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This Letter presents a search for new light resonances decaying to pairs of quarks and produced in
association with a high-pr photon or jet. The dataset consists of proton-proton collisions with an
integrated luminosity of 36.1 fb~! at a centre-of-mass energy of /s = 13 TeV recorded by the ATLAS
detector at the Large Hadron Collider. Resonance candidates are identified as massive large-radius jets
with substructure consistent with a particle decaying into a quark pair. The mass spectrum of the
candidates is examined for local excesses above background. No evidence of a new resonance is observed

in the data, which are used to exclude the production of a lepto-phobic axial-vector Z’ boson.
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1. Introduction

Searches for resonance signals in the invariant mass spectrum
of hadrons are an essential part of the physics programme at the
energy frontier. Many theoretical models predict resonances [1-3]
with significant couplings to quarks and gluons, including reso-
nances which also couple to dark-matter particles [4-7]. At the
Large Hadron Collider (LHC), the ability to discover or exclude such
hadronic resonances has been extended into the TeV range, al-
though no evidence of statistically significant excesses has been
seen [8,9].

Sensitivity to light resonances is reduced by the immense back-
ground rates that would saturate the trigger and data acquisition
systems. The recording of collision data typically requires placing
thresholds of several hundred GeV on the transverse momentum
( p'T“i") of the jet used to trigger the event, which translates to ap-
proximate thresholds on mass of m~ 2p‘T“i". Consequently, recent
searches for dijet resonances at the LHC have poor sensitivity for
masses well below 1 TeV. This limitation can be avoided by record-
ing only a summary of the jet information needed for performing a
resonance search in the dijet mass spectrum. This strategy is called
“data scouting” in CMS [10], “real-time analysis” in LHCb [11] and
“trigger-object-level analysis” in ATLAS [12], and has set limits for
resonance masses in the range 500-800 GeV [10].

In this Letter, a search using an alternative approach [4,13] is
performed, in order to cover even lower resonance masses. The
trigger threshold limitations are reduced by examining data where
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the light resonance is boosted in the transverse direction' via re-
coil from high transverse momentum (pr) initial-state radiation
(ISR) of a photon or jet. Requiring a hard ISR object in the final
state comes at the cost of reduced signal production rates, but al-
lows highly efficient triggering at masses much lower than when
triggering directly on the resonance decay products.

The search is performed for resonance masses from 100 GeV to
220 GeV, a range in which the resonance is boosted and its de-
cay products are collimated, such that the resonance mass can be
calculated from the mass of a large-radius jet. The dominant back-
ground processes are multijet production in the jet channel and
photons produced in association with jets in the photon channel,
both characterised by non-resonant jets initiated predominantly by
single gluons or light-flavour quarks. The Z’ signal models consid-
ered decay to quark-antiquark pairs. This difference in the domi-
nant jet production mechanism between the signal and the leading
backgrounds means that, in the boosted regime considered in this
Letter, the use of jet substructure methods strongly suppresses the
background, making it a crucial component for the search sensitiv-
ity. In addition, current datasets are the largest collected, allowing
the sensitivity to rare processes to be extended beyond that of ear-
lier studies.

1 ATLAS uses a right-handed coordinate system with its origin at the nominal
interaction point (IP) in the centre of the detector and the z-axis along the beam
pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis
points upwards. Cylindrical coordinates (r,¢) are used in the transverse plane, ¢
being the azimuthal angle around the z-axis. The pseudorapidity is defined in terms
of the polar angle 6 as n = —Intan(0/2). It is equivalent to the rapidity for massless
particles. Angular distance is measured in units of AR =/(An)? + (A¢)2.
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Recently, CMS reported results of applying a similar technique
[14,15] to exclude a light Z’ boson with Standard Model (SM)
coupling values (gq) exceeding 0.1 to 0.25 in the mass range
50-300 GeV. With respect to those results, this Letter also exploits
the channel with the ISR photon.

2. ATLAS detector

The ATLAS experiment [16] at the LHC is a multi-purpose
particle detector with a forward-backward symmetric cylindrical
geometry with layers of tracking, calorimeter, and muon detec-
tors over nearly the entire solid angle around the proton-proton
(pp) collision point. The inner detector (ID) consists of a high-
granularity silicon pixel detector, including an insertable B-layer
[17], and a silicon microstrip tracker, together providing preci-
sion tracking in the pseudorapidity range |n| < 2.5. Complemen-
tary, a transition radiation tracker provides tracking and electron
identification information for || < 2.0. The ID is surrounded by
a 2 T superconducting solenoid. Lead/liquid-argon (LAr) sampling
calorimeters provide electromagnetic (EM) energy measurements
with high granularity, covering the region |n| < 3.2. A hadron
(steel/scintillator-tile) calorimeter covers the central pseudorapid-
ity range (|n| < 1.7). The end-cap and forward regions are instru-
mented with copper/LAr calorimeters (1.7 < || < 3.2) and LAr
calorimeters with copper and tungsten absorbers, providing EM
and hadronic energy measurements covering the region |n| < 4.9.
The muon spectrometer consists of precision tracking chambers
covering the region |n| < 2.7. The first-level trigger is implemented
in hardware and uses a subset of the detector information to re-
duce the accepted rate to 100 kHz. This hardware trigger [18]
is followed by a software-based trigger that reduces the rate of
recorded events to 1 kHz.

3. Data and simulation samples

The data were collected in pp collisions at /s = 13 TeV dur-
ing 2015 and 2016. Collision events are recorded with two triggers.
The first selects events with at least one photon candidate that has
an online transverse energy Et > 140 GeV and passes the “loose”
identification requirements based on the shower shapes in the
EM and hadronic calorimeters [18]. The photon trigger reaches its
maximum efficiency for Et > 155 GeV. The second trigger selects
events with at least one jet candidate with online Et > 380 GeV
formed from clusters of energy deposits in the calorimeters [19]
by the anti-k; algorithm [20,21] with radius parameter R = 0.4,
implemented in the FastJet package [22]. The jet trigger reaches
its maximum efficiency for pr > 420 GeV. Only data satisfying
beam, detector and data-quality criteria are considered [23]. The
data used correspond to an integrated luminosity of 36.1 fb~1.

Samples of simulated events are used to characterise the hypo-
thetical resonances as well as to study the kinematic distributions
of background processes. These samples are not used to estimate
the background contributions, except when validating the data-
driven background estimate (described in Section 5).

Background samples were simulated using the SHERPA 2.1.1
event generator [24]. Processes containing a photon with associ-
ated jets were generated in several bins of photon pt. The matrix
elements were calculated at leading order (LO) with up to three
partons for photon pt < 70 GeV or four partons for higher photon
pr. Multijet background samples were generated at LO in several
bins of leading-jet pt. Samples of W +jets, Z-+jets, W4y and
Z+Yy events with hadronic decays of the vector-bosons were sim-
ulated in bins of W /Z-boson pt. Matrix elements were calculated
at LO with up to four partons for the W /Z+jets samples and up

to three partons for W/Z+y samples. The cross sections were cor-
rected at next-to-leading order (NLO) using K-factors derived from
corresponding samples with leptonic vector-boson decays gener-
ated at NLO using SHERPA 2.1.1 [24], with matrix elements calcu-
lated for up to two partons at NLO and four partons at LO using
Comix [25] and OpenLoops [26]. All the above LO background sam-
ples were merged with the SHERPA parton shower [27] using the
ME+PS@LO prescription [28]. The CT10 set of parton distribution
functions (PDFs) [29] were used in conjunction with the dedicated
parton shower tuning developed by the SHERPA authors. For the
NLO leptonic vector-boson samples utilised to calculate K-factors,
the ME+PS@NLO prescription [28] and the CT10NLO PDF set are
used.

As a benchmark signal, samples with a Z’ resonance with only
hadronic couplings were generated as in Refs. [30-32]. This Z’
has axial-vector couplings to quarks. The coupling of the Z’ to
quarks, gg, is set to be universal in quark flavour and equal to
0.5. The corresponding total width I';/ is negligible compared to
the experimental resolution, which is about 10% of the boson
mass. A set of samples was generated with mz between 100 and
220 GeV, in 30 GeV steps. A linear and parameterised interpolation
was performed in 10 GeV steps in between the generated mass
points. The samples were produced with g; = 0.5, using the MAD-
GRAPH_AMC@NLO generator [33] with the NNPDF2.3 LO PDF [34]
and the A14 set of tuned parameters (tune) [35]. Parton showers
were produced in PyTHIA 8.186 [36]. Interference of this bench-
mark model with the Standard Model Z boson is assumed to be
negligible. For efficient population of the kinematic phase space,
a photon (jet) with pr > 100 GeV (350 GeV) was required in the
generation phase.

The response of the detector to particles was modelled with a
full ATLAS detector simulation [37] based on GEANT4 [38]. All sim-
ulated events were overlaid with additional pp interactions (pile-
up) simulated with the soft strong-interaction processes of PYTHIA
8.186 [36] using the A2 tune [39] and the MSTW2008LO PDF set
[40]. The simulated events were reconstructed in the same way as
the data, and were reweighted such that the distribution of the ex-
pected number of pp interactions per bunch crossing matches that
seen in data.

4. Event reconstruction and selection

Events are required to have a reconstructed primary vertex,
defined as a vertex with at least two reconstructed tracks with
pr > 400 MeV each and with the largest sum of track p%.

Photons are reconstructed from clusters of energy deposits in
the electromagnetic calorimeter. The photon energy scale is cor-
rected using events with Z — eTe~ decays in data [41]. Identifi-
cation requirements are applied to reduce the contamination from
79 or other neutral hadrons decaying into photons. The photon
identification is based on the profile of the energy deposits in the
first and second layers of the electromagnetic calorimeter. Photons
used in the event selection must satisfy the “tight” identification
and isolation criteria defined in Ref. [42], and must have |n| < 2.37,
excluding the EM calorimeter’s barrel/end-cap transition region of
1.37 < |n| < 1.52. The efficiency of the photon selection is roughly
95% for photons with Et > 150 GeV.

Two non-exclusive categories of jet candidates are built from
clusters of energy deposits in the calorimeters [19] and are dis-
tinguished by the radius parameter used in the anti-k; algorithm.
Jets with a radius parameter R = 1.0 are referred to as large-R jets,
denoted by J and required to have || < 2.0, whereas jets with a
radius parameter R = 0.4 are referred to as narrow jets, denoted
as j and are required to have |n| < 2.4. To mitigate the effects
of pile-up and soft radiation, the large-R jets are trimmed [43].
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Fig. 1. Mean value of 75T

photon (right).

Trimming takes the original constituents of the jet and reclusters
them using the k; algorithm [44] with a smaller radius parame-
ter, Rsupjer, to produce a collection of subjets. These subjets are
discarded if they carry less than a specific fraction (fey) of the
original jet pr. The trimming parameters optimised for this search
are Rgypjer = 0.2 and four = 5% [45]. Large-R jets are calibrated fol-
lowing the procedure described in Ref. [46].

The energies of selected narrow jets are corrected for contribu-
tions from pile-up interactions [47]. A correction used to calibrate
jet energy measurements to the scale of the constituent particles
of the jet [48] is then applied. Narrow jets with 25 GeV < pr <
60 GeV are required to originate from the primary vertex as deter-
mined by a jet vertex tagger [47] that relies on tracks associated
with the jets.

Quality requirements are applied to photon candidates to iden-
tify those arising from instrumental problems or non-collision
background [49], and events containing such candidates are re-
jected. In addition, quality requirements are applied to remove
events containing jets misreconstructed from detector noise or out-
of-time energy deposits in the calorimeter from cosmic rays or
other non-collision sources [50].

The production cross sections of the signal models consid-
ered in this search are many orders of magnitude lower than the
background cross sections. In order to enhance the sensitivity to
the signal, jet substructure techniques are used to identify the
expected two-body quark-pair signal-like events within a single
large-R jet. One of the commonly used jet substructure variables is
721 [51], defined as the ratio 72/71. The variable 7y is a measure
of how consistent a given jet's constituents are with being fully
aligned along N or more axes; thus o7 is a useful discriminant
for differentiating between a two-particle jet from the decay of a
boosted resonance and a single-particle jet. However, 71 is cor-
related with the reconstructed large-R jet mass m;. Any selection
requirement on 77 leads to a selection of jets from the leading
background processes with efficiency strongly dependent on the
jet mass, and modifies the final jet mass distribution in a way that
makes it difficult to model using a simple functional approach,
effectively increasing the systematic uncertainties and weakening
the overall sensitivity. To avoid this, the designed decorrelated tag-
ger (DDT) method [14,52,53] is used to decorrelate 757 from the
reconstructed jet mass. The variable oPPT is defined as
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where 1 =1 GeV is an arbitrary scale parameter. For pPPT > 1,
there is a linear relationship between pPPT and the mean value of
T31. pPPT is a purely kinematic jet variable, which allows the def-
inition of TPPT [52,53], a linearly corrected version of 721, which
has mean values that are independent of the mass of the jet, as
seen in Fig. 1 for various ranges of large-R p%.

Selected events are required to have at least one large-R jet,
the resonance candidate, and at least one narrow jet or photon
with azimuthal angular separation of at least A¢ = /2 from the
resonance candidate. The ISR jet is the leading narrow jet with
p% > 420 GeV, while the ISR photon is the leading photon with

p¥ > 155 GeV.
In the signal region (SR), the large-R jet must satisfy pT] >

200 GeV in the photon channel and p% > 450 GeV in the jet
channel. Those thresholds are defined due to the minimum
p% > 200 GeV for which large-R jets uncertainties have been de-

rived (photon channel) and to select events with p{ close to the
recoil jet p{, as expected for signal (jet channel). In addition, it is

required that p% > 2 xmj to ensure sufficient collimation of the
quark pairs from signal resonances so as to avoid edge effects of
using a fixed-cone jet algorithm, tJPT < 0.50 to suppress back-
grounds and pPPT > 1.5. The tPPT requirement was chosen by
maximising the expected signal significance. The pPPT constraint
ensures that the tPPT variable is linear relative to pPPT. If mul-
tiple jets satisfy these requirements, the jet with the lower 72’7

from the two leading large-R jets is selected.
5. Background estimation and systematic uncertainties

The dominant backgrounds in the jet and photon channels are
due to multi-jet production and inclusive y production, respec-
tively. The inclusive y background is dominated by y +jets and
also includes multi-jet processes being misidentified with the same
topology. In both channels, there is a sub-leading contribution
from production of a jet or photon in association with a hadroni-
cally decaying electroweak gauge boson, V, where V represents a
W or Z boson.
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In the dominant backgrounds, the boosted phase space rele-
vant to this search is not well described by Monte Carlo programs.
Therefore, a data-driven technique is used to model the expected
background in the signal region via a transfer-factor method which
extrapolates from a control region (CR), defined by inverting the
jet substructure requirement to T2PT > 0.50.

The multi-jet and inclusive y background estimates are con-
structed in bins of candidate resonance mass. In each bin, the
estimate is calculated as (Ncgp — Ny) multiplied by the transfer
factor, where Ncg is the number of events in the CR and Ny
is the expected contribution from production with an associated
vector boson estimated from simulated samples, typically around
1%. The transfer factor (TF) is the expected ratio of events which
pass the 2PT requirement to events which fail, measured using
data with m; < (0.8 x mz) or my > (1.2 x myz/), to avoid poten-
tial contamination from a signal near my:. The TF is parameterised
in terms of two kinematic quantities, log(p%/,u) and pPPT; it is
implemented as a two-dimensional histogram, smoothed and in-
terpolated into the signal region using a Gaussian process (GP)
regression [54] using a squared exponential or “Gaussian kernel”
with a characteristic length scale ¢ o« 1/0 for a Gaussian width o.
The length scale ¢4 along each dimension d of the TF histogram in
(pPPT log(pr/1)) is a free parameter, determined by maximising
the marginal likelihood given by [55]:

n 1
logL(y . {€a}) = —3 08 [y Rigy) (. 0¥ | = 5 108 [Riey) (x|

where x and y are the measured TF histogram bins with values
scaled to have zero mean and unit variance, n is the number of
data points, and Ry, (X, X) is the correlation matrix of the TF mea-
surements induced by the Gaussian kernel with length scales {¢4}.
The TF values are regularised by the statistical uncertainties on the
measurements according to Ref. [55]. The first term quantifies the
fit to the measurements, while the second term penalises model
complexity (short length scales) [54].

The transfer factor is parametrised by (log(p%/,u,), pPPTY be-
cause 7PPT is decorrelated from pPPT, making the transform fac-
tor maximally uniform along this variable. In addition, including
log(p% /W) in the parametrisation renders the dependence on the
jet mass explicit, allowing for the construction of mass-dependent
signal region windows. The TF assume values between 0.6 and 1.3
across the (log(p{/,u), pPPT) parameter space, in the jet channel,
while the TF is between 0.5 and 0.9 in the photon channel. The dif-
ference in the TF distributions is due to the choice of the common
2P > 0.5 cut, which has comparable but not identical background
acceptances in simulation for the two channels, while the spread
in the range is due to discrepancies between data and simulation
as well as the residual correlation between tPPT and the jet kine-
matic parameters.

Residual contamination from signal events which leak into the
control region is accounted for in the statistical analysis as fol-
lows: the background estimate and its uncertainty are validated
by constructing an interpolation using data with mj < (0.7 x mz)
or my > (1.3 x my), which is then compared to the data ob-
served in a validation region (VR) in which m; € [0.7,0.8]mz
or my € [1.2,1.3]my. If the difference between the data and the
background estimate in the VR is larger than the derived uncer-
tainty, the uncertainty is inflated by a scale factor, without chang-
ing the nominal value of the background estimate. This can happen
when the background estimate in the VR is derived from a control
region with fewer events, and is therefore more sensitive to sta-
tistical fluctuations. For the ISR jet channel, the scale factor in the
background uncertainty is found to be consistent with 1, while for

the ISR y channel the scale factor ranges from 1 to 2 across the
values of my . This difference between channels comes from the
number of events in data: the ISR jet channel has 10 times more
events than the ISR y channel.

As a cross-check, the TF method is applied to a candidate mass
range near the W and Z boson masses: the signal region’s mass
range is set as a +20% window around 85 GeV ([68, 102] GeV), and
the validation region as a +30% window around the same mass,
but with the SR removed ([59.5,68] GeV and [102, 110.5] GeV).
Fig. 2 shows distributions of the large-R jet mass for data and
the resulting background estimate. The latter is found to agree
with the data within uncertainties. The SM prediction for W and
Z production is scaled with the NLO cross section using NLO
K-factors, as described in Section 3. The cross sections used are
40.6 pb (18.6 pb) for the W(Z)+jets processes in the ISR jet chan-
nel, and 1.52 pb (0.983 pb) for W(Z)+y processes in the ISR y
channel. These cross sections are taken from the phase space of
pr (W, Z) > 280 (140) GeV for the jet (photon) channels, as mo-
tivated by the analysis kinematic selections. The best-fit signal
strength relative to the SM prediction for W and Z production,
fL=0/ow,z, is I =0.93 £ 0.03 (stat) £ 0.24 (syst) in the ISR jet
channel and /t =1.07 +0.13 (stat) £ 0.35 (syst) in the ISR y chan-
nel, consistent with the SM predictions. This result shows that the
TF method works well.

The largest systematic uncertainty is due to the estimate of
the dominant background using the TF method. The Gaussian pro-
cess regression provides a natural measure of the uncertainty in
the interpolation, since it yields a mean function value across
(log(p%/ W), pPPT) and a covariance function cov(x, x') relating the
TF measurements at different (log(pt/u), pP°T). A 68% confidence
level uncertainty band, within which the true transfer factor is ex-
pected to lie [54], can be obtained as +/cov(x, x). This uncertainty
band, conditioned on the measurement of the ratio of numbers of
events in the signal and control regions (Nsg/Ncr), is used as the
systematic uncertainty on the transfer factor fit. This uncertainty is
tuned using the validation region defined above. The final uncer-
tainty is approximately 1% of the total multi-jet or inclusive photon
background estimate.

The uncertainty in the integrated luminosity is 2.1%; it is de-
rived following a methodology similar to that detailed in Ref. [56].
Additional systematic uncertainties stem from the use of simulated
samples for the vector boson associated backgrounds as well as
the hypothetical signals. The largest sources of systematic uncer-
tainty in each channel arise from uncertainties in the calibration
and resolution of the large-R jet energy and mass, as well as the
modelling of tPPT [57]; individually these uncertainties range up
to 10% relative to the signal, but together these uncertainties are
less than 1% of the background estimate in the signal region. Addi-
tional, smaller systematic uncertainties are due to the uncertainty
in the parton distribution functions and integrated luminosity.

6. Results

The observed distributions of the large-R jet mass are com-
pared with the background estimates in Fig. 3 and Fig. 4 for two
representative Z’ mass values for the ISR jet and ISR y channels,
respectively. The slope in the data and background distributions
changes for a large-R jet mass around 225 GeV (100 GeV) for Fig. 3
(Fig. 4), due to the boosted topology requirement, p% >2xmj. The

beginning of this effect is determined by the p.{. requirements of
450 GeV and 200 GeV for the ISR jet and ISR y channels, respec-
tively. The observed distributions of the large-R jet mass are well
reproduced by the estimated background contributions.

A binned likelihood function £(u, ), constructed as a product
of Poisson probability terms over all bins of the contributions of
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the background and of a hypothetical signal of strength w rela-
tive to the benchmark model, is used to set limits. The likelihood
function is also dependant on 6, a set of nuisance parameters with
Gaussian prior distributions encoding the effects of the systematic
uncertainties in background and signal predictions. The fit to the
large-R jet mass distribution is performed in each mass-dependent
signal region in both the ISR jet and y channels. The potential sig-

nal contamination in the control region used to define the TF is
accounted for by scaling the best-fit signal strength by the ratio of
expected signal events passing the 7)PT selection to the expected
number of TF-weighted signal events included in the background
estimation, as determined in simulation. Typical values for this
scale factor are 0.7 for the ISR jet channel and 0.6 for the ISR y

channel.
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Fig. 5. Observed and expected limits at 95% confidence level on the lepto-phobic axial-vector Z’ [30-32] production cross section (o) times kinematic acceptance (A, see

text for details) in the ISR jet channel (left) and the ISR y channel (right).

The largest excess is observed in the ISR jet signal region cen-
tred at 150 GeV. Performing a signal-plus-background fit with a Z’
model assumption, the local significance in this region is found to
be 2.50, corresponding to a global significance of 1.1o0, where the
look-elsewhere effect [58] is calculated with respect to the entire
mass window examined. The largest positive deviation from the
expected background in the ISR y channel is seen in the signal re-
gion centred at 140 GeV, with local (global) significance of 2.20
(0.80).

Upper limits are derived at 95% confidence level on the Z’ pro-
duction cross section times acceptance as a function of the Z’ mass
between 100 and 220 GeV using profile-likelihood-ratio tests [59]
with the CLs method [60], shown in Fig. 5.

The acceptance accounts for all selection criteria except for the
requirement on 72PT; it can vary significantly for various theoret-
ical models, yet can be well estimated without detailed detector

simulation. For the Z’ signal model considered in this paper, ac-
ceptance values vary from 0.10% to 0.06% in the ISR jet channel
and from 4.0% to 1.0% in the ISR y channel, in the mass range be-
tween 100 and 220 GeV. The efficiency of the tPPT requirement is
less model dependent but more dependent on accurate modelling
of the 72T variable in simulated samples. The acceptance times
efficiency varies between 0.07%-0.04% (2.6%-0.5%) for the ISR jet
(ISR y) channel over the 100-220 GeV mass interval.

The observed and expected limits on the coupling g, are shown
in Fig. 6, for the combination of the ISR jet and ISR y channels.
The narrow width approximation is valid for the g, range tested.
In the combination, the nuisance parameters corresponding to lu-
minosity and large-R jet energy scale and resolution uncertainties
are fully correlated between channels, while the background uncer-
tainties are uncorrelated. The largest deviation is for the 140 GeV
signal hypothesis, corresponding to 2.40 local and 1.20 global sig-
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Table 1

The source of each of the largest uncertainties and their relative impact in the expected signal, quantified by the uncertainty
in the best-fit signal strength (Au) over the best-fit signal strength (w), for hypothesised signal production of Z’ with mz =

100 GeV, mz =160 GeV and mz =220 GeV.

Uncertainty source A/ [%]
myz =100 GeV myz =160 GeV my =220 GeV
Transfer factor 86 90 88
Large-R jet calib. and modelling 19 25 17
W/Z normalisation 43 «1 «1
Signal PDF «1 <1 1
Luminosity 2 «1 «1
Total systematic uncertainty 91 93 91
Statistical uncertainty 9 10 11
o OApTT Ty or jet is presented. The search is based on 36.1 fb~! of 13 TeV
0351 ATLAS —— Observed 95% CL limit | pp collisions recorded by the ATLAS detector at the LHC. Reso-
F Vs=13TeV, 36.1 fo - Expected 95% CL limit - nance candidates are identified as massive large-radius jets with
0.3~ [ Expected limit 110 7 substructure consistent with a quark pair. The mass spectrum of
= Expected limit 12 ¢ ] the candidates is examined for local excesses above a data-derived
0251 E estimate of a smoothly falling background. No evidence of anoma-
ozi B lous phenomena is observed in the data, and limits are presented
r ] on the cross section and couplings of a leptophobic axial-vector
0151 B Z' benchmark model. Upper limits at 95% confidence level on pro-
5 ] duction cross sections times acceptance are 0.50 pb (0.04 pb) for
0.1 - a 100 GeV signal hypothesis, and 0.35 pb (0.03 pb) for a 220 GeV
F ] signal hypothesis in the ISR jet (ISR y) channels. The observed up-
0051 E per limits on the coupling g4 are 0.17 for mz =100 GeV and 0.21
L for mz =220 GeV, when combining ISR jet and ISR y channels.
100 120 140 160 180 200 220
m, [GeV] Acknowledgements

Fig. 6. Observed and expected limits at 95% confidence level on the coupling (gq)
from the lepto-phobic axial-vector Z’' model [30-32], for the combination of the
ISR jet and ISR y channels.

nificances. The observed upper limits on the coupling g4 in the
100-220 GeV Z’' mass range are competitive but slightly under-
perform the latest results reported by the CMS experiment [15],
partially due to differences in the effect of jet trimming versus
soft-drop grooming on relevant large-R jet observables such as jet
mass.

The effects of systematic uncertainties are studied for hypoth-
esised signals using the signal-strength parameter p. The relative
uncertainties in the best-fit u value from the leading sources of
systematic uncertainty are shown in Table 1 for mz = 100, 160
and 220 GeV. The TF systematic uncertainty has the largest impact
on the sensitivity, accounting for 86%, 90% and 88% of the total
impact for the 100, 160 and 220 GeV signal hypothesis, respec-
tively. The TF uncertainty is larger for the jet channel, due to its
smaller length scale of the Gaussian process. For the Z' 160 GeV
hypothesis, it accounts for 87% of the impact in the signal strength
in the ISR jet channel and 61% in the ISR y channel. The second
biggest impact is due to uncertainties associated with large-R jets.
Ref. [57] details the derivation procedure and the breakdown of
those uncertainties. The data’s statistical uncertainty accounts for
about 10% of the total impact at all mass points considered. It is
larger in the ISR y channel than in the ISR jet channel due to the
order of magnitude difference in the number of events; this ac-
counts for 21% of the impact in the former and 9% in the latter for
myz =160 GeV.

7. Conclusion

In summary, a search for new light resonances decaying into
pairs of quarks and produced in association with a high-pt photon
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