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momentum, reaching a value of approximately 0.6 at 1 TeV in the most central collisions. The magnitude
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transverse momenta, but it is observed to decrease with increasing rapidity at high transverse momenta.
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1. Introduction

Heavy-ion collisions at ultra-relativistic energies produce a hot,
dense medium of strongly interacting nuclear matter understood
to be composed of unscreened colour charges which is commonly
called a quark-gluon plasma (QGP) [1-4]. Products of the hard
scattering of quarks and gluons occurring in these collisions evolve
as parton showers that propagate through the hot medium. Parton
shower constituents emit medium-induced gluon radiation or suf-
fer from elastic scattering processes and as a consequence they
lose energy, leading to the formation of lower-energy jets. This
phenomenon is termed “jet quenching” [5-7]. It has been directly
observed as the suppression of the jet yields in Pb+Pb collisions
compared to jet yields in Pb+Pb collisions [8-11], the modification
of jet internal structure [12-15], and a significant modification of
the transverse energy balance in dijet [16-18] and multijet sys-
tems [19].

The energy loss of partons propagating through the QGP results
in a reduction of the jet yield at a given transverse momentum
(pt). This together with the falling shape of the jet pt spectrum
lead to the observed suppression of jets in collisions of nuclei
relative to Pb+Pb collisions. Central heavy-ion collisions have an
enhanced hard-scattering rate due to the larger geometric over-
lap between the colliding nuclei, resulting in a larger per-collision
nucleon-nucleon flux. To quantitatively assess the quenching ef-
fects, the hard-scattering rates measured in Pb+Pb collisions are
normalised by the mean nuclear thickness function, (Taa), which
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accounts for this geometric enhancement [20]. The magnitude of
the inclusive jet suppression in nuclear collisions relative to Pb+Pb
is quantified by the nuclear modification factor

1 d?Njer
Neye dprdy
RAA — cent ,
(Tan) dzUjet
AA
dprdy

pp

where Njet and oje; are the jet yield in Pb+Pb collisions and the
jet cross-section in Pb+Pb collisions, respectively, both measured
as a function of transverse momentum, pr, and rapidity, y, and
where Neyt is the total number of Pb+Pb collisions within a cho-
sen centrality interval.

A value of Rpa ~ 0.5 in central collisions was reported in
Pb+Pb measurements at /sy = 2.76 TeV by the ATLAS and CMS
Collaborations for jet pr above 100 GeV [9,10]. These measure-
ments therefore show a suppression of jet yields by a factor of two
in central collisions relative to the corresponding Pb+Pb yields at
the same centre-of-mass energy. Also a clear centrality dependence
is observed. Two unexpected features [21] also emerge from those
studies: Raa increases only very slowly with increasing jet pt, and
no dependence of Raa on jet rapidity is observed. Measurements
by the ATLAS and CMS Collaborations can be complemented by
the measurement by the ALICE Collaboration which reports Raa
for jets measured in pt interval of 30-120 GeV in central Pb+Pb
collisions [22].

This Letter describes the new measurements of yields of R =
0.4 anti-k; jets [23] performed with 0.49 nb—! of Pb+Pb data col-
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lected at ,/syy = 5.02 TeV in 2015 and 25 pb~! of Pb+Pb data
collected at /s =5.02 TeV in the same year. This new study
closely follows the first measurement by the ATLAS Collabora-
tion [9] performed using 0.14 nb~! of Pb+Pb data collected at
V3NN = 2.76 TeV in 2011 and 4.0 pb~! of Pb4-Pb data collected
at /s =2.76 TeV in 2013. Higher luminosity, increased centre-of-
mass energy, and improved analysis techniques allowed to extend
the measurement to more than two times higher transverse mo-
menta, and to larger rapidities. This new measurement provides
input relevant to a detailed theoretical description of jet suppres-
sion, especially its dependence on the collision energy, centrality,
jet pr, and rapidity.

2. Experimental setup

The ATLAS experiment [24] at the LHC features a multipurpose
particle detector with a forward-backward symmetric cylindrical
geometry and a nearly full coverage in solid angle.! The mea-
surements presented here were performed using the ATLAS inner
detector, calorimeter, trigger and data acquisition systems.

The inner-detector system (ID) is immersed in a 2 T axial mag-
netic field and provides charged-particle tracking in the pseudo-
rapidity range |n| < 2.5. The high-granularity silicon pixel detec-
tor covers the vertex region and typically provides four measure-
ments per track. It is followed by the silicon microstrip tracker
(SCT) which comprises four cylindrical layers of double-sided sil-
icon strip detectors in the barrel region, and nine disks in each
endcap. These silicon detectors are complemented by the transi-
tion radiation tracker, a drift-tube-based detector, which surrounds
the SCT and has coverage up to |n| =2.0.

The calorimeter system consists of a sampling lead/liquid-
argon (LAr) electromagnetic (EM) calorimeter covering || < 3.2, a
steel/scintillator sampling hadronic calorimeter covering || < 1.7,
a LAr hadronic calorimeter covering 1.5 < |n| < 3.2, and two LAr
forward calorimeters (FCal) covering 3.1 < |n| < 4.9. The hadronic
calorimeter has three sampling layers longitudinal in shower depth
in |n| < 1.7 and four sampling layers in 1.5 < || < 3.2, with a
slight overlap. The EM calorimeter is segmented longitudinally in
shower depth into three compartments with an additional pre-
sampler layer.

A two-level trigger system [25] was used to select the Pb+Pb
and Pb+Pb collisions analysed here. The first level (L1) is a
hardware-based trigger stage which is implemented with custom
electronics. The second level is the software-based high-level trig-
ger (HLT). The events were selected by the HLT which was seeded
by a L1 jet trigger, total energy trigger, or zero-degree calorimeter
(ZDC) trigger. The total energy trigger required a total transverse
energy measured in the calorimeter system to be greater than
5 GeV in Pb+Pb interactions and 50 GeV in Pb+Pb interactions.
The ZDC trigger required a presence of at least one neutron on
both sides of ZDC (|n| > 8.3). The HLT jet trigger used a jet re-
construction algorithm similar to the Pb+Pb one applied in offline
analyses. It selected events containing jets with transverse energies
exceeding a threshold, using a range of thresholds up to 100 GeV
in Pb+Pb collisions and up to 85 GeV in Pb+Pb collisions. In both

1 ATLAS uses a right-handed coordinate system with its origin at the nomi-
nal interaction point (IP) in the centre of the detector and the z-axis along the
beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the
y-axis points upward. Cylindrical coordinates (r, ¢) are used in the transverse plane,
¢ being the azimuthal angle around the beam pipe. The pseudorapidity is de-
fined in terms of the polar angle 6 as n = —Intan(f/2). Rapidity y is defined as
y =0.5In[(E + pz)/(E — p;)] where E and p, are the energy and the component
of the momentum along the beam direction, respectively. Angular distance is mea-
sured in units of AR =/(An)2 + (A¢)2.

Table 1
The mean number of participants, (Npart), the mean nuclear thickness function,
(Taa), and their uncertainties (see Section 5) for different centrality intervals.

Centrality range (Npart) (Taa) [1/mb]
70-80% 154 + 1.0 0.22 + 0.02
60-70% 306 + 1.6 0.57 £+ 0.04
50-60% 539 £ 19 1.27 £ 0.07
40-50% 87.0 +£ 2.3 2.63 £ 0.11
30-40% 1314 + 26 494 + 0.15
20-30% 189.1 + 2.7 8.63 £+ 0.17
10-20% 264.0 + 2.8 14.33 £ 0.17
0-10% 358.8 + 2.3 23.35 £ 0.20

the Pb+Pb and Pb+Pb collisions, the highest-threshold jet trig-
ger sampled the full delivered luminosity while all lower threshold
triggers were prescaled.

In addition to the jet trigger, two triggers were used in Pb+Pb
collisions to select minimum-bias events. The minimum-bias trig-
ger required either more than 50 GeV transverse energy recorded
in the whole calorimeter system by L1 trigger or a signal from the
ZDC trigger and a track identified by the HLT.

3. Data and Monte Carlo samples, and event selection

The impact of detector effects on the measurement was de-
termined using a simulated detector response evaluated by run-
ning Monte Carlo (MC) samples through a GEaNT4-based detector
simulation package [26,27]. Two MC samples were used in this
study. In the first one, multi-jet processes were simulated with
PowHEG-Box v2 [28-30] interfaced to the PyTHIA 8.186 [31,32] par-
ton shower model. The CT10 PDF set [33] was used in the matrix
element while the A14 set of tuned parameters [34] was used to-
gether with the NNPDF2.3LO PDF set [35] for the modelling of the
non-perturbative effects. The EvtGen 1.2.0 program [36] was used
for the properties of b- and c-hadron decays. In total, 2.9 x 107
hard-scattering events at /s = 5.02 TeV were simulated at the
NLO precision, spanning a range of jet transverse momenta from
20 to 1300 GeV. The second MC sample consists of the same sig-
nal events as those used in the first sample but embedded into
minimum-bias Pb+Pb data events. This minimum-bias sample was
combined with the signal from POWHEG+PYTHIA8 simulation at the
digitisation stage, and then reconstructed as a combined event. So-
called “truth jets” are defined by applying the anti-k; algorithm
with radius parameter R = 0.4 to stable particles in the MC event
generator’s output, defined as those with a proper lifetime greater
than 10 ps, but excluding muons and neutrinos, which do not leave
significant energy deposits in the calorimeter.

The level of overall event activity or centrality in Pb+Pb colli-
sions is characterised using the sum of the total transverse energy
in the forward calorimeter, ZE;C"“, at the electromagnetic energy
scale. The EE%Cal distribution is divided into percentiles of the total
inelastic cross-section for Pb+Pb collisions with 0-10% centrality
interval classifying the most central collisions. The minimum-bias
trigger and event selection are estimated to sample 84.5% of the
total inelastic cross-section, with an uncertainty of 1%. A Glauber
model analysis of the EEgcal distribution is used to evaluate (Taa)
and the number of nucleons participating in the collision, (Npart),
in each centrality interval [20,37,38]. The centrality intervals used
in this measurement are indicated in Table 1 along with their re-
spective calculations of (Npart) and (Taa).

Jets used in this analysis are reconstructed either in minimum-
bias events or in events selected by inclusive jet triggers in the
region of jet pr for which the trigger efficiencies are greater than
99%. Events are required to have a reconstructed vertex within
150 mm of the nominal interaction point along the beam axis.
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truth i MC samples. Both are for jets with |y| < 2.8. The

curves in the right panel show fits to Eq. (1) for Pb+Pb, and Pb+Pb in eight centrality intervals (0-10%, 10-20%, 20-30%, 30-40%, 40-50%, 50-60%, 60-70%, and 70-80%).

Only events taken during stable beam conditions and satisfying
detector and data-quality requirements, which include the ID and
calorimeters being in nominal operation, are considered. The av-
erage number of Pb+Pb inelastic interactions per bunch crossing
was i < 1.4. In Pb+Pb collisions, ;& was smaller than 1074

4. Jet reconstruction and analysis procedure

The reconstruction of jets in Pb+Pb and Pb+Pb collisions
closely follows the procedures described in Refs. [8,39] including
the underlying event (UE) subtraction procedure. A brief summary
is given here. Jets are reconstructed using the anti-k; algorithm,
which is implemented in the FastJet software package [40].
The jets are formed by clustering An x A¢ = 0.1 x /32 log-
ical “towers” that are constructed using energy deposits in en-
closed calorimeter cells. A background subtraction procedure based
on the UE average transverse energy density, p(n,¢), which is
calorimeter-layer dependent, was applied. The ¢ dependence is
due to global azimuthal correlations between the produced parti-
cles (typically referred to as “flow”). These correlations arise from
the hydrodynamic response of the medium to the geometry of the
initial collision. The flow contribution to the transverse energy of
towers can be described by the magnitude (v,) and phase (W) of
the Fourier components of the azimuthal angle distributions as:

d’Er  dEr
dndg — dn

(1 +2 Z Vpcos (n (¢ — \pn))>

where ¢ is the azimuthal angle of the tower and n indicates the or-
der of the flow harmonic. The modulation is dominated by v, and
v3 [41]. In this analysis, the second, third and fourth harmonics
are used to further improve the UE estimation. An iterative proce-
dure is used to remove the effects of jets on p and the v, values.
In the initial estimate of p and vy, these are estimated from the
transverse energy of calorimeter cells within || < 3.2. The back-
ground is subtracted from calorimeter-layer-dependent transverse
energies within towers associated with the jet to obtain the sub-
tracted jet kinematics. Then p and vy values are recalculated by
excluding towers within AR = 0.4 of seed jets. Seed jets are de-
fined as calorimeter jets with subtracted pr > 25 GeV, which are
reconstructed with radius parameter R = 0.2, and R = 0.4 track
jets with pt > 10 GeV, which are reconstructed from charged-

particle tracks recorded in the ID. These new p? and v, values are
then used to evaluate a new subtracted energy using the original
towers, and the new jet kinematic variables are calculated. A final
correction depending on rapidity and pr is applied to obtain the
correct hadronic energy scale for the reconstructed jets. Jets are
calibrated using an MC-based procedure which is the same as for
the “EM+]JES” jets used in the analysis of Pb+Pb collisions [42].
This calibration is followed by a “cross-calibration” which relates
the jet energy scale (JES) of Pb+Pb jets to the JES of Pb+Pb
jets [43].

The performance of the jet reconstruction was characterised by
evaluating the JES and jet energy resolution (JER), which are cor-
respondingly the mean and width of the jet response (p‘ec/p““th)
in the MC simulation. Here p* and p"”th are the transverse mo-
menta of the reconstructed jet and truth jet, respectively. The per-
formance of the jet reconstruction in the simulation is summarised
in Fig. 1, where the left and right panels show the JES and JER, re-
spectively. The JES is shown as a function of p“”th in the left panel
of Fig. 1. It deviates from unity by less than 1% in the kinematic
region of the measurement. No rapidity dependence of the JES is
observed. A weak centrality dependence of the JES is corrected by
the unfolding procedure described later in this section. To express
the different contributions, the JER is parameterised by a quadra-
ture sum of three terms,

(1)

o( P > RS
h )]~ h
p_tl_rut pgrruth p_trrut

The first parameter (a) and third parameter (c) in Eq. (1) are sen-
sitive to the detector response and are expected to be independent
of centrality, while the second parameter (b) is centrality depen-
dent and it is driven by UE fluctuations uncorrelated with the
jet pr. The JER for different centrality intervals and for Pb+Pb col-
lisions is shown in the right panel of Fig. 1. Fits using Eq. (1) are
indicated with dashed lines. The JER is largest in the more central
collisions, as expected from stronger fluctuations of the transverse
energy in the UE. The JER is about 16% for pt = 100 GeV in cen-
tral collisions and decreases with increasing pt to 5-6% for jets
with pt greater than 500 GeV. The parameters a and c in the fit
are found to be independent of centrality while the values of b are
consistent with the expected magnitude of UE fluctuations. The fit

2 The average p is ~270 GeV and ~10 GeV in 0-10% and 70-80% Pb+Pb colli-
sions, respectively.
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Table 2
The fitted parameters a, b, and ¢ (Eq. (1)) for the most central and most peripheral
collisions.

Centrality range a [GeV'/2] b [GeV] c
70-80% 0.75 = 0.01 25 +£02 0.050 +£ 0.001
0-10% 0.76 + 0.02 144 + 01 0.049 + 0.001

parameters are listed in Table 2 for the most central and most pe-
ripheral Pb+Pb collisions.

The jet cross-section in Pb+Pb collisions, jet yields and Raa
in Pb+Pb collisions are measured in the following absolute ra-
pidity ranges: 0-0.3, 0.3-0.8, 0.8-1.2, 1.2-1.6, 1.6-2.1, 2.1-2.8, and
two inclusive intervals, 0-2.1 and 0-2.8. The interval of 0-2.1
is used to make comparisons with the measurement of Raa at
J/SNN = 2.76 TeV [9]. The more forward region (|y| > 2.8) is not
included in the study due to deterioration of the jet reconstruction
performance. In Pb+Pb peripheral and Pb+Pb collisions, results
are reported for pr > 50 GeV and pr > 40 GeV, respectively. In
mid-central collisions and central collisions, results are reported
for pr > 80 GeV and pt > 100 GeV, respectively. A higher value
of the minimum jet pr in more central Pb+Pb collisions, com-
pared to peripheral or Pb+Pb collisions, was used to reduce the
contribution of jets reconstructed from fluctuations of the underly-
ing events (“UE jets”). These UE jets were removed by considering
the charged-particle tracks with pi* > 4 GeV within AR = 0.4
of the jet and requiring a minimum value of Zp%rk. A threshold
of Zp}rk =8 GeV is used throughout the analysis. Thresholds of
Zp%‘k ranging from 5 to 12 GeV were found to change Raa by
much less than 1% in the considered kinematic region.

The jet pt spectra are unfolded using the iterative Bayesian un-
folding method [44] from the RooUnfold software package [45],
which accounts for bin migration due to the jet energy response.
The response matrices used as the input to the unfolding are built
from generator-level (truth) jets that are matched to reconstructed
jets in the simulation. The unmatched truth jets are incorporated
as an inefficiency corrected for after the unfolding. In the first
pr bin reported in this analysis (100-126 GeV and 50-63 GeV
for 0-10% and 70-80% Pb+Pb collisions, respectively), the rela-
tive number of unmatched truth jets is 12% and 32% in 0-10% and
70-80% collisions, respectively. The response matrices were gen-
erated separately for Pb+Pb and Pb-+Pb collisions and for each
rapidity and centrality interval. To better represent the data, the
response was reweighted along the truth-jet axis by a data-to-MC
ratio. The number of iterations in the unfolding was chosen so
that the result is stable when changing the number of iterations
by one. Three iterations were used for Pb+Pb collisions while four
iterations were used in all the centrality and rapidity intervals for
Pb+Pb collisions. The unfolding procedure was tested by perform-
ing a refolding, where the unfolded results were convolved with
the response matrix, and compared with the input spectra. The re-
folded spectra were found to deviate from input spectra by less
then 5% in all centrality classes.

5. Systematic uncertainties

The following sources of systematic uncertainties were iden-
tified for this analysis: uncertainties of the jet energy scale and
jet energy resolution, uncertainty due to the unfolding procedure,
uncertainty of the determination of the mean nuclear thickness
function (Taa) values, and the uncertainty of the Pb+Pb luminos-
ity. Systematic uncertainties of the measured distributions can be
categorised into two classes: bin-wise correlated uncertainties and
uncertainties that affect the overall normalisation of distributions.
Uncertainties due to the determination of (Tas) and Pb+Pb lumi-

nosity belong to the second class, all other uncertainties belong to
the first.

The strategy for determining the JES uncertainty for Pb+Pb
jets is described in Ref. [43]. The JES uncertainty has two compo-
nents: the centrality-dependent component, applicable in Pb+Pb
collisions, and a centrality-independent component, applicable in
both the Pb+Pb and Pb+Pb collisions. The centrality-independent
JES uncertainty was derived by using in situ studies of calorimeter
response [46], and studies of the relative energy scale difference
between the jet reconstruction procedure in Pb+Pb collisions [43]
and Pb+Pb collisions [42]. The centrality-dependent component
of the JES uncertainty accounts for possible differences in the
calorimeter response due to jets in the Pb+Pb environment. It
was evaluated by measuring the ratio of pt of calorimeter jets to
Zp{.”‘ of track jets. This ratio is called (rgy). The data-to-MC ra-
tio of (ryk) was evaluated and then compared between Pb+Pb and
Pb+Pb collisions, where it shows a small shift. This shift may be
attributed to a modification of the jet fragmentation pattern in the
Pb+Pb environment which may lead to a change of the calorimeter
response of jets reconstructed in the Pb+Pb collisions compared
to jets reconstructed in Pb+Pb collisions. Consequently, this shift
represents a typical difference in the JES between Pb+Pb collisions
and Pb+Pb collisions. It is 0.5% in the most central collisions and
decreases linearly to be 0% beyond the 50-60% centrality interval.
This difference is taken to be the Pb+Pb-specific component of the
JES uncertainty.

Each component that contributes to the JES uncertainty was
varied separately and a modified response matrix was obtained
by shifting the reconstructed jet pr. These response matrices were
then used to unfold the data. The difference between the data un-
folded with the new response matrix and the nominal response
matrix is used to determine the systematic uncertainty.

Similarly to the JES uncertainty, the systematic uncertainty due
to the JER was obtained by performing the unfolding with modified
response matrices. The modified response matrices were generated
for both the Pb+Pb and Pb+Pb collisions with the JER uncertainty
which was quantified in Pb+Pb collisions using data-driven tech-
niques [47]. An additional uncertainty specific for the Pb+Pb en-
vironment is used, which is the uncertainty related to the impact
of fluctuations of the UE on the JER. Both of these components are
used to smear the reconstructed jet momentum in the MC events
and regenerate the response matrices.

The results are obtained using the unfolding procedure with re-
sponse matrices which were reweighted along the reconstructed
jet axis to better characterise the data, as described in Section 4.
The difference between the nominal results and results obtained
with response matrices without the reweighting is used to calcu-
late the uncertainty due to the unfolding procedure.

The uncertainty of the mean nuclear thickness function arises
from geometric modelling uncertainties (e.g. nucleon-nucleon in-
elastic cross-section, Woods-Saxon parameterisation of the nu-
cleon distribution [20]) and the uncertainty of the fraction of se-
lected inelastic Pb+Pb collisions. The values of these uncertainties
are presented in Table 1.

The integrated luminosity determined for 2015 Pb+Pb data was
calibrated using data from dedicated beam separation scans. The
relative systematic uncertainty is 1.9%, determined using proce-
dures described in Ref. [48].

The relative, pr-dependent systematic uncertainties are sum-
marised in Fig. 2 for the Pb+Pb jet cross-section on the left, the
Pb+Pb jet yields in the middle and the Raa values on the right.
In the Pb+Pb cross-section the largest uncertainty is from the
JES, ranging from 7% to 15% depending on the pr of the jet. The
JES is also the largest contribution to the uncertainty in central
Pb+Pb collisions where the results are reported only for jets with
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yield in Pb4-Pb collisions normalised by (Taa) as a function of jet pr in different centrality intervals scaled by successive powers of 10%. The solid lines represent central
values of Pb+Pb cross-section for the same rapidity selection scaled by the same factors to allow a comparison with the Pb+Pb data at different centralities. The error bars

represent statistical uncertainties, shaded boxes represent systematic uncertainties.

pr > 100 GeV and where it is as large as 10%. The uncertain-
ties of the Raa values are smaller than those of the cross-sections
and yields because the correlated systematic uncertainties that are
common to Pb+Pb and Pb+Pb collisions mostly cancel out in the
ratio. The largest contribution to the uncertainty of the Raa values
is the Pb+Pb component of the JES uncertainty, which reaches 3%
at the highest jet pr.

6. Results

The inclusive jet cross-section obtained from Pb+Pb collision
data is shown in the left panel of Fig. 3. The cross-section is re-
ported for six intervals of rapidity spanning the range |y| < 2.8
and for the whole |y| < 2.8 interval. The error bars in the figure
represent statistical uncertainties while the shaded boxes represent
systematic uncertainties. The systematic uncertainties also include
the uncertainty due to the luminosity, which is correlated for all
the data points.

The right panel of Fig. 3 shows the differential per-event Pb+Pb
jet yields scaled by 1/(Taa), which are presented for eight cen-
trality intervals for jets with |y| < 2.8. The solid lines represent

the Pb+Pb jet cross-sections for the same rapidity interval; the jet
yields fall below these lines, showing the jet suppression.

The nuclear modification factor evaluated as a function of jet
pr is presented in the two panels of Fig. 4, each showing four
centrality selections indicated in the legend. The Raa value is ob-
tained for jets with |y| < 2.8 and with pr in up to 15 intervals
between 50 and 1000 GeV, depending on centrality. The higher pt
intervals are combined in the cross-section and yields before eval-
uating Raa because of the large statistical uncertainties at high pr.
A clear suppression of jet production in central Pb+Pb collisions
relative to Pb+Pb collisions is observed. In the 0-10% centrality
interval, Rpaa is approximately 0.45 at pr = 100 GeV, and is ob-
served to grow slowly (quenching decreases) with increasing jet
pt, reaching a value of 0.6 for jets with pr around 800 GeV.

The Raa value observed for jets with |y| < 2.1 is compared
with the previous measurement at ,/Syy = 2.76 TeV [9]. This is
shown for the 0-10% and 30-40% centrality intervals in Fig. 5. The
two measurements are observed to agree within their uncertainties
in the overlapping pr region. The apparent reduction of the size of
systematic uncertainties in the new measurement is driven by col-
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Fig. 4. Upper panel: The Raa values as a function of jet pr for jets with |y| < 2.8
for four centrality intervals (0-10%, 20-30%, 40-50%, 60-70%). Bottom panel: The
Raa values as a function of jet pr for jets with |y| < 2.8 for four other centrality
intervals (10-20%, 30-40%, 50-60%, 70-80%). The error bars represent statistical un-
certainties, the shaded boxes around the data points represent bin-wise correlated
systematic uncertainties. The coloured and grey shaded boxes at Rap = 1 represent
fractional (Taa) and Pb+Pb luminosity uncertainties, respectively, which both affect
the overall normalisation of the result. The horizontal size of error boxes represents
the width of the pr interval.
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2.76 TeV Pb+Pb collisions [9]. The error bars represent statistical uncertainties,
the shaded boxes around the data points represent bin-wise correlated systematic
uncertainties. For ./syy = 2.76 TeV measurement, the open boxes represent uncor-
related systematic uncertainties. The coloured shaded boxes at Rap = 1 represent
the combined fractional (Taa) and Pb+Pb luminosity uncertainty. The horizontal
size of error boxes represents the width of the pr interval.
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Fig. 6. The Rpa values for jets with 100 < pr < 126 GeV and 200 < pt < 251 GeV
for rapidity |y| < 2.8 evaluated as a function of (Npart). For legibility, the (Npart)
values are shifted by —7 and +7 for 100 < pt < 126 GeV selection and 200 < pt <
251 GeV selection, respectively. The error bars represent statistical uncertainties.
The heights of the open boxes represent systematic uncertainties. The widths of the
open boxes represent the uncertainties in the determination of (Npar). The grey
shaded box at unity represents the uncertainty of the Pb+Pb integrated luminosity.

lecting the Pb+Pb and Pb+Pb data during the same LHC running
period.

The (Npart) dependence of Raa is shown in Fig. 6 for jets with
|yl < 2.8 and for two representative pt intervals: 100 < pt <
126 GeV and 200 < pt < 251 GeV. The open boxes around the data
points represent the bin-wise correlated systematic uncertainties
which include also the uncertainty of (Taa). A smooth evolution of
Raa is observed, with the largest values of Raa in the most periph-
eral collisions and the smallest values of Raa in the most central
collisions. The magnitude of Raa is observed to be larger for jets in
higher pr interval for (Npart) 2 50. For (Npare) < 50 the difference
is not statistically significant.

The rapidity dependence of Raa is shown in Fig. 7 as the ratio
of Raa to its value measured for |y| < 0.3. This representation was
chosen because all systematic uncertainties largely cancel out in
the ratio. The distributions are reported in intervals of increasing
values of pr in the four panels. The ratio is constant in rapidity at
lower prt. As the pt increases, the value of Raa starts to decrease
with rapidity and the decrease is most significant in the highest
pr interval of 316-562 GeV. In this pr interval, the value of the
Raa ratio is 0.83 £ 0.07 and 0.68 4+ 0.13 in the rapidity regions
of |y| =1.2-2.8 and |y| = 1.6-2.8, respectively. This decrease was
predicted in Ref. [49] as a consequence of a steepening of jet pr
spectra in the forward rapidity region.

A comparison of the Raa values with theoretical predictions is
provided in Fig. 8. The Raa values obtained as a function of jet pr
are compared with five predictions for jets with |y| < 2.1 where
theory calculations are available: the Linear Boltzmann Transport
model (LBT) [50], three calculations using the Soft Collinear Effec-
tive Theory approach (SCETg) [51-54], and the Effective Quenching
model (EQ) [49]. The LBT model combines a kinetic description of
parton propagation with a hydrodynamic description of the un-
derlying medium evolution while keeping track of thermal recoil
partons from each scattering and their further propagation in the
medium [50]. The SCET¢ approach uses semi-inclusive jet func-
tions [55] evaluated with in-medium parton splittings computed
using soft collinear effective theory. It provides three predictions
with two different settings of the strong coupling constant associ-
ated with the jet-medium interaction (g = 2.2 and g = 1.8) and
the calculation at NLO accuracy. The EQ model incorporates en-
ergy loss effects through two downward shifts in the pr spectrum
based on a semi-empirical parameterisation of jet quenching ef-
fects. One shift is applied to quark-initiated jets and a larger shift



114 The ATLAS Collaboration / Physics Letters B 790 (2019) 108-128

8 12 T T T T { T T T T { T T T T { T T T T { T T T T I T
v ATLAS 0-10%, 158 <p_<200 GeV |
>

= [ ]

$ A e R e SRR L B
x

>

208l i
08

=0

6111111111111111111111111|1
2

L O L B I L B B S B B B L B B

0-10 %, 200<pT<251 GeV |

0.81 *

qg111111111111111111111111|1
e L L L L L L L B LB B B B B

0-10 %, 251<pT<316GeV,

0.8 B

qg111111111111111111111111|1
2 L L B B N B B B L B B S ) BN B BN B B

0-10 %, 316<pT<562GeV,

0.8~ 2015 Pb+Pb data, 0.49 nb™ N

[ 2015 pp data, 25 pb™'
0 0.5 1 1.5 2 2.5

2

Fig. 7. The ratio of Raa to the Raa value for |y| < 0.3 as a function of |y| for jets in
four pr intervals (158 < pr <200 GeV, 200 < pt < 251 GeV, 251 < pt < 316 GeV,
and 316 < pt < 562 GeV) shown for the 10% most central Pb+Pb collisions. The er-
ror bars represent statistical uncertainties, the shaded boxes around the data points
represent systematic uncertainties.

to gluon-initiated jets. The EQ model requires experimental data in
order to extract the parameters of the energy loss. The same pa-
rameters of the jet energy loss as for /sy = 2.76 TeV data [49]
are used here. All the models are capable of reproducing the gen-
eral trends seen in the data. For pt < 250 GeV, the data agrees
best with the SCET; model which uses g =2.2. For pt 2 250 GeV
the LBT model describes the data better. Disagreement between
the data and the EQ model using the parameters of the jet energy
loss from 2.76 TeV Pb+Pb data can be explained as a consequence
of stronger quenching in 5.02 TeV Pb+Pb collisions.

7. Summary

Measurements of inclusive jet yields in Pb+Pb collisions, jet
cross-sections in Pb+Pb collisions, and the jet nuclear modifica-
tion factor, Raa, are performed using 0.49 nb~! of Pb+Pb collision
data and 25 pb~! of Pb+Pb collision data collected at the same
nucleon-nucleon centre-of-mass energy of 5.02 TeV by the ATLAS
detector at the LHC. Jets, reconstructed using the anti-k; algorithm
with radius parameter R = 0.4, are measured over the transverse
momentum range of 40-1000 GeV in six rapidity intervals covering
|y| < 2.8. The jet yields measured in Pb+Pb collisions are sup-
pressed relative to the jet cross-section measured in Pb+Pb col-

ATLAS
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Fig. 8. The Raa values as a function of jet pr for the 0-10% centrality interval and
|y| < 2.1 compared with theory predictions. The uncertainties of the data points
are the combined statistical and systematic uncertainties. The vertical width of the
distribution shown for the LBT and SCETg NLO models represents the uncertainty
of the theory prediction.

lisions scaled by the mean nuclear thickness function, (Taa). The
magnitude of Raa increases with increasing jet transverse momen-
tum, reaching a value of approximately 0.6 at 1 TeV in the most
central collisions. The magnitude of Raa also increases towards pe-
ripheral collisions. The Raa value is independent of rapidity at low
jet pr. For jets with pt = 300 GeV a sign of a decrease with ra-
pidity is observed. The magnitude of the jet suppression as well
as its evolution with jet pt and rapidity are consistent with those
reported in a similar measurement performed with Pb+Pb colli-
sions at /sy =2.76 TeV in the kinematic region where the two
measurements overlap.

The results presented here extend previous measurements to
significantly higher transverse momenta and larger rapidities of
jets and improve on the precision of the measurement. This allows
precise and detailed comparisons of the data to theoretical models
of jet quenching. These new results can also be used as additional
input to understand the centre-of-mass energy dependence of jet
suppression.
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