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recorded in 2012. During normal physics operation this background arises mainly from scattering

of the 4 TeV protons on residual gas in the beam pipe. Methods of reconstructing the BIB signals

in the ATLAS detector, developed and implemented in the simulation chain based on the Fluka

Monte Carlo simulation package, are described. The interaction rates are determined from the

residual gas pressure distribution in the LHC ring in order to set an absolute scale on the predicted

rates of BIB so that they can be compared quantitatively with data. Through these comparisons the

origins of the BIB leading to different observables in the ATLAS detectors are analysed. The level

of agreement between simulation results and BIB measurements by ATLAS in 2012 demonstrates

that a good understanding of the origin of BIB has been reached.
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1 Introduction

Proton losses in the Large Hadron Collider (LHC) ring upstream1 of the ATLAS experiment [1],

due to interactions with either residual gas in the beam pipe (beam-gas scattering) or with machine

elements such as collimators, result in beam-induced background (BIB). Although the rates are

negligible compared to particle debris from almost 109 proton-proton (pp) collisions per second,

BIB has particular features that render it potentially problematic: it is characterised by particles

almost parallel to the beam line, which can produce elongated clusters with large energy deposition in

the innermost tracking detectors based on silicon pixel technology. At high rates, these abnormally

large clusters can affect data-taking efficiency [2]. Furthermore, a potential background for physics

analyses arises from high-energy muons, originating mostly from pion and kaon decay in the

hadronic showers induced by beam losses. These muons can deposit large amounts of energy

in calorimeters through radiative processes. Such energy depositions, which are not associated

with a hard scattering at the interaction point (IP), can be reconstructed as fake jets leading to

1Upstream and downstream are defined relative to the beam direction.
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Table 1. LHC parameters during operation as a pp collider in the second half of 2012. The parameter β∗

refers to the value of the optical β-function at the collision point.

Parameter Value

Beam energy [TeV] 4.0

Protons per bunch [1011] ∼1.5

Number of bunches per beam 1374

Bunch spacing [ns] 50

Vertical crossing angle in IR1 [μrad] 145.0

β∗ in IR1 [m] 0.6

missing transverse momentum if overlaid with a collision event. Especially in searches for some

exotic physics processes [3–6], fake jets represent a non-negligible background that must be well

controlled and subtracted.

Although BIB has had no detrimental effects on ATLAS operation so far, the continuous

striving for better LHC luminosity performance might change this situation in the future. A

thorough understanding of the sources and nature of BIB, which is crucial when planning upgrades

to the LHC, can only be achieved by a combination of measurements and simulations. A validation

of the latter is the main purpose of this work.

A lot of experience with BIB was gained at the Tevatron and HERA colliders [7–9]. The first

simulation predictions for BIB at the LHC were presented more than 20 years ago [10] and have been

refined several times thereafter [11–14]. Throughout the LHC operation, BIB is routinely monitored

and analysed by ATLAS [15, 16]. In this paper, comparisons between detailed simulations using

the Fluka Monte Carlo (MC) simulation package [17, 18] and measurements [16] of BIB during

the 2012 LHC run, with a proton beam energy of 4 TeV, are presented.

2 The LHC accelerator and the ATLAS experiment

The LHC accelerator and the ATLAS experiment are described in detail in refs. [19] and [1]

respectively. Only a summary, focused on aspects relevant to the studies and simulations of BIB, is

given here.

2.1 The LHC

The LHC, shown schematically in figure 1, consists of eight arcs that are joined by long straight

sections (LSSs) of ∼500 m length. In the middle of each LSS there is an interaction region (IR);

the ATLAS experiment is situated in IR1. The LHC beam-cleaning equipment is located in IR3

and IR7, for momentum and betatron cleaning respectively. The principal performance parameters

of LHC operation in 2012 are listed in table 1.

A schematic layout of IR1, up to 165 m from the interaction point (IP, at z = 0), is shown in

figure 2, where the separation of the two counter-rotating beams is illustrated. Copper absorbers

– 2 –
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Figure 1. The general layout of the LHC [19], showing the eight interaction regions. The counter-circulating

beams are shown schematically, i.e. their separation is not to scale. The ATLAS convention of labelling sides

by ‘A’ and ‘C’ is indicated. The figure is adapted from ref. [20].

(TAS), which protect the superconducting inner triplets from collision debris, are located between

|z | = 19 m and |z | = 20.8 m and have an aperture of r = 17 mm. The final focus is provided by the

quadrupoles of the inner triplets on each side of the IP, between |z |= 23 m and |z |= 54 m. The beam

trajectories are separated at |z | ≈ 70 m inside the separation dipoles D1 and recombined in dipoles

D2 at |z | ≈ 160 m, which bring the two beams into parallel trajectories at a distance of 194 mm

from each other. The dipole D2 is superconducting and is protected by the neutral particle absorber

(TAN), which intercepts energetic neutrons and photons emitted from the IP at very small angles.

The 400.79 MHz frequency of the LHC radio-frequency (RF) system and the revolution time

of 88.9244 μs form 35640 buckets that can be filled with particles. In the 2012 LHC run, every 20th

bucket was filled giving a bunch spacing of 50 ns. In order to facilitate monitoring of BIB, a few

(typically six per beam in 2012) unpaired bunches are included in each LHC bunch pattern. Having

no counterpart in the other beam to collide with, these bunches provide the LHC experiments with

a rather clean measurement of BIB.

2.2 The ATLAS experiment

The ATLAS experiment is one of the two general-purpose detectors at the LHC. With a length of

46 m and a diameter of 25 m, it is optimised to study proton-proton collisions at the highest available

energies and luminosities.

– 3 –
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Figure 2. Layout of the IR1 region showing the z-location of LHC beam-line elements and schematic beam

trajectories. The x-coordinates refer only to the positions of the beams, not to the beam-line elements. The

beams are separated by the D1 magnet and recombined into parallel trajectories by the D2 magnet. The

tertiary collimator (TCT) is only on the incoming beam, just before the neutral particle absorber (TAN). The

sense of focusing of the four triplet elements is indicated by the colour of the boxes (red = vertical, blue =

horizontal) for the incoming beam. The interface plane is explained in section 5.

In this study, the right-handed ATLAS coordinate system is used. The origin is at the nominal

IP and the azimuthal angle φ is measured relative to the x-axis, which points towards the centre of

the LHC ring. Side A of ATLAS is defined as the side of the incoming, clockwise, LHC beam-1

while the side of the incoming beam-2 is labelled C, as illustrated in figure 1. The z-axis points from

C to A, i.e. along the beam-2 direction. The pseudorapidity is given by η=− ln tan(θ/2), where θ

is the polar angle relative to the z-axis. The transverse momentum is defined as pT = p sin θ, where

p is obtained from the energy deposits in the calorimeters, assuming them to be massless.

ATLAS includes a dedicated beam conditions monitor (BCM) [21] for beam background

measurements. The BCM consists of four small diamond modules on each side of the IP, at

z = ±1.84 m, at a mean radial distance of r = 55 mm (|η | ≈ 4.2) from the beam line. The modules

are arranged in a cross: two in the horizontal and two in the vertical plane. Each module has two

back-to-back sensors with an active area of 8×8 mm2 and a total thickness of 1 mm.

The inner detector [22] is subdivided into a pixel detector immediately outside the beam

pipe, a silicon-strip tracker and an outer transition-radiation tracker. These are inside a solenoid,

which produces a 2 T magnetic field along the z-axis. The inner detector is used to determine the

momentum of charged particles in the pseudorapidity range |η |< 2.5.

The calorimeter system, which measures the energy of the particles, includes a high-granularity

liquid-argon (LAr) electromagnetic barrel calorimeter with lead as absorber; it has a half-length of

∼3 m and extends radially from r = 1.5 m to 2.0 m, thus covering pseudorapidities up to |η | = 1.5.

Between r = 2.3 m and 4.3 m a scintillator-tile hadronic barrel calorimeter (Tile) with steel as

absorber and ∼6 m half-length covers pseudorapidities up to |η | = 1.7. The calorimeter system is

extended, up to |η |= 3.2, by electromagnetic and hadronic endcaps based on LAr technology. These

have lengths, along z, of 0.6 m and 1.8 m respectively.

– 4 –
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Figure 3. Schematic illustration of the three sources of BIB reaching ATLAS: (1) nearby inelastic beam-gas

collisions, (2) tertiary beam halo losses on the TCT and (3) protons deflected by elastic beam-gas collisions and

hitting the TCT. The cleaning insertions are 6.7 km away from ATLAS and the elastic beam-gas events are dis-

tributed around the entire accelerator ring. The distance from the beam to the collimators is a few millimetres.

The calorimeters are surrounded by a muon spectrometer based on three large air-core su-

perconducting toroidal magnets with eight coils each: one barrel toroid and two endcap toroids

positioned inside the barrel at the ends of the central solenoid.

3 Beam-induced background

Beam induced background originates from three different beam-loss processes, which are illustrated

in figure 3 and detailed below.

Inelastic proton interactions with residual gas inside the beam pipe (labelled 1 in figure 3), in the

vicinity of the IP, constitute the dominant source of BIB in ATLAS. Hadronic and electromagnetic

showers, but in particular high-energy muons produced by these interactions, can enter ATLAS

and be detected by the BIB monitoring system. It was shown in previous studies [10] that inelastic

beam-gas collisions up to distances of ∼500 m from the IP contribute to the background.

A small fraction of BIB arises from beam halo, which is continuously repopulated by scattering

of particles from the beam due to various processes such as elastic collisions at the experiments

and with residual gas, noise on the RF system and feedback, intrabeam scattering, resonances and

instabilities. The superconducting magnets of the LHC require very efficient halo-cleaning, which

is realised by a multi-step cleaning system [23]. The primary and secondary collimators of the

cleaning insertions in IR3 and IR7 intercept most of the off-momentum and betatron halo. A

small fraction of the protons escape these insertions and constitute the tertiary halo (labelled 2 in

figure 3) which is intercepted by the tertiary collimators (TCTs), located at distances of z≈ 150 m

from each experimental IP. Protons impinging on the TCTs can also originate from elastic beam-

gas interactions (labelled 3 in figure 3), which deflect protons out of the beam, around the whole

accelerator ring. The losses on the TCTs create showers, which can propagate all the way to the IP.

Dedicated tests [24] during 2015 and 2016 showed that, in normal physics conditions, total losses

– 5 –
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on the TCTs contribute of the order of only 1% to the total BIB seen in ATLAS. Thus they are not

considered in this paper.

The rate of beam-gas interactions is proportional to the residual gas pressure and the beam

intensity. The latter is a property of the beams and is measured by the LHC with percent-level

accuracy, but the pressure and molecular composition of the residual gas varies as a function of

position around the accelerator. After pumping down of the LHC beam vacuum, a small amount of

gas remains stuck on the beam-pipe surface. These gas molecules can be desorbed by synchrotron

radiation or charged particles hitting the beam-pipe walls. The rate of outgassing depends on

the intensity of the radiation and therefore the dynamical pressure depends on beam intensity

and energy. In addition, the surface characteristics and temperature have a large influence on the

residual pressure. The residual gas consists of H2, CH4, CO2 and CO. Their relative fractions

depend on local temperature, radiation load and surface characteristics of the beam pipe. In

cryogenic sectors the gas condenses on the cold walls, but is relatively easily released by irradiation.

Almost all room-temperature sectors of the LHC beam pipe are coated with a non-evaporable getter

material [25], which provides distributed pumping along the beam line for all common gases except

CH4. Therefore, methane is the dominant gas species in room-temperature sections, including the

D1 dipole. Inside cryogenic magnets where the cold bore is at 1.9 K, notably those of the inner

triplet and the LHC arc, all gases except hydrogen stick relatively firmly on the surface, so the

dominant gas is H2. The magnets in the LSS, from D2 to the arc, are operated at 4.5 K. At this

temperature all gases are more easily desorbed and here CO2 is the most abundant gas species.

Vacuum pumps produce local minima in the pressure and corresponding gradients which result in

gas diffusion from sections with higher pressure towards the pumps.

The room-temperature sections of the LHC are equipped with vacuum gauges, but between

these measurement points the pressure has to be obtained from simulations. The simulation models

are based on theory and laboratory measurements of desorption rates and gas composition [26].

The amount of gas on the surfaces depends on the beam-conditioning history: when gas is desorbed

and pumped out during beam operation the rate of outgassing slowly goes down. The state of

surface conditioning, at any given time, has to be empirically estimated based on prior experience.

Thus, the simulations depend on the local characteristics and temperature of the beam pipe, local

pumping speeds, beam intensity and the estimated effects of the beam-conditioning history. The

overall uncertainty in the local pressure due to knowledge of these parameters, especially of the

state of surface conditioning, is estimated to be a factor of ∼3. Since both the surface characteristics

and the intensity of radiation vary as a function of position, this uncertainty is not a global scale

factor of the entire pressure distribution; it is possible that the pressure is underestimated in some

regions and overestimated in others.

4 Background monitoring methods

The rates of BIB are measured by the BCM and the calorimeters, which are described in section 2.2.

They both provide low-level trigger signals which can be used for real-time background monitoring,

and also record the data for detailed offline analysis. Only the unpaired bunches are used for

monitoring and analysis of BIB. For inelastic beam-gas background these can be assumed to be

perfectly representative of colliding bunches.

– 6 –
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Figure 4. Illustration of the BCM background trigger signature for beam-1. The dotted line represents the

trajectory of one particle hitting the upstream and downstream BCM modules. For beam-1 the early hit is on

side A and the in-time hit on side C. For beam-2 the direction is reversed. The trigger can also be fired by

two different particles, the only requirement being that any of the four modules on one side of the IP has an

early hit and any of those on the opposite side has an in-time hit.

4.1 BCM background rates

Hits in the BCM modules are counted above a threshold of 250 keV, which corresponds to roughly

40% of the energy deposition of a minimum-ionising particle in 1 mm of diamond. Particles from

beam losses reach upstream BCM detectors 6.1 ns before the nominal collision time, i.e. the passage

of the bunch at the IP at t = 0, and produce early hits. Both the BIB and collision products from

the IP produce in-time hits in the downstream detectors at t = +6.1 ns.

A BCM background trigger signature, illustrated in figure 4, consists of an early hit in any

module on the upstream side and an in-time hit in any module on the downstream side. The time

windows of the background trigger are 5.46 ns wide and nominally centred at t = ±6.25 ns. The

BCM has sub-nanosecond time resolution and the nominal centre of the trigger window is aligned

with the LHC collision time to an accuracy better than 2 ns.

Due to the built-in direction requirement, the BCM background trigger is able to distinguish

which beam the background originates from. In 2012 a single BCM background trigger, which

fired on events in either direction, was used to collect events for the offline analysis.

4.2 Fake jets in calorimeters

The barrel and endcap calorimeters have nanosecond time resolution and contribute to a jet trigger

with a pT threshold of 10 GeV at the electromagnetic scale, which is used to select fake-jet candidates

induced by BIB in unpaired bunches. The jets are reconstructed with the anti-kt jet algorithm [27]

with radius parameter R = 0.4 using the FastJet software package [28]. The inputs to this algorithm

are topologically connected clusters of calorimeter cells [29], seeded by cells with an energy at

least four standard deviations above the measured noise. These topological clusters are calibrated

at the electromagnetic scale. The reconstructed jets are corrected for contributions from additional

pp interactions in the same and neighbouring bunch crossings as described in ref. [29]. In order

to suppress instrumental backgrounds, standard data-quality requirements are imposed [30]. Data

from periods affected by calorimeter noise bursts are excluded from the analysis.

– 7 –
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Figure 5. Flowchart of the two-step process for simulation of beam-gas events. Particles crossing the

interface plane are stored in a file, and normalised using the appropriate pressure distribution before being

injected into the ATLAS simulation. The trigger emulation, clustering and rate analysis are performed on

the custom Fluka output.

5 Simulation framework

The simulation of the inelastic beam-gas events was performed with Fluka using a two-step

approach — a method first introduced in ref. [10] and illustrated in figure 5. The advantage of

dividing the simulation into accelerator- and detector-specific parts is that it leaves more flexibility

in the choice of simulation tools. This approach also saves computational resources since the results

of the first step, simulation of particle transport and showering in the accelerator structures, can be

used for several studies of the impact on the ATLAS detector.

The first step is discussed in detail in ref. [31]: beam-gas events with a uniform distribution

in a z-range from 22.6 m to 546.6 m were generated with Fluka as inelastic p-N2 interactions.

Although the residual gas composition varies along the ring and H2 is most abundant in 1.9 K

sections, the much larger interaction cross-sections of the other gas species causes them to dominate

the interaction rate, especially in the LSS. Nitrogen is therefore considered to represent a good

average of the atomic composition of the residual gas [14]. Using a generic gas species and a

uniform distribution of events has the advantage that the same simulation results can be used with

different pressure distributions. Unlike most previous studies [10–13], all simulations in this work

were performed without any Monte Carlo variance reduction techniques,2 in order to preserve

correlations within individual events. This is a prerequisite for reconstructing the trigger signatures.

In the first simulation step, the secondaries produced in the beam-gas interactions are transported to

a virtual interface plane at z= 22.6 m upstream of the IP. The choice of this z-location is motivated

by the fact that it is on the IP-side of the closest inner-triplet magnet. Thus it naturally separates the

experimental area, where a detailed Fluka geometry of the ATLAS detector is available, from the

LHC accelerator with its own geometry and magnetic field modelling. For all particles reaching this

plane the positions, four-momenta and times of flight are recorded and serve as input to subsequent

2Variance reduction refers to favouring some regions of phase space at the cost of others in order to achieve

faster convergence of the estimates in the favoured regions. While significantly reducing the computational effort, the

disadvantage of these methods is that they do not preserve correlations within events.

– 8 –
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detector simulations. For a complete description of the background, especially in the BCM with its

low hit threshold, particles have to be transported down to low energies to ensure that all potential

hits are simulated. Since this is very CPU-intensive, only six million inelastic events were simulated,

transporting particles down to a kinetic energy of 20 MeV. This value of 20 MeV is chosen in order

to stay above low-energy nuclear reactions which are the source of a large number of low-energy

particles. Such particles are absorbed locally but, due to their abundance, their simulation is costly

in terms of CPU time. Six million events are not enough for the fake-jet studies, so a second

sample of 300 million p-N2 interactions was generated with a threshold of 20 GeV.3 This 20 GeV

threshold corresponds to the minimum energy of the muon needed to create a fake jet with sufficient

transverse momentum to fire the jet trigger used in this study.

The rate of p-N2 interactions as a function of z, shown by the solid histogram in figure 6, is

obtained from an equivalent N2 density distribution of the residual gas, ρN2
(z). The partial densities

(ρi) of all residual gas species at the location z are taken from the simulated pressure distribution

and weighted by the ratio of inelastic proton-molecule (σi) to p-N2 (σN2
) cross-sections:

ρN2
(z) =

∑
i

ρi(z) · σi
σN2

, (5.1)

where i runs over H2, CH4, CO and CO2. The absolute normalisation of all simulated rates in this

paper is fixed by the interaction rates shown in figure 6. Since these are derived from the pressure

distribution, they are subjected to the uncertainty in the pressure simulations, discussed in section 3.

The events used as input to the ATLAS simulations are sampled according to their z-coordinate,

using the rate distribution of inelastic interactions, shown in figure 6. The dotted histogram in

figure 6 shows, as a function of z, the rate of those events for which at least one particle has reached

the interface plane. A comparison of the two histograms in figure 6 reveals that practically all

events produced at z � 150 m give contributions, while only ∼1% of events with z > 300 m result

in particles at the interface plane.

In order to account for beam-gas events between the IP and the interface plane, p-N2 events

were generated separately for z < 22.6 m with a z-distribution sampled directly from the inelastic

interaction probability in that region, i.e. left of the dashed vertical line in figure 6.

The particles at the interface plane, as well as those generated at z< 22.6 m, were transported

through the ATLAS experimental area and detector using a dedicated Fluka geometry model [32].

The magnetic fields produced by the ATLAS magnets were implemented as two-dimensional maps

covering the entire detector radius and extending in z up to the interface plane. The propagation

and showering of the particles through ATLAS was simulated with Fluka, which provides accurate

simulation of all relevant physics processes. Besides full simulation of hadronic and electromagnetic

showers, Fluka provides detailed transport of muons through matter with complete modelling of all

energy loss processes and explicit production of secondary particles in radiative events. Compared

to the full ATLAS simulation [33] based on Geant 4 [34], the disadvantage of choosing Fluka

is that an exact modelling of the detector response is not available. In particular, digitisation and

reconstruction of e.g. tracks and jets cannot be performed in Fluka simulations with a level of

3In order to further increase the number of fake jets, all events were used twice. Since the probability for a muon to

experience a large radiative energy loss is very low, only 5% of the events gave a fake jet on both trials. Even in these

cases the jet pT was different, i.e. only the azimuthal angle was strongly correlated.

– 9 –
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Figure 6. Inelastic beam-gas interaction rate of beam-1 in IR1 as a function of distance from the IP at the

start of data-taking in LHC fill 2736. The beam moves towards negative z, i.e. from right to left in the figure.

The total rate (solid blue histogram) reflects the residual gas pressure. The dotted histogram shows the rate

of interactions which contribute at least one particle with kinetic energy E > 20 MeV at the interface plane

at z = 22.6 m. The prominent peaks between z ≈ 150 m and z ≈ 270 m correspond to the positions of the

TCT, the D2 dipole (T = 4.5 K), Q4–Q6 quadrupoles (T = 4.5 K) and cold-warm transitions at the exit of the

arc. The pressure in the LHC cold arc (T = 1.9 K), starting at ∼ 270 m, is assumed constant. The small inset

shows the interaction rate on the IP side of the interface plane in more detail.

detail comparable to real data. Dedicated algorithms were incorporated in the Fluka simulation

in order to record quantities of interest, namely energy depositions and detector hits, on an event

basis. The rates of fake jets and events with the BCM background trigger signature were estimated

using custom reconstruction algorithms during the post-processing of the simulation output.

The geometry of the BCM detector was modelled, including both the sensitive detector and the

services. The transport threshold in the ATLAS simulations was set to 100 keV, so that all particles

able to generate hits in the BCM detector were included in the simulations. Neutrons were always

transported to thermal energies and their capture by nuclei, with associated photon emission, was

simulated.

Due to the 20 MeV transport threshold the LHC simulations do not include particles down to

100 keV. This has no significant influence on the results, since particles starting from the interface

plane will not reach the BCM directly: most of them are intercepted by the TAS. Those which pass

through its small central aperture have to traverse the beam-pipe wall at a very shallow angle, which

implies a high probability for an inelastic interaction. This was verified by checking that the BCM

trigger rates as a function of the z-coordinate of the origin of the event, as obtained from the “fully

– 10 –
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Table 2. Radial and longitudinal extent of the ATLAS calorimeter regions and bin sizes (δr , δz) as imple-

mented in the Fluka geometry. An azimuthal binning of 36 bins of 10 degrees each is used in all calorimeter

regions. The endcaps at the negative (‘−’) side of ATLAS are mirror images of the positive (‘+’) ones.

rmin rmax zmin zmax δr δz

Calorimeter [mm] [mm] [mm] [mm] [mm] [mm]

Barrel LAr 1471 2009 −3172 3172 107.6 396.5

Barrel Tile 2285 3885 −6000 6000 160.0 400.0

Endcap1 (+) 475 2075 3670 6120 160.0 408.3

Endcap2 (+) 300 475 3670 4650 87.5 490.0

3− 2− 1− 0 1 2 3
-binz

3−

2−

1−

0

1

2

3-b
in

r

0.2 1 0.16
0.027 0.031 0.027 0.027

0.0042 0.0031 0.00092 0.0016

0.00037 0.00094 0.002 0.0024 0.00017 1.1e-05 8.1e-06

1.3e-05 9.6e-05 0.00029 0.00011 2.6e-05

2.3e-05 2.5e-05 7.1e-05 5e-05 9.4e-07

0.00017 0.00026 0.001 0.0015 8.3e-05 2e-05 1.9e-05

0.0022 0.0021 0.0027 0.00280.016 0.047 0.0074

0.023 0.051 0.0026

ATLAS Simulation

Figure 7. The r-z projection of the average fractional energy distribution, found in the Fluka simulations

for jets with pT >16 GeV in the barrel LAr calorimeter. The beam direction is from right to left in the plot.

The values are summed over seven bins in azimuth, centred at the maximum, and normalised such that for

each event the maximum bin is 1.0. Before averaging over all events, they are aligned such that the largest

deposition is at the centre of the plot. The r and z bin numbers shown in the plot are relative to the centre.

The dashed box indicates the 3×3 r-z bins used for determining the jet energy (summed over azimuthal bins).

100 keV” simulation of events on the IP side of the interface plane, join smoothly with the rates

from the “mixed 20 MeV & 100 keV” simulation of events beyond z = 22.6 m. In the simulations

the threshold of a BCM module is accounted for by considering as a hit each charged particle with a

kinetic energy above 250 keV, entering the sensitive area of a BCM module. This simplification is

motivated by the fact that a particle deposits in the module at least the minimum-ionising equivalent

or its total kinetic energy, whichever is smaller. The sensitivity of the results to the choice of

threshold was evaluated by varying it between 100 keV and 1 MeV. The simulated BCM trigger

rate was affected by only a few percent. The arrival time and the identifier of the module entered

are used to reconstruct the BCM background triggers from the recorded data and simulation output.

Each hit results in a dead time of the affected BCM module, the duration of which depends on the

energy but is typically 10–20 ns. For simplicity only the first hit in each BCM module, in a ±12.5 ns

window around t = 0, is considered, both in the simulations and the data.
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Since fake jets are mainly produced by radiative energy losses of high-energy muons, the

computational effort was significantly reduced by selecting only muons from the sample with

a 20 GeV threshold. The propagation and showering in ATLAS was simulated with a 100 keV

transport threshold. The fake-jet rates are estimated by recording, event by event, the local energy

depositions in the different calorimeter regions which are described in table 2. After the simulation

of each event, the energy depositions are analysed.

Since Fluka is not part of the standard ATLAS simulation software, it does not benefit from

the sophisticated ATLAS jet-reconstruction tools. Instead, a much simplified algorithm is used to

assess the fake-jet rate in the simulations. A cluster is formed by summing the energy depositions

in 3×3×3 = 27 (r , φ, z)-bins, centred around the maximum deposition. In the barrel calorimeters

this clustering produces jets with angular dimensions comparable to those of the ATLAS jet-

reconstruction algorithm. Each deposition is used only once, starting with the highest in any bin. If

the cluster energy is large enough to exceed the 10 GeV transverse-energy threshold, the cluster is

counted as a fake jet. The position of the fake jet is determined from the energy-weighted average

of the bins considered. Likewise the jet time is determined from the energy-weighted time of the

individual depositions. Depositions at times larger than 50 ns are excluded in order to prevent small

depositions with very large delay, e.g. from thermal neutron capture, to influence the average time.

This procedure is fully consistent with the reconstruction of jet time in ATLAS data, which also

takes into account only depositions in a narrow time window.

In order to assess the systematic uncertainty due to the energy spread, sums over more bins

were explored and it was found that an extension of the sum in r and φ adds almost no energy to

the cluster. In z, however, taking the sum over more bins results in a larger cluster energy. Figure 7

shows the r-z projection of the average energy fraction in the different bins around the maximum.

The energy is well contained in the central 3×3 bins. The continuous energy loss of the passing

muon, about 1 GeV per metre in the calorimeters, is reflected as a row of almost constant values for

r-bin = 0 and |z |-bin > 1 in figure 7. A wider summing range in z mostly adds this ionisation energy

loss of the muon, which would be a non-negligible contribution to the lowest jet energies considered

in this study. The average energy lost by the muon, however, is below the threshold of the ATLAS jet

reconstruction, so in data only upward fluctuations of the muon energy loss are likely to be combined

into the jet, if they happen close enough to the large radiative loss. Therefore an energy sum over

3×3×3 bins is considered a good approximation to the reconstruction algorithm applied to the data.

6 Comparison with data

The principal objective of this work is to validate, through comparisons with data, the simulation

methods described in section 5. For this purpose, events collected with the BCM background and

low-pT jet triggers during 2012 are analysed. The vacuum simulations assume the beam conditions

at the start of LHC fill 2736, which correspond to the parameters listed in table 1 and are typical

of the operation in the second half of 2012. Only fills with the same bunch pattern as in fill 2736

are considered in the analysis. Data affected by more than 20% trigger dead time are rejected and

a dead-time correction is applied to the remaining data. In order to remove the effect of the beam

intensity, which decreases in the course of a fill, all results are normalised to 1011 protons. However,
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Figure 8. BCM background rate during the first ten minutes of data-taking in each fill with 1374 bunches.

The average and standard deviation, resulting from the combined effect of fill-to-fill variation and difference

between the beams, are shown by the black line and shaded area respectively. Data taken during a period

with instrumental noise in the BCM, lasting through most of November, are excluded [16]. Only fills where

data-taking started promptly after beams were brought into collision and which provided at least ten minutes

of data are included. The solid black circle in mid June shows the average of beam-1 and beam-2 backgrounds

in fill 2736, for which the pressure distribution has been simulated.

since the residual gas pressure follows the decrease of beam intensity over a LHC fill, fill-averaged

beam-gas rates are lower than those at the start of a fill.

6.1 BCM background

In figure 8 the BCM background rates during the first ten minutes of data-taking are shown for

all LHC fills included in the analysis. The direction information provided by the BCM is used to

reject events in the direction opposite to the unpaired bunches, which are used for the background

measurement. Such wrong-direction signals can arise either from ghost charge4 in the opposite

beam or from accidental background signatures involving hits from afterglow [16]. Although the

data are selected such that they should correspond to the same beam conditions, a significant fill-

to-fill variation and slightly increasing trend over the year can be seen. The BCM background from

beam-1 is found to be systematically higher than from beam-2. The relative difference, averaged

over all the data in figure 8, is 28%. Since the simulations make no distinction between the two

beams, they are compared with the average. Although, at±14%, the difference between the beams is

small compared to the fill-to-fill variation, it is included in the variation in the data quoted in table 3.

Table 3 compares the simulated BCM beam background rates with the start-of-fill and the

fill-averaged data taken in 2012. The simulated rate of 1.2 Hz/1011 protons is almost twice the

measured start-of-fill value. Figure 8 shows separately the observed BCM background rate in fill

2736, for which the pressure simulations are performed. With a rate of 0.72 Hz/1011 protons it falls

close to the upper edge of the fill-to-fill variation and thus closer to the simulated value than the

2012 average shown in table 3.

4Ghost charge is formed by beam protons that have escaped their initial RF-bucket and been recaptured in nominally

empty buckets.
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Table 3. Simulated BCM background rates compared with ATLAS data. The rates correspond to events

giving, in the BCM, a background signature that is consistent with the direction of the unpaired bunch.

The simulations correspond to the start of data-taking, while the last two columns illustrate the difference

in background between averaging over the first ten minutes of data-taking in each fill and averaging over

entire fills. For the data, the uncertainty in the average corresponds to one standard deviation of the mean

of all fills. For the simulations it indicates the statistical uncertainty. The fill-to-fill variation includes the

difference between beam-1 and beam-2. The last row indicates the possible range of the simulated rate, due

to the estimated uncertainty of the pressure simulation, discussed in section 3.

MC simulation Data Data

[0–546.6] m Fill Start All Fill

Average rate [Hz/1011 protons] 1.2 0.642 0.463

Uncertainty in average rate 0.4% 2.0% 2.3%

Fill-to-fill rate variation — 27% 34%

Pressure uncertainty [Hz/1011 protons] 0.4–3.6 — —

In the inner triplet, p-H2 scattering contributes about 90% of the beam-gas interactions, while

the simulations are based on p-N2 events. Equation (5.1) ensures that the correct number of beam-

gas collisions is generated in the simulations, but it does not account for differences in the collision

dynamics, especially the multiplicity of produced secondaries. In order to estimate the possible

dependence of the background rate on the target nuclide, the less CPU-intensive simulations at

z < 22.6 m were repeated with p-H2 events. The rate was found to decrease by about 15%. Assuming

a similar reduction for the inner-triplet region, where most of the BCM background originates from

(see section 7), the use of proton-N2 events overestimates the BCM trigger rate by up to 15%.

Even after accounting for this correction, the observed difference between simulation and data

is larger than the fill-to-fill variation, but remains well within the estimated uncertainty range of the

simulation, which is dominated by knowledge of the pressure distribution.

In figure 9 the distribution of particle arrival times at the BCM modules in the simulation

is compared with data. The histograms represent the time distribution of hits in upstream BCM

modules for events which give the BCM background signature in beam-1 unpaired bunches. The

plain Fluka simulations yield a very narrow time distribution with a vertical rising edge. In the

analysis, this is smeared by the 0.25 ns time fluctuation due to the LHC bunch length of 75 mm.5 A

larger broadening effect comes from the instrumental resolution and time alignment of the BCM. In

order to account for these, the rising edge of the simulated time distribution is fitted to that in data with

the time alignment and time resolution as free parameters. Values of –1.0 ns and 0.55 ns are found

for these parameters respectively. The fit yields an uncertainty of about 10% in both parameters.

The observed time shift is well within the 2 ns alignment tolerance specified for the BCM. The fitted

time resolution is about 30% better than that found in test-beams [21]. However, it agrees, within its

10% uncertainty, with the resolution derived from in-situ monitoring of the time difference between

hits in upstream and downstream modules in collision events recorded by the BCM detector.

5The centre of the bunch passes the IP at t = 0, but the background event can originate from any proton within the bunch.
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Figure 9. Comparison of the time distribution of BCM hits in ATLAS unpaired-bunch data (blue histogram)

with Fluka simulation (red circles). The bunch passes the IP at t = 0 ns. The histograms show the early

hits per upstream BCM module for events which have fired the BCM beam-background trigger in the

beam-1 direction. The black open squares show the contribution from beam-gas events within the ATLAS

experimental area z < 22.6 m, while the red solid circles show the total, i.e. z < 546.6 m. The errors shown

on the simulation are statistical only. The blue band indicates the fill-to-fill and module-to-module variation

of the data and the error bars show the uncertainty in the mean value. The lower panel shows the ratio of

simulation to data, taken between the red circles and the blue histogram. Only data from the first ten minutes

of ATLAS data-taking in each LHC fill are considered.

The data shown in figure 9 are extracted from the events recorded during the first ten minutes of

each LHC fill. A determination of the fill-to-fill variation for each bin is not feasible since, especially

in the tail region, the very low counting rate causes many bins to have zero counts for a single fill. If,

however, the shape of the distribution is assumed to be invariant between fills, the fill-to-fill variation

of each bin can be taken as 27%, which is the value given in table 3 for the total rate. The blue band

shown around the data in figure 9 illustrates this fill-to-fill variation, but takes also into account the

total counting statistics in each bin. The uncertainty in the mean value in each bin is determined

from the data in all fills and shown by the smaller error bars on the data. For the simulations, only

the statistical uncertainties are shown. The error bars on the ratio of simulation to data are based

on the statistical uncertainties only. If the shape of the distribution is correctly reproduced by the

– 15 –



2
0
1
8
 
J
I
N
S
T
 
1
3
 
P
1
2
0
0
6

4− 3− 2− 1− 0 1 2 3 4

 [m]x

3−

2−

1−

0

1

2

3

4

 [m
]

y

9−10

8−10

7−10

6−10

 p
ro

to
ns

11
/1

0
2

H
z/

m
m

LHC Simulation

Figure 10. Simulated x-y distribution of muons with energy E >20 GeV entering the ATLAS experimental

area at z= 22.6 m. The beam passes at (x, y)= (0, 0). The plot is based on ref. [31] and constitutes the input

to the study described in this paper. The rate corresponds to the pressure conditions at the start of fill 2736.

simulation, the ratio should be a constant. However, since the simulations correspond to a particular

fill, this constant can deviate from unity by the amount of the fill-to-fill variation. The allowed range

(1σ), ignoring the uncertainty arising from the pressure distribution, is indicated by the blue band.

The ratio shown in figure 9 indicates that the peak is overestimated by the simulations, while

the tail at positive times is underestimated, i.e. the peak-to-tail ratio is larger in the simulations than

in data and, consequently, the falling slope is slightly steeper. The open squares in figure 9 show

that the events within the ATLAS experimental area contribute only 20% to the total hit rate but

the shape, especially the peak-to-tail ratio, is similar to that of the total rate. If the tail were due to

delayed arrival of some particles from distant events, i.e. due to a dependence between time spread

and distance to the event, then it should not appear for the beam-gas events at z < 22.6 m. The fact

that a tail of similar height, relative to the peak, is seen in both distributions indicates that the delayed

particles are due to a local effect. The simulated hits in the tail are found to be caused by particles

with a kinetic energy below ∼10 MeV and if the solenoidal field is turned off in the simulations, the

tail is suppressed. These findings indicate that the tail is due to low-energy particles looping in the

magnetic field and accumulating a delay due to the longer path along the helix. Since such low-

energy particles have a short range in matter already a slightly too large amount of material in the

simulation geometry, with respect to reality, is sufficient to explain the observed underestimation.

6.2 Fake-jet background

Most of the fake jets are produced by radiative energy losses of high-energy muons in the calorime-

ters. Such fake jets have a very different topology from collision jets: they do not point to the
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IP and are almost entirely of electromagnetic nature with very little hadronic activity. Therefore

the simulation results are compared with jet data calibrated to the electromagnetic energy scale

rather than with fully calibrated jets, which are corrected for the non-compensating response of

the calorimeter to hadrons. Possible jets from collisions of the protons in the unpaired bunch with

ghost charge in the other beam are removed by rejecting events for which a primary vertex has been

reconstructed from the tracks measured by the inner detector. Only the highest-pT jet in each event

is included in the analysis. In the endcap calorimeters, hadronic showers can contribute to the fake

jets. Since only muons are considered in the simulations, the analysis is restricted to |η | < 1.5,

i.e. the barrel calorimeters. These are at large radii and shadowed by other detector elements so

hadronic showers from the beam line cannot reach them.

Figure 10 shows the x-y distribution of muons with energy E > 20 GeV reaching the interface

plane. This distribution reflects the geometry of the LHC tunnel, and also the effect of some beam-

line magnets. The tunnel’s radius of 2.2 m and the floor at y = –1.1 m produce a relatively sharp

edge in the muon flux. The higher rate seen on the inside of the ring at y≈±1 m, between x≈ 1.5 m

and x≈ 2.5 m, is due to the offset of the beam line relative to the centre of the tunnel, leaving more

free space for pions and kaons to decay into muons on the inside of the ring. The “hot spots” seen

around x≈±0.8 m are mainly due to bending of the off-momentum muons by the D1 and D2 dipoles

of the LSS. The vertical spread at x = 0 is probably due to bending in the quadrupoles of the inner

triplet, although the crossing angle might also have some influence on this.

In table 4 the rates of simulated fake jets, created by the muons shown in figure 10, are

compared with the data from all relevant fills in 2012. Systematic uncertainties may arise from the

jet reconstruction used in the simulations. The studies described in section 5 show that increasing

the extent over which the jet energy is integrated in the simulations from 3×3×3 bins to a very

wide 7×7×7 bins increases the jet rate by 20%. However, since this increase is due to including the

ionisation energy loss of the passing muon, it does not seem justified to consider it as a systematic

uncertainty, but rather an upper limit thereof. Thus the uncertainty from the jet reconstruction

algorithm is considered negligible compared with the uncertainty from the pressure distribution.

The latter is estimated to be a factor of three, which means that the high level of agreement between

simulations and data, seen in table 4, must be largely fortuitous.

The offset in arrival time, at given z, between the proton bunch and a beam background muon

originating from that bunch, is negligible. Therefore, when the beam background muon reaches an

upstream point P (r, z) in the calorimeter, the proton bunch still has to cover a distance |z | to reach

the IP and then the produced secondary particles have to travel a distance s =
√

r2 + z2 to reach P,

as illustrated in figure 11. For a downstream P the expression for s is the same, but in this case the

muon has to cover the additional distance |z |. The calorimeter timing is such that for each point P
the arrival time of a secondary particle produced in collisions at the IP is 0. Thus the relative time

Δt of a beam background muon at P is given by

Δt = −
(√

r2 + z2 ± |z |
)
/c (6.1)

where c is the speed of light and +|z | and −|z | correspond to the upstream and downstream sides

respectively. Equation (6.1) shows that fake jets due to BIB always arrive early, i.e. have Δt < 0.

A characteristic banana shape is seen in the η-Δt plane, shown in figure 12; this arises from the

definition of η and the dependence of jet time on z and r .
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Table 4. Simulated fake-jet rates compared with ATLAS data. Only jets with pT >16 GeV and |η | < 1.5 are

considered. The simulations correspond to the start of data-taking, while the last two columns illustrate the

difference in background between averaging over the first ten minutes of data-taking in each fill and averaging

over entire fills. For the data, the uncertainty in the average corresponds to one standard deviation of the

mean of all fills. For the simulations it indicates the statistical uncertainty. The fill-to-fill variation includes

the difference between beam-1 and beam-2. The last row indicates the possible range of the simulated rate,

due to the estimated uncertainty of the pressure simulation, discussed in section 3.

MC simulation Data Data

[0–546.6] m Fill Start All Fill

Average rate [Hz/1011 protons] 0.0053 0.0046 0.0037

Uncertainty in average rate 1.0% 3.4% 2.2%

Fill-to-fill rate variation — 56% 39%

Pressure uncertainty [Hz/1011 protons] 0.002–0.015 — —

t=0,
constant η

•
IP

• μ at P1

• μ at P2

s2s1

z2

z1
r2

r1

Figure 11. Schematic illustration of reconstructed arrival time of beam background muons compared with

collision jets in the calorimeter regions. The two grey boxes represent two different calorimeters and the red

solid line represents t= 0, corrected for the time of flight of particles coming from the IP.

The number of fake-jet counts in the data is low. To maximise the amount of data when

studying distributions of fake jets, in the following plots data from entire fills are used while the

simulations correspond to the higher rate at the start of a fill. In order to compensate for this, the

MC results have been scaled by the ratio of “All Fill” to “Fill Start” values given in table 4.

Figure 12 compares the distribution in the η-Δt plane of fake jets seen in ATLAS data with the

simulated rate of energy deposition clusters having pT>16 GeV. The pedestal, i.e. entries outside the

banana area, seen in figure 12a is mostly due to beam-gas and off-momentum halo background from

ghost charge [16], a contribution that is not included in the simulations.6 A time-smearing due to

the LHC bunch length has been applied to the simulated jet times. The instrumental time resolution

6The data in the η-Δt plot are restricted to LHC fills prior to 3rd August when the LHC made chromaticity changes

which caused a significant increase of ghost charge [16].
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Figure 12. (a) Fake-jet counts in unpaired bunches in the pseudorapidity-time (η-Δt) plane for beam-1 in

ATLAS data and (b) the simulated rate of energy deposition clusters with pT>16 GeV in the η-Δt plane. The

width of the bins is 1 ns in time and 0.1 units in η. The Fluka simulations, which correspond to the start-of-fill

conditions, have been scaled by the ratio of the total “All Fill” to “Fill Start” rates, shown in table 3.

of the calorimeters depends on η and the calorimeter cell energy. For figure 12b the instrumental

resolution was determined by fitting the width of the downstream tail of the banana shape in

simulation, between η = −3 and η = −2, to the data. The fitted value of 0.5 ns is consistent with the

range of resolutions measured for the ATLAS calorimeters. The dashed horizontal lines indicate

the jet-trigger time window of ±12.5 ns. Entries falling outside these lines are not seen in data,

unless the event was selected by another trigger or has a sufficiently energetic subleading jet within

the trigger window. The position and curvature of the banana pattern within the trigger window is

well reproduced by the simulations, which indicates that the jet times are correctly simulated.

The curvature of the banana shape depends on the radial position in the calorimeter: as

indicated by eq. (6.1) and figure 11, fake jets at P2 will have a larger time advance than those at

P1 due to the difference in radial position. In figure 12, two banana shapes with slightly different

curvature can be distinguished. The upper and lower tails correspond to fake jets in the LAr and

Tile calorimeters respectively. At higher |η | on the downstream side the bananas merge and the

fake-jet times approach Δt = 0, although a small negative offset remains due to the dependence on

r in eq. (6.1). Very early fake jets, with Δt < −20 ns, are seen in the simulations. These are all in

the upstream part of the barrel Tile calorimeter or the upstream endcaps. Falling outside the trigger

window, they are not seen in the data. However, a minor concentration of jets at η≈ 2 and Δt≈ 10 ns

can be distinguished in figure 12a. It is caused by upstream fake jets associated with the following

bunch, which arrives 50 ns later. These jets are reproduced by the simulations and are seen at the

same η but at Δt≈ −40 ns in figure 12b.

Figure 13 compares transverse-momentum and azimuthal-angle distributions of the simulated

fake jets with data. For these comparisons, jets within the banana area are extracted from data in

order to minimise the contribution from the pedestal. As in the case of figure 9, the low count rates
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Figure 13. Distributions of (a) transverse momentum pT and (b) azimuthal angle φ of fake jets with

pseudorapidity |η | <1.5 in data (blue histogram) compared with those of energy deposition clusters from

Fluka beam-gas simulations in the same η range (red circles). The pT spectrum indicates that the ATLAS

jet trigger reaches full efficiency only around 15 GeV. Therefore an additional requirement of pT>16 GeV is

applied to events in the azimuthal-angle distribution. The errors shown on the simulation results are statistical

only. The blue band indicates the fill-to-fill variation of the data, while the small blue error bars show the

uncertainty in the mean of all fills. Data from entire fills have been used in order to minimise statistical

uncertainties. The simulations, which correspond to the start-of-fill conditions have been scaled by the ratio

of the total “All Fill” to “Fill Start” rates, shown in table 3.

prevent an estimation of the fill-to-fill variation in individual bins. The same approach as described

for figure 9 is adopted, i.e. the blue band shows the fill-to-fill variation determined from the total

rates and the small error bars show the uncertainty in the mean value in each bin.

The transverse-momentum distribution of the simulated fake jets, shown in figure 13a, continues

on a rising slope below ∼15 GeV, while the data dip down. This is due to the jet trigger, used to

select the data, which reaches full efficiency only above ∼15 GeV. When full trigger efficiency is

reached, the simulations agree well with the data up to pT ≈ 50 GeV, but towards higher transverse

momenta the simulation tends to overestimate the data.

In figure 13b an additional requirement of pT>16 GeV is applied in order to select events above

the trigger efficiency turn-on. The azimuthal distribution of fake jets from BIB is well reproduced

at a qualitative level. The characteristic peaks at ±π and 0 are mainly due to the bending in the

horizontal plane that occurs in the D1 and D2 dipoles and the LHC arc [15]. The lower rate at

−π/2 compared to π/2 is due to the tunnel floor reducing the muon flux, as seen from the contours

in figure 10. A tendency of the simulation to overestimate the data between φ = −1 and φ = π/2
and to underestimate around φ = −π/2 is seen. A comparison with figure 10 suggests that these

effects might be related to the tunnel geometry: the simulations underestimate at −y, where the
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tunnel floor reduces the free drift space for pion and kaon decay, and overestimate around +x
where the horizontal offset provides extra space. Such differences could arise, for instance, if the

z-distribution of the beam-gas events is not correct. A wrong z-distribution could change the impact

of the reduced, or increased, free drift space. Another possibility is an inaccurate description of

material around the beam line, which would affect the free drift space available. Forthcoming

background measurements, with artificially introduced local pressure bumps, may shed some light

on this. Cosmic-ray muons, which can also produce fake jets, are included in the data but not in

the simulation. Studies reported in ref. [16] indicate that the fake-jet rate at low pT arising from

cosmic-ray muons is less than 10% of the total rate due to BIB. The radiative energy losses are

point-like processes and since the flux of cosmic muons is uniform in space and time, the rate of

fake jets produced by them should be independent of φ. However, due to the significant variation

of the rate as a function of φ, a visible contribution from cosmic-ray induced fake jets cannot be

entirely excluded around φ = −π/2, where the rates are lowest.

Although the differences in the shapes of the distributions shown in figure 13 are not understood,

the agreement can be considered good, given the complexity of the entire simulation chain. The

large systematic uncertainty due to limited knowledge of the residual gas pressure distribution is

the most likely cause of the differences seen, although more detailed studies with localised and

well-controlled pressure bumps will be needed to verify this.

7 Origin of backgrounds

Knowledge of the z-coordinate of the origin of each simulated event provides information beyond

that which can be extracted from the data. Figure 14 shows the distribution of the origins of the

simulated events that give a BCM background trigger signature or generate a fake jet in the barrel

calorimeters. The black histogram, which shows the z-distribution of the generated events, reflects

the residual gas distribution in the beam pipe and is equivalent to figure 6. Most of the events with

a BCM background trigger signature originate from the inner-triplet region (z ≈ 22–55 m) with a

small contribution from z≈ 150 m, where the tertiary collimator causes a local pressure bump. This

result is consistent with the observations made in the data, that the BCM background trigger rate

correlates with the residual gas pressure measured by vacuum gauges at z= 22 m [16]. The fake jets,

on the contrary, originate predominantly from more distant beam losses with pronounced spikes at

the locations of the 4.5 K magnets. According to the simulations, about 10% of fake-jet events are

associated with beam-gas events in the LHC arc (z >270 m), but this fraction depends strongly on

the relative pressure in 4.5 K and 1.9 K sections. The lower plot in figure 14 shows the cumulative

distributions corresponding to the histograms in the upper plot. These highlight that practically all

BCM background events originate from z < 60 m while only ∼1% of fake-jet events are associated

with beam-gas collisions in that z-range. Since the simulations disfavour any significant correlation

between BCM background and fake jets in the barrel calorimeters, they suggest that BCM and

fake-jet rates, seen in the data, can be used to disentangle backgrounds originating from different

regions in z. As discussed before, the residual gas pressure depends on local properties of the

beam pipe, such as material and temperature, and also on the radiation intensity. Therefore the

pressure in different z-regions, as well as its uncertainties, can be considered to be uncorrelated.

In particular, the prediction of BCM background, which originates predominantly from the inner

triplet, depends on the accuracy of the pressure simulations within 1.9 K magnets. Most of the fake
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Figure 14. Distributions of the z-coordinate of the origin of simulated beam-gas events giving a BIB

signature in ATLAS detectors. The solid blue circles show the z-distribution of events that give a BCM

beam background signature while the open red circles show the z-distribution of beam-gas events that result

in energy deposition clusters with pT > 16 GeV and |η | <1.5 in the calorimeters. The z-distribution of the

generated events (black line) corresponds to the beam-gas rate shown in figure 6, i.e. reflects the residual gas

distribution in the beam pipe. The small inset shows the region z < 25 m in more detail. The lower plot

shows the cumulative rate, as a function of z, of events resulting in BCM background events or fake jets. At

large z these two histograms converge to the total simulated rates given in tables 3 and 4 respectively.

jets originate from the beam-gas events within 4.5 K magnets where the desorption characteristics

and, therefore, the gas composition, are different. Thus it is not surprising to find, in tables 3 and 4,

better agreement in one observable than in the other.
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8 Conclusion

Beam-induced background measurements in ATLAS during the 2012 LHC run with 4 TeV proton

beams are compared with dedicated Fluka Monte Carlo simulations of the background due to

inelastic beam-gas interactions. Methods of extracting fake jets and BCM trigger signatures from

a Fluka simulation were developed and applied during simulations and the post-processing of

the results, i.e. reconstruction of the background signatures. The simulations, performed using a

two-step method, agree within a factor of two with the rate of background trigger signatures in the

BCM detector and the fake-jet rates observed in the ATLAS data. This is well within the uncertainty

in the residual gas pressure in the beam pipe.

Simulations reproduce rather well the shape of the time distribution of hits in the BCM as

well as that of the fake jets in the pseudorapidity-time plane. The simulated spectrum of energy

depositions in the calorimeters agrees with the spectrum of reconstructed transverse momenta of

the observed fake jets although there is an indication of an overestimate towards higher pT. In

the azimuthal distribution of the fake jets, the characteristic peaks in the horizontal plane are

reproduced by the simulations, but differences are seen in some details of the structure in azimuthal

angle. These might be related either to inaccuracies in the pressure distribution or incomplete

modelling of material close to the beam line.

The simulations indicate that background seen by the BCM originates mainly from the inner

triplet region (z < 55 m) while the majority of fake jets induced by beam-gas interactions have an

origin at a distance of z� 150 m from the interaction point.

The level of agreement between the simulations and measurement demonstrates the good

understanding of beam background that has been reached in the ATLAS experiment. It also

illustrates the capability of the various simulation tools to reproduce the beam background through

a complex chain involving simulation of the residual gas pressure distribution, taking into account

various dynamic effects from the beam, transport of the beam-gas secondaries over long distances

in the LHC magnet lattice and through the ATLAS detector, and finally the modelling of the

reconstructed background signatures in ATLAS.
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