014) was used to calibrate analyses of pyrite. Sulfur isotope
ratios are reported in standard per mil (%o) notation relative to V-CDT, calculated as 8**Sumknown =
[(*S/32S )unknown / (**S/?*S)vepr — 1] x1000. Measured ratios of *S/*2S, were divided by the V-CDT value
of #*S/*?S = 1/22.6436 (Ding et al., 2001), and were calculated as “raw” §-values §**S,.,, before converting
to the V-CDT scale based on eight analyses of UWPy-1 that bracket each group of 10-15 sample analyses.
All the data can be found in the online appendices (Appendices 2—6).

SIMS sessions 1 and 3 (*%S, *S analysis; 2-pm beam size). Measurements of **S/*’S were made
using a '3Cs" primary ion beam with an intensity of ~30 pA in session 3, which was focused to
approximately 2x1 pm at the surface of the sample. The secondary *S-, **S™ and **S'H™ ions were
simultaneously collected by detectors L’2, FC2, and C, respectively, using three Faraday cups. The

secondary ion intensity of *S~ was ~6x107 cps and ~2.2x107 cps for in session 1 and session 3,
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respectively. *2S'H™ was analyzed to evaluate the effect of hydrogen that might be in the form of organic
matter on the SIMS results. An electron flood gun in combination with a gold coat (~40 nm) was used for
charge compensation. The total analytical time per spot was about 4 minutes including presputtering (60
s), automatic centering of the secondary ion beam in the field aperture (90 s), and analysis (80 s). The
baseline noise level of the Faraday cups was monitored during presputtering. The spot to spot precision of
8*Srw values based on all bracketing analyses of 2-um spots on standard UWPy—1 is +0.91%o and
+0.87%o, respectively, in session 1 and session 3 (2SD, Appendix 7).

SIMS session 2 (32S, ¥S, ¥S analysis; 10-pm beam size). During session 2, the secondary ion
intensity was ~1.4x10° cps for **S™ and ~1.7x10° cps for #S". The ions *S, **S, S were simultaneously
analyzed by detector L’2, C, FC2, respectively, using three Faraday cups. Mass resolving power (M/AM,
measured at 10% peak height) was set to ~5000. Analysis time consisted of 30 s for presputtering, 80 s
for centering of secondary ions in the field aperture, and 80 s for analysis. **S'H™ was analyzed by
detector C at the end of each spot analysis. The ratio of the *S'H™ tail at the **S™ peak position relative to
the ?S'H™ peak (**S'H wi**S'Hpeak) was determined (6.95E-6) at the beginning of the session, which was
used to correct the contribution of the *’S'H™ tail signal to the **S™ peak during each spot analysis. **S'H"
was measured by using a deflector (DSP2X, which is located after the magnet) and detector C at end of
each analysis. The contribution of *S'H™ to the **S™ peak in all the spots (9.7 x 10~* %o at most, 6.6 x 10~
* %o on average) is negligible. The A*S values were calculated as A**Sunknown = 6> Sunknown — 10° % [(1 +
8*Sunknown /10%)*31% — 1]. The spot to spot precision of §**S and A¥S (values based on all bracketing

analyses of 10-um spots on standard UWPy—1) is £0.18%o and +0.06%o, respectively (2SD, Appendix 7).

Gold-coat removal and SEM imaging

After SIMS analysis, gold coating was removed from samples by chemical dissolution of gold
using a saturated solution of potassium iodide (Jones et al., 2012). The gold-removing solution is a 0.02
mol/L solution of iodine in ethaline. Ethaline is prepared as a 1:2 molar mixture of choline chloride
(CsHi4CINO) and ethylene glycol (CoH¢O2). The rinse solutions are potassium iodide solution and
deionized water, respectively. The potassium iodide solution is prepared by adding potassium iodide (KI)
to water until saturation. Samples were placed in the gold-removing solution on a hot plate at ~60 °C for
10 to 15 minutes, and then rinsed by potassium iodide saturated solution. The samples were rinsed again

by deionized water before further analysis.

SEM imaging was performed in the Ray and Mary Wilcox Scanning Electron Microscopy

Laboratory, Department of Geoscience, University of Wisconsin—-Madison. BSE images of carbon-coated
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samples were acquired with a Hitachi S3400 VP SEM with EDS using a Thermo Fisher thin window
detector. Each pit was investigated by SEM for possible irregularities. SEM images were acquired using
an accelerating voltage of 15 keV or 20 keV at a working distance of 10 mm. All the SIMS pits were
imaged by SEM and are shown with corresponding §**S,y:ite values in the online appendices (Appendices

2-5).
EPMA analysis

EPMA analysis was conducted in the Eugene Cameron Electron Microbeam Lab, Department of
Geoscience, University of Wisconsin-Madison. EPMA was performed with the CAMECA SXFive field
emission electron probe, operated at 20 kV and 50 nA, and either a focused beam or a 3-4 micron
defocused beam, using wavelength dispersive crystal spectrometers (Appendix 8). Counting times were
10 seconds on peak, and a total of 10 on backgrounds, for all elements except those noted in the following
listing. Al Ka (20 sec) and Si Ka (20 sec) were acquired on a large TAP crystal; As Ka (20 sec) and Se Ka
(20 sec) on LIF; S Ka and Ca Ka (27 sec) on large PET; Fe Ka, Mn Ka and Co Ka on LIF; and Ni Ka, Cu
Ka and Zn Ka on large LIF. Standards used were Balmat pyrite (Fe, S), NBS glass K412 (Si, Al, Ca),
arsenopyrite (As) and freshly polished metals for the balance. PHA modes used were integral, except for
Al and Si which were differential mode. Software used was Probe for EPMA (Donovan et al., 2018). Off
peak backgrounds were acquired, and matrix correction was conducted by using the Armstrong/Love

Scott algorithm (Armstrong, 1988). Minimum detection levels are shown in Appendix 8.
RESULTS

All the SIMS results in this study are shown with petrographic context in online Appendices 2—5
and tabulated in online Appendix 7. SIMS analyses of each spot that were off the correct target, with large
internal error (2SE > 2%o), or with yield values (**S count rate divided by primary beam intensity,
Mcps/pA) that are beyond the range from 90 to 110% of the mean yield values for UWPy-1 are
considered unreliable. A total of 258 SIMS analyses (6 data points are unreliable) were made during
session 1, including 182 analyses of unknown samples and 76 analyses of the UWPy-1 standard. A total
of 18 SIMS analyses (0 data filtered) were made during session 2, including 10 analyses of unknown
samples and 8 analyses of the UWPy-1 standard. A total of 138 analyses (10 data filtered) were made
during session 3, including 87 analyses of the unknown samples and 41 analyses of the UWPy-1 standard.

Integrated SEM—SIMS results of the studied samples show distinct patterns in pyrite paragenesis,
S isotope ratios and spatial distributions at um scale (Table 1; Figs. 4-23; Appendices 2—-5). These results

are described below.
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Sample 1 (Hy59, glacial diamictite)

SEM petrography. The pyrite phases in Sample 1 typically show two types of texture: pyrite
framboids (up to 30 um in diameter) (Figs. 4F, 4G, 5-7; Appendix 2) and pyrite nodules (Fig. 4H, 41, 8;
Appendix 2). (1) The pyrite framboids are mostly assemblages of smaller pyrite microcrystals (Figs. 4F,
4G, 5-7). Sometimes, pyrite microcrystals may also occur outside the pyrite framboids as individual
microcrystals surrounded by pyrite cement (Figs. 4G, 7A). BSE investigations at high magnification
reveal that individual pyrite microcrystals are typically defined by a darker (lower average atomic number)
rim (Fig. 5; Appendix 2). The shape and size of the pyrite microcrystals are similar within individual
framboids, but may vary among different framboids. Octahedral, subhedral, and rounded pyrite
microcrystals have all been observed within different pyrite framboids (Fig. 5; Appendix 2). (2) The
pyrite nodules are mostly at mm scale, and consist of multiple zoned pyrite crystals at um scales (Fig. 4H,

41, 8; Appendix 2).

SIMS results. A total of 90 spots were analyzed by SIMS in different textures, including
framboidal pyrite (n = 76), pyrite cements outside framboids (n = 4), and pyrite nodules (n = 10)
(Appendix 2). The 6**S values measured from pyrite nodules range from +9.8%o to +52.2%o. The §*S
values measured from pyrite framboids range from +11.2%0 to +28.3%.. Pyrite cements outside the
framboids show &°*S ranging from +22.7%o to +36.7%o (Table 1; Figs. 22, 23). Generally, the pyrite
cements outside the framboids (+30.9%o in average) have much higher 3**S values than was measured

within pyrite framboids (+16.4%o on average) (Figs. 7A, 22, 23).

Data evaluation. SEM investigation of Sample 1 shows that both the framboidal pyrite and the
pyrite nodules are very heterogeneous at um scale (Figs. 4F—I, 5-8; Appendix 2). The SIMS spots within
the framboids may have covered both pyrite microcrystals that are smaller than the 2-um beam spot and
pyrite cements between the microcrystals (Fig. 5). Similarly, closer views of the pyrite crystals within
nodules show zoned pyrite overgrowths (Fig. 41; 8C—J; Appendix 2). Therefore, the measured °*S data
from SIMS spots that include multiple phases should represent an averaged value of pyrite formed in

different phases.

Sample 2 (HyS5, Mn-rich carbonates)

SEM petrography. Sample 2 is mainly composed of laminated Mn-rich carbonate layers and
siliciclastic-rich layers (Figs. 9-14). The Mn-rich carbonate layers are mostly granular rhodochrosite
[MnCO:s] (Fig. 10) and often show nodule- or sausage-shaped textures (Figs. 9, 12; Appendix 3). Trace
amounts of euhedral kutnohorite [CaMn(COs),] were also found. Lath-shaped illite crystals are abundant
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in Sample 2 (Figs. 12, 13; Appendix 3). The pyrite in Sample 2 shows intermittent sausage-shaped
textures (Fig. 9A—F) that occur within the Mn-rich carbonate layers and preferentially replace the pre-
existing carbonates (Figs. 9—13; Appendix 3). The nodule- or sausage-shaped texture of pyrite is largely
inherited from that of the hosting Mn-rich carbonates (Appendix 3).

Under BSE (typically with decreased color brightness), pyrite in Sample 2 shows at least two
textures: individual pyrite framboids and lacy pyrite overgrowth/cements (Figs. 11, 13, 14). In contrast
with the framboidal pyrite in Sample 1 that shows a wide range in size (up to 30 um in diameter), all the

pyrite framboids in Sample 2 are smaller than 7 um in diameter (Appendix 3).

The pyrite framboids and the lacy pyrite “veins” within an overgrowth are typically brighter
(higher average atomic number) than the pyrite overgrowth under BSE (Figs. 11A, 111, 13H, 13G, 13L,
14; Appendix 3). The detailed causes of this zoning are still unclear, but preliminary EPMA shows that
the darker pyrite overgrowths yield lower analytical totals than the brighter pyrite framboids and lacy
pyrite veins (Appendix 8), suggesting that porosity or C/N-rich inclusions may have played a role in

causing this effect.

Paragenesis. Detailed SEM investigation allows reconstruction of the paragenesis of different
minerals in Sample 2. Multiple lines of evidence suggest that pyrite in this sample postdates
rhodochrosite and illite. Supporting evidence includes: (1) petrographic overviews showing that pyrite
grains in this sample are nodule- or sausage-shaped and preserved exclusively within rhodochrosite
lamina (Fig. 9); (2) rhodochrosite granules with ring-shaped pyrite cements (Fig. 10); (3) pyrite with
abundant inclusions of granular rhodochrosite (Fig. 11); (4) magnified views showing that pyrite in
Sample 2, either individual pyrite framboids (Fig. 13A-D) or framboidal pyrite with lacy pyrite
overgrowths (Fig. 13E-L), are replacing both rhodochrosite and illite. More detailed petrographic
evidence is available in the online Appendix 3. Taken together, these textures indicate that pyrite in this

sample is relatively late, postdating the mineralization of rhodochrosite and illite.

SIMS results. Both disseminated pyrite framboids and lacy pyrite overgrowth have been
analyzed for 8*S by SIMS. In total of 28 spots were analyzed in Sample 2 (Appendix 3). The range of
SIMS &*S values is from +56.3%o to +60.4%o. These values are remarkably homogeneous regardless of

heterogeneous textures under BSE (Figs. 14, 22, 23; Table 1).

Sample 3 (Hy31, black shale)

SEM petrography. In Sample 3, no framboidal pyrite was found. Instead, pyrite mostly shows
disseminated subhedral grains ranging from 20 to 100 um in size (Figs. 15, 16; Appendix 4). It is notable
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that some pyrite grains are relatively large (up to 2 mm), composed of multiple pm-size pyrite sub-grains
cemented by later-stage pyrite (Fig. 17; Appendix 4). The pm-size pyrite sub-grains mimic the
disseminated pyrite in the shale matrix, suggesting that pyrite sub-grains were formed earlier, and were

then cemented by pervasive pyrite cement.

SIMS results. A total of 108 spots were measured by SIMS from Sample 3 (Appendix 4),
including both um-size sub-grains (n = 85; Fig. 16, 17) and mm-size pyrite cements (n = 23; Fig. 17). The
range of the SIMS &°*S values of individual pyrite sub-grains is from +60.3 to +71.2%o, with an average
value of +66.3%o (Figs. 16, 17, 22, 23). The pyrite cements show homogeneous §**S values ranging from
+60.2%o to +64.8%o (Figs. 17, 22, 23). Notably, the um-scale SIMS §**S analysis reveals a consistently
decreasing 6**S trend from the core (ca. +70%o) to the edge (ca. +60%o) of individual pyrite grains (Figs.
16, 17; Appendix 4).

Sample 4 (Hy1, shale)

SEM petrography. Two pyrite textures are found in Sample 4 (Fig. 18-21; Appendix 5). The
first type of pyrite, named “pyrite flowers™ here, is characterized by framboidal pyrite cores with a zoned
pyrite overgrowth (Figs. 18C, 19). The second texture is characterized by “Fe-oxide coronas” with pyrite
cores and thin pyrite rims (Figs. 18D, 20, 21). The pyrite cores inside the “Fe-oxide coronas” typically
show framboidal textures in the center with fibrous textures in the outer surface (Figs. 18D, 20, 21),

which was likely marcasite initially (e.g., Zhang et al., 2014; Lin et al., 2016a).

SIMS results. Both pyrite textures have been analyzed by SIMS in this study. A total of 25 spots
were analyzed in the “pyrite flowers” and 21 spots were analyzed in the pyrite cores of the “Fe-oxide
coronas” (Fig. 19; Appendix 5). For the first time, a bimodal distribution of §**S values is found within a
single sample at cm-scale (Figs. 22, 23). SIMS &S results of the “pyrite flowers” show remarkably
homogeneous and high values ranging from +59.9%o to +62.8%o, regardless of zoned textures under BSE
(Figs. 18C, 19, 22, 23; Appendix 5). In contrast, the pyrite cores within the “Fe-oxide coronas” show a
much wider range with much lower 3**S values, ranging from ca. +16.6%o to ca. +32.7%o with an average

value of +22.2%. (Figs. 18D, 20-23; Appendix 5).

Pyrite *>S'H/*S values

During SIMS analysis, mass **S'H" was also measured in order to check the irregularity of each
spot. The mean value of **S'H/*’S in UWPy-1 is 4.6E—4 during the three sessions. Among the studied
four samples, only pyrite analyses of Sample 3 show similar level (mean: 7.4E—4) of 32S'H/**S. Notably,
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pyrite analyses of Samples 1, 2 and 4 show *?S'H/*’S values that are around two orders of magnitude
higher than those of the UWPy-1 standard indicating the presence of a second hydrogen-bearing phase
(Appendix 6).

Except for the 6*S values analyzed from a single pyrite nodule in Sample 1 that show a weak
correlation with the *2S'H/**S values, most of the measured 3**S values in this study do not show apparent
correlation with corresponding **S'H/*?S values (Appendix 6). For example, §**S data measured from
Sample 4 show a bimodal distribution (mean §**S of superheavy pyrite flowers: +61.6%o; mean &°*S of
pyrite cores within Fe-oxide coronas: +22.2%o), but all these data are coupled with **S'H/**S values (mean
32S'H/3’S of superheavy pyrite flowers: 9.7E-3; mean *2S'H/*?S of pyrite cores within Fe-oxide coronas:
1.3E-2) that are around two orders of magnitude higher than the mean 3?S'H/**S values of the UWPy-1
standard. It is also notable that among superheavy pyrites, *S'H/*2S values can be very different. For
example, superheavy pyrites in Samples 2 and 4 show *>S'H/*?S values that are two orders of magnitude
higher than the mean *S'H/*’*S values of the UWPy-1 standard, while superheavy pyrite in Sample 3

show *S'H/*’S values that are similar to those measured from UWPy-1.

Integrated SEM-SIMS results show that the **S'H/*S values correlate with the pyrite textures
under BSE. Pyrites in Sample 1, 2, and 4 show strong heterogeneity in brightness under BSE and have
relatively high *S'H/*%S values, while pyrites in Sample 3 show relatively homogeneous in brightness
under BSE and have relatively low **S'H/**S values. It is possible that fluid inclusions or organic matter
inclusions that are rich in hydrogen (leading to higher *S'H/**S values) within pyrite in Samples 1, 2, and

4 may have played a role in the BSE brightness and *S'H/*S values.

In summary, the **S'H/*’S values measured during the SIMS sessions provide valuable
information on the studied pyrite. No apparent correlation was found between **S'H/**S and &°*S values.
32S'H/?*S values show an overall correlation with the pyrite brightness under BSE, which we regard can

be explained by the contribution of fluid or organic inclusions mixed within pyrite.

DISCUSSION

A viable model for the genesis of the studied superheavy pyrite should be able to explain
sedimentological and geochemical observations at both basin and micrometer scales. We will evaluate

multiple models for the superheavy pyrite below.
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Superheavy pyrite formed via microbial sulfate reduction (MSR)?

All the previously published biogeochemical models for the superheavy pyrite in South China
assume a biogenic origin by microbial sulfate reduction (MSR) (Liu et al., 2006; Chen et al., 2008; Li et
al., 2012; Lang et al., 2016; Wu et al., 2016; Wang et al., 2017). This assumption hypothesizes that
superheavy pyrite formed in the marine water column or shallow sediments with different degrees of
access to seawater sulfate. However, based on detailed SIMS-SEM study, the superheavy pyrite in the
Datangpo Formation is found replacing preexisting rhodochrosite and illite (Figs. 9-13), and therefore

formed after deep burial.

Supporting evidence for a non-MSR origin of the Datangpo superheavy pyrite also comes from
its pm-scale &*S patterns. Sample 2 shows remarkably homogenous &S values regardless of
heterogeneous textures (Fig. 14); and Sample 3 shows a decreasing §**S trend from the core to the edge of
individual pyrite grains (Figs. 16, 17). These pm-scale 8**S patterns are inconsistent with a MSR origin
considering that progressive MSR in restricted pore waters would only increase, instead of decrease, the
pyrite 5**S values. Therefore, previous models based on a MSR assumption cannot explain the textures or

8%S values of studied superheavy pyrite either, and a non-MSR model is needed.

Superheavy pyrite formed in a sulfide-rich fluid flow?

It is possible that flow of a reducing hydrothermal fluid that is rich in sulfide, instead of sulfate,
may have caused the mineralization of the studied superheavy pyrite. In this scenario, iron that may be
available in the sediments reacts with external hydrogen sulfide and forms pyrite in the absence of
simultaneous sulfate reduction. The flow of sulfide-rich fluid can be hypothesized to come from an

underlying magmatic source. However, multiple lines of evidence suggest that this scenario is unlikely.

First, given the typically near-0 **Ssusice values (0 £ 5%o) of magmatic sulfur reservoirs (Marini
etal., 2011), it would be extremely difficult for such a sulfur reservoir to generate §**Squsde values as high

as +70%o at a basinal scale in South China.

Second, a sulfide-rich source is inconsistent with the SIMS &*S data shown in Sample 3, where
decreasing 8**S trends with a magnitude of ca. 10%o are consistently registered from core to edge of each
individual subhedral pyrite grain (Figs. 16, 17). Previous study shows that sulfur isotope fractionations
between hydrogen sulfide and iron sulfide (A**Sges-n2s) are small (~ 1%o) (Bottcher et al., 1998), in strong
contrast with MSR-induced fractionation (A**Ssutue-surice). Such small fractionation (A**Sges.n2s) cannot
readily explain the 8>S,y heterogeneity in Sample 3 revealed by the SIMS data at a um scale (Figs. 16,
17).
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Third, the discovery of barite and gypsum veins or infillings in the Datangpo Formation (Xu et al.,
1990; Chen and Chen, 1992; He et al., 2013a; He et al., 2013b; Zhang et al., 2013; Pan et al., 2016)
indicate the involvement of sulfate-rich, instead of sulfide-rich, fluids. Therefore, based on the above
discussion, it is more likely that a non-MSR type sulfate reduction caused the mineralization of the

studied superheavy pyrite. We will fully explore this scenario in the next section.

Reinterpretation: superheavy pyrite formed by thermochemical sulfate reduction (TSR)

In this study, we propose that the studied superheavy pyrite formed by thermochemical sulfate
reduction (TSR) in hydrothermal fluids. This revised interpretation is supported by multiple lines of

sedimentological and geochemical evidence listed below.

Superheavy pyrite associated with ancient faults. In South China, the superheavy pyrite in the
Datangpo Formation is found closely associated with ancient faults (Wu et al., 2016). This distinct pattern
suggests that the genesis of the Datangpo superheavy pyrite was controlled by external fluids that flowed
along the faults. It is possible that an external sulfate-rich hydrothermal fluid intruded the Datangpo

Formation along ancient faults, and caused the mineralization of the superheavy pyrite via TSR.

Superheavy pyrite associated with Mn-rich carbonates. In South China, most of the
superheavy pyrites were found near or within the Mn-rich carbonate intervals in the basal Datangpo
Formation. Detailed petrographic investigation in this study shows preferential replacement of carbonate
by superheavy pyrite (Figs. 9-13; Appendix 3). Given that TSR is a process that produces hydrogen
sulfide and increases pore-water acidity (Machel et al., 1995; Jiang et al., 2018), carbonate host rocks
would be preferentially dissolved and then replaced by pyrite when TSR occurs (Kelley et al., 2004a).
This process has also been reported in many other carbonate-dominated strata worldwide (e.g., Krouse et
al., 1988; Worden and Smalley, 1996; Cai et al., 2001; Biehl et al., 2016; Jiang et al., 2018). Therefore,
the reinterpretation of a TSR origin for the studied superheavy pyrite is consistent with the close coupling

between superheavy pyrite and Mn-rich carbonates.

Paragenesis. In contrast with MSR that dominantly occurs in the water column or shallow
marine sediments (Jergensen and Kasten, 2006; Bowles et al., 2014), TSR usually occurs relatively late,
typically in temperatures higher than 100 °C during deep burial diagenesis. Integrated SEM-SIMS results
in Sample 2 show pervasive replacement of rhodochrosite and illite by superheavy pyrite (Figs. 9-13;
Appendix 3), suggesting that superheavy pyrite is a late diagenetic product. The reinterpretation of a TSR

origin for the studied superheavy pyrite is consistent with independent paragenesis revealed by SEM

petrography.
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Barite and gypsum veins and infillings. Field observations of the Datangpo Formation show
abundant textures that suggest pervasive overprint by hydrothermal fluids, including host-rock breccia,
quartz veins, calcite, gypsum, and barite infillings and veins (Xu et al., 1990; Chen and Chen, 1992; He et
al., 2013a; He et al., 2013b; Zhang et al., 2013; Pan et al., 2016). The preservation of barite and gypsum
veins indicates that the hydrothermal fluids were rich in sulfate, which would trigger TSR to occur given

that organic matter is abundant in the Datangpo shale.

Homogeneous 8**S in heterogeneous pyrite textures. In this study, superheavy pyrite in some
samples shows remarkably homogenous 3**Syyriee values in zoned pyrite grains (Figs. 22, 23). In Sample 2,
the 83*Spyriee values of 28 SIMS spots in framboidal pyrite and lacy pyrite overgrowth range from +56.3%o
to +60.4%o (Fig. 14). In Sample 4, the 8**Spyrit values of 25 SIMS spots in zoned “pyrite flowers” range
from +59.9%o to +62.8%o (Fig. 19). Such homogeneous §**S,yi patterns are difficult to explain by MSR.
Typically, MSR-derived pyrite shows considerable 8**S zoning at um scale due to a biogenic nature of
MSR and the effect of Rayleigh fractionation in an increasingly restricted pore water environment (Kohn
et al., 1998; Williford et al., 2011). Alternatively, it is likely that these relatively invariant §**S,yie values
result from TSR in hydrothermal fluids. The superheavy pyrite of different textures may have precipitated

in response to a hydrothermal fluid flow when it intruded into the host rocks.

Decreasing 6*'S trend from core to edge of individual pyrite grains. In this study, um-scale
8*S analysis reveals decreasing 8*'S trends in core-to-edge traverses of individual pyrite grains from
Sample 3 (Figs. 16, 17). This phenomenon is inconsistent with MSR, which typically leads to an
increasing trend at um-scales. Alternatively, the core-to-rim traverses in Sample 3 can be explained by
TSR when the temperature of the hydrothermal fluid cools. Lab experiments on kinetic sulfur isotope
fractionation during TSR have demonstrated that as temperature decreases, A**Squifate-suifice Would increase,
and consequently 8*Spyrie would decrease (Kiyosu and Krouse, 1990). As a result, a gradient with

decreasing 8**S,y:iee values would be recorded in individual TSR-derived pyrite grains.

Varying %S,y at a basin scale. Published chemostratigraphic &**Syyie profiles of the
Datangpo Formation at different sections in South China show remarkably different values (Fig. 1) (Li et
al., 1999a; Li et al., 2012; Zhou et al., 2013; Zhu et al., 2013; Wu et al., 2015a; Lang, 2016; Wu et al.,
2016). For example, 5**Spyrie values in the lower Datangpo Formation at the Yangjiaping section range
from +20%o to +30%o, while 5°*Spyrie values of the correlative Minle section range from +40%o to +65%o
(Li et al., 2012). These different 8**Spyrie values among different sections have been interpreted to result
from a stratified ocean controlled by dynamic influx of sulfate and nutrient (Li et al., 2012). However,

sedimentological observations show that most of the high-8**S,y:i values are associated with Mn-rich
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carbonate intervals and ancient faults (e.g., Minle section in Li et al., 2012), while siliciclastic-dominated
sections (e.g., Yangjiaping section in Li et al., 2012) lack superheavy pyrite. We interpret this isotope-
lithology pattern as resulting from preferential replacement of carbonates by superheavy pyrite via TSR.
The occurrence of TSR may have caused a strong bias of superheavy pyrite preservation in carbonate-

dominated intervals, and as a result, overprinted the primary 3**Syri signals.

Negative correlation between Fe content and bulk 8%S,yic values. Previous studies have
reported an overall negative correlation (correlation coefficient/R = —0.83, n = 8) between bulk Fe content
and bulk 8*S,yie values in the Datangpo Mn-rich carbonates (Fig. 15 of Wu et al., 2016). This
phenomenon has been interpreted as resulting from Rayleigh distillation in seawater. However,
petrographic observations in this study suggest that the bulk Fe content in the Mn-rich carbonates is
mainly post-depositional pyrite replacing pre-existing carbonates. Therefore, it is more likely that this
overall negative correlation reflects Rayleigh distillation in restricted hydrothermal fluids within deeply
buried sediments. If correct, then TSR would be the more likely pathway of sulfate reduction instead of
MSR. As TSR progressively occurs with Rayleigh distillation, 8**Spyrie would evolve to higher values.
Therefore, the Rayleigh distillation process would be characterized by a relatively larger amount of pyrite
(therefore high bulk Fe content) with relatively low 8*S,yi values at the early stage and a relatively
smaller amount of pyrite (therefore low bulk Fe content) with high 6°*Spyri values (i.e., superheavy pyrite)
at the very late stage. This process can cause a broad spectrum of §**Syyriee Values with an overall negative

correlation between bulk Fe content and bulk 8°*Spyrie values.

Negative correlation between total organic carbon and total sulfur. An overall negative
correlation (correlation coefficient, R = —0.48, n = 29) between total organic carbon (TOC) and total
sulfur (TS) was reported in the Datangpo Mn-rich carbonates (Wang et al., 2017). This pattern is in strong
contrast with normal marine environments where TOC and TS typically show positive correlations
(Berner, 1984; Berner, 1989; Cao et al.,, 2016). The negative TOC-TS correlation observed in the
Datangpo Formation was interpreted to result from anomalous sulfur cycling during deposition (Wang et
al., 2017). Petrographically, the low-TOC samples are mostly carbonates that are rich in superheavy
pyrites (therefore high in TS). On the other hand, the high-TOC samples are mostly shales that have less
pyrite abundance (therefore lower in TS). The new results of this study show that this overall negative
TOC-TC correlation actually results from preferential replacement of carbonates by TSR-derived pyrite,

therefore cannot be used to infer marine sulfur cycles.

Temperature data. Studies on vitrinite reflectance of the Datangpo Formation suggest that the

Mn-rich carbonate interval experienced a maximum burial temperature of ca. 195 °C (Chen and Chen,
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1992; Xie et al., 1999). Studies of fluid inclusions in authigenic quartz in the Datangpo Formation yield
homogenization temperatures of 173-241 °C, with an average value of 194 °C (Wang et al., 1985). These
temperatures are consistent with the scenario that the Datangpo Formation experienced a hydrothermal

event.

Based on the current burial depth of the studied Datangpo drill core (Samples 1, 2, 3, 4 collected
at depths of 1303.06 m, 1299.88 m and 1289.09 m, 1274.14 m, respectively) and the current geothermal
gradient of 10-20 °C/km in the studied region (Yuan et al., 2006), assuming the surface temperature is ca.
20 °C, the current burial temperature is likely to be ca. 33—46 °C at the sampled depths. This shows that
the Datangpo Formation should have experienced a cooling event from a hydrothermal or maximum
burial temperature to the current burial temperature, which is consistent with the pm-scale 8**Squiie Spatial

patterns shown in Sample 3.

Source and compositions of the TSR fluids

To allow TSR to occur, sulfate-rich hydrothermal fluids and organic-rich host rocks are both
required. Given the high abundance of organic matter in the Datangpo Formation, sulfate-rich
hydrothermal fluid is more likely to be the controlling factor. Typically, the fluids for TSR are derived
from late dissolution of preexisting sulfate minerals (e.g., gypsum, anhydrite). Therefore, the deposition

of sulfate has to predate the TSR event.

In South China, the oldest gypsum-bearing sedimentary bedding with a basin-scale distribution is
the late-Ediacaran Dengying Formation. Distinct textures that point to the deposition of marine evaporites
have been widely reported in this formation (Xi, 1987; Siegmund and Erdtmann, 1994; Lu et al., 2013;
Wang et al., 2013; Duda et al., 2015; Cui et al., 2016b). Due to high solubility, evaporites in this
formation are mostly shown as calcite pseudomorphs with distinct crystal shapes that are diagnostic of
preexisting gypsum (Duda et al., 2015; Cui et al., 2016b). The 3**Ssume value of this gypsum-bearing
interval has been constrained to be ca. +40%o based on carbonate associated sulfate (CAS) analysis (Cui,
2015; Cui et al., 2016b), which is consistent with the §**Squme constraints based on CAS analysis of
coeval strata in Arctic Siberia (Cui et al., 2016a) and direct §**Ssue analyses of bedded anhydrite strata in
Oman (Fike and Grotzinger, 2008; Fike and Grotzinger, 2010; Bergmann, 2013). We propose that this
could be the source of hydrothermal sulfate for the Datangpo TSR event.
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Rayleigh distillation model for superheavy pyrite

To generate superheavy pyrite with 3**Spyriee as high as +70%o, it is required that the §**Suifue
values of an equilibrated TSR solution to be higher than +70%.. Figure 24 shows models of sulfide
precipitation by batch precipitation in a closed system and by Rayleigh distillation. In these models, an
initial 8*Ssugme value of +40%o0 was adopted assuming that the sulfate source of this TSR fluid is the
Ediacaran Dengying Formation in South China and an equilibrium value of A*Sgugie-sufice = 40%o. These
calculations show that 3**Syr¢e values above +70%o can be generated after precipitation of 80% of sulfate

in closed system fluids.

It needs to be noted that the above calculation represents a simplified scenario with a constant
A3*Squtate-sutfice 0f 40%o. Published lab experiments suggest that the A3*Sgupe-suifice Value at equilibrium is ~
40%o (Friedman and O'Neil, 1977) or ~30%0 (Ohmoto and Lasaga, 1982; Ohmoto, 1986; Ohmoto and
Goldhaber, 1997; Seal, 2006) at the temperature of ~200 °C. The A**Sqimaesunde value would be
significantly higher at lower temperature. It is possible that the hydrothermal fluid temperatures vary as
TSR occurs. In geological conditions, the precipitation of superheavy pyrite can be a dynamic process
with varying &°*Ssume, temperatures, A**Sgume-sufice and 8*Spuie values. Regardless, our model
demonstrates that 6°**Ssyifae and 8**Ssuisde signals as high as +70%o can be produced via TSR during the late
stage of Rayleigh distillation. This process could occur when hydrothermal fluids flow along ancient

faults, during which pyrite with a spectrum of 8**Spyrite values may have been produced via TSR.

IMPLICATIONS

Rethinking the Neoproterozoic sulfur cycle

The occurrence of the Neoproterozoic superheavy pyrite has led to the speculation of
anomalously low sulfate concentrations in the ocean (Hayes et al., 1992; Hurtgen et al., 2002; Canfield,
2004; Li et al., 2012; Wu et al., 2016). However, in light of the petrographic and isotopic results in this
study, we argue that the studied superheavy pyrite formed in deeply buried sediments by hydrothermal
fluids and therefore cannot be used to infer the marine sulfur cycles during deposition. Similar SEM-
SIMS studies have not yet been published for other localities. It is possible that the sulfate concentration

in the Cryogenian ocean may not be as low as the previous studies suggested.

Cryogenian superheavy pyrite has been reported from five post-Sturtian successions worldwide:
the Datangpo Formation in South China; the Tapley Hill and Aralka formations in Australia; the Court

Formation in Namibia; and the Arena Formation in East Greenland (Fig. 1). In light of our study of the
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Datangpo Formation in South China, similar investigations are suggested in other localities to assess the
nature of the high-6°*S signals. It needs to be noted that the current time-series 5**S compilation (Canfield,
2001a; Shen et al., 2001; Cui et al., 2016a; Cui et al., 2016b) is based on pyrite that has been regarded as
early diagenetic in origin. TSR-derived superheavy pyrite can be much more abundant in geological

record than the time-series 8**S compilation shows.

The new data from South China suggest that at least some Neoproterozoic superheavy pyrite
formed by late diagenetic alteration. If this observation applies to other localities, then an emerging
question is, why is superheavy pyrite particularly notable in the Neoproterozoic interval? Here, we
propose that three potential factors may have played a role in contributing to the occurrence of the

Neoproterozoic superheavy pyrite.

Increased diagenetic potential for TSR. Considering that bedded sulfate evaporites are
increasingly deposited during and after the Neoproterozoic (Kah et al., 2004; Halverson and Hurtgen,
2007; Kah and Bartley, 2011; Cui et al., 2016b), it is likely that the considerable rise in seawater sulfate
concentrations during the Neoproterozoic Oxygenation Event promoted evaporite deposition (Shields-
Zhou and Och, 2011; Och and Shields-Zhou, 2012), which consequently enhanced the diagenetic
potential for TSR during deep burial. When these evaporites are dissolved by hydrothermal fluids, TSR

would occur if organic matter is also available in the host sedimentary strata.

High 8**Ssurat during the Neoproterozoic. It is notable that time-series 8**Sgue values remain
high during the Neoproterozoic and reach to the maximum (ca. +40%o) during the late Ediacaran Period
(Fike and Grotzinger, 2008; Halverson et al., 2009; Halverson et al., 2010; Paytan and Gray, 2012; Cui et
al., 2016a; Cui et al., 2016b). The high 6**Ssume signals of the Neoproterozoic seawater may have been
recycled after deposition (e.g., post-depositional dissolution of gypsum), facilitating the genesis of

superheavy pyrite in the host rocks during a post-depositional TSR event.

Increased tectonic activity. The breakup of the Rodinia supercontinent and progressive
formation of the Gondwana supercontinent during the Neoproterozoic Era (Li, 2011; Li et al., 2013) may
have also played an active role in facilitating TSR in sedimentary strata. The process of continental
reconfiguration may have enhanced the activity of hydrothermal fluids, and thus promoted TSR to occur

in the Neoproterozoic.

We propose that the above factors may have played a role in facilitating TSR in the
Neoproterozoic record in South China and possibly beyond. The Neoproterozoic superheavy pyrites in

other localities are suggested to be examined in a similar way in order to better test the above hypotheses.

Page 24



Diverse origins of framboidal pyrite

Framboidal pyrite in sedimentary records has been widely regarded as either formed in seawater
or during diagenesis via MSR in low temperature conditions. Framboids often start to grow in the water
column, followed by early diagenetic overgrowth in shallow marine sediments (Raiswell, 1982;
Schallreuter, 1984; Wilkin et al., 1996; Wilkin and Barnes, 1997; Popa et al., 2004; Schieber, 2011).
Based on the pioneering work by Wilkin et al. (1996) and then followed by Bond and Wignall (2010), the
size distribution of pyrite framboids has been widely used to infer the redox conditions of seawater during
deposition. However, more complexities are revealed in the samples of this study showing that origin,

texture, size, and isotopic values of framboidal pyrite can be diverse.

First, the size of pyrite framboids can be significantly affected by late-stage pyrite overgrowth.
Pyrite framboids can be partially or completely masked by late-stage pyrite overgrowth (Figs. 6, 7, 11—
14), which cannot be detected without SEM imaging. Similar phenomena have also been reported from
the Ediacaran samples (Wacey et al., 2015; Liu, 2016) and pyrites in modern marine sediments (Lin et al.,

2016b; Lin et al., 2017).

Second, both MSR- and TSR-derived framboidal pyrites have been found in the studied samples.
These two types of framboid have distinct characteristics in petrography, paragenesis and 8**Spyrice Spatial
patterns at um scale. The framboidal pyrite in diamictite Sample 1 shows heterogeneous 8**Spyrice Values
(Figs. 7, 22, 23), and is interpreted to be syngenetic (in water column) or early diagenetic (in shallow
marine sediments) in origin and formed by MSR. In contrast, the framboidal pyrite in Sample 2 and
Sample 4 records remarkably homogeneous and superheavy &°*Spyie values in spite of heterogeneous

textures (Figs. 14, 19), which are interpreted to be formed via TSR by migrating hydrothermal fluids.

Supporting evidence for the existence of framboidal pyrite with a hydrothermal origin also comes
from studies on both natural and synthetic pyrite framboids. Framboidal pyrites nucleated in hydrothermal
veins or ores have been reported (Rust, 1935; Love and Amstutz, 1969; Ostwald and England, 1979; Scott
et al., 2009). Additionally, lab experiments have demonstrated that framboidal pyrite can be synthesized
at temperatures as high as 350 °C within a few hours (Sunagawa et al., 1971; Graham and Ohmoto, 1994;
Ohfuji and Rickard, 2005). These studies suggest that framboidal pyrite of a high temperature origin is

possible in both natural and lab environments.

Taken together, framboidal pyrite can be formed in both marine and hydrothermal (>100 °C)

conditions. Observations by reflected light microscopy alone are insufficient to detect the origins of pyrite.
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Detailed SEM petrography and pum-scale 8**Spyie analysis by SIMS are a powerful approach to

interrogate the genesis of framboids.
CONCLUSIONS

(1) To interrogate the origins of the Neoproterozoic superheavy pyrite (Fig. 1), detailed
petrographic and in situ §**S analyses (Figs. 3-21, Appendix 2-6) were conducted using scanning
electron microscopy and secondary ion mass spectrometry (SEM-SIMS) for pyrite in the Cryogenian
Tiesi'ao and Datangpo formations at unprecedented spatial resolution (2 um spot size). Distinct spatial
patterns of 8**Spyrie values at um scale are found to be correlated with pyrite morphology and genesis

(Table 1; Figs. 22, 23).

(2) Petrographic observations show that the Datangpo superheavy pyrite postdates the
mineralization of rhodochrosite and illite (Figs. 9-13; Appendix 3) and thus is late diagenetic in origin.
This refutes the long-held belief that these framboids are syngenetic (in water column) or early diagenetic

(in shallow marine sediments).

(3) Framboidal pyrites of both marine and hydrothermal origins were found in this study.
Framboidal pyrite in the Tiesi’ao diamictite (Sample 1) shows heterogeneous (+11.2%o0 to +28.3%o),
relatively low (+16.4%o in average) 8°*Spyriee values and a relatively wide range of grain sizes (up to 30 pm
in diameter) (Fig. 5-7; Appendix 2). In contrast, the framboidal pyrite in Mn-rich carbonates (Sample 2)
from the basal Datangpo Formation shows homogeneous (+56.3%o to +60.4%o) and superheavy (+57.6%o
average) 8*Syyiee values and relatively small grain sizes (<7 pum diameter) (Figs. 11-14; Appendix 3).
Sample 1 is interpreted to be syngenetic or early diagenetic in origin and formed by microbial sulfate
reduction (MSR), while Sample 2 is interpreted to be hydrothermal in origin and formed by
thermochemical sulfate reduction (TSR) (Table 1). The use of the size distribution of framboidal pyrite to

infer paleo-redox conditions should be done with caution.

(4) Pyrite in one studied Datangpo shale sample from drill core (Sample 3) shows heterogeneous
(+60.3%o to +71.2%0) and superheavy (+66.3%o average) 8**Spyrie values at pum scales (Figs. 16, 17;
Appendix 4). It is notable that a decreasing 3**Syyriee trend is consistently recorded from the core to the
edge of individual pyrite grains in Sample 3 (Figs. 16, 17; Appendix 4). This is in strong contrast with
biogenic pyrite, which typically shows an increasing 8**Spyrit trend from the core to the edge of individual
pyrite grains. It is proposed that the decreasing 8**Spyrite trend results from TSR with increasing sulfur

isotope fractionations between sulfate and sulfide as hydrothermal fluids cool.
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(5) Based on multiple lines of sedimentological and geochemical evidence at both basinal- and
pm-scales, we argue that the superheavy pyrite in the Cryogenian strata in South China formed via
thermochemical sulfate reduction (TSR), instead of microbial sulfate reduction (MSR). This is the first

time that a post-depositional, hydrothermal origin is proposed for the superheavy pyrite in South China.

(6) We propose that post-depositional TSR plays an influential role in generating high 5**S values.
Consequently, interpretations of the high 6°*S values from the ancient geological record should reconsider
the influence that similar post-depositional processes may have in generating superheavy pyrite associated
with noteworthy biogeochemical events in the Earth's history. Our study demonstrates that the integrated
SEM-SIMS approach to 8*Syiee analysis of individual pyrite grains is an effective tool to assess the

veracity of sedimentary pyrite in chemostratigraphic studies.
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APPENDIX 1

Compilation of the published 6**S data measured from the Cryogenian post-glacial strata in China, UK,

Namibia, and Australia.
APPENDIX 2

Integrated SEM-SIMS results of the drill core Sample 1 (Hy59, Sturtian glacial diamictite). Sample

collected from the Cryogenian Tiesi’ao Formation, Daotuo mine, Guizhou Province, South China.
APPENDIX 3

Integrated SEM-SIMS results of the drill core Sample 2 (Hy55, Mn-rich carbonates). Sample collected
from the Member 1 of the Cryogenian Datangpo Formation, Daotuo mine, Guizhou Province, South
China.

APPENDIX 4

Integrated SEM-SIMS results data of the drill core Sample 3 (Hy31, black shale). Sample collected from

the Member 1 of the Cryogenian Datangpo Formation, Daotuo mine, Guizhou Province, South China.

APPENDIX 5

Integrated SEM-SIMS results SIMS data of the drill core Sample 4 (Hyl1, shale). Sample collected from

the Member 2 of the Cryogenian Datangpo Formation, Daotuo mine, Guizhou Province, South China.

APPENDIX 6

Time-series plots and cross-plots of all the SIMS results in this study.

APPENDIX 7

Tables of all the SIMS 8*S data in this study. The data were generated in three separate SIMS sessions:
Session 1 (Oct. 18-19, 2016), Session 2 (May 22, 2017), and Session 3 (June 8, 2017). Sulfur two-
isotopes (*%S, **S) were measured with a 2-um-diameter beam size in Sessions 1 and 3. Sulfur three

isotopes (*2S, 38, 33S) were measured with a 10-um-diameter beam size in Session 2.

APPENDIX 8

Table of all the elemental concentration data for pyrite by EPMA in this study.
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TABLE 1

TABLE 1. Summary of SEM-SIMS results in this study of Cryogenian pyrite from Daotuo, South China.

For the detailed petrographic context of all the geochemical data, the reader is referred to the online

appendices (Appendices 2-5).

SIMS samples Sample 1 Sample 2 (HyS5) Sample 3 (Hy31) Sample 4 (Hyl)
(Hy39)

Stratigraphic ~ Uppermost Basal Mb 1, Datangpo Mb 1, Datangpo Mb 2, Datangpo Fm

position Tiesi'ao Fm Fm Fm

Lithology Terminal- Post-Sturtian  Mn-rich  Post-Sturtian Post-Sturtian shale
Sturtian  glacial carbonates black shale
diamictite

SEM-SIMS Figs. 5-8; Figs. 9-14; Figs. 15-17; Figs. 18-21;

results Appendix 2 Appendix 3 Appendix 4 Appendix 5

Pyrite Framboidal Framboidal pyrite: up Subhedral pyrite: Superheavy pyrite

morphology pyrite: up to ~30 to 7 umy; mostly 20 to 100 flowers (~15 pm in

and grain size pm; Lacy pyrite um; diameter):
Pyrite nodules: overgrowth: um to cm Large pyrite with framboidal  pyrite
~1 to ~2 mm scale, showing lacy cemented cores (~5 um in
textures, metasomatic individual pyrite diameter) with
corrosion boundaries, grains: up to ~2 zoned pyrite
and relatively darker mm overgrowth of ~5
color (compared with um in thickness;
the framboids) under Fe-oxide coronas
BSE with pyrite rim (~35
um in diameter) and
pyrite cores (~10 pm
in diameter)

Number of Framboidal Framboidal pyrite: Subhedral pyrite Superheavy pyrite

SIMS analyses pyrite: n=76; n=>3; grains: n=85; flowers: n=25;

(n) Pyrite  cements Lacy pyrite Later-stage pyrite Pyrite within Fe-
outside overgrowth: n=15; cement: n=23 oxide coronas: n=21
framboids: n=4;  Mixture between
Pyrite  nodules: framboids and
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n=10

overgrowth: n=8

Range of Pyrite nodules: Lacy pyrite Individual pyrite Superheavy pyrite
SIMS S +9.8 to +52.2%0; overgrowth: +56.3 to grains: +60.3 to flowers: +59.9 to
values Pyrite framboids: +60.4%eo; +71.2%o; +62.8%o0;
%0 V-CDT +11.2 to Mixture of framboids Pyrite cements: Pyrite cores within
+28.3%o; and overgrowth: +56.8 +60.2 to +64.8%0  Fe-oxide  coronas:
Pyrite  cements to +58.3%o; +16.6 to +32.7%o
outside Pyrite framboids:
framboids: +22.7 +56.3 to +57.4%o
to +36.7%o
Mean 6*'S Pyrite nodules: Lacy pyrite Individual pyrite Superheavy pyrite
%o V-CDT +26.5%o; overgrowth: +57.8%0;  grains: +66.3%o; flowers: +61.6%o;
Pyrite framboids: Mixture of framboids Pyrite cements: Pyrite cores within
+16.4%o; and overgrowth: +62.0%o Fe-oxide  coronas:
Pyrite cements +57.4%eo; +22.2%o
outside Pyrite framboids:
framboids: +56.9%o
+30.9%o
Intra-grain No  systematic Not available Systematic Not available
8%S pattern increasing or decreasing  &*S
decreasing %S trend from core to
trend edge of each
individual grain
3%S patterns Heterogeneous, = Homogeneous, Individual pyrite Superheavy  pyrite
on pm scales mostly not superheavy grains: flowers:
superheavy heterogeneous (in homogeneous,
the range of superheavy;
~10%o), Pyrite cores within
superheavy; Fe-oxide  coronas:
Pyrite  cements: heterogeneous  (in
homogeneous, the range of ~16%o),
superheavy not superheavy
Mean Pyrite nodules: Lacy pyrite Individual pyrite Superheavy pyrite
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SZSIH/SZS

8.7E-3

overgrowth: 1.6E-2

grains: 7.0E—+4

flowers: 9.7E-3

Pyrite framboids: Mixture of framboids Pyrite cements: Pyrite cores within
1.2E-2 and overgrowth: 1.5E- 8.5E—4 Fe-oxide  coronas:
Pyrite  cements 2 1.3E-2
outside Pyrite framboids:
framboids: 1.0E- 1.3E-2
2

Paragenesis Framboidal Framboidal pyrite: late Disseminated Superheavy  pyrite
pyrite: diagenesis subhedral pyrite: flowers: late
syngenetic (petrographically interpreted to be diagenesis;
(water column) replacing formed during Pyrite cores within
to early rhodochrosite and late  diagenesis; Fe-oxide coronas:
diagenesis; illite); Pyrite  cements: syngenetic  (water
Pyrite nodules: Lacy pyrite postdating column) to early
early to late overgrowth: individual pyrite diagenesis
diagenesis postdating framboids ~ grains

Interpretation  Biogenic, Abiogenic, Abiogenic, Superheavy  pyrite

in this study microbial sulfate thermochemical thermochemical flowers: abiogenic,
reduction sulfate reduction sulfate reduction  thermochemical

sulfate reduction;

Pyrite cores within
Fe-oxide  coronas:
biogenic, microbial

sulfate reduction
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FIGURE CAPTIONS

Compilation of published bulk &**S data measured from the Cryogenian post-Sturtian strata
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Note: Bulk 6*S analyses of the Cryogenian strata show abundant superheavy pyrite (5**Spyite > 8**Ssurate), assuming that the contem-
poraneous seawater 5*Ssurte Value is ca. +26%. (measured from Cryogenian anhydrite).
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Figure 1. Compilation of published §**S data measured from the Cryogenian post-glacial strata in China,
UK, Namibia, and Australia. X axis represents 5**S values (V-CDT, %o). Y axis represents different
published data sets. (A) Individual data points of all the data sets. Numbers in parentheses representing
the amount of data. (B) Box plots of corresponding data in A. Red line and black line within each box
showing the mean value and the median value, respectively. Data sets 1 and 2 (blue) representing
83*Ssuirate data measured from anhydrite and carbonate-associated sulfate (CAS), respectively. Data sets 3—
19 (yellow in B) representing 8**Spyrite data. Red dash line represents Cryogenian seawater 8>Sy values
based on data set 1. All plotted data were generated by conventional bulk analysis. Note that many
8%Spyrite data (up to +70%o) are much higher than the contemporaneous 8**Ssume value (ca. +26%o, red
dash line), commonly known as superheavy pyrite signals (i.e., 8**Syyite > 8°*Ssuiaie). Data source: (1)

Tapley Hill Formation (Adelaide Rift Complex), Australia (Gorjan et al., 2000); (2) Rasthof, Gruis, and
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Ombaatjie formations of the Otavi Group, Namibia (Hurtgen et al., 2002); (3—14) Datangpo Formation in
South China, including localities at (3) Yangjiaping, Hunan Province (Li et al., 2012), (4) Tanganshan,
Hunan Province (Liu et al., 2006), (5) Dawu mine, Songtao County, Guizhou Province (Zhou et al., 2007;
Wu et al., 2016), (6) Xiangtan, Hunan Province (Li et al., 1999a; Liu et al., 2006), (7) Zhailanggou mine,
Songtao County, Guizhou Province (Chen et al., 2008), (8) Yanglizhang mine, Songtao County, Guizhou
Province (Zhou et al., 2007), (9) Minle mine, Huayuan County, Hunan Province (Tang, 1990; Li et al.,
1999a; Tang and Liu, 1999; Feng et al., 2010; Li et al., 2012; Wu et al., 2016), (10) Lijiawan, Songtao
County, Guizhou Province (Wang et al., 2016), (11) Xixibao mine, Songtao County, Guizhou Province
(Zhang et al., 2013; Wang et al., 2016), (12) Gucheng, Hubei Province (Wu et al., 2016), (13) Datangpo
mine, Songtao County, Guizhou Province (Li et al., 1999a; Zhou et al., 2007; Wu et al., 2016), (14)
Daotuo mine, Songtao County, Guizhou Province (Zhu et al., 2013; Wang et al., 2016); (15) Tapley Hill
Formation in the Adelaide Rift Complex, Australia (Gorjan et al., 2000); (16) Tapley Hill Formation in
the Amadeus Basin, Australia (Gorjan et al., 2000); (17) Gobabis Member, Namibia (Gorjan et al., 2003);
(18) Arena Formation, East Greenland (Scheller et al., 2018); (19) Bonahaven Dolomite Formation, UK
(Parnell and Boyce, 2017). All the compiled data are available in the online Appendix 1.
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Figure 2. (A) Tectonic map of China. (B) Reconstructed Yangtze and Cathaysia blocks with the Nanhua
rift in between (Li et al., 1999b; Jiang et al., 2003; Wang and Li, 2003; Zhang et al., 2008). Red dot
indicates the location of the studied Daotuo mine at Songtao, eastern Guizhou Province. (C) Simplified
litho-, bio-, and chrono-stratigraphy of the Neoproterozoic strata in South China. Source of the lithology
and fossil record (Jiang et al., 2007; McFadden et al., 2008; Cai et al., 2010; Jiang et al., 2011; Chen et al.,
2013; Chen et al., 2014; Cui, 2015; Cui et al., 2016b; Cui et al., 2017). Source of the radiometric ages
(Zhou et al., 2004; Condon et al., 2005; Zhang et al., 2008; Schmitz, 2012; Chen et al., 2015). Superheavy
pyrite has been widely reported from the post-glacial Datangpo Formation (see text). Thickness is not to

scale. Cam = Cambrian; Pha = Phanerozoic.
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Cryogenian drill cores from Daotuo, Guizhou Province, South China
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Figure 3. (A-D) Four drill core samples collected at Daotuo, Guizhou Province, South China. Marked
zones of the surfaces were prepared as SIMS mounts for further studies. A: Sample 1 (Hy59, glacial
diamictite) from the uppermost Tiesi’ao Formation. B: Sample 2 (Hy55, Mn-rich carbonates) from the
Member 1 of the Datangpo Formation. C: Sample 3 (Hy31, shale) from the Member 1 of the Datangpo
Formation. D: Sample 4 (Hyl1, shale) from the Member 2 of the Datangpo Formation. All the drill cores

are 4.5 cm in diameter.
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Sample 1 Sample 2 Sample 2 Sample 3 Sample 4
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” oy :
Fe-oxide corona with a Fe-oxide coronas with Pyrite flowers with Pyrite flowers with
pyrite core and a pyrite rim pyrite cores and pyrite rims zoned pyrite overgrowth zoned pyrite overgrowth

Figure 4. Studied SIMS mounts and typical petrographic features of each sample. (A-E) 25-mm-
diameter SIMS mounts with in-house pyrite standard UWPy-1 (marked as yellow circles) mounted in the
center of each mount. (F-Q) Typical features by SEM-BSE. F-I Sample 1 (Hy59); J-K Sample 2 (Hy55);
L-M Sample 3 (Hy31); N-Q Sample 4 (Hyl). (F) Individual pyrite framboid in Sample 1. (G)
Framboidal pyrite with pyrite cement in Sample 1. (H) A large pyrite nodule in Sample 1. (I) A magnified
view of the individual zoned pyrite crystals within the pyrite nodule in Sample 1. (J, K) Framboidal
pyrite with lacy pyrite overgrowth in Sample 2. (L) Subhedral pyrite grain in Sample 3. (M) Subhedral

pyrite grains with pyrite cements in Sample 3. (N, O) “Fe-oxide coronas” with pyrite cores and pyrite
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rims. Py: pyrite; Fe-ox: Fe oxide. Small black spots in L, M and O showing SIMS pits. (P, Q) “Pyrite
flowers” in Sample 4 showing framboidal pyrite cores and zoned pyrite overgrowth. Abbreviations: BSE
= backscattered electron; SE = secondary electron. For more detailed SEM images of the studied samples,

see online Appendices 2-5.
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Syngenetic to early diagenetic framboidal pyrite in Sample 1, Tiesi’ao diamictite
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Figure 5. SEM petrography of the pyrite framboids in Sample 1. Images C-D and G-H showing
magnified views of marked areas in A—B and E—F, respectively. Note that the pyrite microcrystals within
the framboids are typically surrounded by darker rims (possibly rich in inclusion or porosity) and pyrite
cements. Abbreviations: BSE = backscattered electron; SE = secondary electron. For more detailed SEM

images of the studied samples, see online Appendix 2.
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Syngenetic to early diagenetic framboidal pyrite in Sample 1, Sturtian Tiesi’ao diamictite
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Note: Clusters of framboidal pyrite: formed by microbial sulfate reduction during syngenetic (water column)
to early diagenesis. Pyrite cements outside framboids: formed during post-depositional diagenesis.

Figure 6. (A-F) SEM images showing clusters of framboidal pyrite in Sample 1. Magnified views are
marked by yellow dash boxes. Note that many of the pyrite framboids are cemented by later-stage pyrite.
Based on the petrography and §**S evidence, the framboidal pyrite in Sample 1 is interpreted to be

Page 41



syngenetic to early diagenetic in origin. See the main text for further discussion. Abbreviations: BSE =

backscattered electron; SE = secondary electron. For more detailed SEM images, see online Appendix 2.
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Note: SIMS result showing heterogeneous 3*S values (+11.2%. to +28.3%.; mean: +16.4%o) within pyrite framboids,

higher *S values (+22.7%. to +36.7%0; mean: +30.9%o) in the pyrite cements outside the framboids.
Data color: Yellow: within framboids;

White: framboid edge (possibly mixed with late pyrite cements).
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Figure 7. Backscattered electron (BSE) images and SIMS &**S results of framboidal pyrite in Sample 1.
SIMS %S data presented in different colors based on petrographic textures. Yellow: within framboids;
Red, outside framboids; White: framboid edge. Detailed views of image A can be found in Slides 25-32
of the online Appendix 2. Note that the 5**S data measured from the pyrite cements outside the framboids
(red or white) are significantly higher than those measured within the pyrite framboids (yellow). For more

detailed SEM-SIMS results of this sample, see online Appendix 2.
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Early to late diagenetic pyrite nodules in Sample 1, Sturtian Tiesi’ao diamictite

pyrite nodule under reflected:light

500 pm

Note: SIMS result showing heterogeneous &*S values (+9.8%o to +52.2%,;) within a pyrite nodule in Sample 1.

Figure 8. Pyrite nodules in Sample 1. (A) 25-mm-diameter SIMS mount of Sample 1 with in-house pyrite
standard UWPy-1 (marked as yellow circle) mounted in the center. (B) A studied pyrite nodule under
reflected light. SIMS &**S values showing heterogeneous values. Note that the symbols (red circles) are
much larger than the actual SIMS spots (2 um in diameter). (C-D, E-F, G-H, I—J) Coupled BSE-SE
images of the analyzed spots. The spots are all shown in the center. Note that the pyrite nodule is very
heterogeneous under BSE, representing progressive pyrite mineralization during a spectrum of diagenesis.
Abbreviations: BSE = backscattered electron; SE = secondary electron. For more detailed SEM-SIMS

results of this sample, see online Appendix 2.
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Petrographic overview of superheavy pyrite replacing Mn-rich carbonates in Sample 2
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Paragenesis: superheavy pyrite nodules preferentially replace preemstmg rhodochr05|te layers.

Figure 9. Petrographic observations of Sample 2. (A) SIMS mount of Sample 2 showing abundant
sausage-shaped pyrite nodules within Mn-rich carbonates. (B, C) Sausage-shaped superheavy pyrite
aggregates partially replacing rhodochrosite. Image B taken under reflected light; Image C taken with
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BSE. Note that some sausage-shaped textures have superheavy pyrite around margins and relict
rhodochrosite in the center. (D-F) Magnified BSE views of the sausage-shaped textures. Note that
superheavy pyrite in E and F is partially replacing the preexisting rhodochrosite (Rds) lamina, with
superheavy pyrite concentrated at the margins and rhodochrosite in the core of the sausages. For more

detailed petrographic images of this sample, see online Appendix 3.
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BSE-EDS results of rhodochrosite granules with pyrite rings in Sample 2, Datangpo Fm
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Paragenesis: Pyrite cements (shown as pyrite rings) postdate rhodochrosite granules.

Figure 10. SEM-EDS results of rhodochrosite granules with pyrite rings in Sample 2. (A, B) Matched
views under BSE and SE, respectively. (C) Magnified BSE view of marked zones in A and B. (D) ESD
elemental mapping of the view in C. Black or white background colors in the EDS images represent zero
detection. For more petrographic images of this sample, see online Appendix 3. Abbreviations: BSE =
backscattered electron; SE = secondary electron; EDS = Energy-Dispersive X-ray Spectrometry. For

more petrographic images of this sample, see online Appendix 3.
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Rhodochrosite inclusions within superheavy pyrite in Sample 2, Datangpo Formation

" pyrite

éuperheaiiy N
pyrite

Paragenesis: Superheavy pyrite postdates rhodochrosite granules (Rds, shown as inclusio

Figure 11. SEM-EDS views of rhodochrosite inclusions within the superheavy pyrite in Sample 2. A—F
and G-I showing matched views of SEM and elemental maps by EDS. Black background in EDS
element maps represents zero detection. The BSE images of superheavy pyrite are made with decreased
color contrast (A, I) to show heterogeneous textures with pyrite framboids (brighter under BSE) and lacy
pyrite overgrowths (darker under BSE). Note metasomatic corrosion textures and the massive
rhodochrosite inclusions that are not yet replaced by superheavy pyrite, suggesting superheavy pyrite
postdates rhodochrosite. Abbreviations: BSE = backscattered electron; SE = secondary electron. For more

detailed SEM-EDS images of this sample, see online Appendix 3.
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BSE-EDS mapping of superheavy pyrite in Sample 2 (Mn-rich carbonates), Datangpo Formation
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Paragenesis: superheavy pyrite postdates rhodochrosite granules and lath-shaped illite crystals.

Figure 12. SEM-EDS results of superheavy pyrite in Sample 2. Images A-B, C-D, E-F, G-H, K/L-M
showing pairs of matched views of BSE and EDS, respectively. Black or white background colors in EDS

images represent zero detection. Abbreviations: BSE = backscattered electron; EDS = Energy-Dispersive
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X-ray Spectrometry. Note that superheavy pyrite in Sample 2 showing the replacement of preexisting
rhodochrosite (Rds) and lath-shaped illite crystals. For more detailed SEM-EDS images of this sample,

see online Appendix 3.
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Paragenesis: Superheavy pyrite (shown as individual pyrite framboids with or with-
out lacy pyrite overgrowth) postdates rhodochrosite and lath-shaped illte.

Figure 13. Backscattered electron (BSE) images of Sample 2 showing the replacement (marked by red
arrows) of preexisting rhodochrosite granules and lath-shaped illite crystals by superheavy pyrite. A-B,
C-D, E-F showing individual pairs of BSE and SE images of the matched views, respectively. G-H, I-J,
K-L showing BSE images of the same view but in different color contrast. (A-D) Individual pyrite
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framboids (without lacy pyrite overgrowth) replacing rhodochrosite and illite. (E-L) Pyrite framboids
with lacy pyrite overgrowth replacing rhodochrosite and illite. Note the irregular pyrite boundary showing
metasomatic corrosion textures. Rhodochrosite (Rds or R) inclusions in E and F also suggest that
superheavy pyrite postdate rhodochrosite. Abbreviations used: BSE = backscattered electron; SE =

secondary electron. For more detailed SEM descriptions of this sample, see online Appendix 3.
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SEM-SIMS results of superheavy pyrite in Sample 2 (Hy55, Mn-rich carbonates), Datangpo Fm
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Note: SIMS results showing homogeneous (ca. +57%0) 5*S values in superheavy pyrite of Sample 2.
Data color: Yellow: within framboidal pyrite; White: mixture between framboids and overgrowth.

Figure 14. Backscattered electron (BSE) images with 2-um SIMS pits in superheavy pyrite in Sample 2.
SIMS §*S data (%0 V-CDT) presented in different colors based on different textures. Yellow: within

framboids; Red, lacy pyrite overgrowth; White: mixture between pyrite framboids and pyrite overgrowth.
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Superheavy pyrite in this sample shows heterogeneous textures with pyrite framboids (brighter under
BSE) and lacy pyrite overgrowth (darker under BSE) and metasomatic corrosion textures. Note the
remarkably homogeneous 5**S data regardless of heterogeneous petrographic textures. For more detailed

SEM-SIMS data of this sample, see online Appendix 3.
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Note: Black shale with disseminated subhedral superheavy pyrite grains.

Figure 15. Petrographic observations of Sample 3. (A) A drill core section of Sample 3 showing
abundant subhedral pyrite. (B) SIMS mount of Sample 3. (C) A magnified view of Sample 3 under
reflection light (RL) showing disseminated subhedral pyrite grains in shale. (D) BSE image of the marked
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area in C. Analyzed pyrite grains in this study are marked by yellow dash boxes. Magnified views of
these marked pyrite grains can be found in Figure 16 and the online Appendix 4. (E, F) SE images of the
analyzed domains in D. SIMS pits of either 2 um or 10 um in diameter are shown on the analyzed pyrite

grains. Abbreviations: BSE = backscattered electron; SE = secondary electron. For more detailed SEM

descriptions of this sample, see online Appendix 4.
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SEM-SIMS 5*S results of superheavy pyrite in Sample 3, Datangpo Fm, South China
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Note: SIMS result showing systematic deceasing trend of 'S values (from ca. +70%o in the core
to ca. 60%o0 near the edge) within individual pyrite grains of Sample 3.

Figure 16. SEM-SIMS results of Sample 3. Note the consistent decreasing trend (white arrows) of **S
values from the core (ca. +70%o) to the edge (ca. +61%o) of the individual pyrite grains. For more detailed

SEM-SIMS results of this sample, see online Appendix 4.
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Note: SIMS result showing systematic deceasing trend of 3*S values (from ca. +70%o in the core to ca. 60%. near
the edge) within individual pyrite grains; homogeneous &*8 values (ca. +62%o) in the background pyrite cement.
Data color: Yellow: within individual pyrite grains; White arrows: decreasing 8*S trend.

Figure 17. SEM-SIMS results of domains in Sample 3. (A) Large pyrite grains with multiple smaller

pyrite grains cemented inside. (B—F) Magnified views of marked areas in A and C showing individual
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pyrite grains cemented by later-stage pyrite. SIMS 8*S data (%0 V-CDT) presented in different colors
based on different textures. Yellow: within individual pyrite grains; Red, later-stage pyrite cements.
White arrows showing consistent deceasing **S trends (ca. +70%o to +60%o) from the core to the edge of

individual pyrite grains. For more detailed SEM-SIMS data of this sample, see online Appendix 4.
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Petrography of two distinct pyrite layers in Sample 4, Datangpo Formation, South China
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Note: two different textures of pyrite within the same sample. Interpretations in this study: Zoned pyrite flowers
fromed by TSR in hydrothermal fluids; pyrite and Fe-oxide coronas formed by MSR in changing redox conditions.

Figure 18. Petrographic observations of Sample 4. (A) SIMS mount of Sample 4. (B) A magnified view
of the marked area in A showing two distinct layers of pyrite. The SIMS 8**S data are also shown for
convenience. (C) A magnified view of pyrite in the lower layer. This layer is characterized by “zoned
pyrite flowers” with homogeneous and superheavy &**S values. (D) A magnified view of pyrite in the
upper layer. This layer is characterized by “Fe-oxide coronas” with pyrite cores and pyrite rims. For more

detailed SEM-SIMS data from this sample, see online Appendix 5.
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SEM-SIMS results of “superheavy pyrite follwers” in Sample 4, Datangpo Fm, South China
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Figure 19. Backscattered electron (BSE) images showing SIMS §*S pits in “superheavy pyrite flowers’
in Sample 4 (Hy1). The “superheavy pyrite flower” is characterized by a small framboidal pyrite core and
a zoned pyrite overgrowth. SIMS §%S,yi values (%o V-CDT) are presented in different colors based on
the textures. Yellow: within framboids; Red, zoned pyrite overgrowth; White: mixture between pyrite
framboids and pyrite overgrowth. Note that the 6**S data measured from zoned “superheavy pyrite
flowers” are remarkably homogeneous. For more detailed SEM-SIMS data from this sample, see online

Appendix 5.
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«—Pyrite cores
and rims

Figure 20. A—F and G-L showing SEM-EDS images and chemical maps of Fe, O, S and Si of matched
views in Sample 4. Black background in EDS images represent zero detection. Abbreviations: BSE =
backscattered electron; EDS = Energy-Dispersive X-ray Spectrometry. For more detailed SEM-EDS

images from this sample, see online Appendix 5.
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SEM-SIMS results of “Fe-oxide coronas” with pyrite cores and rims in Sample 4 (Hy1, shale), Datangpo Fm
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Note: SIMS result showing heterogeneous &*S values (from +16.6%o to +32.7%0; mean: +22.2%o) in the pyrite
cores of the “Fe-oxide coronas” in Sample 4 (Hy1, shale), Datangpo Formation, Daotuo, South China.

Figure 21. Backscattered electron (BSE) images showing SIMS §*'S pits in pyrite cores inside the Fe-
oxide coronas in Sample 4 (Hy1). The Fe-oxide corona surrounds a framboidal pyrite core with a fibrous
surface (likely marcasite initially) and a thin pyrite rim. SIMS &°*S values measured from the pyrite cores

range from ca. +16 to +33%o.. For more detailed SEM-SIMS data of this sample, see online Appendix 5.
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Histograms of SIMS &S data (CDT, %.) analyzed from pyrite in different textures
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Figure 22. Histograms of the SIMS §**S values measured in this study. Different pyrite textures showing

distinct ranges of °*S. Red dash line representing the Cryogenian seawater §°*Squme value based on

anhydrite analysis (Gorjan et al., 2000). Note the relatively large range of SIMS 8**S data measured from

Sample 1, homogeneous **S values measured from Sample 2, remarkably high §**S values measured

from Sample 3, a notable bimodal distribution of the 5**S values measured from Sample 4. See the main

text

for detailed discussion of these patterns and their interpreted origins. For corresponding petrographic

context of all the plotted data, see online Appendices 2-5.
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Figure 23. (A) Individual data points and (B) box plots of the SIMS 8*!S values measured in this study.
Numbers in parentheses representing the amount of data analyzed by SIMS in this study. Red dash line
representing the Cryogenian seawater 3**Squme value based on anhydrite analysis (Gorjan et al., 2000).
Interpretations of the 5°*S values of each data set listed on the right-hand side. Abbreviations: MSR:
microbial sulfate reduction; TSR: thermochemical sulfate reduction. TSA: Tiesi’ao Formation; DTP:
Datangpo Formation. For corresponding petrographic context of all the plotted data, see online

Appendices 2—6.
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Figure 24. Models of &**Ssume and 8**Ssusce evolution during Rayleigh distillation (red) and batch
equilibration (blue) for precipitation of pyrite from sulfate (initial 3°**S = 40%o) in a system closed to
externally-derived fluids or other sources of sulfur. Equations used in calculation are from: (Canfield,
2001a; Canfield, 2001b). Yellow arrow shows the condition when §**Sgufide value achieves +70%o. See the

main text for detailed discussion.
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