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Traditional plant functional groups explain variation in
economic but not size-related traits across the tundra biome
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Abstract

Aim: Plant functional groups are widely used in community ecology and earth system
modelling to describe trait variation within and across plant communities. However,
this approach rests on the assumption that functional groups explain a large propor-
tion of trait variation among species. We test whether four commonly used plant
functional groups represent variation in six ecologically important plant traits.
Location: Tundra biome.

Time period: Data collected between 1964 and 2016.

Major taxa studied: 295 tundra vascular plant species.

Methods: We compiled a database of six plant traits (plant height, leaf area, specific leaf
area, leaf dry matter content, leaf nitrogen, seed mass) for tundra species. We exam-
ined the variation in species-level trait expression explained by four traditional func-
tional groups (evergreen shrubs, deciduous shrubs, graminoids, forbs), and whether
variation explained was dependent upon the traits included in analysis. We further
compared the explanatory power and species composition of functional groups to al-
ternative classifications generated using post hoc clustering of species-level traits.
Results: Traditional functional groups explained significant differences in trait expres-
sion, particularly amongst traits associated with resource economics, which were con-
sistent across sites and at the biome scale. However, functional groups explained 19% of
overall trait variation and poorly represented differences in traits associated with plant
size. Post hoc classification of species did not correspond well with traditional functional
groups, and explained twice as much variation in species-level trait expression.

Main conclusions: Traditional functional groups only coarsely represent variation in
well-measured traits within tundra plant communities, and better explain resource
economic traits than size-related traits. We recommend caution when using func-
tional group approaches to predict tundra ecosystem change, or ecosystem func-
tions relating to plant size, such as albedo or carbon storage. We argue that alternative
classifications or direct use of specific plant traits could provide new insight into

ecological prediction and modelling.

KEYWORDS
cluster analysis, community composition, ecosystem function, plant functional groups, plant
functional types, plant traits, tundra biome, vegetation change
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1 | INTRODUCTION

Many ecosystems around the world are responding rapidly to
global change drivers, including warming (IPCC, 2013), chang-
ing precipitation patterns (Weltzin et al., 2003), increased nu-
trient availability (Galloway et al., 2008), elevated atmospheric
CO, (Cramer et al., 2001) and altered herbivory regimes (Diaz et
al., 2007). Perhaps nowhere will ecosystem response to climate
change be greater than in the tundra, which is warming at twice
the global average rate (IPCC, 2013; Serreze & Barry, 2011) and
undergoing rapid vegetation change (ElImendorf, Henry, Hollister,
Bjork, Boulanger-Lapointe, et al., 2012; Myers-Smith et al., 2011).
Predicting how plant communities will respond to environmen-
tal change, and the resulting impact on ecosystem structure
and function, has been described as the “holy grail” of ecology
(Lavorel & Garnier, 2002). However, the responses of different
species and environments are often highly complex, representing
a major challenge for the prediction of community response to
environment change (Diaz et al., 2016; McGill, Enquist, Weiher, &
Westoby, 2006).

One approach to reducing complexity in ecological commu-
nities is to classify species with similar characteristics into plant
functional groups or plant functional types (Harrison et al., 2010).
Species are commonly grouped based on a priori classification by
growth form (e.g., forb, shrub), life history (e.g., evergreen, decid-
uous) or other morphological characteristics (Wright et al., 2006;

Waullschleger et al., 2014). In the tundra, vascular plant species

are most commonly categorized into four functional groups: ev-
ergreen shrubs, deciduous shrubs, graminoids and forbs. This
grouping structure is rooted in Chapin, Bret-Harte, Hobbie, and
Zhong's (1996) demonstration that clustering of 37 species based
on 21 plant traits aligned with growth form-based groupings. The
use of functional groups is thus inherently a trait-based approach,
based on the hypothesis that plant species within functional
groups possess similar traits and act in ecologically similar ways
(Lavorel & Garnier, 2002; McGill et al., 2006). This hypothesis
has so far only been tested at the site scale (Chapin et al., 1996)
or for individual traits (Dorrepaal, Cornelissen, Aerts, Wallén, &
Logtestijn, 2005; Korner, Leuzinger, Riedl, Siegwolf, & Streule,
2016), yet continues to underpin a wide range of studies examin-
ing tundra plant community responses to environmental change
(Figure 1).

There is evidence that functional groups display distinct dif-
ferences in their response to environmental change in the tundra.
Experimental warming and fertilization are associated with increases
in cover and biomass of deciduous shrubs and graminoids, often at
the expense of other functional groups (Dormann & Woodin, 2002;
Elmendorf, Henry, Hollister, Bjork, Bjorkman, et al., 2012). In turn,
the relative abundance of different functional groups influences
multiple ecosystem properties, including biomass accumulation, light
interception, soil moisture and soil nutrients (McLaren & Turkington,
2010, 2011). Functional groups also integrate multiple plant traits
and may therefore better explain ecosystem function and commu-

nity change compared to single trait-based approaches (Laughlin &
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Are functional group responses
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-No

FIGURE 1 Studies employing an “evergreen shrub - deciduous shrub - graminoid - forb” functional group classification (or close variant)
to examine the response of tundra communities to environmental change over the past two decades. Studies were identified based on

a literature search on Web of Science using the search terms “tundra" and “plant functional group” or “plant functional type”. For a list of
studies see Appendix A. Studies are grouped by whether they found clear differences in functional group response (Yes: clear differences
were found between some (but not necessarily all) functional groups; Not clear: differences between groups were inconsistent amongst sites
or over time; No: No significant differences in functional group response). Studies vary in duration from 2-30 years and incorporate a range
of bioclimatic contexts and experimental types. For full meta-analyses of functional group response see Dormann and Woodin (2002) and

Dorrepaal (2007)
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Messier, 2015; Soudzilovskaia et al., 2013). By extension, plant func-
tional groups may integrate information from traits that are difficult
to collect, including root structure or mycorrhizal association, that
may be critical to explaining vegetation change (Cornelissen, Aerts,
Cerabolini, Werger, & Heijden, 2001; Soudzilovskaia et al., 2015).

Despite their prevalence in ecological analysis, functional groups
have often displayed low explanatory power and inconsistent re-
sponses across experiments (Bret-Harte et al.,, 2008; Dorrepaal,
2007). In a meta-analysis of 36 environmental manipulation experi-
ments in the tundra, Dormann and Woodin (2002) found that plant
functional groups did not predict community response, except in the
case of fertilization and warming treatments. Even amongst these
treatment types, differences in functional group response have not
always been clear in the literature (Figure 1). Functional groups have
also shown highly conflicting responses across studies; for example,
evergreen shrubs have shown positive, neutral and negative re-
sponses to warming (Elmendorf, Henry, Hollister, Bjérk, Boulanger-
Lapointe, et al., 2012; Hollister, Webber, & Tweedie, 2005; Zamin,
Bret-Harte, & Grogan, 2014). Finally, functional groups have shown
inconsistent responses among and within experiments, in differ-
ent years (Cornelissen & Makoto, 2014), time-scales (Saccone &
Virtanen, 2016), environmental conditions (Dorrepaal, 2007) and
spatial scales (Mé6rsdorf et al., 2015).

Low explanatory power may arise from high trait variation within
functional groups, such that group differences are not significant,
particularly among small species pools (Cornelissen et al., 2004).
For example, Korner et al. (2016) found that tissue carbon and ni-
trogen did not vary by functional group in European alpine plants,
whilst Iversen et al. (2017) reported greater variation in fine-root
carbon-to-nitrogen ratios within groups than among groups in bi-
omes spanning the globe. Many studies have instead found that
tundra species respond highly individualistically to change (Hollister
et al., 2005; Hudson, Henry, & Cornwell, 2011; Lavorel & Garnier,
2002), and that functional group responses instead reflect strong
species-specific responses, often of dominant species (Bret-Harte
et al., 2008; Little, Jagerbrand, Molau, & Alatalo, 2015; Shaver et
al., 2001). An alternative hypothesis is, therefore, that traditional
functional groups do not represent key dimensions of trait variation
among species, and thus may obscure certain aspects of ecosystem
function and change. Given that much of our current understanding
of tundra vegetation change is based on functional group responses
(EImendorf, Henry, Hollister, Bjérk, Boulanger-Lapointe, et al., 2012;
McLaren & Turkington, 2010; Myers-Smith et al., 2011), testing this
hypothesis is critical to understanding the mechanisms and future

patterns of tundra vegetation change.

1.1 | Research questions

1.1.1 | How well do functional groups represent
species trait variation?

In this study, we test whether traditional functional groups explain
differences in six plant functional traits among Arctic and alpine

Global Ecology flotigemt W ILE YJ_S
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tundra species, and whether explanatory power is sensitive to: (a)
differences in species composition among sites or (b) the use of dif-
ferent plant traits in analyses. We examine six traits, plant height
(PH), seed mass (SM), leaf area (LA), specific leaf area (SLA), leaf dry
matter content (LDMC) and leaf nitrogen (LN), that are the most
commonly collected plant traits in the tundra biome (Bjorkman
et al. 2018 GEB in revision) and considered to be cornerstones of
plant ecological strategy (Diaz et al., 2016). We hypothesize that
plant functional groups will exhibit distinct trait distributions, and
that traits associated with plant economics (SLA, LDMC, LN) will be
better explained by traditional functional groups than traits associ-
ated with plant size (PH, SM, LA), reflecting consistent functional
group responses in resource addition experiments (fertilization and
warming), but not in other experimental types (Dormann & Woodin,
2002).

1.1.2 | Does functional group composition align
with post hoc trait-based clustering of species?

We compare the species composition and explanatory power of tra-
ditional functional groups with two statistically derived, trait-based
clustering approaches, which represent optimal grouping of spe-
cies within multivariate trait-space. Given that traditional functional
groups were formulated using trait-based clustering, albeit with a
smaller species pool, we hypothesize that post hoc classification will
produce similar species groupings to traditional functional groups.
This approach directly addresses calls to compare traditional func-
tional groups with other trait-based classifications (Boulangeat et al.,
2012; Dorrepaal, 2007; Hudson et al., 2011), and provides the first
trait-based assessment of traditional functional groups at the tundra
biome scale.

2 | MATERIALS AND METHODS

2.1 | Tundra biome definition

In line with previous biome-scale assessments of tundra vegetation
community change, we considered the tundra biome as the vegetated
regions above tree line, both at high latitude and high altitude (Bliss,
Heal, & Moore, 1981; Elmendorf, Henry, Hollister, Bjork, Boulanger-
Lapointe, et al., 2012). Tundra plant communities include many widely
distributed common species, and functional groups are considered to
be consistent across the large geographical gradients and variety of

environments within the tundra (Henry & Molau, 1997).

2.2 | Dataset

We established a database of tundra plant traits by combining
18,613 plant trait records from the TRY database (Kattge et al.,
2011; Appendix B) with 37,435 records from Tundra Trait Team
(TTT) contributors (Bjorkman et al. 2018 GEB in revision), forming
the largest database of tundra plant traits compiled to date. We
considered all species present at International Tundra Experiment
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(ITEX) and associated plots as tundra species (Bjorkman et al. 2018;
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Henry & Molau, 1997; ElImendorf, Henry, Hollister, Bjork, Boulanger-
Lapointe, et al., 2012). We included all available trait records for tun-
dra species, but excluded records from manipulated locations such
as experiments or botanical gardens. Of the 449 species in the ITEX
dataset, 386 (86%) had trait data available. Species lacking trait data
were generally rare or uncommon species unique to single sites, and
on average represented <3% of total plant cover across all sites.

We combined taxonomic synonyms following The Plant List
(www.theplantlist.org) to ensure consistent taxonomy across all
studies. As sampling problems inevitably arise from compiling trait
data from a large number of disparate studies (Jetz et al., 2016), we
removed duplicate entries, obviously erroneous values (e.g., values
<0), and observations more than four standard deviations from each
species mean (see Bjorkman et al., 2018 GEB in revision for more
information). For seed mass, which is prone to measurement error
due to the small masses involved and large variation within individ-
uals (Pérez-Harguindeguy et al., 2013), we manually checked values
more than three standard deviations from each species’ mean and

removed values that had clear measurement or transcription error.

2.3 | Trait selection

We selected six plant traits for analyses: plant height (maximum
measured height), seed mass (dry mass), leaf area per leaf (fresh leaf
area), specific leaf area (ratio of fresh leaf area to dry leaf mass), leaf
dry matter content (ratio of leaf dry mass to fresh leaf mass) and leaf
nitrogen (nitrogen per unit leaf dry mass). A total of 295 species had
data available for all six traits. A review of the ecological associations
of each trait can be found in Diaz et al. (2016). We additionally tested
two traits with low data availability, stem density (ratio of stem dry
mass to fresh stem volume) and leaf life span. These traits align with
key characteristics of functional groups, but are rarely measured
for tundra species (Supporting Information Table S1). We log-trans-
formed trait values to account for log-normal distributions, stand-
ardized between O and 1 using variance scaling, and aggregated
traits at the species level to allow multivariate comparison among
species and different units of measurement. Within-species varia-
tion cannot be captured using this approach, but is assumed not to
contribute to a large proportion of trait variation at the biome scale
(Siefert et al., 2015). However, we also re-ran analysis using the 25th
and 75th percentile of species-level trait data, representing the low-
est and highest quarter of trait values for each species, respectively,
to test whether results were altered by within-species variation in

the dataset as a whole.

2.4 | Trait variation explained by functional group

We assigned species to four functional groups—evergreen shrubs,
deciduous shrubs, graminoids and forbs—based on previous clas-
sification of ITEX species (Elmendorf, Henry, Hollister, Bjork,
Boulanger-Lapointe, et al., 2012). We also examined two more de-
tailed functional group classifications: (a) a six-group classification

separating graminoids into grasses, sedges and rushes and a (b)
seven-group classification further separating evergreen and de-
ciduous shrubs into dwarf and tall shrubs. To examine the distri-
bution of individual traits within and among functional groups, we
plotted the distribution of species-level mean traits for each of
the six plant traits studied and tested the significance of distri-
butions using pairwise Wilcoxon signed-rank tests. To visualize
multivariate trait distributions and examine the weighting of dif-
ferent traits, we performed principal components analysis (PCA)
on multivariate trait distributions using the “prcomp” function in
the R “stats” package, and plotted the first two component axes.
We conducted PERMANOVA analysis to test the significance of
and variance explained by functional groups to estimate how well
traditional functional groups represent trait characteristics. We
used Euclidian distance with 999 permutations for the combina-
tion of all six traits using the “adonis” function in the R package
“vegan” (Oksanen et al., 2013).

We performed all analyses at the biome scale using all trait data,
encompassing 1,333 unique georeferenced locations and non-georef-
erenced trait data for tundra species. To examine if functional group
significance was affected by species composition, we also conducted
analyses at three unique geographical locations: Abisko (northern
Sweden, 68°N, 18°E, 98 species available) representing European sub-
arctic tundra, Davos (the Swiss Alps, 47°N, 10°E, 67 species available)
representing European alpine tundra, and Qikigtaruk-Herschel Island
(northern Canada, 69°N, -139°E, 16 species available) representing
North American arctic tundra. We chose these sites to represent vari-
ation in geography and species richness across the tundra. We also
repeated all analyses using a subset of only georeferenced trait data
collected north of 60°N to examine if findings were influenced by en-
vironmental variation across collection locations.

To examine if the variation explained by functional groups
was dependent on the traits included in analysis, we repeated
PERMANOVA analysis for every possible multivariate combination
of traits. This enabled us to test whether particular trait combina-
tions were well differentiated by functional groups. We also differ-
entiated between size-related and economic traits, reflecting the
two major dimensions of trait variation amongst global plant species
(Diaz et al., 2016). As some traits were available for more species
than others, resulting in unequal sample sizes among different trait
combinations, we randomly selected 295 species (the minimum
number of species for which all six traits were available) for each
trait combination and calculated the mean variance explained over

999 replications for each combination.

2.5 | Comparison with post hoc classifications

We compared the species composition and explanatory power of
functional groups to post hoc species classifications created using
statistical clustering of species-level plant traits. We grouped spe-
cies using two contrasting clustering approaches, k-means clus-
tering (k-means) and hierarchical agglomerative clustering (HCA).
K-means clustering employs a top-down approach, assigning species
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to groups based on multivariate distance from group means (Ding
& He, 2004). Hierarchical agglomerative clustering employs a bot-
tom-up approach, iteratively combining groups with similar traits
(Lukasova, 1979). We performed clustering using the R package
“vegan” and selected a four-cluster solution for both methods to
correspond with the number of functional groups. When testing al-
ternative six- and seven-functional group classifications we selected
six-cluster and seven-cluster solutions, respectively. For HCA clus-
tering, we used Euclidian distance and Ward’s criterion to measure
linkage. We compared differences in species composition between
post hoc trait-based classifications and traditional functional groups
by calculating the maximum possible number of consistently cat-
egorized species amongst grouping methods. We also estimated the
relative abundance of consistently grouped species within the ITEX
database (EImendorf, Henry, Hollister, Bjork, Boulanger-Lapointe, et
al., 2012, (Polar Data Catalogue; CCIN 10786)) using the most re-
cent year for all plots and aggregating at the site level.

Finally, we repeated PERMANOVA analysis for post hoc trait-
based classifications and examined the variance explained by groups
for all traits, for only size-related and for only economic traits. This
enabled us to: (a) test the variation remaining unexplained when
using post hoc classification of species, and thus (b) test the explan-
atory power of traditional functional groups compared to optimal
four-group clustering of species, acknowledging that it is unlikely
that all trait variation will be explained, and (c) examine whether post
hoc trait-based classifications could differentiate between axes of
trait variation.

All analyses were conducted in R version 3.3.2 (R Core Team,
2017). Data have been submitted to the TRY database (https://www.
try-db.org) and are publicly available in the Polar Data Catalogue
(https://www.polardata.ca/) and NERC Polar Data Centre (https://
www.bas.ac.uk/data/uk-pdc/). Code is available at github.com/

hjdthomas/Tundra_functional_groups.

3 | RESULTS

3.1 | Trait variation explained by traditional
functional groups

We found large overlap between the trait distributions of functional
groups for the majority of traits examined, such that trait distribu-
tions were often not significantly different among functional groups
(Figure 2, Supporting Information Figure S1). The significance of
functional group distributions was strongly trait dependent, for
example with significant differences among all groups for specific
leaf area, but no significant differences between any groups for
seed mass. Among functional groups, evergreen shrubs exhibited
the most distinct differences in trait expression compared to other
tundra plants, primarily driven by economic traits (Figures 2 and 3).
In contrast, deciduous shrubs and graminoids exhibited largely over-
lapping trait distributions for many individual traits and in multivari-

ate trait-space.
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Functional groups explained 18.5% of multivariate trait expres-
sion among species across all six traits (four-cluster PERMANOVA,
R? = 0.185, p < 0.001), and were significant both for the tundra
biome and at the site level. The direction of trait weightings indi-
cated that economic traits (SLA, LDMC, LN; greater association
with PCA axis 1) and size-related traits (PH, SM, LA, greater as-
sociation with PCA axis 2) comprised distinct axes of trait varia-
tion, with functional groups primarily differentiated along the first
PCA axis. The relative position of functional groups was consistent
among sites, regardless of species composition or geographical lo-
cation (Figure 3).

The explanatory power of functional groups was strongly de-
pendent on the traits included in the analysis. Trait combinations
including only economic traits (SLA, LN, LDMC) were better ex-
plained by functional groups than size-related traits (PH, SM, LA),
regardless of the number of traits included in analysis (Figure 4a).
This was largely driven by LDMC, as combinations containing this
trait were best explained by functional groups (Figure 4b). In con-
trast, trait combinations containing PH or SM were comparatively
poorly explained by functional groups (Figure 4c). Inclusion of leaf
life span and stem density traits reduced data availability by over
80% (Supporting Information Table S1) but improved the explana-
tory power of groups from 19% to 55% and 41%, respectively. This
improvement was driven by economic differences, and primarily dif-
ferentiated shrubs (wood density) or evergreen shrubs (leaf life span)

from other groups (Supporting Information Figure S4).

3.2 | Comparison of post hoc trait-based
classifications with functional groups

Post hoc trait-based classification of species did not correspond
well with traditional functional group composition. The four groups
identified by post hoc classification were consistently located within
trait-space across clustering methods, and were differentiated by
the two axes of trait variation, although more strongly by size-re-
lated traits (Figure 5). Post hoc classifications thus represented:
(a) tall species with large leaves and seeds (high PH, SM and LA),
(b) mid-sized species with economically acquisitive strategies (low
LDMC, high SLA and LN), (c) small species with economically acquisi-
tive strategies, and (d) small species with economically conservative
strategies.

Forty-two per cent of species were consistently classified be-
tween traditional functional groups and k-mean clustering, and
43% between traditional functional groups and HCA clustering
(Figure 5f, Table 1). In contrast, 74% of species were consistently
classified between post hoc clustering methods. Evergreen shrubs,
approximately half of graminoids and one third of forbs were largely
assigned to consistent groups across the three clustering methods
(Figure 5f). Deciduous shrubs showed very low correspondence be-
tween functional groups and post hoc classifications due to large
trait overlap with both graminoids and forbs, but showed high cor-
respondence between clustering methods (Table 1, Supporting
Information Table S2).


https://www.try-db.org
https://www.try-db.org
https://www.polardata.ca/
https://www.bas.ac.uk/data/uk-pdc/
https://www.bas.ac.uk/data/uk-pdc/
github.com/hjdthomas/
github.com/hjdthomas/
Tundra_functional_groups

Global Ecology

THOMAS ET AL.

and Biogeography

Functional Group

. Deciduous Shrub

. Evergreen Shrub
Graminoid

Forb

0.01 0.10 1.00
Plant Height (m)

1 100
Leaf Area (mm?)

10000

0.8
4
0.6
> 23
¥ D
2 04 S 2
[0)
a [a)
0.2 1
0.0 0

-

1e 03 1e 01 1e+01

Seed Mass (mg)

1e+03

10 100

Specific Leaf Area (mm?/mg)

w

Density
N

e

0.1 1.0
Leaf Dry Matter Content (g/g)

10 100
Leaf N (mg/g)

FIGURE 2 Smoothed distribution of species-level traits represented by the four traditional tundra plant functional groups. Distributions
are based on species-level mean traits for the 295 tundra species for which data are available for all six plant traits of interest. Trait values
are presented on the x axis in untransformed units on a log scale. Significance of distributions is indicated by symbols (pairwise Wilcoxon
rank sum test; * = p < 0.05; ** = p < 0.01, *** = p < 0.001). Pairs of traits that are significantly different from each other, but not different
from other functional groups, are indicated by black bars connecting the centre of those two distributions.

Abundant species were more likely to be consistently classified
across grouping methods (Supporting Information Figure S2a), and the
relative abundance of consistently classified species within tundra plant
communities (51%) was greater than would be expected if all species
had equal abundance (35%). Although abundant species had more avail-
able trait observations, and thus may have more representative species-
mean traits, the number of trait observations did not significantly affect
whether a species was consistently classified (Supporting Information
Figure S2b). Species that were consistently categorized across grouping
methods occupied a distinct region of trait-space (p < 0.001) and were
mostly large (taller, larger leaves or larger seeds) with extreme economic
traits (i.e., highly conservative or highly acquisitive species, Supporting
Information Figure S2d). Inconsistently classified species had traits
closer to the centre of the overall distribution of tundra species within
functional trait space, suggesting that the traits of these species may be

poorly represented by traditional functional groups.

Post hoc classifications explained 45% (k-means, R? = 0.448,
p < 0.001) and 37% (HCA, R% = 0.366, p < 0.001) of trait variation
amongst tundra species, compared to 19% for traditional func-
tional groups (Figure 5d-f). Despite derivation using all six plant
traits, post hoc classifications explained greater variation in size-
related traits than traditional functional groups for both cluster-
ing methods (functional groups: R? = 0.080, p < 0.001; k-means:
R?=0.474,p < 0.001; HCA: R? = 0.406, p < 0.001), whilst k-means
sampling also slightly better explained variation in economic traits
(functional groups: R? = 0.339, p < 0.001, k-means: R? = 0.343,
p < 0.001; HCA: R? = 0.266, p < 0.001, Figure 5d-f). Our results
demonstrate that unexplained trait variation does not solely arise
due to aggregation of species into a small number of groups, and
that functional groups have less than half the explanatory power
of optimal species classification for the six most commonly col-

lected tundra plant traits.
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FIGURE 3 Distribution of tundra species in trait space. Inset plots indicate principal components analysis (PCA) multivariate distribution
of six plant traits for three tundra sites, (a) Qikigtaruk, (b) Abisko (c) Davos, and for (d) the whole tundra biome. Trait space was defined based
on plant height (PH), seed mass (SM), leaf area (LA), specific leaf area (SLA), leaf dry matter content (LDMC) and leaf nitrogen content (LN).
Individual species are represented by points and functional groups by point colour (blue = evergreen shrub, green = deciduous shrub, yellow
= graminoid, purple = forb). Ellipses represent 95% confidence interval of functional group distributions. Arrows indicate direction and
weighting of each trait. Georeferenced trait collection locations are indicated on the map by grey circles and modelled site locations by red

circles

4 | DISCUSSION

4.1 | Trait variation is poorly explained by traditional
functional groups

To be meaningful for ecological analyses, plant functional groups
should accurately and consistently represent differences in species
characteristics that underpin their environmental preferences and
responses (Chapin et al., 1996). In this study, we find that traditional

plant functional groups represent 19% of variation in the six most com-
monly measured plant traits amongst tundra species. Furthermore,
the species composition of functional groups did not align well with
post hoc trait-based classification of species. Together, our findings
indicate that traditional functional groups poorly represent species-
level variation in the six plant traits considered by this study, and
highlight potential limitations of functional group approaches to pre-
dicting community responses to environmental change in the tundra.
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FIGURE 4 Trait variation explained by functional groups for

all possible trait combinations. Functional groups best explained
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or seed mass. Points indicate the mean variance explained
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the importance of different trait combinations

Our findings support a previous trait-based criticism of tradi-
tional functional groups in European alpine species (Kérner et al.,
2016), and may explain low explanatory power and contradictory
responses of functional groups in previous tundra studies (Dormann
& Woodin, 2002; Dorrepaal, 2007; Figure 1). Although it is possible
that the tundra is unusual in the global context due to small plant
growth-forms and harsh environmental conditions, our study is in
line with findings that functional groups poorly describe trait vari-
ation in tropical forests (Wright et al., 2013), temperate grasslands
(Forrestel et al., 2017; Fry, Power, & Manning, 2014; Wright et al.,
2006), and among certain traits at the global scale (lversen et al.,
2017; Kattge et al.,, 2011; Reichstein, Bahn, Mahecha, Kattge, &
Baldocchi, 2014; Wright et al., 2005).

Our findings for the six most commonly measured traits in part
contradict Chapin et al’s (1996) finding that growth-form based
functional groups can be reproduced from trait information. This
discrepancy could arise from the greater number of species and in-
dividual trait records represented in our study, which may increase
variability within functional groups and species, or the greater num-
ber of traits included in Chapin et al. (1996). Trait variation may also
be better represented by alternative classifications such as those
distinguishing between tall and dwarf shrubs, or between grasses
and sedges. Although alternative six-group and seven-group clas-
sification schemes did slightly increase the explanatory power of
functional groups (from 18.5% to 21.4% and 24.9%, respectively,
Supporting Information Figure S3), the overall variance explained
remained low and substantially less than post hoc classifications
(53.6% and 56.8%, respectively).

Low explanatory power of functional groups could also arise
from the choice of traits included in analysis. The traits investigated
in this study are considered critical determinants of ecological pro-
cesses (Diaz et al., 2016; Pérez-Harguindeguy et al., 2013), and rep-
resent both available tundra trait data and the focus of trait-based
research in tundra ecosystems (Bjorkman et al., 2018 GEB in revi-
sion). Nevertheless, we found that the explanatory power of func-
tional groups was highly trait-specific (Figure 4), and thus functional
groups may represent differences amongst plant traits not investi-
gated here that are nonetheless critical to ecosystem function in the
tundra (Figure 6). For example, inclusion of stem density increased
the explanatory power of traditional functional groups to over 50%
(Supporting Information Figure S4), but reduced species representa-
tion by 80% (n = 53) and did not improve representation of size-re-
lated traits.

4.2 | Functional groups align with economic traits

Among tundra species, traditional functional groups better repre-
sented variation in economic traits (SLA, LDMC, LN) than size-re-
lated traits (PH, SM, LA). Indeed, functional groups explained
roughly equal variation in economic traits to post hoc clustering
(33.5% compared to 34.3% for k-means clustering). As such, ecosys-
tem functions related to resource economics such as photosynthetic
rate or nutrient cycling may be well represented using functional
group approaches (Lavorel & Garnier, 2002). This difference may
also explain why studies focusing on community responses to re-
source addition (Dormann & Woodin, 2002; Elmendorf, Henry,
Hollister, Bjork, Bjorkman, et al., 2012; Zamin et al., 2014) or litter
quality (Carbognani, Petraglia, & Tomaselli, 2014; Cornelissen et al.,
2007; Dorrepaal et al., 2005) find the clearest differences between
functional groups.

Low representation of size-related traits may arise due to con-
vergence of growth forms in the tundra; all functional groups con-
tain both comparatively large (e.g., the tall deciduous shrub Salix
glauca or forb Chamaenerion angustifolium) and comparatively small
(eg, the dwarf deciduous shrub Salix polaris or forb Saxifraga bryoi-
des) species. As a result, functional groups may poorly represent
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FIGURE 5 Comparison of group structure, trait variation explained, and group composition between traditional functional groups and
post hoc classifications. (a-c) principal components analysis (PCA) visualization of species clusters as defined by (a) traditional functional
groups, (b) k-means clustering, and (c) hierarchical-agglomerative clustering (HCA). Species are indicated by points and group distribution
by ellipses. Colours indicate groups (dark blue = evergreen shrub, green = deciduous shrub, yellow = graminoid, purple = forb). Post hoc
classifications are matched with functional groups based on maximum species correspondence between grouping methods, such that
each post hoc classification corresponds with a traditional functional group. Post hoc groups approximately represent (i) tall species with
large leaves and seeds (purple), (ii) mid-sized species with economically acquisitive strategies (yellow), (iii) small species with economically
acquisitive strategies (green) and (iv) small species with economically conservative strategies (blue). (d-f) Trait variation explained by (d)
traditional functional groups, (e) k-means, and (f) hierarchical agglomerative clustering (HCA) for multivariate combinations of all six plant
traits (white), size-related traits only (red) and economic traits only (light blue). (g) Comparison of group composition across clustering
methods. The stacked bars represent individual species and are ordered by traditional functional group (species order remains consistent
across columns). The colour of each stacked bar represents the group to which species were assigned by each classification method
(classification can change across columns). For example, a species categorized as a graminoid by traditional functional groups can be
categorized in the group most corresponding to forbs by post hoc classifications

ecosystem functions or properties relating to size-related traits,
such as albedo, carbon storage, seed dispersal or competitive ability
(Lavorel & Garnier, 2002; Loranty, Goetz, & Beck, 2011; Westoby,
Falster, Moles, Vesk, & Wright, 2002). Such properties are impli-
cated as key drivers of community-level vegetation change in the
tundra (Kaarlejarvi, Eskelinen, & Olofsson, 2017; Mekonnen et al.,

2018). Functional group classifications that explicitly recognize

morphological characteristics, such as distinguishing between tall
and dwarf shrubs (Elmendorf, Henry, Hollister, Bjork, Boulanger-
Lapointe, et al., 2012; Vowles et al., 2017), may better charac-
terize differences in trait expression, although we found limited
evidence for this (Supporting Information Figure S3). As such, post
hoc classification of species or direct use of trait data may identify

differences amongst size-related traits, and associated drivers of
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TABLE 1 Top: Similarity in species composition between traditional functional groups and post hoc trait-based classifications (k-means =
k-means clustering; HCA = hierarchical agglomerative clustering), calculated as the proportion of consistently classified species out of all
species. Bottom: Relative abundance of consistently classified species within tundra (International Tundra Experiment, ITEX) vegetation
communities, calculated as the proportion of the summed abundance of consistently classified species out of the summed abundance of all

species for which trait data are available across all ITEX plots

Functional groups versus

Functional group k-means (%) HCA (%)
Similarity between group species composition

All groups 42 43
Evergreen shrubs 89 94
Deciduous shrubs 0 13
Graminoids 52 51
Forbs 37 37
Relative abundance of consistent species

All groups 56 59
Evergreen shrubs 99 100
Deciduous shrubs 0 21
Graminoids 74 65
Forbs 24 32

community change and ecosystem function, that are obscured by
variation within traditional functional groups (Matesanz, Escudero,
& Fernando, 2009).

4.3 | Trait-based approaches as an alternative to
functional groups

Our findings contribute to growing support for the use of trait-
based approaches as an alternative to functional groups within
ecological research and earth system modelling. Trait-based ap-
proaches include post hoc grouping of species according to
common traits (Suding et al., 2008), common responses to environ-
mental conditions (Cornwell & Ackerly, 2010) or common effects
on ecosystem processes (Cornwell et al., 2008; Laughlin, 2011), as
well as direct use of trait data in analysis (McGill et al., 2006). In
this study, post hoc classifications explained more than twice as
much trait variation as functional groups, and were distinguished
along two global axes of trait variation (Diaz et al., 2016), repre-
senting large versus small species, and economically “fast” versus
“slow” species (Diaz et al., 2016; Reich, 2014). Post hoc classifica-
tions thus better captured the multidimensionality of trait varia-
tion compared to traditional groupings (Maire, Grenouillet, Brosse,
& Villéger, 2015), and produced relatively robust species groupings
across the two clustering methods.

Post hoc approaches have nevertheless been criticized on the
basis of inconsistencies across methodologies and ecological com-
munities (Dyer, Goldberg, Turkington, & Sayre, 2001; Fry et al., 2014),
and could be biased towards representing rarer species with more
extreme traits. In this study, functional groups better represented
differences amongst more abundant species (Table 1), and thus may

capture community-level characteristics even if representation of

Functional groups versus

k-means versus

HCA (%) All methods (%)
74 35
94 89
87 0
78 42
69 30
87 51
99 99
79 0
84 62
82 22

differences amongst individual species is low. Species that were
consistently categorized (Supporting Information Table S3) pos-
sessed similar traits including a larger structure (tall with large leaves
and seeds) and either highly conservative or acquisitive resource
economic traits. However, some species that were inconsistently
classified, notably deciduous shrubs such as Betula nana and gram-
inoids such as Agrostis spp., have demonstrated the greatest vegeta-
tion responses at many tundra sites (Bret-Harte et al., 2001; Venn,
Pickering, & Green, 2014), suggesting that traditional functional
groups may obscure some important trait characteristics associated

with vegetation change (Saccone et al., 2017).

4.4 | Underpinning assumptions

The findings of this study are based on several key assumptions.
First, we assume that the species for which trait data are available
are representative of all tundra species. Species lacking trait data
are often rare (low abundance) or endemic (occur at few sites).
The data gap for these missing species could represent unusual
trait combinations not easily captured by trait-based classification
(Sandel et al., 2015). We also do not examine mosses and lichens,
which play an important role in ecosystem function in the tundra
(Turetsky, Mack, Hollingsworth, & Harden, 2010). Nevertheless,
the species included in this study reflect the majority of tundra
plant biomass and include the species known to be most rapidly
responding to climate change (Elmendorf, Henry, Hollister, Bjork,
Boulanger-Lapointe, et al., 2012).

Second, we assume that plant traits are meaningful predictors of
species’ responses to environmental dynamics or effects on ecosystem
function. In this study, we do not examine whether traits or alternative

trait-based classifications better predict community dynamics than
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FIGURE 6 Functional groups and post hoc trait-based classifications capture different characteristics of tundra plant communities. Solid
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yet are suggested to be important in the literature (Bardgett, Mommer, & Vries, 2014; Chave et al., 2009; Cleland et al., 2012; Eckstein et al.,

1999)

functional groups. Traditional functional groups may better predict
certain ecological dynamics than trait-based approaches as they inte-
grate multiple measured and unmeasured traits across plant organs,
ecological strategy, and life cycle (Grime et al., 1997). Nevertheless,
there is widespread evidence to support trait-based approaches to
modelling ecosystem dynamics (Suding et al., 2008; Violle & Jiang,
2009; Cornwell & Ackerly, 2010; Soudzilovskaia et al., 2013, but see
Clark, 2016). Single traits, such as plant height, have also predicted veg-
etation responses to change that are obscured within traditional func-
tional groups (EImendorf, Henry, Hollister, Bjork, Boulanger-Lapointe,
et al.,, 2012). Continuing to assess the extent to which trait-based ap-
proaches can meaningfully describe and predict ecosystem processes
therefore remains an essential research focus (McGill et al., 2006).
Differentiating community responses or ecosystem processes using
post hoc trait-based classifications would provide a direct test of this
question, and could offer valuable insight into the relative importance
of different traits for prediction and modelling.

Third, we assume that the majority of trait variation occurs among

species. Should large trait variation occur within species this could

invalidate species-level clustering (Shipley et al., 2016; Violle et al.,
2012). The species considered in this study have large geographical
ranges, encompassing both Arctic and alpine tundra, and nontundra
locations. However, our findings are robust when using individual
trait-data (Supporting Information Figure S1), across site-specific
species assemblages (Figure 3), for the 25th and 75th percentile of
species-level trait data (Supporting Information Figure S5), and for
only trait collection locations north of 60°N (Supporting Information
Figures S6-59). Furthermore, most studies have found within-species
variation to be small compared to among-species variation (Anderegg
et al.,, 2018; Kattge et al., 2011; Siefert et al., 2015), including in the
tundra biome (Thomas et al., in prep, manuscript available upon re-
quest). Nevertheless, within-species trait variation may be an import-
ant driver of community change, particularly at small spatial scales,
and may explain highly individualistic species responses to change
(Hollister et al., 2005). Thus, we advocate that studies should recog-
nize and account for the extent of trait variation within communities.

Finally, attempts to classify species into functional groups may be

impossible if trait expression or species response is dependent upon
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environmental and ecological context (Dorrepaal, 2007; Laughlin &
Messier, 2015). Group classifications and even growth strategies
may change depending on resource availability (Bret-Harte et al.,
2001), such that division into discrete classifications may obscure
the variability inherent to natural environments (Westoby & Wright,
2006). Although differences between functional groups were sta-
tistically significant in this study, the majority of trait variation was
not explained by classifications, whether using traditional functional
groups (81% of variance unexplained) or post hoc classification (55%
of variance unexplained). We, therefore, join those who advocate
that ecological analyses should continue to move towards incor-
porating explicitly trait-based approaches, focusing on traits them-
selves as the fundamental units of analysis (Laughlin, 2014; McGill
et al., 2006; Violle & Jiang, 2009; Weiher et al., 2011; Westoby &
Wright, 2006).

4.5 | Future priorities

Our findings suggest that new trait data collection campaigns should
focus on traits that distinguish among ecological strategies and re-
sponses to changing growing conditions. Whilst existing trait records
have been informed by standardized protocols and contemporary
research priorities (Cornelissen et al., 2003; Pérez-Harguindeguy
et al., 2013), these have tended to focus on easily measurable leaf
traits. Future trait collection campaigns should therefore focus on
ecologically important traits for which we have few records, includ-
ing chemical and physiological traits (Eckstein, Karlsson, & Weih,
1999), and whole-plant measurements, incorporating stem (Chave
et al.,, 2009) and belowground (lversen et al., 2015) characteris-
tics. Finally, phenological traits such as leaf out or flowering time
are rarely integrated into wider trait-based approaches, yet may be
critical to predicting ecological responses, particularly in a warming
tundra (Cleland et al., 2012).

5 | CONCLUSION

In this study, we demonstrate that traditional plant functional groups
poorly represent differences in the six most commonly measured plant
traits among tundra vascular plant species. Although functional groups
were statistically distinct and consistent among sites, they explained
only 19% of overall trait variation and primarily differentiated between
resource economic traits rather than size-related traits. Post hoc trait-
based classification of species did not align with functional group
classification, but produced robust alternative groupings that aligned
with two global axes of trait variation. Together, our findings indicate
that traditional functional groups may not characterize trait variation
within tundra vegetation communities, particularly among size-related
traits. We therefore argue that: (a) traditional functional groups should
be used with caution when testing ecological responses or ecosystem
functions associated with size-related traits; (b) functional group ap-
proaches require sufficient species and trait measurements to capture
variation within groups, within species and among traits; and (c) the

use of alternative classifications based on trait expression, or direct
use of underlying trait data, could provide new insights for predict-
ing vegetation change and ecosystem processes in response to global

drivers of environmental change.
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