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Abstract

These proceedings from the Quark Matter 2018 Conference provide an overview of recent experimental results of jet
measurements in heavy ion collisions at the LHC and RHIC and thoughts on future measurements.

1. Introduction

Jets in heavy ion collisions are used as a short distance probe of the quark-gluon plasma (QGP) created
in these collisions. Measurements of jets and high transverse momentum (pr) particles from jets have shown
that the rates and properties of jets are modified in Pb+Pb collisions compared to those measurements in
pp collisions (for a recent review see Ref. [1]). With the wealth Pb+Pb data available at the Large Hadron
Collider (LHC), many important measurements have been made in heavy ion collisions recently. The large
statistics allow for systematic studies of inclusive jets as function of the jet transverse momentum, p]{ft,
and rapidity, Y, as well as improved measurements of jets azimuthally balanced with photons and other
measurements in which particles are identified within jets. Together, these measurements provide a more
comprehensive look at how jets are modified in heavy ion collisions. In addition, there has been continuing
interest in adopting jet substructure techniques for heavy ion collisions. Finally, the 2017 Xe+Xe data
recorded by the LHC experiments provides a first look at smaller symmetric collision systems at the LHC.

In this proceedings, recent measurements from the LHC and RHIC are discussed which provide new,
differential access to how jets are modified in the QGP. A discussion of future areas of interest is presented.

2. Inclusive Jets

Inclusive jets dominantly originate from light quarks and gluons. The high rates of these jets allow for
measurements over a very large kinematic range. Figure 1 shows recent ATLAS results of the jet nuclear
modification factor, Raa, measured in 0—10% central collisions from 100 GeV to 1 TeV for R = 0.4 jets [2].
Raa remains below unity over the entire kinematic range. Figure 1 also shows the first evidence for a
rapidity dependence of Ras [2]. There are two reasons this could be expected. First, the gluon jet fraction
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in the inclusive jet sample decreases toward increasing rapidity at fixed jet transverse momentum, p';t, (see,
for example Ref. [3]). As gluons are expected to lose more energy than quarks in the QGP due to their
larger color factor, the value of Ry would be expected to increase as |yjet| increases. Second, the ;t
spectra become steeper with increasing |y'*'| (see, for example Ref. [4]); this would cause a reduction in the
Raa value for the same energy loss. Figure 1, Raa is shown to decrease with increasing [y!| for jets with
ﬁft > 300 GeV, suggesting that the second effect dominates for these jets. These measurements will provide
input for theoretical models which seek to incorporate all these effects into a description of jet quenching.
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Measurements of the fragmentation functions of jets provide information on how particles are carrying
the jet momentum and extensive measurements have been done at the LHC [5, 6, 7, 8]. In these measure-
ments, excesses of both low-pr particles and particles carrying a large fraction of the jet momentum has
been observed: Recent measurements [8] allow a more extensive study of how bqth of these features de-
pend on the pX' and y'. Figure 2 shows the fragmentation functions for three p' selections, plotted as
a function of the charged-particle py and the charged-particle momentum fraction, z. It is observed that
the soft-particle excess extends to approximately 4 GeV, independent of pgl?t In contrast, the hard-particle

excess is found to begin at a common z value for all p’Tet selections measured; this excess is described by
some models [9, 10]. Ref. [10] explains the excess as being due to the combination of the larger quenching
and softer fragmentation of gluon jets compared to quark jets.

An alternative method for studying the structure of jets is jet substructure. This class of observables is
sensitive to the overall structure of the jet. These techniques were originally developed to look for decays of
boosted objects at the LHC, but have recently become of great interest in the study of QCD jets, both in pp
collisions and in heavy ion collisions; recent reviews can be found in Ref. [11, 12]. Previous substructure
measurements in heavy ion collisions have included a measurement of the jet mass [13] and the jet splitting
function z, [14, 15].

Recent results presented at this conference include the measurement of the number of soft-drop splittings
in charged particle jets [16] and the soft-drop mass of jets [17], both shown in Fig. 3. These results use the
soft-drop procedure by which some of the soft radiation is removed from the jet [18], by reclustering the
jet with the Cambridge-Achen [19] and checking if each step in the clustering tree satisfies a momentum
balance condition known as the soft-drop condition. ALICE measured, ngp, the number of splittings in
charged-particle jets which satisfy the soft-drop condition. It might be expected that the interaction of the
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Fig. 2. Ratios of jet fragmentation functions in 0-10% central Pb+Pb collisions to those in pp collisions as a function of charged
particle pr (left) and z (right). Both figures are from Ref. [8].

parton shower and the QGP would increase the number of such splittings. The result, shown in Fig. 3, was
found to be unchanged between Pb+Pb collisions and PyTHia6 jets embedded into Pb+Pb data [16].

The jet mass is related to the angular size of the jet and thus how the mass distributions change in
heavy ion collisions provide information about how the QGP interacts with the parton shower. There are
a variety of mass measurements already available. The soft-drop procedure changes the mass distribution
and a new quantity, the soft-drop mass, can be defined. Ref. [17] investigated two settings of the soft-
drop algorithm which lead to very different soft-drop mass distributions. These settings are expected to
be differently sensitive to the modification of the jets by the QGP. For the soft-drop mass distributions
shown in Fig. 3, the distributions are found to be consistent with those in pp collisions (after smearing to
match the underlying event effects), except for an enhancement of jets with high soft-drop mass in the most
central collisions. No modification compared to smeared pp collisions was found with the other soft-drop
algorithm setting. In addition, the first measurement of the jet mass (without soft-drop), m, over a wide
range in pJTet was reported [20]. No modification of the jet suppression as a function of the jet mass scaled

by pJ{ft was observed. This could suggest that the jets are dominantly losing energy as a single object rather
than parts of the jet de-cohering and losing energy independently [21]. More studies of the mass and other
quantities related to the angular distribution of particles within the jet in heavy ion collisions are necessary
to understand these measurements further.

3. Photon-jet correlations

Jets opposite a photon in azimuth are of great interest in heavy ion collisions because the photon does
not lose energy in the plasma as quarks and gluons do. These measurements complement inclusive jet mea-
surements. Previous measurements have shown the pr of the jet relative to that of the photon is reduced
in heavy ion collisions relative to pp collisions [24]. New measurements allow the study of the photon-jet
momentum balance as a function of the photon py [25, 22]. The ATLAS results are unfolded for detector
resolution effects and are shown in Fig. 4 for 100-158 GeV photons in 0-10% central collisions. A peak
of nearly balanced photon-jet pairs as well as a wide distribution due to jets which have much less energy
than the photons is observed. Additionally, the first measurements of the fragmentation of the jets opposite
a photon have been performed [26, 23]. These fragmentation functions differ from inclusive fragmentation
functions in a few ways. First, the jets are possibly quenched more due to the bias from the photon selection.
Second, the jets are at lower p]Tet than the inclusive jet fragmentation functions. Finally, these jets have a
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Fig. 3. (left) Distribution of the number of soft-drop splittings, nsp in Pb+Pb collisions compared to those from PyTHIA6 events
embedded into Pb+Pb data (top) and the ratio of data to the simulation (bottom) [16]. (center) Distribution of the groomed jet mass

divided by pJ;‘ for four centralities in Pb+Pb collisions (squares) and the same quantity for pp collisions smeared to have the same

underlying event effects as those in the Pb+Pb data. (right) Ratios of the groomed jet mass divided by p';t in Pb+Pb collisions compared
to those in the smeared pp collisions [17]

much higher fraction of quark-jets than the inclusive jet sample. Measurements of photon-hadron correla-
tions had been made at RHIC [27, 28, 29], but only recently were measurements made of the hadrons in
reconstructed jets back-to-back with a photon in Pb+Pb collisions [26, 23]. In the measurements shown in
Fig. 4 [23], a similar magnitude and pr-range of the low-pr enhancement is observed as in the fragmentation
functions shown in Fig. 2. The pt range of the low-p excess is also similar to that observed at RHIC [29].

4. J/y and D° in Jets

At this conference, new results were shown from reconstructing mesons carrying charm quarks within
jets. In pp collisions, these measurements are important to tune MC generators and provide references for
measurements in heavy ion collisions. In Pb+Pb collisions, D? measurements are used to tag charm-quark
jets. The comparison of the properties of these jets to inclusive jets can provide information about the parton
flavor dependence of the jet quenching process.

A measurement of the fragmentation function of J/¢ particles is reported in Ref. [30], Fig. 5, and shows
that the momentum fraction of prompt (not from B decay) J/¢ mesons within jets differs qualitatively from
what is expected from PyTtHia8; there is much more jet energy around these high-pr J/y particles than
is expected from PytHia8. In contrast, the non-prompt J/y from B-meson decays are well described by
PyTHiA8. These findings are similar to those from LHCD [33], though the kinematics is different.

Two new results study D° mesons within jets. ALICE has measured the momentum distributions of D°
mesons within jets in pp collisions and compared the results to PowHeG+PytHia6 MC [31] and CMS has
measured the radial distribution of D° mesons inside jets in pp and Pb+Pb collisions. ALICE finds that
the MC describes the pp data to within the systematic uncertainties. CMS finds that in pp collisions the
data favor a narrower radial profile than the MC. The result in Pb+Pb collisions is compatible with that in
pp collisions with the current uncertainties. Further measurements with smaller uncertainties would allow
comparison to light quark and gluon jets.

5. Xe+Xe collisions

In 2017 there was a short Xe+Xe run at the LHC. This data has provided new information about how
jet quenching depends on the size of the system produced. ALICE [34], ATLAS [35], and CMS [36] have
measured how the charged particle Ry compares between Pb+Pb and Xe+Xe collisions as a function of
variety of measures of the system size. Figure 6 shows a comparison of the Rps in Pb+Pb and Xe+Xe
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Fig. 4. (left top) Ratio of the jet transverse momentum to the photon pr, x,,, in central Pb+Pb collisions [22]. Also shown on the figure
are calculations from various theoretical models. (right) The ratio of the fragmentation function as a function of charged particle pr
in central Pb+Pb collisions to pp collisions for jets opposite a photon (squares) and inclusive jet fragmentation functions [7] (circles).
Figure is from Ref. [23].

collisions for two centrality bins selected to have the same average charged particle multiplicity. The Raa
values are consistent between the two collision systems in both of these selections.

Figure 6 also shows ATLAS measurements of the dijet asymmetry in Pb+Pb and Xe+Xe collisions
from Ref. [35] for four ﬁ;t selections. The measurement is performed in a fixed forward transverse energy
selection, which provides a similar comparison to that made for the charged particle Ryp above. The mea-
surement is not unfolded for detector resolution and the jet energy resolution (JER) is different between the
two collision systems. In this case the Xe+Xe measurement has a better JER than the Pb+Pb measurement
so an additional smearing is applied to the Xe+Xe data to make it directly comparable to the Pb+Pb mea-
surement. In this case the effect of this additional smearing is quite small and the Pb+Pb measurement is in
agreement with both the Xe+Xe with and without the additional smearing.

6. Future Measurements

In these proceedings many new jet measurements from RHIC and the LHC have been discussed. There
are a wealth of both precision measurements and exploratory studies which will greatly benefit from the
larger datasets expected in 2018 and LHC Run 3 and Run 4. Data which has been unfolded for detector
effects can be directly compared to both other data and model calculations. This has already been used
to measure the jet transverse momentum dependence of the fragmentation functions and to compare the
photon-jet fragmentation functions to the inclusive jet fragmentation functions. These types of comparisons
are crucial to extracting the maximum information from the results.

The recent Xe+Xe run was extremely useful for jet physics; the jet related observables discussed here
are found to be modified approximately according to the multiplicity or forward transverse energy. This
observation helps to understand what could be gained from accumulating a large luminosity of ions smaller
than lead. This could serve two purposes: to increase the available number of jets and hard probes available
in heavy ion collisions [37] and to understand the role, if any, of jet quenching in pA collision systems.

Most of the measurements discussed here are from the LHC, however precision measurements from
other collision center-of-mass energies are necessary to constrain the temperature dependence of jet quench-
ing in the QGP. The sSPHENIX experiment [38], expected to start taking data in 2023, is necessary for this.
It will provide for the first time fully calorimetric jet measurements at RHIC and allow jet measurements
over nearly all of the available kinematic range at /syN = 200 GeV. The combination of sSPHENIX and the
LHC will provide the best opportunity to constrain how jets interact with the quark gluon plasma.
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