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This Letter presents a search for new light resonances decaying to pairs of quarks and produced in 
association with a high-pT photon or jet. The dataset consists of proton–proton collisions with an 
integrated luminosity of 36.1 fb−1 at a centre-of-mass energy of 

√
s = 13 TeV recorded by the ATLAS 

detector at the Large Hadron Collider. Resonance candidates are identified as massive large-radius jets 
with substructure consistent with a particle decaying into a quark pair. The mass spectrum of the 
candidates is examined for local excesses above background. No evidence of a new resonance is observed 
in the data, which are used to exclude the production of a lepto-phobic axial-vector Z ′ boson.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

Searches for resonance signals in the invariant mass spectrum 
of hadrons are an essential part of the physics programme at the 
energy frontier. Many theoretical models predict resonances [1–3]
with significant couplings to quarks and gluons, including reso-
nances which also couple to dark-matter particles [4–7]. At the 
Large Hadron Collider (LHC), the ability to discover or exclude such 
hadronic resonances has been extended into the TeV range, al-
though no evidence of statistically significant excesses has been 
seen [8,9].

Sensitivity to light resonances is reduced by the immense back-
ground rates that would saturate the trigger and data acquisition 
systems. The recording of collision data typically requires placing 
thresholds of several hundred GeV on the transverse momentum 
(pmin

T ) of the jet used to trigger the event, which translates to ap-
proximate thresholds on mass of m ≈ 2pmin

T . Consequently, recent 
searches for dijet resonances at the LHC have poor sensitivity for 
masses well below 1 TeV. This limitation can be avoided by record-
ing only a summary of the jet information needed for performing a 
resonance search in the dijet mass spectrum. This strategy is called 
“data scouting” in CMS [10], “real-time analysis” in LHCb [11] and 
“trigger-object-level analysis” in ATLAS [12], and has set limits for 
resonance masses in the range 500–800 GeV [10].

In this Letter, a search using an alternative approach [4,13] is 
performed, in order to cover even lower resonance masses. The 
trigger threshold limitations are reduced by examining data where 
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the light resonance is boosted in the transverse direction1 via re-
coil from high transverse momentum (pT) initial-state radiation 
(ISR) of a photon or jet. Requiring a hard ISR object in the final 
state comes at the cost of reduced signal production rates, but al-
lows highly efficient triggering at masses much lower than when 
triggering directly on the resonance decay products.

The search is performed for resonance masses from 100 GeV to 
220 GeV, a range in which the resonance is boosted and its de-
cay products are collimated, such that the resonance mass can be 
calculated from the mass of a large-radius jet. The dominant back-
ground processes are multijet production in the jet channel and 
photons produced in association with jets in the photon channel, 
both characterised by non-resonant jets initiated predominantly by 
single gluons or light-flavour quarks. The Z ′ signal models consid-
ered decay to quark–antiquark pairs. This difference in the domi-

nant jet production mechanism between the signal and the leading 
backgrounds means that, in the boosted regime considered in this 
Letter, the use of jet substructure methods strongly suppresses the 
background, making it a crucial component for the search sensitiv-
ity. In addition, current datasets are the largest collected, allowing 
the sensitivity to rare processes to be extended beyond that of ear-
lier studies.

1 ATLAS uses a right-handed coordinate system with its origin at the nominal 
interaction point (IP) in the centre of the detector and the z-axis along the beam 
pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis 
points upwards. Cylindrical coordinates (r, φ) are used in the transverse plane, φ
being the azimuthal angle around the z-axis. The pseudorapidity is defined in terms 
of the polar angle θ as η = − ln tan(θ/2). It is equivalent to the rapidity for massless 
particles. Angular distance is measured in units of �R ≡ √

(�η)2 + (�φ)2.
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Recently, CMS reported results of applying a similar technique 
[14,15] to exclude a light Z ′ boson with Standard Model (SM) 
coupling values (gq) exceeding 0.1 to 0.25 in the mass range 
50–300 GeV. With respect to those results, this Letter also exploits 
the channel with the ISR photon.

2. ATLAS detector

The ATLAS experiment [16] at the LHC is a multi-purpose 
particle detector with a forward–backward symmetric cylindrical 
geometry with layers of tracking, calorimeter, and muon detec-
tors over nearly the entire solid angle around the proton–proton 
(pp) collision point. The inner detector (ID) consists of a high-
granularity silicon pixel detector, including an insertable B-layer 
[17], and a silicon microstrip tracker, together providing preci-
sion tracking in the pseudorapidity range |η| < 2.5. Complemen-

tary, a transition radiation tracker provides tracking and electron 
identification information for |η| < 2.0. The ID is surrounded by 
a 2 T superconducting solenoid. Lead/liquid-argon (LAr) sampling 
calorimeters provide electromagnetic (EM) energy measurements 
with high granularity, covering the region |η| < 3.2. A hadron 
(steel/scintillator-tile) calorimeter covers the central pseudorapid-
ity range (|η| < 1.7). The end-cap and forward regions are instru-
mented with copper/LAr calorimeters (1.7 < |η| < 3.2) and LAr 
calorimeters with copper and tungsten absorbers, providing EM 
and hadronic energy measurements covering the region |η| ≤ 4.9. 
The muon spectrometer consists of precision tracking chambers 
covering the region |η| ≤ 2.7. The first-level trigger is implemented 
in hardware and uses a subset of the detector information to re-
duce the accepted rate to 100 kHz. This hardware trigger [18]
is followed by a software-based trigger that reduces the rate of 
recorded events to 1 kHz.

3. Data and simulation samples

The data were collected in pp collisions at 
√
s = 13 TeV dur-

ing 2015 and 2016. Collision events are recorded with two triggers. 
The first selects events with at least one photon candidate that has 
an online transverse energy ET > 140 GeV and passes the “loose” 
identification requirements based on the shower shapes in the 
EM and hadronic calorimeters [18]. The photon trigger reaches its 
maximum efficiency for ET > 155 GeV. The second trigger selects 
events with at least one jet candidate with online ET > 380 GeV 
formed from clusters of energy deposits in the calorimeters [19]
by the anti-kt algorithm [20,21] with radius parameter R = 0.4, 
implemented in the FastJet package [22]. The jet trigger reaches 
its maximum efficiency for pT > 420 GeV. Only data satisfying 
beam, detector and data-quality criteria are considered [23]. The 
data used correspond to an integrated luminosity of 36.1 fb−1.

Samples of simulated events are used to characterise the hypo-
thetical resonances as well as to study the kinematic distributions 
of background processes. These samples are not used to estimate 
the background contributions, except when validating the data-
driven background estimate (described in Section 5).

Background samples were simulated using the Sherpa 2.1.1 
event generator [24]. Processes containing a photon with associ-
ated jets were generated in several bins of photon pT. The matrix 
elements were calculated at leading order (LO) with up to three 
partons for photon pT < 70 GeV or four partons for higher photon 
pT. Multijet background samples were generated at LO in several 
bins of leading-jet pT. Samples of W+jets, Z+jets, W+γ and 
Z+γ events with hadronic decays of the vector-bosons were sim-

ulated in bins of W /Z -boson pT. Matrix elements were calculated 
at LO with up to four partons for the W /Z+jets samples and up 

to three partons for W /Z+γ samples. The cross sections were cor-
rected at next-to-leading order (NLO) using K -factors derived from 
corresponding samples with leptonic vector-boson decays gener-
ated at NLO using Sherpa 2.1.1 [24], with matrix elements calcu-
lated for up to two partons at NLO and four partons at LO using 
Comix [25] and OpenLoops [26]. All the above LO background sam-

ples were merged with the Sherpa parton shower [27] using the
ME+PS@LO prescription [28]. The CT10 set of parton distribution 
functions (PDFs) [29] were used in conjunction with the dedicated 
parton shower tuning developed by the Sherpa authors. For the 
NLO leptonic vector-boson samples utilised to calculate K -factors, 
the ME+PS@NLO prescription [28] and the CT10nlo PDF set are 
used.

As a benchmark signal, samples with a Z ′ resonance with only 
hadronic couplings were generated as in Refs. [30–32]. This Z ′
has axial-vector couplings to quarks. The coupling of the Z ′ to 
quarks, gq , is set to be universal in quark flavour and equal to 
0.5. The corresponding total width �Z ′ is negligible compared to 
the experimental resolution, which is about 10% of the boson 
mass. A set of samples was generated with mZ ′ between 100 and 
220 GeV, in 30 GeV steps. A linear and parameterised interpolation 
was performed in 10 GeV steps in between the generated mass 
points. The samples were produced with gq = 0.5, using the Mad-
Graph_aMC@NLO generator [33] with the NNPDF2.3 LO PDF [34]
and the A14 set of tuned parameters (tune) [35]. Parton showers 
were produced in Pythia 8.186 [36]. Interference of this bench-
mark model with the Standard Model Z boson is assumed to be 
negligible. For efficient population of the kinematic phase space, 
a photon (jet) with pT ≥ 100 GeV (350 GeV) was required in the 
generation phase.

The response of the detector to particles was modelled with a 
full ATLAS detector simulation [37] based on Geant4 [38]. All sim-

ulated events were overlaid with additional pp interactions (pile-
up) simulated with the soft strong-interaction processes of Pythia
8.186 [36] using the A2 tune [39] and the MSTW2008LO PDF set 
[40]. The simulated events were reconstructed in the same way as 
the data, and were reweighted such that the distribution of the ex-
pected number of pp interactions per bunch crossing matches that 
seen in data.

4. Event reconstruction and selection

Events are required to have a reconstructed primary vertex, 
defined as a vertex with at least two reconstructed tracks with 
pT > 400 MeV each and with the largest sum of track p2

T .

Photons are reconstructed from clusters of energy deposits in 
the electromagnetic calorimeter. The photon energy scale is cor-
rected using events with Z → e+e− decays in data [41]. Identifi-
cation requirements are applied to reduce the contamination from 
π0 or other neutral hadrons decaying into photons. The photon 
identification is based on the profile of the energy deposits in the 
first and second layers of the electromagnetic calorimeter. Photons 
used in the event selection must satisfy the “tight” identification 
and isolation criteria defined in Ref. [42], and must have |η| < 2.37, 
excluding the EM calorimeter’s barrel/end-cap transition region of 
1.37 < |η| < 1.52. The efficiency of the photon selection is roughly 
95% for photons with ET > 150 GeV.

Two non-exclusive categories of jet candidates are built from 
clusters of energy deposits in the calorimeters [19] and are dis-
tinguished by the radius parameter used in the anti-kt algorithm. 
Jets with a radius parameter R = 1.0 are referred to as large-R jets, 
denoted by J and required to have |η| < 2.0, whereas jets with a 
radius parameter R = 0.4 are referred to as narrow jets, denoted 
as j and are required to have |η| < 2.4. To mitigate the effects 
of pile-up and soft radiation, the large-R jets are trimmed [43]. 
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Fig. 1. Mean value of τDDT
21 as a function of the large-R jet mass, for various ranges of large-R jet transverse momentum, for cases where the ISR object is a jet (left) and a 

photon (right).

Trimming takes the original constituents of the jet and reclusters 
them using the kt algorithm [44] with a smaller radius parame-

ter, Rsubjet, to produce a collection of subjets. These subjets are 
discarded if they carry less than a specific fraction ( fcut) of the 
original jet pT. The trimming parameters optimised for this search 
are Rsubjet = 0.2 and fcut = 5% [45]. Large-R jets are calibrated fol-
lowing the procedure described in Ref. [46].

The energies of selected narrow jets are corrected for contribu-
tions from pile-up interactions [47]. A correction used to calibrate 
jet energy measurements to the scale of the constituent particles 
of the jet [48] is then applied. Narrow jets with 25 GeV < pT <

60 GeV are required to originate from the primary vertex as deter-
mined by a jet vertex tagger [47] that relies on tracks associated 
with the jets.

Quality requirements are applied to photon candidates to iden-
tify those arising from instrumental problems or non-collision 
background [49], and events containing such candidates are re-
jected. In addition, quality requirements are applied to remove 
events containing jets misreconstructed from detector noise or out-
of-time energy deposits in the calorimeter from cosmic rays or 
other non-collision sources [50].

The production cross sections of the signal models consid-
ered in this search are many orders of magnitude lower than the 
background cross sections. In order to enhance the sensitivity to 
the signal, jet substructure techniques are used to identify the 
expected two-body quark-pair signal-like events within a single 
large-R jet. One of the commonly used jet substructure variables is 
τ21 [51], defined as the ratio τ2/τ1. The variable τN is a measure 
of how consistent a given jet’s constituents are with being fully 
aligned along N or more axes; thus τ21 is a useful discriminant 
for differentiating between a two-particle jet from the decay of a 
boosted resonance and a single-particle jet. However, τ21 is cor-
related with the reconstructed large-R jet mass m J . Any selection 
requirement on τ21 leads to a selection of jets from the leading 
background processes with efficiency strongly dependent on the 
jet mass, and modifies the final jet mass distribution in a way that 
makes it difficult to model using a simple functional approach, 
effectively increasing the systematic uncertainties and weakening 
the overall sensitivity. To avoid this, the designed decorrelated tag-
ger (DDT) method [14,52,53] is used to decorrelate τ21 from the 
reconstructed jet mass. The variable ρDDT is defined as

ρDDT ≡ log

(
m2

J

p
J
T × μ

)
,

where μ ≡ 1 GeV is an arbitrary scale parameter. For ρDDT � 1, 
there is a linear relationship between ρDDT and the mean value of 
τ21. ρDDT is a purely kinematic jet variable, which allows the def-
inition of τDDT

21 [52,53], a linearly corrected version of τ21, which 
has mean values that are independent of the mass of the jet, as 
seen in Fig. 1 for various ranges of large-R p

J
T .

Selected events are required to have at least one large-R jet, 
the resonance candidate, and at least one narrow jet or photon 
with azimuthal angular separation of at least �φ = π/2 from the 
resonance candidate. The ISR jet is the leading narrow jet with 
p
j
T > 420 GeV, while the ISR photon is the leading photon with 

p
γ
T > 155 GeV.

In the signal region (SR), the large-R jet must satisfy p J
T >

200 GeV in the photon channel and p
J
T > 450 GeV in the jet 

channel. Those thresholds are defined due to the minimum 
p

J
T > 200 GeV for which large-R jets uncertainties have been de-

rived (photon channel) and to select events with p J
T close to the 

recoil jet p j
T, as expected for signal (jet channel). In addition, it is 

required that p J
T > 2 × m J to ensure sufficient collimation of the 

quark pairs from signal resonances so as to avoid edge effects of 
using a fixed-cone jet algorithm, τDDT

21 < 0.50 to suppress back-
grounds and ρDDT > 1.5. The τDDT

21 requirement was chosen by 
maximising the expected signal significance. The ρDDT constraint 
ensures that the τDDT

21 variable is linear relative to ρDDT. If mul-

tiple jets satisfy these requirements, the jet with the lower τDDT
21

from the two leading large-R jets is selected.

5. Background estimation and systematic uncertainties

The dominant backgrounds in the jet and photon channels are 
due to multi-jet production and inclusive γ production, respec-
tively. The inclusive γ background is dominated by γ +jets and 
also includes multi-jet processes being misidentified with the same 
topology. In both channels, there is a sub-leading contribution 
from production of a jet or photon in association with a hadroni-
cally decaying electroweak gauge boson, V , where V represents a 
W or Z boson.
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In the dominant backgrounds, the boosted phase space rele-
vant to this search is not well described by Monte Carlo programs. 
Therefore, a data-driven technique is used to model the expected 
background in the signal region via a transfer-factor method which 
extrapolates from a control region (CR), defined by inverting the 
jet substructure requirement to τDDT

21 > 0.50.

The multi-jet and inclusive γ background estimates are con-
structed in bins of candidate resonance mass. In each bin, the 
estimate is calculated as (NCR − NV ) multiplied by the transfer 
factor, where NCR is the number of events in the CR and NV

is the expected contribution from production with an associated 
vector boson estimated from simulated samples, typically around 
1%. The transfer factor (TF) is the expected ratio of events which 
pass the τDDT

21 requirement to events which fail, measured using 
data with m J < (0.8 × mZ ′) or m J > (1.2 × mZ ′ ), to avoid poten-
tial contamination from a signal near mZ ′ . The TF is parameterised 
in terms of two kinematic quantities, log(p J

T/μ) and ρDDT; it is 
implemented as a two-dimensional histogram, smoothed and in-
terpolated into the signal region using a Gaussian process (GP) 
regression [54] using a squared exponential or “Gaussian kernel” 
with a characteristic length scale � ∝ 1/σ for a Gaussian width σ . 
The length scale �d along each dimension d of the TF histogram in 
(ρDDT, log(pT/μ)) is a free parameter, determined by maximising 
the marginal likelihood given by [55]:

log L(y |x, {�d}) = −n

2
log

[
y
R{�d}(x,x)y

]
− 1

2
log |R{�d}(x,x)|

where x and y are the measured TF histogram bins with values 
scaled to have zero mean and unit variance, n is the number of 
data points, and R{�d}(x, x) is the correlation matrix of the TF mea-

surements induced by the Gaussian kernel with length scales {�d}. 
The TF values are regularised by the statistical uncertainties on the 
measurements according to Ref. [55]. The first term quantifies the 
fit to the measurements, while the second term penalises model 
complexity (short length scales) [54].

The transfer factor is parametrised by (log(p J
T/μ), ρDDT) be-

cause τDDT
21 is decorrelated from ρDDT, making the transform fac-

tor maximally uniform along this variable. In addition, including 
log(p

J
T/μ) in the parametrisation renders the dependence on the 

jet mass explicit, allowing for the construction of mass-dependent 
signal region windows. The TF assume values between 0.6 and 1.3 
across the (log(p J

T/μ), ρDDT) parameter space, in the jet channel, 
while the TF is between 0.5 and 0.9 in the photon channel. The dif-
ference in the TF distributions is due to the choice of the common 
τDDT
21 > 0.5 cut, which has comparable but not identical background 

acceptances in simulation for the two channels, while the spread 
in the range is due to discrepancies between data and simulation 
as well as the residual correlation between τDDT

21 and the jet kine-
matic parameters.

Residual contamination from signal events which leak into the 
control region is accounted for in the statistical analysis as fol-
lows: the background estimate and its uncertainty are validated 
by constructing an interpolation using data with m J < (0.7 ×mZ ′ )
or m J > (1.3 × mZ ′ ), which is then compared to the data ob-
served in a validation region (VR) in which m J ∈ [0.7, 0.8]mZ ′
or m J ∈ [1.2, 1.3]mZ ′ . If the difference between the data and the 
background estimate in the VR is larger than the derived uncer-
tainty, the uncertainty is inflated by a scale factor, without chang-
ing the nominal value of the background estimate. This can happen 
when the background estimate in the VR is derived from a control 
region with fewer events, and is therefore more sensitive to sta-
tistical fluctuations. For the ISR jet channel, the scale factor in the 
background uncertainty is found to be consistent with 1, while for 

the ISR γ channel the scale factor ranges from 1 to 2 across the 
values of mZ ′ . This difference between channels comes from the 
number of events in data: the ISR jet channel has 10 times more 
events than the ISR γ channel.

As a cross-check, the TF method is applied to a candidate mass 
range near the W and Z boson masses: the signal region’s mass 
range is set as a ±20% window around 85 GeV ([68, 102] GeV), and 
the validation region as a ±30% window around the same mass, 
but with the SR removed ([59.5, 68] GeV and [102, 110.5] GeV). 
Fig. 2 shows distributions of the large-R jet mass for data and 
the resulting background estimate. The latter is found to agree 
with the data within uncertainties. The SM prediction for W and 
Z production is scaled with the NLO cross section using NLO 
K -factors, as described in Section 3. The cross sections used are 
40.6 pb (18.6 pb) for the W (Z )+jets processes in the ISR jet chan-
nel, and 1.52 pb (0.983 pb) for W (Z )+γ processes in the ISR γ
channel. These cross sections are taken from the phase space of 
pT (W , Z) > 280 (140) GeV for the jet (photon) channels, as mo-

tivated by the analysis kinematic selections. The best-fit signal 
strength relative to the SM prediction for W and Z production, 
μ̂ = σ/σW /Z , is μ̂ = 0.93 ± 0.03 (stat) ± 0.24 (syst) in the ISR jet 
channel and μ̂ = 1.07 ±0.13 (stat)±0.35 (syst) in the ISR γ chan-

nel, consistent with the SM predictions. This result shows that the 
TF method works well.

The largest systematic uncertainty is due to the estimate of 
the dominant background using the TF method. The Gaussian pro-
cess regression provides a natural measure of the uncertainty in 
the interpolation, since it yields a mean function value across 
(log(p

J
T/μ), ρDDT) and a covariance function cov(x, x′) relating the 

TF measurements at different (log(pT/μ), ρDDT). A 68% confidence 
level uncertainty band, within which the true transfer factor is ex-
pected to lie [54], can be obtained as 

√
cov(x, x). This uncertainty 

band, conditioned on the measurement of the ratio of numbers of 
events in the signal and control regions (NSR/NCR), is used as the 
systematic uncertainty on the transfer factor fit. This uncertainty is 
tuned using the validation region defined above. The final uncer-
tainty is approximately 1% of the total multi-jet or inclusive photon 
background estimate.

The uncertainty in the integrated luminosity is 2.1%; it is de-
rived following a methodology similar to that detailed in Ref. [56]. 
Additional systematic uncertainties stem from the use of simulated 
samples for the vector boson associated backgrounds as well as 
the hypothetical signals. The largest sources of systematic uncer-
tainty in each channel arise from uncertainties in the calibration 
and resolution of the large-R jet energy and mass, as well as the 
modelling of τDDT

21 [57]; individually these uncertainties range up 
to 10% relative to the signal, but together these uncertainties are 
less than 1% of the background estimate in the signal region. Addi-
tional, smaller systematic uncertainties are due to the uncertainty 
in the parton distribution functions and integrated luminosity.

6. Results

The observed distributions of the large-R jet mass are com-

pared with the background estimates in Fig. 3 and Fig. 4 for two 
representative Z ′ mass values for the ISR jet and ISR γ channels, 
respectively. The slope in the data and background distributions 
changes for a large-R jet mass around 225 GeV (100 GeV) for Fig. 3
(Fig. 4), due to the boosted topology requirement, p J

T > 2 ×m J . The 
beginning of this effect is determined by the p J

T requirements of 
450 GeV and 200 GeV for the ISR jet and ISR γ channels, respec-
tively. The observed distributions of the large-R jet mass are well 
reproduced by the estimated background contributions.

A binned likelihood function L(μ, θ), constructed as a product 
of Poisson probability terms over all bins of the contributions of 
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Fig. 2. Top: distribution of large-R jet mass near the W and Z boson masses, as a validation of background estimate using the transfer factor described in the text. The 
vertical dashed lines indicate the signal region (SR) surrounding the target W and Z boson masses. Bottom: residual between data and the estimated background. The 
distributions are shown for both the (left) jet and (right) photon channels. The contributions from the W and Z backgrounds have been scaled by their best-fit values, as 
described in the text. In the top panel, the statistical uncertainty is too small to be visible; in the bottom panel it is incorporated into the error bars on the data.

Fig. 3. Top: distribution of large-R jet mass in the jet channel for mZ ′ = 160 GeV (left) and 220 GeV (right). The vertical dashed lines indicate the signal region (SR) 
surrounding the target Z ′ mass. The signal is generated with gq = 0.5. Bottom: ratio of data to the estimated background. The background estimate is different for each 
signal mass hypothesis; more details are given in the text.

the background and of a hypothetical signal of strength μ rela-

tive to the benchmark model, is used to set limits. The likelihood 
function is also dependant on θ , a set of nuisance parameters with 
Gaussian prior distributions encoding the effects of the systematic 
uncertainties in background and signal predictions. The fit to the 
large-R jet mass distribution is performed in each mass-dependent 
signal region in both the ISR jet and γ channels. The potential sig-

nal contamination in the control region used to define the TF is 
accounted for by scaling the best-fit signal strength by the ratio of 
expected signal events passing the τDDT

21 selection to the expected 
number of TF-weighted signal events included in the background 
estimation, as determined in simulation. Typical values for this 
scale factor are 0.7 for the ISR jet channel and 0.6 for the ISR γ

channel.
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Fig. 4. Top: distribution of large-R jet mass in the photon channel for mZ ′ = 160 GeV (left) and 220 GeV (right). The vertical dashed lines indicate the signal region (SR) 
surrounding the target Z ′ mass. The signal is generated with gq = 0.5. Bottom: ratio of data to the estimated background. The background estimate is different for each 
signal mass hypothesis; more details are given in the text. The blue triangles indicate bins where the ratio is nonzero and outside the vertical range of the plot.

Fig. 5. Observed and expected limits at 95% confidence level on the lepto-phobic axial-vector Z ′ [30–32] production cross section (σ ) times kinematic acceptance (A, see 
text for details) in the ISR jet channel (left) and the ISR γ channel (right).

The largest excess is observed in the ISR jet signal region cen-
tred at 150 GeV. Performing a signal-plus-background fit with a Z ′
model assumption, the local significance in this region is found to 
be 2.5σ , corresponding to a global significance of 1.1σ , where the 
look-elsewhere effect [58] is calculated with respect to the entire 
mass window examined. The largest positive deviation from the 
expected background in the ISR γ channel is seen in the signal re-
gion centred at 140 GeV, with local (global) significance of 2.2σ
(0.8σ ).

Upper limits are derived at 95% confidence level on the Z ′ pro-
duction cross section times acceptance as a function of the Z ′ mass 
between 100 and 220 GeV using profile-likelihood-ratio tests [59]
with the CLs method [60], shown in Fig. 5.

The acceptance accounts for all selection criteria except for the 
requirement on τDDT

21 ; it can vary significantly for various theoret-
ical models, yet can be well estimated without detailed detector 

simulation. For the Z ′ signal model considered in this paper, ac-
ceptance values vary from 0.10% to 0.06% in the ISR jet channel 
and from 4.0% to 1.0% in the ISR γ channel, in the mass range be-
tween 100 and 220 GeV. The efficiency of the τDDT

21 requirement is 
less model dependent but more dependent on accurate modelling 
of the τDDT

21 variable in simulated samples. The acceptance times 
efficiency varies between 0.07%–0.04% (2.6%–0.5%) for the ISR jet 
(ISR γ ) channel over the 100–220 GeV mass interval.

The observed and expected limits on the coupling gq are shown 
in Fig. 6, for the combination of the ISR jet and ISR γ channels. 
The narrow width approximation is valid for the gq range tested. 
In the combination, the nuisance parameters corresponding to lu-
minosity and large-R jet energy scale and resolution uncertainties 
are fully correlated between channels, while the background uncer-
tainties are uncorrelated. The largest deviation is for the 140 GeV 
signal hypothesis, corresponding to 2.4σ local and 1.2σ global sig-
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Table 1
The source of each of the largest uncertainties and their relative impact in the expected signal, quantified by the uncertainty 
in the best-fit signal strength (�μ) over the best-fit signal strength (μ), for hypothesised signal production of Z ′ with mZ ′ =
100 GeV, mZ ′ = 160 GeV and mZ ′ = 220 GeV.

Uncertainty source �μ/μ [%]

mZ ′ = 100 GeV mZ ′ = 160 GeV mZ ′ = 220 GeV

Transfer factor 86 90 88

Large-R jet calib. and modelling 19 25 17

W/Z normalisation 43 �1 �1

Signal PDF �1 �1 1

Luminosity 2 �1 �1

Total systematic uncertainty 91 93 91

Statistical uncertainty 9 10 11

Fig. 6. Observed and expected limits at 95% confidence level on the coupling (gq) 
from the lepto-phobic axial-vector Z ′ model [30–32], for the combination of the 
ISR jet and ISR γ channels.

nificances. The observed upper limits on the coupling gq in the 
100–220 GeV Z ′ mass range are competitive but slightly under-
perform the latest results reported by the CMS experiment [15], 
partially due to differences in the effect of jet trimming versus 
soft-drop grooming on relevant large-R jet observables such as jet 
mass.

The effects of systematic uncertainties are studied for hypoth-
esised signals using the signal-strength parameter μ. The relative 
uncertainties in the best-fit μ value from the leading sources of 
systematic uncertainty are shown in Table 1 for mZ ′ = 100, 160 
and 220 GeV. The TF systematic uncertainty has the largest impact 
on the sensitivity, accounting for 86%, 90% and 88% of the total 
impact for the 100, 160 and 220 GeV signal hypothesis, respec-
tively. The TF uncertainty is larger for the jet channel, due to its 
smaller length scale of the Gaussian process. For the Z ′ 160 GeV 
hypothesis, it accounts for 87% of the impact in the signal strength 
in the ISR jet channel and 61% in the ISR γ channel. The second 
biggest impact is due to uncertainties associated with large-R jets. 
Ref. [57] details the derivation procedure and the breakdown of 
those uncertainties. The data’s statistical uncertainty accounts for 
about 10% of the total impact at all mass points considered. It is 
larger in the ISR γ channel than in the ISR jet channel due to the 
order of magnitude difference in the number of events; this ac-
counts for 21% of the impact in the former and 9% in the latter for 
mZ ′ = 160 GeV.

7. Conclusion

In summary, a search for new light resonances decaying into 
pairs of quarks and produced in association with a high-pT photon 

or jet is presented. The search is based on 36.1 fb−1 of 13 TeV 
pp collisions recorded by the ATLAS detector at the LHC. Reso-
nance candidates are identified as massive large-radius jets with 
substructure consistent with a quark pair. The mass spectrum of 
the candidates is examined for local excesses above a data-derived 
estimate of a smoothly falling background. No evidence of anoma-

lous phenomena is observed in the data, and limits are presented 
on the cross section and couplings of a leptophobic axial-vector 
Z ′ benchmark model. Upper limits at 95% confidence level on pro-
duction cross sections times acceptance are 0.50 pb (0.04 pb) for 
a 100 GeV signal hypothesis, and 0.35 pb (0.03 pb) for a 220 GeV 
signal hypothesis in the ISR jet (ISR γ ) channels. The observed up-
per limits on the coupling gq are 0.17 for mZ ′ = 100 GeV and 0.21 
for mZ ′ = 220 GeV, when combining ISR jet and ISR γ channels.
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