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Jets created in association with a photon can be used as a calibrated probe to study energy loss in 
the medium created in nuclear collisions. Measurements of the transverse momentum balance between 
isolated photons and inclusive jets are presented using integrated luminosities of 0.49 nb−1 of Pb + Pb 
collision data at √sNN = 5.02 TeV and 25 pb−1 of pp collision data at 

√
s = 5.02 TeV recorded with the 

ATLAS detector at the LHC. Photons with transverse momentum 63.1 < p
γ
T < 200 GeV and 

∣∣ηγ
∣∣ < 2.37

are paired with all jets in the event that have pjet
T > 31.6 GeV and pseudorapidity 

∣∣ηjet
∣∣ < 2.8. The 

transverse momentum balance given by the jet-to-photon pT ratio, xJγ , is measured for pairs with 
azimuthal opening angle �φ > 7π/8. Distributions of the per-photon jet yield as a function of xJγ , 
(1/Nγ )(dN/dxJγ ), are corrected for detector effects via a two-dimensional unfolding procedure and 
reported at the particle level. In pp collisions, the distributions are well described by Monte Carlo event 
generators. In Pb + Pb collisions, the xJγ distribution is modified from that observed in pp collisions with 
increasing centrality, consistent with the picture of parton energy loss in the hot nuclear medium. The 
data are compared with a suite of energy-loss models and calculations.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The energy loss of fast partons traversing the hot, decon-
fined medium created in nucleus–nucleus collisions can be studied 
in a controlled and systematic way through the analysis of jets 
produced in association with a high transverse momentum (pT) 
prompt photon [1–7]. At leading order in quantum chromodynam-

ics, the photon and leading jet are produced back-to-back in the 
azimuthal plane, with equal transverse momenta. Measurements 
of prompt photon production in Au + Au collisions at the Rela-
tivistic Heavy Ion Collider (RHIC) [8] and Pb + Pb collisions at the 
Large Hadron Collider (LHC) [9] have confirmed that, since photons 
do not participate in the strong interaction, their production rates 
are not modified by the medium [10]. Thus, photons provide an 
estimate of the pT and direction of the parton produced in the ini-
tial hard-scattering before it has lost energy through interactions 
with the medium. Measurements of jet production with different 
requirements on the photon kinematics can therefore shed light 
on how the absolute amount of parton energy loss depends on the 
initial parton pT.

Furthermore, photon–jet events offer a particularly useful way 
to probe the distribution of energy lost by jets in individual events, 
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and are complementary to measurements such as the dijet pT bal-

ance [11–13]. Whereas those measurements report the ratio of the 
transverse momenta of two final-state jets, both of which may 
have lost energy, photon–jet events provide an alternative sys-
tem in which one high-pT object is certain to remain unaffected 
by the hot nuclear medium. Finally, jets produced in association 
with a photon are more likely to originate from quarks than those 
produced in dijet events at the same pT. Thus, when considered 
together with measurements of dijets or of inclusive jet [14–16]

and hadron [17–19] production rates in Pb + Pb collisions, analy-
sis of photon–jet events can help to further constrain the flavour 
(i.e. quark versus gluon) dependence of parton energy loss.

Studies of photon–hadron correlations, in which high-pT

hadrons are used as a proxy for the jet, were first performed at 
RHIC [20–22], and measurements using fully reconstructed jets 
have since begun at the LHC [23,24]. In the LHC studies, the distri-
bution of the photon–jet azimuthal separation, �φ, was found to 
be consistent with that in simulated photon–jet events embedded 
into a heavy-ion background, and the jet-to-photon transverse mo-

mentum ratio, xJγ = p
jet
T /p

γ
T , was studied for inclusive photon–jet 

pairs. The per-photon jet yield (1/Nγ )(dN/dxJγ ) distribution was 
shifted to significantly smaller values in Pb + Pb data.

In these previous measurements, the xJγ distributions in

Pb + Pb events were not corrected for detector resolution effects, 
which led to a substantial broadening of the reported distribu-
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tions in data. As a result, qualitative comparisons with models or 
even with the analogous distributions in proton–proton (pp) data 
could only be accomplished by applying an additional smearing to 
the comparison distributions to introduce detector effects. Recent 
measurements of dijet pT correlations [12] and inclusive jet frag-
mentation functions at large longitudinal momentum fraction [25]

in Pb + Pb collisions used unfolding procedures to correct for bin-
migration effects and return the distributions to the particle level, 
i.e. free from detector effects.

This Letter reports a study of photon–jet correlations in Pb + Pb 
collisions at a nucleon–nucleon centre-of-mass energy 

√
sNN =

5.02 TeV and pp collisions at the same centre-of-mass energy √
s = 5.02 TeV. The data were recorded in 2015 with the AT-

LAS detector at the LHC and correspond to integrated luminosi-

ties of 0.49 nb−1 and 25 pb−1, respectively. Events containing 
a prompt photon with 63.1 < p

γ
T < 200 GeV and pseudorapidity ∣∣ηγ

∣∣ < 2.37 (excluding the region 1.37 <
∣∣ηγ

∣∣ < 1.52) are studied. 
The pT balance of photon–jet pairs for jets with pjet

T > 31.6 GeV

and 
∣∣ηjet

∣∣ < 2.8 which are approximately back-to-back with the 
photon in the transverse plane, �φ > 7π/8, is analysed through 
the per-photon yield of jets as a function of xJγ , with all jets that 
meet this selection requirement counted separately. In Monte Carlo 
simulations, the fraction of photons paired with more than one jet 
rises from 1% to ≈ 15% over the reported photon pT ranges. The 
particular photon and jet pT ranges used in the measurement are 
chosen to be evenly spaced on logarithmic scales to facilitate the 
unfolding procedure described below.

The yields are corrected via data-driven techniques for back-
ground arising from combinatoric pairings of each photon with 
unrelated jets in Pb + Pb events and from the contamination by 
neutral mesons in the photon sample. The resulting xJγ distribu-

tions are corrected for the effects of the experimental resolution 
on the photon and jet pT via a two-dimensional unfolding proce-
dure similar to that used in Ref. [12]. Due to higher-order effects, 
photon–jet events do not generally have the back-to-back leading 
order topology mentioned above. Thus the pp data, which includes 
these effects, provides the reference distributions against which to 
interpret the results in Pb + Pb events. This Letter directly com-

pares photon–jet data in Pb + Pb and pp events, and with Monte 
Carlo event generators and analytic calculations [26–29].

2. Experimental set-up

The ATLAS experiment [30] is a multipurpose particle detec-
tor with a forward–backward symmetric cylindrical geometry and 
nearly 4π coverage.1 This analysis relies on the inner detector, the 
calorimeter and the data acquisition and trigger system.

The inner detector comprises three major subsystems: the pixel 
detector and the silicon microstrip tracker, which extend out to 
|η| = 2.5, and the transition radiation tracker which extends to 
|η| = 2.0. The inner detector covers the full azimuth and is im-

mersed in a 2 T axial magnetic field. The pixel detector consists 
of four cylindrical layers in the barrel region and three disks in 
each endcap region. The silicon microstrip tracker comprises four 
cylindrical layers (nine disks) of silicon strip detectors in the barrel 
(endcap) region.

1 ATLAS uses a right-handed coordinate system with its origin at the nominal 
interaction point (IP) in the centre of the detector and the z-axis along the beam 
pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis 
points upward. Cylindrical coordinates (r, φ) are used in the transverse plane, φ
being the azimuthal angle around the z-axis. The pseudorapidity is defined in terms 
of the polar angle θ as η = − ln tan(θ/2). Transverse momentum and transverse 
energy are defined as pT = p sin θ and ET = E sin θ , respectively. �R is defined as √

(�η)2 + (�φ)2.

The calorimeter is a large-acceptance, longitudinally-segmented 
sampling detector covering |η| < 4.9 with electromagnetic (EM) 
and hadronic sections. The EM calorimeter is a lead/liquid–argon 
sampling calorimeter with an accordion-shaped geometry. It is di-
vided into a barrel region, covering |η| < 1.475, and two endcap 
regions, covering 1.375 < |η| < 3.2. The EM calorimeter has three 
primary sections, longitudinal in shower depth, called “layers”, in 
the barrel region and up to |η| = 2.5 in the end cap regions. In 
the barrel and first part of the end cap (|η| < 2.4), with the ex-
ception of the regions 1.4 < |η| < 1.5, the first layer has a fine 
segmentation in η (�η = 0.003–0.006) to allow the discrimina-

tion of photons from the two-photon decays of π0 and η mesons. 
Over most of the acceptance, the total material upstream of the EM 
calorimeter ranges from 2.5 to 6 radiation lengths. In the transition 
region between the barrel and endcap regions (1.37 < |η| < 1.52), 
the amount of material rises to 11.5 radiation lengths, and thus 
this region is not used for the detection of photons. The hadronic 
calorimeter is located outside the EM calorimeter. It consists of a 
steel/scintillator-tile sampling calorimeter covering |η| < 1.7 and 
a liquid–argon calorimeter with copper absorber covering 1.5 <
|η| < 3.2.

The forward calorimeter (FCal) is a liquid–argon sampling 
calorimeter located on either side of the interaction point. It cov-
ers 3.1 < |η| < 4.9 and each half is composed of one EM and 
two hadronic sections, with copper and tungsten serving as the 
absorber material, respectively. The FCal is used to characterise 
the centrality of Pb + Pb collisions as described below. Finally, 
zero-degree calorimeters (ZDC) are situated at large pseudorapid-
ity, |η| > 8.3, and are primarily sensitive to spectator neutrons.

A two-level trigger system is used to select events, with a first-
level trigger implemented in hardware followed by a software-

based (high-level) trigger. Data for this measurement were ac-
quired using a high-level photon trigger [31] covering the central 
region (|η| < 2.5). At the first-level trigger stage, the transverse 
energy of EM showers is computed within regions of �φ × �η =
0.1 × 0.1, and those showers which satisfy an ET threshold are 
used to seed the high-level trigger stage. At this next stage, recon-
struction algorithms similar to those applied in the offline analysis 
use the full detector granularity to form the final trigger decision. 
The trigger was configured with an online photon-pT threshold of 
30 GeV (20 GeV) in the pp (Pb + Pb) running period and required 
the candidate photon to satisfy a set of loose criteria for the elec-
tromagnetic shower shape [31]. For the Pb + Pb data-taking, the 
high-level trigger included a procedure to estimate and subtract 
the underlying event (UE) contribution to the ET measured in the 
calorimeter [9], ensuring high efficiency in high-activity Pb + Pb 
events.

In addition to the photon trigger, Pb + Pb data were recorded 
with minimum-bias triggers; these events are used to characterise 
the centrality of Pb + Pb collisions as described in Section 3. The 
minimum-bias triggers are based on the presence of a minimum 
amount of approximately 50 GeV of transverse energy in all sec-
tions of the calorimeter system (|η| < 3.2) or, for events that do 
not meet this condition, on substantial energy deposits in both 
ZDC modules and an inner-detector track identified by the high-
level trigger system.

3. Data selection and Monte Carlo samples

Photon–jet events in pp and Pb + Pb collisions are initially se-
lected for analysis by the high-level triggers described above. The 
typical number of interactions per bunch crossing in the pp and 
Pb + Pb data-taking were one and smaller than 10−4, respectively. 
Events are required to satisfy detector and data-quality require-
ments, and to contain a vertex reconstructed from tracks in the 
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inner detector. An additional requirement in Pb + Pb collisions, 
based on the correlation of the signals in the ZDC and the FCal, 
is used to reject a small number of recorded events consistent 
with two Pb + Pb interactions in the same bunch crossing (pile-
up) [32]. The pile-up rate is largest in the most central events, 
where it is at most 0.1% and rejected with an efficiency greater 
than 98%. No pile-up rejection is applied in pp collisions.

The centrality of Pb + Pb events is defined using the total 
transverse energy measured in the FCal, evaluated at the electro-
magnetic scale and denoted by 

∑
ET. The same observable was 

used to characterise 2010 and 2011 Pb + Pb data at 
√
sNN =

2.76 TeV [33] and a similar procedure, based on Monte Carlo 
Glauber modeling [34], is followed in 2015 data [35]. In this anal-
ysis, Pb + Pb events within five centrality ranges are considered 
that represent 0–10% (largest 

∑
ET values and degree of nuclear 

overlap), 10–20%, 20–30%, 30–50% and 50–80% (smallest 
∑

ET val-

ues and degree of nuclear overlap) of the population. The mean 
number of participating nucleons in minimum-bias Pb + Pb colli-
sions, Npart, ranges from 33.3 ±1.5 in 50–80% events to 358.8 ±2.3

in 0–10% events.
Monte Carlo simulations of 

√
s = 5.02 TeV pp photon–jet events 

are used to correct the data for bin migration and inefficiency 
effects, and for comparison with distributions measured in pp col-

lision data. For all the samples described below, the generated 
events were passed through a full Geant 4 simulation [36,37] of 
the ATLAS detector under the same conditions present during data-
taking and were digitised and reconstructed in the same way as 
the data.

For the primary simulation samples, the Pythia 8.186 [38] gen-

erator was used with the NNPDF23LO parton distribution function 
(PDF) set [39], and generator parameters which were tuned to re-
produce a set of minimum-bias data (the “A14” tune) [40]. Both 
the direct and fragmentation photon contributions are included 
in the simulation. Six million pp events were generated with a 
generator-level photon in the pT range 50 GeV to 280 GeV. Ad-
ditionally, a sample of 18 million events were produced with the 
same generator, tune and PDF, and were overlaid at the detector-
hit level with minimum-bias Pb + Pb events recorded during 
the 2015 run. The relative contribution of events in this “data-
overlay” sample were reweighted on an event-by-event basis to 
match the 

∑
ET distribution observed in the photon–jet events in 

Pb + Pb data selected for analysis. Thus the Pb + Pb simulation 
samples contain underlying-event activity levels and kinematic dis-
tributions of jets (used in the combinatoric photon–jet background 
estimation) identical to those in data.

Additional samples of 0.3 million pp events and 6 million 
events overlaid with Pb + Pb data were produced with the

Sherpa 2.1.1 [41] generator using the CT10 PDF set [42], as were 
0.6 million pp Herwig 7 [43] events with the MMHT UE tune and 
PDF set [44]. The Sherpa samples were generated with leading-
order matrix elements for photon–jet final states with up to three 
additional partons, which were merged with the Sherpa parton 
shower. The Herwig events were generated in a way that in-
cludes the direct and fragmentation photon contributions. Both the
Sherpa and Herwig samples were filtered for the presence of a 
photon in the required kinematic region, and are used because 
they contain different photon + multijet topological distributions 
and jet-flavour compositions.

At generator level, photons are required to be isolated by re-
quiring the sum of the transverse energy carried by primary par-
ticles2 in a cone of size �R = 0.3 around the photon, E iso

T , to be 

2 Primary particles are defined as those with a proper mean lifetime, τ , exceeding 
cτ = 10 mm. For the jet and isolation ET measurements, muons and neutrinos are 
excluded from the definition.

smaller than 3 GeV. In the analysis, the background subtraction, 
described below, removes photons which pass the isolation cut in 
data but fail this isolation requirement at the particle level. Jets 
are defined by applying the anti-kt algorithm [45,46] with radius 
parameter R = 0.4 to primary particles within |η| < 4.9. In simu-

lation, the jet flavour, i.e. whether it is quark- or gluon-initiated, is 
defined as the flavour of the highest-pT parton that points to the 
generator-level jet [47].

4. Event reconstruction

4.1. Photon reconstruction

Photon candidates are reconstructed from clusters of energy de-
posited in EM calorimeter cells, following a procedure used for 
previous measurements of isolated prompt photon production in 
Pb + Pb collisions [9]. The procedure is similar to that used ex-
tensively in pp collisions [48,49], but is applied to the calorime-

ter cells after an event-by-event estimation and subtraction of 
the pile-up and UE contribution to the deposited energy in each 
cell [14]. In Pb + Pb collisions, all photon candidates are treated 
as if they were unconverted photons. Photon identification is based 
primarily on shower shapes in the calorimeter [50], selecting those 
candidates which are compatible with originating from a single 
photon impacting the calorimeter. The measurement of the pho-
ton energy is based on the energy collected in a small region of 
calorimeter cells centred on the photon (�η ×�φ = 0.075 × 0.175

in the barrel and �η × �φ = 0.125 × 0.125 in the endcaps), and 
is corrected via a dedicated calibration [51], which accounts for 
upstream losses and both lateral and longitudinal leakage. The 
sum of transverse energy in calorimeter cells inside a cone size 
of �R = 0.3 centred on the photon candidate, excluding a small 
central area of size �η × �φ = 0.125 × 0.175, is used to compute 
the isolation energy E iso

T . It is corrected for the expected leakage 
of the photon energy into the isolation cone.

Reconstructed photon candidates are required to satisfy iden-
tification and isolation criteria. The identification working point 
(called “tight”) includes requirements on each of several shower-

shape variables [50]. These criteria reject two-photon decays of 
neutral mesons using information in the finely segmented first 
calorimeter layers, and reject hadrons which began showering in 
the EM section using information from the hadronic calorimeter. 
The isolation energy is required to be E iso

T < 3 GeV in pp col-

lisions. In Pb + Pb collisions, where UE fluctuations significantly 
broaden the distribution of E iso

T values, this requirement is set to 
approximately one standard deviation of the Gaussian-like part of 
the distribution centred at zero, E iso

T < 8 GeV.

In simulation, prompt photons in pp collisions have a total 
reconstruction and selection efficiency greater than 90%. At low 
pT ≈ 60 GeV in the most central Pb + Pb collisions, this efficiency 
is ≈ 60%, rising with increasing pT and in less central collisions. In 
all events, the pT scale, defined as the mean ratio of measured 
photon pT to the generator-level pT, for photons which satisfy 
these criteria is within 0.5% (1%) of unity in the barrel (endcap). 
The pT resolution decreases from 3% to 2% over the measured pT

range.

4.2. Jet reconstruction

Jets are reconstructed following the procedure previously used 
in 2.76 TeV and 5.02 TeV pp and Pb + Pb collisions [14,15,52], 
which is briefly summarised here. The anti-kt algorithm [46] with 
R = 0.4 is applied to energy deposits in the calorimeter grouped 
into towers of size �η × �φ = 0.1 × 0.1. An iterative procedure, 
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based entirely on data, is used to obtain an event-by-event es-
timate of the average η-dependent UE energy density, including 
that from pile-up, while excluding from the estimate the contribu-
tion from jets arising from a hard scattering. An updated estimate 
of the jet four-momentum is obtained by subtracting the UE en-
ergy from the constituent towers of the jet. This procedure is 
also applied to pp data. The pT values of the resulting jets are 
corrected for the average calorimeter response using an η- and 
pT-dependent calibration derived from simulation. An additional 
correction, derived from in situ studies of events with a jet recoil-
ing against a photon or Z boson and from the differences between 
the heavy-ion reconstruction algorithm and that normally used in 
the 13 TeV pp data [53], is applied. A final correction at the anal-
ysis level is applied to correct for a deficiency in jet calibration 
due to it being derived from an event sample with a different jet 
flavour composition.

The distribution of reconstructed jet pT values was studied 
in simulation as a function of generator-level jet pT. In pp and 
Pb + Pb collisions, the jet pT scale is within 1% of unity. In pp col-

lisions, the jet pT resolution decreases from 15% at pT ≈ 30 GeV to 
10% at pT ≈ 200 GeV. In Pb + Pb collisions, the resolution at fixed 
jet pT becomes worse in more central collisions in a way consis-
tent with the increasing magnitude of UE fluctuations in the jet 
cone. In the most central events and at the lowest jet-pT values, 
the resolution reaches 50%. At high pT, the resolution asymptoti-

cally becomes centrality-independent and, at 200 GeV, consistent 
with that in pp collisions. More information about the jet recon-
struction and jet performance in this dataset may be found in 
Ref. [54].

5. Data analysis

5.1. Photon purity and yield

After applying the identification and isolation selection crite-
ria in pp collisions, approximately 19 500, 7800, 4100 and 400
photons are selected with pγ

T = 63.1–79.6 GeV, 79.6–100 GeV, 
100–158 GeV and 158–200 GeV, respectively. In Pb + Pb colli-
sions, the analogous yields are 15 400, 6300, 3500 and 300. These 
raw yields are determined as a function of pγ

T and are then cor-
rected for background and for the effects of pT bin migration.

First, the selected photon sample is corrected for the back-
ground contribution, primarily from misidentified neutral hadrons. 
For each pγ

T and centrality range, the purity of prompt photons 
within this range is estimated with a double-sideband approach [9,

48,49], which is summarised in the following.

In addition to the nominal selection, background-enhanced 
samples of photon candidates are defined by selecting photons 
failing at least one of four specific shower-shape requirements 
(referred to as the “non-tight” selection), or by requiring that 
they are not isolated such that E iso

T > 5 GeV in pp collisions or 
E iso
T > 10 GeV in Pb + Pb collisions. Regions A and B are de-

fined as those containing tight photons which are isolated and 
non-isolated, respectively, with region A corresponding to the sig-
nal photon selection. Regions C and D contain non-tight photons 
which are isolated and non-isolated, respectively. The number of 
photon candidates in each region is generally a mixture of signal 
and background photons, i.e. those arising from neutral mesons in-
side jets. The E iso

T distribution for background photons is expected 
to be the same for the tight and non-tight selections such that the 
distribution of background photons “factorises” along isolation and 
identification axes. Separately, the probability that a prompt pho-
ton is found in regions B , C or D is determined from simulation. 
This information and the background factorisation assumption is 

then applied to the data to determine the purity of photons in re-
gion A, defined as the ratio of the number of signal photons to 
all selected photons. The purity increases systematically with pγ

T
over the measured pT range. In pp collisions, it rises from ≈ 85% 
at pγ

T = 80 GeV to more than 95% at 100 GeV, while in Pb + Pb 
collisions it is typically ≈ 75–90% over the same kinematic range.

The background-corrected prompt photon yields are then cor-
rected for the resolution of the pγ

T measurement. This is performed 
by comparing the yields, evaluated separately as a function of re-
constructed and generator-level pT, in simulation. Given the good 
pT resolution, these differ by 2% at most, and this small resulting 
correction is applied to the yields in data.

5.2. Jet background subtraction

The raw jet yields, measured as a function of xJγ , are corrected 
for two background components using data-driven methods. The 
corrections are performed separately for each pγ

T interval and sep-
arately in pp collisions and Pb + Pb collisions of different central-
ity ranges.

The first background arises from the combination of a high-pT

photon with jets unrelated to the photon-producing hard scatter-
ing. These include jets from separate hard parton–parton scatter-
ings and UE fluctuations reconstructed as jets. This background 
is negligible in pp collisions. Because of the inclusive jet selec-
tion in the analysis, the combinatoric background is purely addi-
tive and can be statistically subtracted after scaling to the total 
photon yield. The combinatoric jet yields are determined in the 
data-overlay simulation, by examining the yield of reconstructed 
jets separated from a generator-level photon by �φ > 7π/8. Re-
constructed jets that are not consistent with a generator-level jet, 
i.e. no generator-level jet with pT > 20 GeV within �R < 0.4, are 
deemed to arise from the original Pb + Pb data event and are thus 
labelled as “combinatoric” jets. The combinatoric jet yields are sub-
tracted from the measured xJγ distributions in data.

The second background is related to the estimated purity of 
the selected photons. The xJγ yields for photon candidates in re-
gion A contain an admixture of dijets, specifically jets correlated 
with misidentified neutral mesons. Since these hadrons pass ex-
perimental isolation requirements, they may be, for example, the 
leading fragment inside a jet. The shape of this background in the 
xJγ distribution is determined by repeating the analysis for photon 
candidates in region C , since this region contains mostly neutral 
mesons that remain isolated at the detector level. The resulting 
per-photon xJγ distributions are scaled to match the number of 
background photons, as determined above in Section 5.1, and their 
yields are statistically subtracted from the jet yields for photons in 
region A.

Fig. 1 shows the size of these backgrounds in the lowest-p
γ
T in-

terval, where they are the largest. The combinatoric jet background 
for Pb + Pb collisions contributes primarily to kinematic regions 
populated by pjet

T < 50 GeV. It also depends strongly on central-
ity, being largest in 0–10% collisions but nearly negligible already 
in 30–50% collisions. The dijet background contributes to a broad 
range of pjet

T values including the region xJγ > 1, since the pT ratio 
of a jet to one of the hadrons in the balancing jet can generally be 
above unity. This background has a similar shape in all event types. 
However, since the photon purity is lower in Pb + Pb events than 
in pp events, this correction is larger in the former.

5.3. Unfolding

The background-subtracted xJγ yields are corrected for bin-
migration effects due to detector resolution via a Bayesian un-
folding procedure [55,56]. To accomplish this, the reconstructed 
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Fig. 1. Distributions of the photon–jet pT-balance xJγ for the photon transverse momentum interval pγ
T = 63.1–79.6 GeV for (left) pp, (centre) 50–80% centrality and (right) 

0–10% centrality Pb + Pb events. Solid grey, dotted red, and dashed blue histograms show the raw jet yields, the estimate of the combinatoric background (non-existent 
for pp events), and the dijet background, respectively. Black points show the background-subtracted data before unfolding, with the vertical bars representing the combined 
statistical uncertainty from the data and background subtraction procedure.

yields are arranged in a two-dimensional (p
γ
T , xJγ ) matrix with 

bin edges that are evenly spaced on logarithmic scales (and with 
values matching those used in previous jet measurements), and a 
two-dimensional unfolding is performed similar to that for dijet pT

correlations in Ref. [12]. The unfolding is performed in xJγ directly 
to preserve the fine correlation between pjet

T and pγ
T which would 

be washed out if the unfolding were performed in (pγ
T , pjet

T ). Al-
though the migration along the pγ

T axis is small, it is necessary to 
include it since the degree of bin migration in xJγ depends on the 
pT of the jets.

To fully account for the effects of bin migration across the anal-
ysis selection, the axes of the matrix are extended over a larger 
range of pγ

T and xJγ than the fiducial region in which the results 
are reported. A response matrix is determined by matching each 
pair of (pγ

T , xJγ ) values at the generator level to their counterparts 
at the reconstruction level, separately for pp events and for each 
Pb + Pb centrality.

The Bayesian unfolding method requires a choice for the num-

ber of iterations, niter, and an assumption for the prior for the 
initial particle-level distribution. The Pythia simulation does not 
include the effects of jet energy loss, and thus the underlying 
particle-level distribution in data is expected to have a shape dif-
ferent from the default prior in the simulation. An initial unfold-
ing using the default Pythia prior is performed for each central-
ity selection, and the ratios of the unfolded distributions to the 
generator-level priors in Pythia are fitted with a smooth func-
tion in xJγ in each pγ

T interval. This function is evaluated to give 
a weight w = w(xJγ , pγ

T ) that is used to reweight the generator-
level distribution in simulation and thus construct a nominal prior. 
Alternative reweightings, used in evaluating the sensitivity to the 
choice of prior, are determined by applying 

√
w (the geometric 

mean of the nominal reweighting and no reweighting) and w3/2

to the sample. The reconstruction-level xJγ distributions in simula-

tion after each of these reweightings were examined to ensure that 
they span a reasonable range of values compared to that observed 
at the reconstruction level in data.

Before applying the unfolding procedure to data, it was tested 
on simulation. After the nominal reweighting, the Monte Carlo 
samples were split into two statistically independent subsamples. 
One subsample was used to populate the response matrix, which 
was then used to unfold the reconstruction-level distribution in 
the other subsample. The unfolded result was compared with the 
original generator-level distribution in the latter sample, which 

were found to be recovered within the limits of the statistical pre-
cision of the samples.

The values of niter used for the nominal results are chosen 
following the same procedure as in Ref. [12]. For each centrality 
selection, the unfolded distributions are examined as a function of 
niter. For each value of niter, a total uncertainty is formed by adding 
two components in quadrature: (1) the statistical uncertainty of 
the unfolded data, which grows slowly with niter , and (2) the sum 
of square differences between the results and those obtained with 
an alternative prior, which decreases quickly with niter . The final 
values of niter are chosen to minimise the total uncertainty, and 
are between two and four.

The unfolded xJγ results are corrected for the jet reconstruction 
efficiency, evaluated in simulation as the pγ

T -dependent probability 
that a generated jet at the given xJγ is successfully reconstructed 
within the total (pγ

T , xJγ ) range used in the unfolding. This effi-

ciency is typically > 99% for all events in the kinematic regions 
populated by jets with pT > 50 GeV. In pp collisions, this efficiency 
falls to ≈ 96% in the lowest-xJγ region for each pγ

T interval. In 
Pb + Pb collisions, the efficiency at fixed xJγ decreases monotoni-

cally in increasingly central events, reaching a minimum of ≈ 75% 
in the lowest-xJγ region in 0–10% centrality events.

6. Systematic uncertainties

The primary sources of systematic uncertainty can be grouped 
into three major categories: the measurement of pjet

T ; the selection 
of the photon and measurement of pγ

T ; the modelling and subtrac-
tion of the combinatoric background; and the unfolding procedure. 
For each variation described below, the entire analysis is repeated 
including the background correction steps and unfolding. The dif-
ferences between the resulting xJγ values and the nominal ones 
are taken as an estimate of the uncertainty from each source.

A standard set of uncertainties in the jet pT scale and resolu-
tion, following the strategy described in Ref. [57] and commonly 
used for measurements in 2015 Pb + Pb and pp data [54,58], 
are used in this analysis. The impact of the uncertainties is eval-
uated by modifying the response matrix according to the given 
variations in the reconstructed jet pT. These include uncertain-
ties in the pT scale derived from in situ studies of the calorimeter 
response [47,59], an uncertainty in the resolution derived using 
data-driven techniques [60], and uncertainties in both which result 
from a small relative energy-scale difference between the heavy-
ion jet reconstruction procedure and that used in 

√
s = 13 TeV
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Fig. 2. Unfolded distributions and summary of systematic uncertainties in the per-photon jet-yield measurement for pγ
T = 63.1–79.6 GeV in (left) pp events and (right) 0–10% 

centrality Pb + Pb events. Top panels show the photon–jet pT-balance xJγ distributions and total uncertainties, while the bottom panels show the absolute uncertainties 
from jet-related, photon-related, and modelling or unfolding sources, as well as the total uncertainty.

pp collisions [53]. All of the above uncertainties apply equally to 
jets in pp and Pb + Pb events. A separate, centrality-dependent 
uncertainty is included in 0–60% Pb + Pb collisions. This uncer-
tainty accounts for a possible modification of the jet response after 
energy loss and is evaluated through in situ comparisons of the 
charged-particle track-jet and calorimeter-jet pT values in data and 
simulation. More details are provided in Refs. [54,57]. No addi-
tional uncertainty is included for 60–80% centrality events.

Uncertainties in the photon purity estimate are determined by 
varying the non-tight identification and isolation criteria used to 
select hadron background candidates and by considering a possible 
non-factorisation of the hadron background along the axes used in 
the double-sideband procedure. The sensitivity to the modelling of 
photon shower shapes in simulation is evaluated by removing the 
data-driven corrections to these quantities [50]. Finally, the pho-
ton pT scale and resolution uncertainties are described in detail in 
Ref. [51], and their impact is evaluated by applying them as varia-
tions to the response matrices used in unfolding.

Modelling- or unfolding-related systematic uncertainties arise 
from several sources. The estimate of the combinatoric photon–jet 
rate in the data-overlay simulation is sensitive to the requirement 
on the minimum pT of a generator-level jet in the classification 
of a given reconstructed jet as a combinatoric jet, as opposed to 
a photon-correlated jet. To provide one estimate of the sensitivity 
to this threshold, it is varied in the range 20 ± 10 GeV. To assess 
the sensitivity to the choice of prior, the unfolding is repeated us-
ing the alternative priors which are systematically closer to and 
farther from the original Pythia prior. The sensitivity to statisti-
cal limitations of the simulation samples is determined through 
pseudo-experiments, resampling entries in the response matrices 
according to their uncertainty. Finally, the analysis is repeated us-
ing the Sherpa simulation to perform the corrections and unfold-
ing, since this generator provides a different description of photon–
jet production topologies.

Fig. 2 summarises the systematic uncertainties in each cate-
gory, as well as the total uncertainty, for the lowest-p

γ
T interval 

in pp and 0–10% Pb + Pb events. The jet-related uncertainties are 
generally the dominant ones, except in more central events and 

lower-p
γ
T intervals, where the unfolding and modelling uncertain-

ties become co-dominant.

As an additional check on the features in the unfolded xJγ dis-

tributions observed in data, the analysis was repeated with two 
modifications which change the signal photon–jet definition. First, 
the photon–jet �φ requirement was changed from > 7π/8 to 
> 3π/4. With this alteration, the correlated jet yield changes only 
by a small amount, while the combinatoric background, which is 
constant in �φ, doubles. Second, the analysis was repeated, but 
selecting only the leading (highest-pT) jet in the event if it fell 
within the �φ window. In this case, the combinatoric background 
contribution is no longer purely additive and the inefficiency when 
a higher-pT uncorrelated jet is selected instead of the photon-
correlated jet must be accounted for, similar to Ref. [12]. In both 
cases, the distributions in Pb + Pb exhibit a qualitatively similar 
modification pattern compared to the main results as a function 
of xJγ .

7. Results

The unfolded (1/Nγ )(dN/dxJγ ) distributions in pp collisions 
are shown for each pγ

T interval in Fig. 3. The distributions are re-
ported for all xJγ bins where the jet minimum pT requirement is 
fully efficient. Also shown are the corresponding generator-level 
distributions from the Pythia, Sherpa and Herwig samples. Each 
generator describes the data fairly well, with Herwig generally 
overpredicting the yield at large-xJγ and Sherpa showing the best 
agreement over the full xJγ range.

The unfolded (1/Nγ )(dN/dxJγ ) distributions in Pb + Pb col-
lisions are presented in Figs. 4 through 7, with each figure repre-
senting a different pγ

T interval. Since the results are fully corrected, 
they may be directly compared with the analogous xJγ distribu-

tions in pp collisions, which are reproduced in each panel for 
convenience.

For all pγ
T intervals, the xJγ distributions in Pb + Pb collisions 

evolve smoothly with centrality. For peripheral collisions with cen-
trality 50–80%, they are similar to those measured in pp collisions. 
However, in increasingly more central collisions, the distributions 
become progressively more modified. For the pγ

T < 100 GeV in-
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Fig. 3. Photon–jet pT-balance distributions (1/Nγ )(dN/dxJγ ) in pp collisions, each panel showing a different photon-pT interval. The unfolded results are compared with 
the particle-level distributions from three Monte Carlo event generators. Bottom panels show the ratios of the generators to the pp data. Total systematic uncertainties are 
shown as boxes, while statistical uncertainties are shown as vertical bars.

tervals shown in Figs. 4 and 5, the xJγ distributions in the most 
central 0–10% events are so strongly modified that they decrease 
monotonically over the measured xJγ range and no peak is ob-
served. For the pγ

T > 100 GeV region shown in Fig. 6, the xJγ
distributions retain a peak at or near xJγ ≈ 0.9 even in the most 
central collisions. However, the magnitude of the peak is lower and 
significantly wider than the sharp peak in pp events. In both cases, 
the jet yield at small xJγ is systematically higher than that in pp
collisions, by up to a factor of two. In less central events, a peak-

like structure develops at the same position as the maximum in 
pp events, near xJγ ≈ 0.9. For the lowest-p

γ
T interval, this occurs 

only for 50–80% centrality events, while in the highest two pγ
T in-

tervals the distribution in 0–10% events is consistent with a local 
peak.

As another way of characterising how the modified xJγ distri-

butions depend on centrality and pγ
T , Fig. 8 presents their mean 

value, 
〈
xJγ

〉
, and integral, Rγ , with both values calculated in the 

region xJγ > 0.5. These quantities are shown as a function of the 
mean number of participating nucleons Npart in the corresponding 
centrality selection, and are plotted for the first three pγ

T intervals 
where they have small statistical uncertainties. When measured in 
the region xJγ > 0.5, the value of 

〈
xJγ

〉
in pp collisions is observed 

to be ≈ 0.89 for all pγ
T intervals. Simulation studies show that, 

at generator level, the jet yield at xJγ > 0.5 corresponds to only 
the leading (highest-pT) photon-correlated jet in each event. Thus, 〈
xJγ

〉
can be interpreted as a conditional per-jet fractional energy 

loss, and Rγ can be interpreted as the fraction of photons with a 
leading jet above xJγ = 0.5. In pp collisions, Rγ ranges from 0.65
to 0.75 in the three pγ

T intervals shown, which is below unity due 
to the jet selection criteria (�φ > 7π/8, |η| < 2.8).

In Pb + Pb events, 
〈
xJγ

〉
decreases monotonically from the value 

in pp collisions as the collisions become more central. In the most 
central collisions, it is below the pp value by 0.04–0.06, depend-
ing on the pγ

T interval, while in peripheral collisions it reaches a 
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Fig. 4. Photon–jet pT-balance distributions (1/Nγ )(dN/dxJγ ) in Pb + Pb events (red circles) with each panel showing a different centrality selection compared to that in 
pp events (blue squares). These panels show results for pγ

T = 63.1–79.6 GeV. Total systematic uncertainties are shown as boxes, while statistical uncertainties are shown as 
vertical bars.

Fig. 5. Photon–jet pT-balance distributions (1/Nγ )(dN/dxJγ ) in Pb + Pb events (red circles) with each panel showing a different centrality selection compared to that in 
pp events (blue squares). These panels show results for pγ

T = 79.6–100 GeV. Total systematic uncertainties are shown as boxes, while statistical uncertainties are shown as 
vertical bars.

value which is statistically compatible with that in pp events. The 
Rγ value also decreases monotonically as the collisions become 
more central, reflecting the overall shift of the xJγ value of lead-
ing jets below xJγ = 0.5. At low pγ

T in central Pb + Pb collisions, 
Rγ reaches the value of 0.5, which is only ≈ 75% of its value in pp
collisions.

The results are compared with the following theoretical predic-
tions which include Monte Carlo generators and analytical calcu-
lations of jet energy loss: (1) a pQCD calculation which includes 
Sudakov resummation to describe the vacuum distributions and 
energy loss in Pb + Pb collisions as described in the BDMPS-Z 
formalism [26], (2) a perturbative calculation within the frame-

work of soft-collinear effective field theory with Glauber gluons 
(SCETG) in the soft gluon emission (energy-loss) limit [27], (3) the
JEWEL Monte Carlo event generator which simulates QCD jet evo-
lution in heavy-ion collisions and includes energy-loss effects from 

radiative and elastic scattering processes [28], and (4) the Hybrid 
Strong/Weak Coupling model [29] which combines initial produc-
tion using Pythia with a parameterisation of energy loss derived 
from holographic methods, and includes back-reaction effects.

Figs. 9 and 10 compare a selection of the measured xJγ dis-

tributions with the results of these theoretical predictions, where 
possible. Before testing the description of energy-loss effects in 
Pb + Pb events, the predicted xJγ distributions are compared with 
pp data in Fig. 9. The Hybrid model and JEWEL, which use Pythia
for the photon–jet production in vacuum, give a good description 
of pp events over the measured xJγ range in both pγ

T intervals 
shown. The BDMPS-Z and SCETG perturbative calculations capture 
the general features but predict distributions that are more and 
less peaked, respectively, than those in data.

In Pb + Pb events with low pγ
T , shown in the left panel of 

Fig. 10, the JEWEL, Hybrid, and SCETG models successfully capture 
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Fig. 6. Photon–jet pT-balance distributions (1/Nγ )(dN/dxJγ ) in Pb + Pb events (red circles) with each panel showing a different centrality selection compared to that in 
pp events (blue squares). These panels show results for pγ

T = 100–158 GeV. Total systematic uncertainties are shown as boxes, while statistical uncertainties are shown as 
vertical bars.

Fig. 7. Photon–jet pT-balance distributions (1/Nγ )(dN/dxJγ ) in Pb + Pb events (red circles) with each panel showing a different centrality selection compared to that in 
pp events (blue squares). These panels show results for pγ

T = 158–200 GeV. Total systematic uncertainties are shown as boxes, while statistical uncertainties are shown as 
vertical bars.

several key features of the xJγ distribution, including the absence 
of a visible peak, and the monotonically increasing behaviour with 
decreasing xJγ . The BDMPS-Z model predicts a suppression of the 
yield near xJγ ≈ 0.9 relative to what is predicted in pp events, con-
sistent with the trend in data. However, it underestimates the yield 
at low xJγ in both pp and Pb + Pb collisions. In the higher-pγ

T

interval, the Hybrid model and JEWEL successfully describe the 
reappearance of a localised peak near xJγ ≈ 0.9. However, none of 
the models considered here describe the increase of the jet yield 
at xJγ < 0.5 above that observed in pp events. Additional com-

parisons between these data and theoretical calculations which 
are differential in both pγ

T and centrality will further constrain 
the description of the strongly coupled medium in these mod-

els.

8. Conclusion

This Letter presents a study of photon–jet transverse mo-

mentum correlations for photons with 63.1 < p
γ
T < 200 GeV in 

Pb + Pb collisions at 
√
sNN = 5.02 TeV and pp collisions at 

√
s =

5.02 TeV. The data were recorded with the ATLAS detector at the 
LHC and correspond to integrated luminosities of 0.49 nb−1 and 
25 pb−1, respectively. The data are corrected for the presence of 
combinatoric photon–jet pairs and of dijet pairs where one of the 
jets is misidentified as a photon. The measured quantities in data 
are fully corrected for detector effects and reported at the parti-
cle level. Per-photon distributions of the jet-to-photon pT ratio, 
xJγ = p

jet
T /p

γ
T , are measured for pairs with an azimuthally balanced 

configuration, �φ > 7π/8. In pp events, the data are well repro-
duced by event generators or models that depend on them, but are 
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Fig. 8. Summary of (left) the mean jet-to-photon pT ratio 〈xJγ
〉
and (right) the total per-photon jet yield Rγ , calculated in the region xJγ > 0.5. The values are presented as a 

function of the mean number of participating nucleons Npart in top panels. Each colour and symbol represents a different pγ
T interval, where the lowest and highest intervals 

are displaced horizontally for clarity. The points plotted at Npart = 2 correspond to pp collisions. The bottom panels show the difference between the Pb + Pb centrality 
selection and pp collisions. Boxes show the total systematic uncertainty while the vertical bars represent statistical uncertainties.

Fig. 9. Photon–jet pT-balance distributions (1/Nγ )(dN/dxJγ ) in pp collisions for (left) pγ
T = 63.1–79.6 GeV and (right) pγ

T = 100–158 GeV. The unfolded results are compared 
with the theoretical calculations shown as dashed coloured lines (see text). Total systematic uncertainties are shown as boxes, while statistical uncertainties are shown as 
vertical bars.

Fig. 10. Photon–jet pT-balance distributions (1/Nγ )(dN/dxJγ ) in 0–10% Pb + Pb collisions for (left) pγ
T = 63.1–79.6 GeV and (right) pγ

T = 100–158 GeV. The unfolded 
results are compared with the theoretical calculations shown as dashed coloured lines denoting central values or coloured bands which correspond to a range of theoretical 
parameters (see text). Total systematic uncertainties are shown as boxes, while statistical uncertainties are shown as vertical bars.
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not fully described in detail by approaches based on perturbative 
calculations.

In Pb + Pb collisions, xJγ distributions are observed to have a 
significantly modified total yield and shape compared with those 
in pp collisions. These modifications have a smooth onset as a 
function of Pb + Pb event centrality and pγ

T . In peripheral col-
lisions at high pγ

T , the distributions in Pb + Pb are statistically 
compatible with those in pp. In the most central Pb + Pb events 
at low pγ

T , the yield decreases monotonically with increasing xJγ
over the measured range, in strong contrast to the sharply peaked 
distributions in pp events. However, in less central events or in 
higher-p

γ
T intervals, the xJγ distributions retain a peak-like excess 

at an xJγ value similar to that in pp collisions but with a smaller 
per-photon yield. This last observation suggests that the amount of 
energy lost by jets in single events has a broad distribution, with a 
small but significant population of jets retaining a pp-like pT cor-

relation with the photon because they do not lose an appreciable 
amount of energy.

These results are sensitive to how partons initially produced op-
posite to a high-pT photon lose energy in their interactions with 
the hot nuclear medium. Taken together with other measurements 
of single-jet and dijet production, the data provide new, comple-

mentary information about how energy loss in the strongly cou-
pled medium varies with the initial parton flavour and pT.
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S.D. Worm 21, B.K. Wosiek 82, K.W. Woźniak 82, K. Wraight 55, M. Wu 36, S.L. Wu 178, X. Wu 52, Y. Wu 58a, 
T.R. Wyatt 98, B.M. Wynne 48, S. Xella 39, Z. Xi 103, L. Xia 175, D. Xu 15a, H. Xu 58a, L. Xu 29, T. Xu 142, 
W. Xu 103, B. Yabsley 154, S. Yacoob 32a, K. Yajima 129, D.P. Yallup 92, D. Yamaguchi 162, Y. Yamaguchi 162, 
A. Yamamoto 79, T. Yamanaka 160, F. Yamane 80, M. Yamatani 160, T. Yamazaki 160, Y. Yamazaki 80, Z. Yan 25, 
H.J. Yang 58c,58d, H.T. Yang 18, S. Yang 75, Y. Yang 160, Z. Yang 17, W-M. Yao 18, Y.C. Yap 44, Y. Yasu 79, 
E. Yatsenko 58c,58d, J. Ye 41, S. Ye 29, I. Yeletskikh 77, E. Yigitbasi 25, E. Yildirim 97, K. Yorita 176, 
K. Yoshihara 133, C.J.S. Young 35, C. Young 150, J. Yu 8, J. Yu 76, X. Yue 59a, S.P.Y. Yuen 24, B. Zabinski 82, 
G. Zacharis 10, E. Zaffaroni 52, R. Zaidan 14, A.M. Zaitsev 140,ai, T. Zakareishvili 156b, N. Zakharchuk 44, 
J. Zalieckas 17, S. Zambito 57, D. Zanzi 35, D.R. Zaripovas 55, S.V. Zeißner 45, C. Zeitnitz 179, G. Zemaityte 131, 
J.C. Zeng 170, Q. Zeng 150, O. Zenin 140, D. Zerwas 128, M. Zgubič 131, D.F. Zhang 58b, D. Zhang 103, 
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