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Higgs boson production cross-sections in proton–proton collisions are measured in the H→WW ∗→eνμν
decay channel. The proton–proton collision data were produced at the Large Hadron Collider at a centre-
of-mass energy of 13 TeV and recorded by the ATLAS detector in 2015 and 2016, corresponding to an 
integrated luminosity of 36.1 fb−1. The product of the H→WW ∗ branching fraction times the gluon–
gluon fusion and vector-boson fusion cross-sections are measured to be 11.4+1.2

−1.1(stat.)
+1.8
−1.7(syst.) pb and 

0.50+0.24
−0.22(stat.) ± 0.17(syst.) pb, respectively, in agreement with Standard Model predictions.
© 2019 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

This Letter presents a measurement of the inclusive Higgs bo-
son production cross-sections via gluon–gluon fusion (ggF) and 
vector-boson fusion (VBF) through the decay H→WW ∗→ eνμν
using 36.1 fb−1 of proton–proton collisions at a centre-of-mass 
energy of 13 TeV recorded by the ATLAS detector. Higgs boson 
couplings have been studied in this channel with Run-1 data by 
the ATLAS [1] and CMS [2] experiments and recently with Run-2 
data by the CMS experiment [3]. The H→WW ∗ decay channel 
has the second-largest branching fraction and allowed the most 
precise Higgs boson cross-section measurements in Run-1 [4]. The 
measured cross-section of the ggF production process probes the 
Higgs boson couplings to gluons and heavy quarks, while the VBF 
process directly probes the couplings to W and Z bosons. The 
leading-order diagrams for the ggF and VBF production processes 
are depicted in Fig. 1.

2. ATLAS detector

ATLAS is a particle detector designed to achieve a nearly full 
coverage in solid angle1 [5,6]. It consists of an inner tracking 
detector surrounded by a thin superconducting solenoid, electro-

� E-mail address: atlas .publications @cern .ch.
1 ATLAS uses a right-handed coordinate system with its origin at the nominal 

interaction point (IP) in the centre of the detector and the z-axis along the beam 
pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis 
points upward. Cylindrical coordinates (r, φ) are used in the transverse plane, φ
being the azimuthal angle around the z-axis. The pseudorapidity is defined in terms 
of the polar angle θ as η = − ln tan(θ/2). The distance in (η, φ) coordinates, �R =

magnetic and hadronic calorimeters, and a muon spectrometer in-
corporating three large superconducting air-core toroidal magnets. 
The inner tracking detector (ID) is located in a 2 T magnetic field 
and is designed to measure charged-particle trajectories up to a 
pseudorapidity of |η| = 2.5. Surrounding the ID are electromag-

netic and hadronic calorimeters, which use liquid argon (LAr) and 
lead absorber for the electromagnetic central and endcap calorime-

ters (|η| < 3.2), copper absorber for the hadronic endcap calorime-

ter (1.5 < |η| < 3.2), and scintillator-tile active material with steel 
absorber for the central (|η| < 1.7) hadronic calorimeter. The solid 
angle coverage is extended to |η| = 4.9 with forward copper/LAr 
and tungsten/LAr calorimeter modules. The muon spectrometer 
comprises separate trigger chambers within the range |η| < 2.4

and high-precision tracking chambers within the range |η| < 2.7, 
measuring the deflection of muons in a magnetic field generated 
by the three superconducting toroidal magnets. A two-level trigger 
system is used to select events [7].

3. Signal and background Monte Carlo predictions

Higgs boson production via ggF was simulated at next-to-next-
to-leading-order (NNLO) accuracy in QCD using the Powheg-Box
v2 NNLOPS program [8], with the PDF4LHC15 NNLO set of par-
ton distribution functions (PDF) [9]. The simulation achieves NNLO 
accuracy for arbitrary inclusive gg → H observables by reweight-

ing the Higgs boson rapidity spectrum in Hj-MiNLO [10] to that of 
HNNLO [11]. The transverse momentum spectrum of the Higgs bo-

√
�φ2 + �η2, is also used to define cone sizes. Transverse momentum and energy 

are defined as pT = p sin θ and ET = E sin θ , respectively.
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Fig. 1. Diagrams for the leading production modes (ggF and VBF), where the V V H and qqH coupling vertices are marked with shaded and empty circles, respectively. The V
represents a W or Z vector boson.

Table 1
Overview of simulation tools used to generate signal and background processes, and to model the UEPS. The PDF sets are also summarised. Alternative event generators and 
configurations used to estimate systematic uncertainties are shown in parentheses.
Process Matrix element (alternative) PDF set UEPS model (alternative model) Prediction order for total cross-section

ggF H Powheg-Box v2 PDF4LHC15 NNLO [9] Pythia 8 [14] N3LO QCD + NLO EW [24–28]

NNLOPS [8,10,16]

(MG5_aMC@NLO [47,48]) (Herwig 7 [49])

VBF H Powheg-Box v2 PDF4LHC15 NLO Pythia 8 NNLO QCD + NLO EW [24,29–31]

(Herwig 7)

V H Powheg-Box v2 [50] PDF4LHC15 NLO Pythia 8 NNLO QCD + NLO EW [51–53]

qq → WW Sherpa 2.2.2 [32,33] NNPDF3.0NNLO [34] Sherpa 2.2.2 [35,36] NLO [37]

(Powheg-Box v2, (Herwig++ [49])

MG5_aMC@NLO)
gg → WW Sherpa 2.1.1 [37] CT10 [54] Sherpa 2.1 NLO [38]

W Z/V γ ∗/Z Z Sherpa 2.1 CT10 Sherpa 2.1 NLO [37]

V γ Sherpa 2.2.2 NNPDF3.0NNLO Sherpa 2.2.2 NLO [37]

(MG5_aMC@NLO) (CSS variation [35,55])

tt̄ Powheg-Box v2 [56] NNPDF3.0NLO Pythia 8 NNLO + NNLL [57]

(Sherpa 2.2.1) (Herwig 7)

Wt Powheg-Box v1 [58] CT10 [54] Pythia 6.428 [59] NLO [58]

(MG5_aMC@NLO) (Herwig++)

Z/γ ∗ Sherpa 2.2.1 NNPDF3.0NNLO Sherpa 2.2.1 NNLO [60,61]

son obtained with this sample was found to be compatible within 
uncertainties with the resummed NNLO+NNLL HRes2.3 calcula-
tion [12,13]. The parton-level events produced by the Powheg-Box
v2 NNLOPS program were passed to Pythia 8 [14] to provide par-
ton showering, hadronisation and the underlying event, using the 
AZNLO set of data-tuned parameters [15].

Higgs boson production via VBF was simulated at next-to-
leading-order (NLO) accuracy in QCD using Powheg-Box v2 [8,

10,16,17] with the PDF4LHC15 NLO PDF set [9]. The parton-level 
events were passed to Pythia 8 [14] with the same parameters as 
for ggF.

The mass of the Higgs boson was set to 125 GeV, com-

patible with the experimental measurement [18–20]. The cor-
responding Standard Model (SM) branching fraction BH→ WW ∗
is calculated using HDecay v6.50 [21,22] to be 0.214 [23]. The 
H→WW ∗→	ν	ν decay, where 	 = e or μ, always includes the 
small contribution from W → τν → 	ννν decays. Other produc-
tion and decay modes of the Higgs boson are either fixed to SM 
predictions (V H production and H→ττ decay) or neglected (tt̄H
and bb̄H associated production).

The ggF production cross-section was calculated with next-to-
next-to-next-to-leading-order accuracy in QCD and includes NLO 
electroweak (EW) corrections [24–28]. The NLO QCD and EW cal-
culations are used with approximate NNLO QCD corrections for the 
VBF production cross-section [24,29–31].

The WW background was generated separately for the qq →
WW and gg → WW production mechanisms. The qq → WW

production process was generated using Sherpa 2.2.2 [32,33] inter-

faced with the NNPDF3.0 NNLO PDF set [34] and the Sherpa par-

ton shower, hadronisation and underlying event simulation (UEPS) 
model [35,36]. The matrix elements were calculated for up to one 

additional parton at NLO and up to three additional partons at LO 
precision. The loop-induced gg → WW process was simulated by
Sherpa 2.1.1 with zero or one additional jet [37]. The sample is 
normalised to the NLO gg → WW cross-section [38]. Interferences 
with direct WW production have a negligible impact after event 
selection cuts have been applied and are, therefore, not considered 
in this analysis [39].

While NNLO cross-sections are available for diboson production 
processes [40–42], the Sherpa MEPS@NLO prescription [36] is used 
in this analysis. This procedure already captures the majority of the 
NNLO shape corrections.

The MC generators, PDFs, and programmes used for the UEPS 
are summarised in Table 1. The order of the perturbative predic-
tion for each sample is also reported.

The generated events were passed through a Geant 4 [43] sim-

ulation of the ATLAS detector [44] and reconstructed with the 
same analysis software as used for the data. Additional proton–
proton interactions (pile-up) are included in the simulation for all 
generated events such that the distributions of the average num-

ber of interactions per bunch crossing reproduces that observed in 
the data. The inelastic proton–proton collisions were produced us-
ing Pythia 8 with the A2 set of data-tuned parameters [45] and 
the MSTW2008LO PDF set [46]. Correction factors are applied to 
account for small differences observed between data and simu-

lation in electrons, muons, and jets identification efficiencies and 
energy/momentum scales and resolutions.

4. Event selection and categorisations

Events are triggered using single-lepton triggers and a dilep-
ton e–μ trigger. The transverse momentum threshold ranges be-
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Table 2
Event selection criteria used to define the signal regions in the H→WW ∗→ eνμν analysis. For the Njet ≥2 VBF signal region, the 
input variables used for the boosted decision tree (BDT) training are also reported.

Category Njet,(pT>30 GeV) = 0 ggF Njet,(pT>30 GeV) = 1 ggF Njet,(pT>30 GeV) ≥ 2 VBF

Preselection

Two isolated, different-flavour leptons (	= e,μ) with opposite charge

pleadT >22 GeV, psublead
T >15 GeV

m		 >10 GeV

pmiss
T >20 GeV

Background rejection

Nb-jet,(pT>20 GeV) = 0

�φ(		, Emiss
T ) > π/2 max

(
m	

T

)
>50 GeV

p		
T >30 GeV mττ <mZ − 25 GeV

H→WW ∗→ eνμν
topology

m		 <55 GeV central jet veto

�φ		 <1.8 outside lepton veto

Discriminant variable mT BDT

BDT input variables mjj , �y jj , m		 , �φ		 , mT,
∑

	 C	 ,
∑

	, j m	 j , p
tot
T

tween 24 GeV and 26 GeV for single-electron triggers and between 
20 GeV and 26 GeV for single-muon triggers, depending on the 
run period [7]. The e–μ trigger requires a minimum pT threshold 
of 17 GeV for electrons and 14 GeV for muons.

Electron candidates are reconstructed from energy clusters in 
the electromagnetic calorimeter with an associated well-recon-

structed track [62,63]. Electrons are required to satisfy |η| < 2.47, 
excluding the transition region between the barrel and endcap 
calorimeters, 1.37 < |η| < 1.52. Muon candidates are selected from 
tracks reconstructed in the ID matched to tracks reconstructed in 
the muon spectrometer [64] and are required to satisfy |η| < 2.5. 
To reject particles misidentified as leptons, several identification 
requirements as well as calorimeter and track isolation criteria [64,

65] are applied. The electron identification criteria applied pro-
vide an efficiency in the range 88–94% depending on electron pT

and η. For muons, high efficiency, close to 95%, is observed over 
the full instrumented η range. The final lepton-selection criteria 
require two different-flavour opposite-sign leptons, the higher-pT

(leading) lepton with pT > 22 GeV and the subleading lepton with 
pT > 15 GeV. At least one of the leptons must correspond to a lep-
ton that triggered the recording of the event. When the e–μ trig-

ger is solely responsible for the recording of the event, each lepton 
must be matched to one of the trigger objects. The trigger match-

ing requires the offline pT of the matching object to be higher than 
the trigger level threshold by at least 1 GeV. Jets are reconstructed 
using the anti-kt algorithm [66] with a radius parameter R = 0.4. 
The four-momenta of jets are corrected for the non-compensating 
response of calorimeter, signal losses due to noise threshold ef-
fects, energy lost in non-instrumented regions, and contributions 
from pile-up [67]. Jets are required to have pT > 20 GeV and 
|η| < 4.5. A multivariate selection that reduces contamination from 
pile-up [68] is applied to jets with pT < 60 GeV and |η| < 2.4, util-
ising calorimeter and tracking information to separate hard-scatter 
jets from pile-up jets. For jets with pT < 50 GeV and |η| > 2.5, 
jet shapes and topological jet correlations in pile-up interactions 
are exploited to reduce contamination. Jets with pT > 20 GeV and 
|η| < 2.5 containing b-hadrons (b-jets) are identified using a multi-

variate technique having as input the track impact parameters and 
information from secondary vertices. The adopted working point 
provides a nominal 3% light-flavour (u-, d-, s-quark and gluon) 
misidentification rate and a 32% c-jet misidentification rate with 
an average 85% b-jet tagging efficiency, as estimated from simu-

lated tt̄ events [69]. Ambiguities from overlapping reconstructed 
jet and lepton candidates are resolved as follows. If a reconstructed 
muon shares an ID track with a reconstructed electron, the elec-
tron is removed. Reconstructed jets geometrically overlapping in 
a cone of radius �R = 0.2 with electrons or muons are also re-
moved. Electrons and muons, with transverse momentum pT, are 

Fig. 2. Jet multiplicity distribution after applying the preselection criteria. The 
shaded band represents the systematic uncertainty and accounts for experimental 
uncertainties only.

removed if they are within �R = min(0.4, 0.04 + 10 GeV/pT) of 
the axis of any surviving jet. The missing transverse momentum 
Emiss
T (with magnitude Emiss

T ) is defined as the negative vector 
sum of the pT of all the selected leptons and jets, and including 
reconstructed tracks not associated with these objects, and con-
sistent with originating from the primary pp collision [70]. A sec-

ond definition of missing transverse momentum (in this case de-
noted pmiss

T ) uses the tracks associated with the jets instead of the 
calorimeter-measured jets. It was found during the optimisation 
that pmiss

T performs better in terms of background rejection [70].

Events are classified into one of three categories based on the 
number of jets with pT > 30 GeV: events with zero jets and events 
with exactly one jet target the ggF production mode (Njet =0

and Njet =1 ggF categories), and events with at least two jets 
target the VBF production mode (Njet ≥2 VBF category). Fig. 2

shows the jet multiplicity distribution after applying the prese-
lection criteria defined in Table 2. The different background com-

positions as a function of jet multiplicity motivate the division of 
the data sample into the various Njet categories and the defini-
tion of a signal region in each jet multiplicity bin. Details of the 
background estimation are provided in Section 5. To reject back-
ground from top-quark production, events containing b-jets with 
pT > 20 GeV (Nb-jet,(pT>20 GeV)) are vetoed. The full event selec-
tion is summarised in Table 2, where �φ(		, Emiss

T ) is defined 
as the azimuthal angle between Emiss

T and the dilepton system, 
p		
T is the transverse momentum of the dilepton system, m		 is 
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Fig. 3. Post-fit mT distributions with the signal and the background modelled contributions in the (a) Njet =0 and (b) Njet =1 signal regions. The hatched band shows the 
total uncertainty of the signal and background modelled contributions.

Fig. 4. Post-fit mjj (a) and �y jj (b) distributions with signal and background modelled contributions in the Njet ≥2 VBF signal region. The dashed line shows the VBF signal 
scaled by a factor of 30. The hatched band shows the total uncertainty of the signal and background modelled contributions.

Table 3
Event selection criteria used to define the control regions. Every control region selection starts from 
the selection labelled “Preselection” in Table 2. Nb-jet,(20 GeV<pT<30 GeV) represents the number of b-jets 
with 20 GeV < pT < 30 GeV.

CR Njet,(pT>30 GeV) = 0 ggF Njet,(pT>30 GeV) = 1 ggF Njet,(pT>30 GeV) ≥ 2 VBF

WW

55<m		 <110 GeV m		 >80 GeV

�φ		 <2.6 |mττ −mZ |>25 GeV

Nb-jet,(pT>20 GeV) = 0

max
(
m	

T

)
>50 GeV

tt̄/Wt

Nb-jet,(20 GeV<pT<30 GeV) > 0 Nb-jet,(pT>30 GeV) = 1
Nb-jet,(pT>20 GeV) = 1

Nb-jet,(20 GeV<pT<30 GeV) = 0

�φ(		, Emiss
T ) > π/2 max

(
m	

T

)
>50 GeV central jet veto

p		
T > 30 GeV mττ <mZ − 25 GeV

�φ		 <2.8 outside lepton veto

Z/γ ∗
Nb-jet,(pT>20 GeV) = 0

m		 < 80 GeV

no pmiss
T requirement central jet veto

max
(
m	

T

)
>50 GeV outside lepton veto

�φ		 > 2.8 mττ >mZ − 25 GeV |mττ −mZ | ≤ 25 GeV
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the invariant mass of the two leptons, �φ		 is the azimuthal 
angle between the two leptons, and max

(
m	

T

)
is the larger of 

m
	i
T =

√
2 p

	i
T · Emiss

T ·
(
1− cos�φ

(
	i, E

miss
T

))
, where 	i can be ei-

ther the leading or the subleading lepton. The “outside lepton veto” 
requires the two leptons to reside within the rapidity gap spanned 
by the two leading jets, and the “central jet veto” rejects events 
with additional jets with pT > 20 GeV in the rapidity gap between 
the two leading jets. In the Njet =1 and Njet ≥2 categories, the 
invariant mass of the τ -lepton pair (mττ ), calculated using the 
collinear approximation [71], is used to veto background from Z →
ττ production. Signal regions (SRs) are defined in each Njet cate-

gory after applying all selection criteria. For both the Njet =0 and 
Njet =1 ggF SRs, eight regions, later used for the fit, are defined by 
subdividing in m		 at m		 < 30 GeV and m		 ≥ 30 GeV, in pT of 
the subleading lepton at psublead

T < 20 GeV and psublead
T ≥ 20 GeV, 

and by the flavour of the subleading lepton. For the categories 
with zero jets and with exactly one jet, the discriminating vari-
able between signal and SM background processes is the dilepton 

transverse mass, defined as mT =
√(

E		
T + Emiss

T

)2 −
∣∣∣p		

T + Emiss
T

∣∣∣2

where E		
T =

√
|p		

T |2 +m2
		 and p		

T is the vector sum of the lep-
ton transverse momenta. The discriminating variable mT is used in 
the ggF SRs, with eight bins for the Njet =0 and six bins for the 
Njet =1 regions. The bin boundaries are chosen such that approxi-
mately the same number of signal events is expected in each bin. 
The mT distributions for the Njet =0 and Njet =1 SRs are shown 
in Fig. 3. All figures in this Letter, except Fig. 2, use signal and 
background normalisations as fitted by the final statistical analysis 
of all signal and control regions, including pulls of statistical and 
systematic uncertainty parameters (post-fit). For the Njet ≥2 VBF 
selection, a boosted decision tree (BDT) [72] is used to enhance 
discrimination power between the VBF signal and backgrounds, 
including the ggF process. Kinematic variables of the two lead-
ing jets ( j) and the two leading leptons (	) are used as inputs 
to the BDT: the invariant masses (mjj , m		), the difference be-
tween the two jet rapidities (�y jj), and the difference between 
the azimuthal angles of the two leptons (�φ		). Other variables 
used in the BDT training are: mT, the lepton η-centrality (

∑
	 C	 , 

where C	 = |2η	 − ∑
η j |/�η j j), which quantifies the positions of 

the leptons relative to the leading jets in pseudorapidity [73], the 
sum of the invariant masses of all four possible lepton–jet pairs 
(
∑

	, j m	 j), and the total transverse momentum (ptot
T ), which is de-

fined as the magnitude of the vectorial sum of all selected objects. 
The observables providing the best discrimination between signal 
and background are mjj and �y jj , and are shown in Fig. 4 after 
applying all selections. The BDT score reflects the compatibility of 
an event with VBF-like kinematics. Signal-like events would tend 
to have high BDT score, while background-like events tend to have 
low BDT score. The signal purity, therefore, increases at high values 
of BDT score. The BDT score is used as the discriminating variable 
in the statistical analysis with four bins. The bin boundaries are 
chosen to maximise the expected sensitivity for the VBF produc-
tion mode, resulting in smaller bin widths for larger values of the 
BDT score. In the highest-score BDT bin, the expected signal-to-
background ratio of the VBF signal is approximately 0.6. The BDT 
distribution for the VBF-enriched region is presented in Fig. 5.

5. Background estimation

The background contamination in the SRs originates from vari-
ous processes: non-resonant WW , top-quark pair (tt̄) and single-
top-quark (Wt), diboson (W Z , Z Z , Wγ and Wγ ∗) and Drell–Yan 
(mainly Z → ττ , hereafter denoted Z/γ ∗) production. Other back-

Table 4
Post-fit normalisation factors which scale the corresponding estimated yields in the 
signal region; the dash indicates where MC-based normalisation is used. The errors 
include the statistical and systematic uncertainties.
Category WW tt̄/Wt Z/γ ∗

Njet,(pT>30 GeV) = 0 ggF 1.06 ± 0.09 0.99 ± 0.17 0.84 ± 0.04

Njet,(pT>30 GeV) = 1 ggF 0.97 ± 0.17 0.98 ± 0.08 0.90 ± 0.12

Njet,(pT>30 GeV) ≥ 2 VBF – 1.01 ± 0.01 0.93 ± 0.07

Fig. 5. Post-fit BDT score distribution with the signal and the background modelled

contributions in the VBF signal region. The hatched band shows the total uncer-
tainty of the signal and background modelled contributions.

ground contributions arise from W + jets and multi-jet production 
with misidentified leptons, which are either non-prompt leptons 
from decays of heavy-flavour hadrons or jets faking prompt lep-
tons. Dedicated regions in data, identified hereafter as control re-
gions (CRs), are used to normalise the predictions of some of the 
background processes. CRs are defined for the main background 
processes: WW (only for Njet ≤1 final states), tt̄/Wt , and Z/γ ∗ . 
Table 3 summarises the event selection for all CRs. For the Njet =0

and Njet =1 WW CRs, m		 selections orthogonal to those of the 
SRs are applied. For the tt̄/Wt CRs, the b-veto is replaced with a 
b-tag requirement. For the Njet =1 and Njet ≥2 VBF Z/γ ∗ CRs, the 
mττ selection is inverted, while for the Njet =0 Z/γ ∗ CR the �φ		

selection criterion is inverted. Fig. 6 presents the post-fit mT dis-

tributions in the Njet =0 and Njet =1 CRs.

In Fig. 7, the post-fit �y jj distributions in the Njet ≥2 VBF 
CRs are shown. Data and simulation are in agreement within un-
certainties for all the relevant distributions in the different CRs. 
The background contributions with misidentified leptons are esti-
mated using a data-driven technique. A control sample where one 
of the two lepton candidates fails to meet the nominal identifica-
tion and isolation criteria but satisfies looser identification criteria, 
referred as an anti-identified lepton, is used. The contribution of 
this background in the SRs and CRs is then obtained by scaling 
the number of data events, after the subtraction of processes with 
two prompt leptons, in the control samples by an extrapolation 
factor. The latter is measured in a Z+jets-enriched data sample, 
where the Z boson decays to a pair of electrons or muons, and 
the misidentified lepton candidate recoils against the Z boson. The 
extrapolation factor is defined as the ratio of the numbers of iden-
tified and anti-identified leptons, and is measured in bins of pT

and η. Furthermore, a sample composition correction factor is ap-
plied separately in pT < 25 GeV and pT > 25 GeV bins, and is 
defined in each bin as the ratio of the extrapolation factors mea-

sured in W+jets and Z+jets MC simulation. The total uncertainty 
of the background with misidentified leptons includes uncertain-
ties due to the difference in sample composition between the 
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Fig. 6. Post-fit mT distributions with signal and background modelled contributions in the Njet =0 and Njet =1 control regions for the WW (a, b), tt̄/Wt (c, d), and Z/γ ∗ (e, f) 
processes. The hatched band shows the total uncertainty of the signal and background modelled contributions. Some contributions are too small to be visible.
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Fig. 7. Post-fit �y jj distribution with signal and background modelled contributions in the (a) tt̄/Wt and (b) Z/γ ∗ control regions in the Njet ≥2 VBF analysis category. The 
hatched band shows the total uncertainty of the signal and background modelled contributions. Some contributions are too small to be visible.

W+jets and Z+jets control samples determined with MC simu-

lation, the statistical uncertainty of the Z+jets control sample, and 
the subtraction of other processes. In the VBF regions, the back-
ground estimation is corrected for the contamination from events 
with two misidentified leptons, whose origin is largely multi-jet 
events. This contribution is negligible in other regions. Details of 
this method can be found in Ref. [1].

The post-fit background normalisation factors are summarised 
in Table 4. The Z/γ ∗ normalisation factors are affected by resid-
ual misalignments in the inner detector which distort the mea-

surements of the track parameters for particles originating from 
secondary vertices e.g. leptons from τ decays.

6. Systematic uncertainties

The sources of uncertainty can be classified into two cate-
gories: experimental and theoretical. The dominant experimental 
uncertainties are the jet energy scale and resolution [74], and the 
b-tagging efficiency [75]. Other sources of uncertainty are lepton 
energy (momentum) scale and resolution, identification and isola-
tion [63,64,76], missing transverse momentum measurement [77], 
modelling of pile-up, and luminosity measurement [78]. The lumi-

nosity uncertainty is only applied to the Higgs boson signal and 
to background processes that are normalised to theoretical pre-
dictions. For the main processes, the theoretical uncertainties are 
assessed by a comparison between nominal and alternative event 
generators and UEPS models, as indicated in Table 1. For the pre-
diction of W Z , Z Z , V γ ∗ , and V γ production (V V ), variations of 
the matching scale are considered instead of an alternative gener-
ator. In addition, the effects of QCD factorisation and renormalisa-

tion scale variations and PDF model uncertainties are evaluated.

7. Signal region yields and results

The ggF and VBF cross-sections are obtained from a simulta-

neous statistical analysis of the data samples in all SRs and CRs 
by maximising a likelihood function in a fit using scaling param-

eters multiplying the predicted total production cross-section of 
each signal process and applying the profile likelihood method. The 
CRs are used to determine the normalisation of the corresponding 
backgrounds. The systematic uncertainties enter the fit as nuisance 
parameters in the likelihood function.

Table 5 shows the post-fit yields for all of the three SRs. Yields 
in the highest-score VBF BDT bin are also given. The uncertainties 
in the total yields are smaller than those of some of the individ-

Table 5
Post-fit MC and data yields in the ggF and VBF SRs. Yields in the highest-score VBF 
BDT bin are also presented. The quoted uncertainties include the theoretical and ex-
perimental systematic sources and those due to sample statistics. The sum of all the 
contributions may differ from the total value due to rounding. Moreover, the total 
uncertainty differs from the sum in quadrature of the single-process uncertainties 
due to the correlations.
Process Njet =0 ggF Njet =1 ggF Njet ≥2 VBF

Inclusive BDT: [0.86,1.0]
HggF 639±110 285±51 42±16 6±3

HVBF 7±1 31±2 28±16 16±6

WW 3016±203 1053±206 400±60 11±2

V V 333±38 208±32 70±12 3±1

tt̄/Wt 588±130 1397±179 1270±80 14±2

Mis-Id 447±77 234±49 90±30 6±2

Z/γ ∗ 27±11 76±24 280±40 4±1

Total 5067±80 3296±61 2170±50 60±10

Observed 5089 3264 2164 60

ual background processes. This effect is due to correlations among 
different data regions, background processes, and nuisance param-

eters. The correlations are imposed by the fit as it constrains the 
total yield to match the data. For example, for the b-tagging effi-

ciency, which is the main source of uncertainty in the tt̄/Wt yields 
in the SRs as well as in WW CRs, the combination of these two re-
gions in the statistical analysis leads to an anti-correlation between 
the SR yields of the WW and tt̄/Wt backgrounds. Changes in the 
b-tagging efficiency simultaneously increase/decrease the yields of 
tt̄/Wt and WW backgrounds, resulting in a small uncertainty in 
the combined yields of the processes but large uncertainties in the 
individual components.

Fig. 8 shows the combined mT distribution for Njet ≤1. The bot-
tom panel of Fig. 8 shows the difference between the data and the 
total estimated background compared to the mT distribution of a 
SM Higgs boson with mH = 125 GeV. The total signal observed 
(see Table 5) of about 1000 events is in agreement, in both shape 
and rate, with the expected SM signal. The cross-section times

branching fractions, σggF · BH→ WW ∗ and σVBF · BH→ WW ∗ , are si-
multaneously determined to be:

σggF · BH→WW ∗

= 11.4+1.2
−1.1(stat.)

+1.2
−1.1(theo syst.)+1.4

−1.3(exp syst.) pb

= 11.4+2.2
−2.1 pb
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Fig. 8. Post-fit combined transverse mass distribution for Njet ≤1. The bottom panel 
shows the difference between the data and the estimated background compared to 
the distribution for a SM Higgs boson with mH = 125 GeV. The signal and the back-
ground modelled contributions are fitted to the data with a floating signal strength. 
The hatched band shows the total uncertainty of the signal and background mod-

elled contributions. The HV BF contribution is too small to be visible.

Fig. 9. 68% and 95% confidence level two-dimensional likelihood contours of σggF ·
BH→ WW ∗ vs. σVBF · BH→ WW ∗ , compared to the SM prediction shown by the red 
marker. The error bars on the SM prediction represent the ggF and VBF theory un-
certainty [23], respectively.

σVBF · BH→WW ∗

= 0.50+0.24
−0.22(stat.) ± 0.10(theo syst.)+0.12

−0.13(exp syst.) pb

= 0.50+0.29
−0.28 pb.

The predicted cross-section times branching fraction values are 
10.4 ± 0.6 pb and 0.81 ± 0.02 pb for ggF and VBF [23], respec-
tively. The 68% and 95% confidence level two-dimensional contours 
of σggF ·BH→WW ∗ and σVBF ·BH→WW ∗ are shown in Fig. 9 and are 
consistent with the SM predictions.

The signal strength parameter μ is defined as the ratio of the 
measured signal yield to that predicted by the SM. The measured 

Table 6
Breakdown of the main contributions to the total uncertainty in σggF · BH→ WW ∗
and σVBF ·BH→ WW ∗ . The individual sources of systematic uncertainties are grouped 
together. The sum in quadrature of the individual components differs from the total 
uncertainty due to correlations between the components.

Source �σggF ·BH→ WW ∗ [%] �σVBF ·BH→ WW ∗ [%]
Data statistics 10 46

CR statistics 7 9

MC statistics 6 21

Theoretical uncertainties 10 19

ggF signal 5 13

VBF signal <1 4

WW 6 12

Top-quark 5 5

Experimental uncertainties 8 9

b-tagging 4 6

Modelling of pile-up 5 2

Jet 2 2

Lepton 3 <1

Misidentified leptons 6 9

Luminosity 3 3

TOTAL 18 57

signal strengths for the ggF and VBF production modes in the 
H→WW ∗ decay channel are simultaneously determined to be

μggF = 1.10+0.10
−0.09(stat.)

+0.13
−0.11(theo syst.)+0.14

−0.13(exp syst.)

= 1.10+0.21
−0.20

μVBF = 0.62+0.29
−0.27(stat.)

+0.12
−0.13(theo syst.) ± 0.15(exp syst.)

= 0.62+0.36
−0.35.

Table 6 shows the relative impact of the main uncertainties on 
the measured values for σggF · BH→ WW ∗ and σVBF · BH→ WW ∗ . 
The theory uncertainties in the non-resonant WW background 
produce one of the largest uncertainties, of the order of 6%, in 
the measured ggF cross-section. The uncertainty in the ratio of 
gg → WW to qq → WW comes from the limited NLO accuracy of 
the gg → WW production cross-section [38]. The resulting uncer-
tainty in the cross-section when using acceptance criteria similar 
to those in this analysis was evaluated in Ref. [79] for Njet =0

and for Njet =1. In the Njet ≥2 VBF SR, the 12% uncertainty in 
the WW background originates from the matching and UEPS mod-

elling of qq → WW . The amount of ggF contamination in the VBF 
region is subject to QCD scale uncertainties and this produces an 
uncertainty of about 13% in the measured VBF cross-section. The 
statistical uncertainty of the MC simulation has a relatively large 
impact, especially for the VBF cross-section measurement, where 
it contributes 21%.

The observed (expected) ggF and VBF signals have significances 
of 6.0 (5.3) and 1.8 (2.6) standard deviations, respectively.

8. Conclusions

Measurements of the inclusive cross-section of Higgs boson 
production via the gluon–gluon fusion (ggF) and vector-boson fu-
sion (VBF) modes in the H→WW ∗ decay channel are presented. 
They are based on 36.1 fb−1 of 

√
s = 13 TeV proton–proton colli-

sions recorded by the ATLAS detector at the LHC in 2015–2016. 
The ggF and VBF cross-sections times the H → WW ∗ branch-

ing ratio are measured to be 11.4+1.2
−1.1(stat.)

+1.8
−1.7(syst.) pb and 

0.50+0.24
−0.22(stat.) ± 0.17(syst.) pb, respectively, in agreement with 

SM prediction.
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S.J. Maxfield 88, D.A. Maximov 120b,120a, R. Mazini 155, I. Maznas 159, S.M. Mazza 143, N.C. Mc Fadden 116, 
G. Mc Goldrick 164, S.P. Mc Kee 103, A. McCarn 103, T.G. McCarthy 113, L.I. McClymont 92, E.F. McDonald 102, 
J.A. Mcfayden 35, G. Mchedlidze 51, M.A. McKay 41, K.D. McLean 173, S.J. McMahon 141, P.C. McNamara 102, 
C.J. McNicol 175, R.A. McPherson 173,ac, J.E. Mdhluli 32c, Z.A. Meadows 100, S. Meehan 145, T.M. Megy 50, 
S. Mehlhase 112, A. Mehta 88, T. Meideck 56, B. Meirose 42, D. Melini 171,g , B.R. Mellado Garcia 32c, 
J.D. Mellenthin 51, M. Melo 28a, F. Meloni 44, A. Melzer 24, S.B. Menary 98, E.D. Mendes Gouveia 136a, 
L. Meng 88, X.T. Meng 103, A. Mengarelli 23b,23a, S. Menke 113, E. Meoni 40b,40a, S. Mergelmeyer 19, 
C. Merlassino 20, P. Mermod 52, L. Merola 67a,67b, C. Meroni 66a, F.S. Merritt 36, A. Messina 70a,70b, 
J. Metcalfe 6, A.S. Mete 168, C. Meyer 133, J. Meyer 157, J-P. Meyer 142, H. Meyer Zu Theenhausen 59a, 



The ATLAS Collaboration / Physics Letters B 789 (2019) 508–529 523

F. Miano 153, R.P. Middleton 141, L. Mijović 48, G. Mikenberg 177, M. Mikestikova 137, M. Mikuž 89, 
M. Milesi 102, A. Milic 164, D.A. Millar 90, D.W. Miller 36, A. Milov 177, D.A. Milstead 43a,43b, 
A.A. Minaenko 140, M. Miñano Moya 171, I.A. Minashvili 156b, A.I. Mincer 121, B. Mindur 81a, M. Mineev 77, 
Y. Minegishi 160, Y. Ming 178, L.M. Mir 14, A. Mirto 65a,65b, K.P. Mistry 133, T. Mitani 176, J. Mitrevski 112, 
V.A. Mitsou 171, A. Miucci 20, P.S. Miyagawa 146, A. Mizukami 79, J.U. Mjörnmark 94, T. Mkrtchyan 181, 
M. Mlynarikova 139, T. Moa 43a,43b, K. Mochizuki 107, P. Mogg 50, S. Mohapatra 38, S. Molander 43a,43b, 
R. Moles-Valls 24, M.C. Mondragon 104, K. Mönig 44, J. Monk 39, E. Monnier 99, A. Montalbano 149, 
J. Montejo Berlingen 35, F. Monticelli 86, S. Monzani 66a, N. Morange 128, D. Moreno 22, 
M. Moreno Llácer 35, P. Morettini 53b, M. Morgenstern 118, S. Morgenstern 46, D. Mori 149, M. Morii 57, 
M. Morinaga 176, V. Morisbak 130, A.K. Morley 35, G. Mornacchi 35, A.P. Morris 92, J.D. Morris 90, 
L. Morvaj 152, P. Moschovakos 10, M. Mosidze 156b, H.J. Moss 146, J. Moss 150,m, K. Motohashi 162, 
R. Mount 150, E. Mountricha 35, E.J.W. Moyse 100, S. Muanza 99, F. Mueller 113, J. Mueller 135, 
R.S.P. Mueller 112, D. Muenstermann 87, G.A. Mullier 20, F.J. Munoz Sanchez 98, P. Murin 28b, 
W.J. Murray 175,141, A. Murrone 66a,66b, M. Muškinja 89, C. Mwewa 32a, A.G. Myagkov 140,ak, J. Myers 127, 
M. Myska 138, B.P. Nachman 18, O. Nackenhorst 45, K. Nagai 131, K. Nagano 79, Y. Nagasaka 60, M. Nagel 50, 
E. Nagy 99, A.M. Nairz 35, Y. Nakahama 115, K. Nakamura 79, T. Nakamura 160, I. Nakano 123, H. Nanjo 129, 
F. Napolitano 59a, R.F. Naranjo Garcia 44, R. Narayan 11, D.I. Narrias Villar 59a, I. Naryshkin 134, 
T. Naumann 44, G. Navarro 22, R. Nayyar 7, H.A. Neal 103, P.Y. Nechaeva 108, T.J. Neep 142, A. Negri 68a,68b, 
M. Negrini 23b, S. Nektarijevic 117, C. Nellist 51, M.E. Nelson 131, S. Nemecek 137, P. Nemethy 121, 
M. Nessi 35,e, M.S. Neubauer 170, M. Neumann 179, P.R. Newman 21, T.Y. Ng 61c, Y.S. Ng 19, 
H.D.N. Nguyen 99, T. Nguyen Manh 107, E. Nibigira 37, R.B. Nickerson 131, R. Nicolaidou 142, J. Nielsen 143, 
N. Nikiforou 11, V. Nikolaenko 140,ak, I. Nikolic-Audit 132, K. Nikolopoulos 21, P. Nilsson 29, Y. Ninomiya 79, 
A. Nisati 70a, N. Nishu 58c, R. Nisius 113, I. Nitsche 45, T. Nitta 176, T. Nobe 160, Y. Noguchi 83, 
M. Nomachi 129, I. Nomidis 132, M.A. Nomura 29, T. Nooney 90, M. Nordberg 35, N. Norjoharuddeen 131, 
T. Novak 89, O. Novgorodova 46, R. Novotny 138, L. Nozka 126, K. Ntekas 168, E. Nurse 92, F. Nuti 102, 
F.G. Oakham33,ar , H. Oberlack 113, T. Obermann 24, J. Ocariz 132, A. Ochi 80, I. Ochoa 38, 
J.P. Ochoa-Ricoux 144a, K. O’Connor 26, S. Oda 85, S. Odaka 79, S. Oerdek 51, A. Oh 98, S.H. Oh 47, 
C.C. Ohm151, H. Oide 53b,53a, M.L. Ojeda 164, H. Okawa 166, Y. Okazaki 83, Y. Okumura 160, T. Okuyama 79, 
A. Olariu 27b, L.F. Oleiro Seabra 136a, S.A. Olivares Pino 144a, D. Oliveira Damazio 29, J.L. Oliver 1, 
M.J.R. Olsson 36, A. Olszewski 82, J. Olszowska 82, D.C. O’Neil 149, A. Onofre 136a,136e, K. Onogi 115, 
P.U.E. Onyisi 11, H. Oppen 130, M.J. Oreglia 36, G.E. Orellana 86, Y. Oren 158, D. Orestano 72a,72b, E.C. Orgill 98, 
N. Orlando 61b, A.A. O’Rourke 44, R.S. Orr 164, B. Osculati 53b,53a,∗, V. O’Shea 55, R. Ospanov 58a, 
G. Otero y Garzon 30, H. Otono 85, M. Ouchrif 34d, F. Ould-Saada 130, A. Ouraou 142, Q. Ouyang 15a, 
M. Owen 55, R.E. Owen 21, V.E. Ozcan 12c, N. Ozturk 8, J. Pacalt 126, H.A. Pacey 31, K. Pachal 149, 
A. Pacheco Pages 14, L. Pacheco Rodriguez 142, C. Padilla Aranda 14, S. Pagan Griso 18, M. Paganini 180, 
G. Palacino 63, S. Palazzo 40b,40a, S. Palestini 35, M. Palka 81b, D. Pallin 37, I. Panagoulias 10, C.E. Pandini 35, 
J.G. Panduro Vazquez 91, P. Pani 35, G. Panizzo 64a,64c, L. Paolozzi 52, T.D. Papadopoulou 10, 
K. Papageorgiou 9,i, A. Paramonov 6, D. Paredes Hernandez 61b, S.R. Paredes Saenz 131, B. Parida 163, 
A.J. Parker 87, K.A. Parker 44, M.A. Parker 31, F. Parodi 53b,53a, J.A. Parsons 38, U. Parzefall 50, 
V.R. Pascuzzi 164, J.M.P. Pasner 143, E. Pasqualucci 70a, S. Passaggio 53b, F. Pastore 91, P. Pasuwan 43a,43b, 
S. Pataraia 97, J.R. Pater 98, A. Pathak 178,j, T. Pauly 35, B. Pearson 113, M. Pedersen 130, L. Pedraza Diaz 117, 
R. Pedro 136a,136b, S.V. Peleganchuk 120b,120a, O. Penc 137, C. Peng 15d, H. Peng 58a, B.S. Peralva 78a, 
M.M. Perego 142, A.P. Pereira Peixoto 136a, D.V. Perepelitsa 29, F. Peri 19, L. Perini 66a,66b, H. Pernegger 35, 
S. Perrella 67a,67b, V.D. Peshekhonov 77,∗, K. Peters 44, R.F.Y. Peters 98, B.A. Petersen 35, T.C. Petersen 39, 
E. Petit 56, A. Petridis 1, C. Petridou 159, P. Petroff 128, M. Petrov 131, F. Petrucci 72a,72b, M. Pettee 180, 
N.E. Pettersson 100, A. Peyaud 142, R. Pezoa 144b, T. Pham 102, F.H. Phillips 104, P.W. Phillips 141, 
M.W. Phipps 170, G. Piacquadio 152, E. Pianori 18, A. Picazio 100, M.A. Pickering 131, R.H. Pickles 98, 
R. Piegaia 30, J.E. Pilcher 36, A.D. Pilkington 98, M. Pinamonti 71a,71b, J.L. Pinfold 3, M. Pitt 177, 
M-A. Pleier 29, V. Pleskot 139, E. Plotnikova 77, D. Pluth 76, P. Podberezko 120b,120a, R. Poettgen 94, 
R. Poggi 52, L. Poggioli 128, I. Pogrebnyak 104, D. Pohl 24, I. Pokharel 51, G. Polesello 68a, A. Poley 18, 
A. Policicchio 70a,70b, R. Polifka 35, A. Polini 23b, C.S. Pollard 44, V. Polychronakos 29, D. Ponomarenko 110, 
L. Pontecorvo 70a, G.A. Popeneciu 27d, D.M. Portillo Quintero 132, S. Pospisil 138, K. Potamianos 44, 



524 The ATLAS Collaboration / Physics Letters B 789 (2019) 508–529

I.N. Potrap 77, C.J. Potter 31, H. Potti 11, T. Poulsen 94, J. Poveda 35, T.D. Powell 146, M.E. Pozo Astigarraga 35, 
P. Pralavorio 99, S. Prell 76, D. Price 98, M. Primavera 65a, S. Prince 101, N. Proklova 110, K. Prokofiev 61c, 
F. Prokoshin 144b, S. Protopopescu 29, J. Proudfoot 6, M. Przybycien 81a, A. Puri 170, P. Puzo 128, J. Qian 103, 
Y. Qin 98, A. Quadt 51, M. Queitsch-Maitland 44, A. Qureshi 1, P. Rados 102, F. Ragusa 66a,66b, G. Rahal 95, 
J.A. Raine 52, S. Rajagopalan 29, A. Ramirez Morales 90, T. Rashid 128, S. Raspopov 5, M.G. Ratti 66a,66b, 
D.M. Rauch 44, F. Rauscher 112, S. Rave 97, B. Ravina 146, I. Ravinovich 177, J.H. Rawling 98, M. Raymond 35, 
A.L. Read 130, N.P. Readioff 56, M. Reale 65a,65b, D.M. Rebuzzi 68a,68b, A. Redelbach 174, G. Redlinger 29, 
R. Reece 143, R.G. Reed 32c, K. Reeves 42, L. Rehnisch 19, J. Reichert 133, D. Reikher 158, A. Reiss 97, 
C. Rembser 35, H. Ren 15d, M. Rescigno 70a, S. Resconi 66a, E.D. Resseguie 133, S. Rettie 172, E. Reynolds 21, 
O.L. Rezanova 120b,120a, P. Reznicek 139, E. Ricci 73a,73b, R. Richter 113, S. Richter 44, E. Richter-Was 81b, 
O. Ricken 24, M. Ridel 132, P. Rieck 113, C.J. Riegel 179, O. Rifki 44, M. Rijssenbeek 152, A. Rimoldi 68a,68b, 
M. Rimoldi 20, L. Rinaldi 23b, G. Ripellino 151, B. Ristić 87, E. Ritsch 35, I. Riu 14, J.C. Rivera Vergara 144a, 
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