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Higgs boson production cross-sections in proton-proton collisions are measured in the H-W W*—evuv
decay channel. The proton-proton collision data were produced at the Large Hadron Collider at a centre-
of-mass energy of 13 TeV and recorded by the ATLAS detector in 2015 and 2016, corresponding to an
integrated luminosity of 36.1 fb~'. The product of the H— W W* branching fraction times the gluon-
gluon fusion and vector-boson fusion cross-sections are measured to be 11.4712(stat.)T1-8(syst.) pb and

0.50f8:§‘21(stat.) 4 0.17(syst.) pb, respectively, in agreement with Standard Model predictions.
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1. Introduction

This Letter presents a measurement of the inclusive Higgs bo-
son production cross-sections via gluon-gluon fusion (ggF) and
vector-boson fusion (VBF) through the decay H— WW*—evuv
using 36.1 fb~! of proton—proton collisions at a centre-of-mass
energy of 13 TeV recorded by the ATLAS detector. Higgs boson
couplings have been studied in this channel with Run-1 data by
the ATLAS [1] and CMS [2] experiments and recently with Run-2
data by the CMS experiment [3]. The H— W W* decay channel
has the second-largest branching fraction and allowed the most
precise Higgs boson cross-section measurements in Run-1 [4]. The
measured cross-section of the ggF production process probes the
Higgs boson couplings to gluons and heavy quarks, while the VBF
process directly probes the couplings to W and Z bosons. The
leading-order diagrams for the ggF and VBF production processes
are depicted in Fig. 1.

2. ATLAS detector

ATLAS is a particle detector designed to achieve a nearly full
coverage in solid angle! [5,6]. It consists of an inner tracking
detector surrounded by a thin superconducting solenoid, electro-

* E-mail address: atlas.publications@cern.ch.

1 ATLAS uses a right-handed coordinate system with its origin at the nominal
interaction point (IP) in the centre of the detector and the z-axis along the beam
pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis
points upward. Cylindrical coordinates (r,¢) are used in the transverse plane, ¢
being the azimuthal angle around the z-axis. The pseudorapidity is defined in terms
of the polar angle 6 as n = —Intan(6/2). The distance in (1, ¢) coordinates, AR =
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magnetic and hadronic calorimeters, and a muon spectrometer in-
corporating three large superconducting air-core toroidal magnets.
The inner tracking detector (ID) is located in a 2 T magnetic field
and is designed to measure charged-particle trajectories up to a
pseudorapidity of |n| = 2.5. Surrounding the ID are electromag-
netic and hadronic calorimeters, which use liquid argon (LAr) and
lead absorber for the electromagnetic central and endcap calorime-
ters (|n| < 3.2), copper absorber for the hadronic endcap calorime-
ter (1.5 < |n| < 3.2), and scintillator-tile active material with steel
absorber for the central (|n| < 1.7) hadronic calorimeter. The solid
angle coverage is extended to |n| = 4.9 with forward copper/LAr
and tungsten/LAr calorimeter modules. The muon spectrometer
comprises separate trigger chambers within the range |n| < 2.4
and high-precision tracking chambers within the range |n| < 2.7,
measuring the deflection of muons in a magnetic field generated
by the three superconducting toroidal magnets. A two-level trigger
system is used to select events [7].

3. Signal and background Monte Carlo predictions

Higgs boson production via ggF was simulated at next-to-next-
to-leading-order (NNLO) accuracy in QCD using the POWHEG-Box
v2 NNLOPS program [8], with the PDF4LHC15 NNLO set of par-
ton distribution functions (PDF) [9]. The simulation achieves NNLO
accuracy for arbitrary inclusive gg — H observables by reweight-
ing the Higgs boson rapidity spectrum in Hj-MiNLO [10] to that of
HNNLO [11]. The transverse momentum spectrum of the Higgs bo-

VA@? + An?, is also used to define cone sizes. Transverse momentum and energy
are defined as pr = psind and Et = E sin6, respectively.
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(a) ggF production
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(b) VBF production

Fig. 1. Diagrams for the leading production modes (ggF and VBF), where the VV H and qqH coupling vertices are marked with shaded and empty circles, respectively. The V

represents a W or Z vector boson.

Table 1

Overview of simulation tools used to generate signal and background processes, and to model the UEPS. The PDF sets are also summarised. Alternative event generators and

configurations used to estimate systematic uncertainties are shown in parentheses.

Process Matrix element (alternative) PDF set UEPS model (alternative model) Prediction order for total cross-section
ggF H POWHEG-Box v2 PDF4LHC15 NNLO [9] PyTHIA 8 [14] N3LO QCD + NLO EW [24-28]
NNLOPS [8,10,16]
(MG5_aMC@NLO [47,48]) (Herwig 7 [49])
VBF H POWHEG-BoX v2 PDF4LHC15 NLO PYTHIA 8 NNLO QCD + NLO EW [24,29-31]
(Herwig 7)
VH POWHEG-Box v2 [50] PDF4LHC15 NLO PyYTHIA 8 NNLO QCD + NLO EW [51-53]
qq —> WWwW SHERPA 2.2.2 [32,33] NNPDF3.0NNLO [34] SHERPA 2.2.2 [35,36] NLO [37]
(POWHEG-BoX v2, (Herwig++ [49])
MG5_AMC@NLO)
gg > Ww SHERPA 2.1.1 [37] CT10 [54] SHERPA 2.1 NLO [38]
Wz/Vy*)ZZ SHERPA 2.1 CT10 SHERPA 2.1 NLO [37]
Vy SHERPA 2.2.2 NNPDF3.0NNLO SHERPA 2.2.2 NLO [37]
(MG5_AMC@NLO) (CSS variation [35,55])
tt POWHEG-Box v2 [56] NNPDF3.0NLO PyYTHIA 8 NNLO + NNLL [57]
(SHERPA 2.2.1) (Herwig 7)
wt POWHEG-Box v1 [58] CT10 [54] PYTHIA 6.428 [59] NLO [58]
(MG5_AMC@NLO) (Herwig++)
Z/y* SHERPA 2.2.1 NNPDF3.0NNLO SHERPA 2.2.1 NNLO [60,61]

son obtained with this sample was found to be compatible within
uncertainties with the resummed NNLO+NNLL HRes2.3 calcula-
tion [12,13]. The parton-level events produced by the POWHEG-Box
v2 NNLOPS program were passed to PYTHIA 8 [14] to provide par-
ton showering, hadronisation and the underlying event, using the
AZNLO set of data-tuned parameters [15].

Higgs boson production via VBF was simulated at next-to-
leading-order (NLO) accuracy in QCD using POwHEG-Box v2 [8,
10,16,17] with the PDF4ALHC15 NLO PDF set [9]. The parton-level
events were passed to PYTHIA 8 [14] with the same parameters as
for ggF.

The mass of the Higgs boson was set to 125 GeV, com-
patible with the experimental measurement [18-20]. The cor-
responding Standard Model (SM) branching fraction By_, ww+
is calculated using HDecay v6.50 [21,22] to be 0.214 [23]. The
H— WW*— ¢vlv decay, where ¢ =e or u, always includes the
small contribution from W — tv — ¢vvv decays. Other produc-
tion and decay modes of the Higgs boson are either fixed to SM
predictions (V H production and H— 77 decay) or neglected (ttH
and bbH associated production).

The ggF production cross-section was calculated with next-to-
next-to-next-to-leading-order accuracy in QCD and includes NLO
electroweak (EW) corrections [24-28]. The NLO QCD and EW cal-
culations are used with approximate NNLO QCD corrections for the
VBF production cross-section [24,29-31].

The WW background was generated separately for the qq —
WW and gg — WW production mechanisms. The qq — WW
production process was generated using SHERPA 2.2.2 [32,33] inter-
faced with the NNPDF3.0 NNLO PDF set [34] and the SHERPA par-
ton shower, hadronisation and underlying event simulation (UEPS)
model [35,36]. The matrix elements were calculated for up to one

additional parton at NLO and up to three additional partons at LO
precision. The loop-induced gg — W W process was simulated by
SHERPA 2.1.1 with zero or one additional jet [37]. The sample is
normalised to the NLO gg — W W cross-section [38]. Interferences
with direct WW production have a negligible impact after event
selection cuts have been applied and are, therefore, not considered
in this analysis [39].

While NNLO cross-sections are available for diboson production
processes [40-42], the SHERPA MEPS@NLO prescription [36] is used
in this analysis. This procedure already captures the majority of the
NNLO shape corrections.

The MC generators, PDFs, and programmes used for the UEPS
are summarised in Table 1. The order of the perturbative predic-
tion for each sample is also reported.

The generated events were passed through a GEANT 4 [43] sim-
ulation of the ATLAS detector [44] and reconstructed with the
same analysis software as used for the data. Additional proton-
proton interactions (pile-up) are included in the simulation for all
generated events such that the distributions of the average num-
ber of interactions per bunch crossing reproduces that observed in
the data. The inelastic proton-proton collisions were produced us-
ing PyTHIA 8 with the A2 set of data-tuned parameters [45] and
the MSTW2008LO PDF set [46]. Correction factors are applied to
account for small differences observed between data and simu-
lation in electrons, muons, and jets identification efficiencies and
energy/momentum scales and resolutions.

4. Event selection and categorisations

Events are triggered using single-lepton triggers and a dilep-
ton e-pu trigger. The transverse momentum threshold ranges be-
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Table 2

Event selection criteria used to define the signal regions in the H— W W*— evuv analysis. For the Nje >2 VBF signal region, the
input variables used for the boosted decision tree (BDT) training are also reported.

Category Niet, (pr=>30 Gev) = 0 88F

Niet.(pr>30 Gev) = 1 ggF I

Niet,(pr>30 Gev) = 2 VBF

Preselection

PSS > 20 GeV

Two isolated, different-flavour leptons (¢ =e, t) with opposite charge
piead > 22 Gev, pblead 5 15 Gev

Mee > 10 GeV

Background rejection ALl E?iss) >1/2

pit>30 Gev

Nbp_jet,(pr=20 Gev) =0

max (m%) > 50 GeV

mer <myz — 25 GeV

H— WW*—evuv myp <55 GeV central jet veto
topology Ao <1.8 outside lepton veto
Discriminant variable mr BDT

BDT input variables

tot
mjj, Ayjj, Mee, Adee, mr, 32, Cey 324 jMejs PY

tween 24 GeV and 26 GeV for single-electron triggers and between
20 GeV and 26 GeV for single-muon triggers, depending on the
run period [7]. The e-p trigger requires a minimum pr threshold
of 17 GeV for electrons and 14 GeV for muons.

Electron candidates are reconstructed from energy clusters in
the electromagnetic calorimeter with an associated well-recon-
structed track [62,63]. Electrons are required to satisfy |n| < 2.47,
excluding the transition region between the barrel and endcap
calorimeters, 1.37 < |n| < 1.52. Muon candidates are selected from
tracks reconstructed in the ID matched to tracks reconstructed in
the muon spectrometer [64] and are required to satisfy || < 2.5.
To reject particles misidentified as leptons, several identification
requirements as well as calorimeter and track isolation criteria [64,
65] are applied. The electron identification criteria applied pro-
vide an efficiency in the range 88-94% depending on electron pt
and 7. For muons, high efficiency, close to 95%, is observed over
the full instrumented n range. The final lepton-selection criteria
require two different-flavour opposite-sign leptons, the higher-pr
(leading) lepton with pt > 22 GeV and the subleading lepton with
pr > 15 GeV. At least one of the leptons must correspond to a lep-
ton that triggered the recording of the event. When the e-u trig-
ger is solely responsible for the recording of the event, each lepton
must be matched to one of the trigger objects. The trigger match-
ing requires the offline pt of the matching object to be higher than
the trigger level threshold by at least 1 GeV. Jets are reconstructed
using the anti-k; algorithm [66] with a radius parameter R = 0.4.
The four-momenta of jets are corrected for the non-compensating
response of calorimeter, signal losses due to noise threshold ef-
fects, energy lost in non-instrumented regions, and contributions
from pile-up [67]. Jets are required to have pr > 20 GeV and
In| < 4.5. A multivariate selection that reduces contamination from
pile-up [68] is applied to jets with pr < 60 GeV and |n| < 2.4, util-
ising calorimeter and tracking information to separate hard-scatter
jets from pile-up jets. For jets with pt < 50 GeV and |n| > 2.5,
jet shapes and topological jet correlations in pile-up interactions
are exploited to reduce contamination. Jets with pt > 20 GeV and
In| < 2.5 containing b-hadrons (b-jets) are identified using a multi-
variate technique having as input the track impact parameters and
information from secondary vertices. The adopted working point
provides a nominal 3% light-flavour (u-, d-, s-quark and gluon)
misidentification rate and a 32% c-jet misidentification rate with
an average 85% b-jet tagging efficiency, as estimated from simu-
lated tt events [69]. Ambiguities from overlapping reconstructed
jet and lepton candidates are resolved as follows. If a reconstructed
muon shares an ID track with a reconstructed electron, the elec-
tron is removed. Reconstructed jets geometrically overlapping in
a cone of radius AR = 0.2 with electrons or muons are also re-
moved. Electrons and muons, with transverse momentum pr, are
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Fig. 2. Jet multiplicity distribution after applying the preselection criteria. The
shaded band represents the systematic uncertainty and accounts for experimental
uncertainties only.

removed if they are within AR = min(0.4,0.04 + 10 GeV/pr) of
the axis of any surviving jet. The missing transverse momentum
E%‘iss (with magnitude E‘T“iss) is defined as the negative vector
sum of the pr of all the selected leptons and jets, and including
reconstructed tracks not associated with these objects, and con-
sistent with originating from the primary pp collision [70]. A sec-
ond definition of missing transverse momentum (in this case de-
noted piMisS) uses the tracks associated with the jets instead of the
calorimeter-measured jets. It was found during the optimisation
that p%“iss performs better in terms of background rejection [70].
Events are classified into one of three categories based on the
number of jets with pt > 30 GeV: events with zero jets and events
with exactly one jet target the ggF production mode (Nje=0
and Nje=1 ggF categories), and events with at least two jets
target the VBF production mode (Nje>2 VBF category). Fig. 2
shows the jet multiplicity distribution after applying the prese-
lection criteria defined in Table 2. The different background com-
positions as a function of jet multiplicity motivate the division of
the data sample into the various Nje categories and the defini-
tion of a signal region in each jet multiplicity bin. Details of the
background estimation are provided in Section 5. To reject back-
ground from top-quark production, events containing b-jets with
pt > 20 GeV (Np.jet,(pr>20 Gevy) are vetoed. The full event selec-
tion is summarised in Table 2, where Aqb(M,E;“iSS) is defined
as the azimuthal angle between I:"T‘“iSS and the dilepton system,
p%‘ is the transverse momentum of the dilepton system, my, is
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Fig. 4. Post-fit mj; (a) and Ayj; (b) distributions with signal and background modelled contributions in the Njer >2 VBF signal region. The dashed line shows the VBF signal
scaled by a factor of 30. The hatched band shows the total uncertainty of the signal and background modelled contributions.

Table 3

Event selection criteria used to define the control regions. Every control region selection starts from
the selection labelled “Preselection” in Table 2. Np._jer,(20 Gev<pr<30 Gev) represents the number of b-jets

with 20 GeV < pr < 30 GeV.

CR Nijet,(pr=30 Gev) = 0 ggF Niet, (pr=>30 Gev) = 1 88F Niet, (pr>30 Gev) = 2 VBF
55 <myy <110 GeV mye >80 GeV
ww Adge <2.6 Moz —myz|>25 GeV
Np-jet, (pr=20 Gev) =0
max (m4) > 50 GeV
Nbp-jet, (20 GeV<pr<30 Gev) > 0 Nbp_jet,(pr>30 Gev) = 1
' ' N =1
) . Np.jet, 20 GeV<pr<30 Gev) =0 b-jet. (pr>20 Gev)
tt/Wt A (e, ENSS) > /2 max (m4) >50 GeV central jet veto
pit > 30 GeV My <myz — 25 GeV
A <2.8 I outside lepton veto
Nb-jet,(pr>20 Gev) =0
* myy < 80 GeV
Z/V no miss . .
PSS requirement central jet veto
max (m4) > 50 GeV outside lepton veto
A¢pe > 2.8 Mer >myz — 25 GeV |myr —mz| <25 GeV
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the invariant mass of the two leptons, Ag¢y, is the azimuthal

angle between the two leptons, and max (m.’f.) is the larger of

mil = \/2 pii . Emiss . (1 —cos A¢ (E,-, E¥“55>>, where ¢; can be ei-

ther the leading or the subleading lepton. The “outside lepton veto”
requires the two leptons to reside within the rapidity gap spanned
by the two leading jets, and the “central jet veto” rejects events
with additional jets with pt > 20 GeV in the rapidity gap between
the two leading jets. In the Nj=1 and Nje >2 categories, the
invariant mass of the t-lepton pair (m), calculated using the
collinear approximation [71], is used to veto background from Z —
T7 production. Signal regions (SRs) are defined in each Nje; cate-
gory after applying all selection criteria. For both the Nj =0 and
Njer=1 ggF SRs, eight regions, later used for the fit, are defined by
subdividing in my, at mg, < 30 GeV and my, > 30 GeV, in pr of
the subleading lepton at p$"P'®3d < 20 GeV and p$“P'ead > 20 GeV,
and by the flavour of the subleading lepton. For the categories
with zero jets and with exactly one jet, the discriminating vari-
able between signal and SM background processes is the dilepton
2

transverse mass, defined as mr = \/(E.‘rz + E%rliss’)2 — ‘p.f.g + Emiss

o [1nlt 2 o
where Ef* = ,/|p;’|? +mj, and p}* is the vector sum of the lep-
ton transverse momenta. The discriminating variable mr is used in

the ggF SRs, with eight bins for the Njet=0 and six bins for the
Njer =1 regions. The bin boundaries are chosen such that approxi-
mately the same number of signal events is expected in each bin.
The mr distributions for the Njee=0 and Nje=1 SRs are shown
in Fig. 3. All figures in this Letter, except Fig. 2, use signal and
background normalisations as fitted by the final statistical analysis
of all signal and control regions, including pulls of statistical and
systematic uncertainty parameters (post-fit). For the Njer >2 VBF
selection, a boosted decision tree (BDT) [72] is used to enhance
discrimination power between the VBF signal and backgrounds,
including the ggF process. Kinematic variables of the two lead-
ing jets (j) and the two leading leptons (£) are used as inputs
to the BDT: the invariant masses (mjj, my), the difference be-
tween the two jet rapidities (Ayj;), and the difference between
the azimuthal angles of the two leptons (Ag¢e). Other variables
used in the BDT training are: mr, the lepton n-centrality (), Cy,
where C; = |21 — >_njl/Anj;), which quantifies the positions of
the leptons relative to the leading jets in pseudorapidity [73], the
sum of the invariant masses of all four possible lepton-jet pairs
(3" jme;j), and the total transverse momentum (pt™), which is de-
fined as the magnitude of the vectorial sum of all selected objects.
The observables providing the best discrimination between signal
and background are mj; and Ayj;, and are shown in Fig. 4 after
applying all selections. The BDT score reflects the compatibility of
an event with VBF-like kinematics. Signal-like events would tend
to have high BDT score, while background-like events tend to have
low BDT score. The signal purity, therefore, increases at high values
of BDT score. The BDT score is used as the discriminating variable
in the statistical analysis with four bins. The bin boundaries are
chosen to maximise the expected sensitivity for the VBF produc-
tion mode, resulting in smaller bin widths for larger values of the
BDT score. In the highest-score BDT bin, the expected signal-to-
background ratio of the VBF signal is approximately 0.6. The BDT
distribution for the VBF-enriched region is presented in Fig. 5.

5. Background estimation

The background contamination in the SRs originates from vari-
ous processes: non-resonant W W, top-quark pair (tt) and single-
top-quark (Wt), diboson (WZ, ZZ, Wy and Wy*) and Drell-Yan
(mainly Z — 77, hereafter denoted Z/y*) production. Other back-

Table 4

Post-fit normalisation factors which scale the corresponding estimated yields in the
signal region; the dash indicates where MC-based normalisation is used. The errors
include the statistical and systematic uncertainties.

Category ww tt/Wt Z/y*
Niet, (pr=>30 Gev) = 0 8gF 1.06 £ 0.09 0.99 £+ 0.17 0.84 £+ 0.04
Niet, (pr>30 Gev) = 1 88F 0.97 + 017 0.98 + 0.08 0.90 + 0.12
Niet, (pr=>30 Gev) = 2 VBF - 1.01 £ 0.01 0.93 £+ 0.07
£ F T T T - T
5 2500 CATLAS -4-Data  \\ Uncertainty
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o 20005 = 13 Tev, 36.1 " Wz i

[ %%

1500[-
150

1000 100

Events/bin

500 50

[-1,0.26]

[0.26,0.61] [0.61,0.86]  [0.86,1.0]

BDT score

Fig. 5. Post-fit BDT score distribution with the signal and the background modelled
contributions in the VBF signal region. The hatched band shows the total uncer-
tainty of the signal and background modelled contributions.

ground contributions arise from W + jets and multi-jet production
with misidentified leptons, which are either non-prompt leptons
from decays of heavy-flavour hadrons or jets faking prompt lep-
tons. Dedicated regions in data, identified hereafter as control re-
gions (CRs), are used to normalise the predictions of some of the
background processes. CRs are defined for the main background
processes: WW (only for Njer <1 final states), tt/Wt, and Z/y*.
Table 3 summarises the event selection for all CRs. For the Njer =0
and Njee=1 WW CRs, my, selections orthogonal to those of the
SRs are applied. For the tt/Wt CRs, the b-veto is replaced with a
b-tag requirement. For the Njee=1 and Nje; >2 VBF Z/y* CRs, the
mq¢ selection is inverted, while for the Njee=0 Z/y* CR the Ay,
selection criterion is inverted. Fig. 6 presents the post-fit mt dis-
tributions in the Njer=0 and Njer=1 CRs.

In Fig. 7, the post-fit Ayj; distributions in the Nje>2 VBF
CRs are shown. Data and simulation are in agreement within un-
certainties for all the relevant distributions in the different CRs.
The background contributions with misidentified leptons are esti-
mated using a data-driven technique. A control sample where one
of the two lepton candidates fails to meet the nominal identifica-
tion and isolation criteria but satisfies looser identification criteria,
referred as an anti-identified lepton, is used. The contribution of
this background in the SRs and CRs is then obtained by scaling
the number of data events, after the subtraction of processes with
two prompt leptons, in the control samples by an extrapolation
factor. The latter is measured in a Z+jets-enriched data sample,
where the Z boson decays to a pair of electrons or muons, and
the misidentified lepton candidate recoils against the Z boson. The
extrapolation factor is defined as the ratio of the numbers of iden-
tified and anti-identified leptons, and is measured in bins of pt
and 7. Furthermore, a sample composition correction factor is ap-
plied separately in pt < 25 GeV and prt > 25 GeV bins, and is
defined in each bin as the ratio of the extrapolation factors mea-
sured in W+jets and Z+jets MC simulation. The total uncertainty
of the background with misidentified leptons includes uncertain-
ties due to the difference in sample composition between the
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Fig. 6. Post-fit mr distributions with signal and background modelled contributions in the Njt =0 and Njet =1 control regions for the WW (a, b), tt/Wt (c, d), and Z/y* (e, f)
processes. The hatched band shows the total uncertainty of the signal and background modelled contributions. Some contributions are too small to be visible.
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W +jets and Z+jets control samples determined with MC simu-
lation, the statistical uncertainty of the Z+jets control sample, and
the subtraction of other processes. In the VBF regions, the back-
ground estimation is corrected for the contamination from events
with two misidentified leptons, whose origin is largely multi-jet
events. This contribution is negligible in other regions. Details of
this method can be found in Ref. [1].

The post-fit background normalisation factors are summarised
in Table 4. The Z/y* normalisation factors are affected by resid-
ual misalignments in the inner detector which distort the mea-
surements of the track parameters for particles originating from
secondary vertices e.g. leptons from 7 decays.

6. Systematic uncertainties

The sources of uncertainty can be classified into two cate-
gories: experimental and theoretical. The dominant experimental
uncertainties are the jet energy scale and resolution [74], and the
b-tagging efficiency [75]. Other sources of uncertainty are lepton
energy (momentum) scale and resolution, identification and isola-
tion [63,64,76], missing transverse momentum measurement [77],
modelling of pile-up, and luminosity measurement [78]. The lumi-
nosity uncertainty is only applied to the Higgs boson signal and
to background processes that are normalised to theoretical pre-
dictions. For the main processes, the theoretical uncertainties are
assessed by a comparison between nominal and alternative event
generators and UEPS models, as indicated in Table 1. For the pre-
diction of WZ, ZZ, Vy*, and Vy production (V V), variations of
the matching scale are considered instead of an alternative gener-
ator. In addition, the effects of QCD factorisation and renormalisa-
tion scale variations and PDF model uncertainties are evaluated.

7. Signal region yields and results

The ggF and VBF cross-sections are obtained from a simulta-
neous statistical analysis of the data samples in all SRs and CRs
by maximising a likelihood function in a fit using scaling param-
eters multiplying the predicted total production cross-section of
each signal process and applying the profile likelihood method. The
CRs are used to determine the normalisation of the corresponding
backgrounds. The systematic uncertainties enter the fit as nuisance
parameters in the likelihood function.

Table 5 shows the post-fit yields for all of the three SRs. Yields
in the highest-score VBF BDT bin are also given. The uncertainties
in the total yields are smaller than those of some of the individ-

Table 5

Post-fit MC and data yields in the ggF and VBF SRs. Yields in the highest-score VBF
BDT bin are also presented. The quoted uncertainties include the theoretical and ex-
perimental systematic sources and those due to sample statistics. The sum of all the
contributions may differ from the total value due to rounding. Moreover, the total
uncertainty differs from the sum in quadrature of the single-process uncertainties
due to the correlations.

Process Njet =0 ggF Njet =1 ggF Njet =2 VBF

Inclusive BDT: [0.86, 1.0]
Hggr 639+110 285+51 42+16 6+3
Hygr 7+1 3142 28+16 16+£6
ww 3016 +£203 1053 +206 400+ 60 11+2
Vv 333+38 208 +32 70+12 341
te/We 588+ 130 1397 +179 1270480 14+2
Mis-Id 447 +77 234449 90+30 6+2
Z/y* 27+11 76 +24 280440 441
Total 5067 + 80 3296 +61 2170 £50 60410
Observed 5089 3264 2164 60

ual background processes. This effect is due to correlations among
different data regions, background processes, and nuisance param-
eters. The correlations are imposed by the fit as it constrains the
total yield to match the data. For example, for the b-tagging effi-
ciency, which is the main source of uncertainty in the tt/Wt yields
in the SRs as well as in WW CRs, the combination of these two re-
gions in the statistical analysis leads to an anti-correlation between
the SR yields of the WW and tt/Wt backgrounds. Changes in the
b-tagging efficiency simultaneously increase/decrease the yields of
tt/Wt and WW backgrounds, resulting in a small uncertainty in
the combined yields of the processes but large uncertainties in the
individual components.

Fig. 8 shows the combined mr distribution for Nje; <1. The bot-
tom panel of Fig. 8 shows the difference between the data and the
total estimated background compared to the my distribution of a
SM Higgs boson with my = 125 GeV. The total signal observed
(see Table 5) of about 1000 events is in agreement, in both shape
and rate, with the expected SM signal. The cross-section times
branching fractions, oggr - By— ww+ and ovgf - By wws, are si-
multaneously determined to be:

OggF - Buww*
=11.47]%(stat.) "] -3 (theo syst.) "3 (exp syst.) pb
+2.2
=11.4"22pb
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Table 6

Breakdown of the main contributions to the total uncertainty in oggr - By ww=
and ovpr - By— ww+. The individual sources of systematic uncertainties are grouped
together. The sum in quadrature of the individual components differs from the total
uncertainty due to correlations between the components.

Source Aoggr - By ww+ [%] Aover - By ww [%]
Data statistics 10 46
CR statistics 7 9
MC statistics 6 21
Theoretical uncertainties 10 19
ggF signal 5 13
VBF signal <1 4
ww 6 12
Top-quark 5 5
Experimental uncertainties 8 9
b-tagging 4 6
Modelling of pile-up 5 2
Jet 2 2
Lepton 3 <1
Misidentified leptons 6 9
Luminosity 3 3
TOTAL 18 57

100

.
220 240

m; [GeV]

6080 100 120 14

Fig. 8. Post-fit combined transverse mass distribution for Nje; < 1. The bottom panel
shows the difference between the data and the estimated background compared to
the distribution for a SM Higgs boson with my = 125 GeV. The signal and the back-
ground modelled contributions are fitted to the data with a floating signal strength.
The hatched band shows the total uncertainty of the signal and background mod-
elled contributions. The Hygfr contribution is too small to be visible.
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Fig. 9. 68% and 95% confidence level two-dimensional likelihood contours of oggr -
By— ww+ Vs. ovpr - By— ww+, compared to the SM prediction shown by the red
marker. The error bars on the SM prediction represent the ggF and VBF theory un-
certainty [23], respectively.

OVEF - BH—ww~
=0.5070-23(stat.) + 0.10(theo syst.) 7013 (exp syst.) pb
_ 0 50+029
=0.501022 pp.

The predicted cross-section times branching fraction values are
10.4 + 0.6 pb and 0.81 + 0.02 pb for ggF and VBF [23], respec-
tively. The 68% and 95% confidence level two-dimensional contours
of oggr - BHww= and ovgr - By ww+ are shown in Fig. 9 and are
consistent with the SM predictions.

The signal strength parameter w is defined as the ratio of the
measured signal yield to that predicted by the SM. The measured

signal strengths for the ggF and VBF production modes in the
H— W W™ decay channel are simultaneously determined to be

[egr = 1.1070-00 (stat.) 7013 (theo syst.) 013 (exp syst.)

+0.21
=1.10"5%

fver = 0.6270:23(stat.) 7013 (theo syst.) & 0.15(exp syst.)

+0.36
=0.62 —-0.35"

Table 6 shows the relative impact of the main uncertainties on
the measured values for oggr - By— ww+ and over - By ww+.
The theory uncertainties in the non-resonant WW background
produce one of the largest uncertainties, of the order of 6%, in
the measured ggF cross-section. The uncertainty in the ratio of
gg— WW to qq — WW comes from the limited NLO accuracy of
the gg — WW production cross-section [38]. The resulting uncer-
tainty in the cross-section when using acceptance criteria similar
to those in this analysis was evaluated in Ref. [79] for Nje=0
and for Njee=1. In the Nje>2 VBF SR, the 12% uncertainty in
the WW background originates from the matching and UEPS mod-
elling of gq@ — W W. The amount of ggF contamination in the VBF
region is subject to QCD scale uncertainties and this produces an
uncertainty of about 13% in the measured VBF cross-section. The
statistical uncertainty of the MC simulation has a relatively large
impact, especially for the VBF cross-section measurement, where
it contributes 21%.

The observed (expected) ggF and VBF signals have significances
of 6.0 (5.3) and 1.8 (2.6) standard deviations, respectively.

8. Conclusions

Measurements of the inclusive cross-section of Higgs boson
production via the gluon-gluon fusion (ggF) and vector-boson fu-
sion (VBF) modes in the H— W W™ decay channel are presented.
They are based on 36.1 fb~! of /5 =13 TeV proton—proton colli-
sions recorded by the ATLAS detector at the LHC in 2015-2016.
The ggF and VBF cross-sections times the H — W W™ branch-
ing ratio are measured to be 11.47]%(stat.)*]3(syst.) pb and

0. 50+8 %g(stat) 4 0.17(syst.) pb, respectively, in agreement with
SM prediction.
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