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Search for Resonant and Nonresonant Higgs Boson Pair Production in the bbz* 7~
Decay Channel in pp Collisions at /s =13 TeV with the ATLAS Detector
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A search for resonant and nonresonant pair production of Higgs bosons in the bbz* 7z~ final state is
presented. The search uses 36.1 fb~! of pp collision data with \/s = 13 TeV recorded by the ATLAS
experiment at the LHC in 2015 and 2016. Decays of the z-lepton pairs with at least one 7 lepton decaying to
final states with hadrons and a neutrino are considered. No significant excess above the expected
background is observed in the data. The cross-section times branching ratio for nonresonant Higgs boson
pair production is constrained to be less than 30.9 fb, 12.7 times the standard model expectation, at
95% confidence level. The data are also analyzed to probe resonant Higgs boson pair production,
constraining a model with an extended Higgs sector based on two doublets and a Randall-Sundrum bulk
graviton model. Upper limits are placed on the resonant Higgs boson pair production cross-section times
branching ratio, excluding resonances X in the mass range 305 GeV < my < 402 GeV in the simplified
hMSSM minimal supersymmetric model for tan = 2 and excluding bulk Randall-Sundrum gravitons
Gk in the mass range 325 GeV < mg,, < 885 GeV for k/Mp = 1.
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In 2012, the ATLAS and CMS Collaborations at the
LHC discovered a new particle with a mass of approx-
imately 125 GeV [1-3]. According to all current measure-
ments it is compatible with the standard model (SM) Higgs
boson (H) [4-8]. An important pending test of the Brout-
Englert-Higgs mechanism is the measurement of Higgs
boson pair production. At the LHC, pairs of SM Higgs
bosons can be produced via the Higgs self-interaction
(“triangle diagram”) and the destructively interfering top-
quark loop (“box diagram”) [9,10]. Nonresonant Higgs
boson pair production (NR HH) can be significantly
enhanced relative to the SM prediction by modifications
to the top-quark Yukawa coupling, the trilinear Higgs
boson coupling Ayyy, or by introducing production mech-
anisms with new intermediate particles. Many theories
beyond the SM predict heavy resonances that could decay
into a pair of SM Higgs bosons, such as a heavy CP-even
scalar X in two-Higgs-doublet models [11], or spin-2
Kaluza-Klein (KK) excitations of the graviton, Gy, in
the bulk Randall-Sundrum (RS) model [12-14].

This Letter describes a search for resonant and nonreso-
nant Higgs boson pair production in a final state with two b
quarks and two 7 leptons using 36.1 fb~! of pp collision
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data recorded with the ATLAS detector [15,16] in 2015 and
2016. The 7iepThaq and TpagTheg decay channels are consid-
ered, where the subscripts (lep = electron or muon,
had = hadrons) indicate the decay mode of the 7 lepton.
Previous searches for Higgs boson pair production were
performed at center-of-mass energies /s = 8 TeV [17-19]
and /s =13 TeV [20-22] by the ATLAS and CMS
Collaborations. The ATLAS search in the 4b channel
constitutes the most sensitive result to date and the
observed (expected) limit excludes a cross section greater
than 13.0 (20.7) times the SM prediction at 95% confidence
level (C.L.).

The SM nonresonant HH process was simulated with
MADGRAPHS_aMC@NLO at next-to-leading order (NLO)
[23-27] using the CTI10 parton distribution function
(PDF) set [28]. Parton showers and hadronization were
simulated with HERWIG++ [29] using the UEEES set of
tuned parameters (tune) [30]. The events were reweighted
to reproduce the myy spectrum obtained in Refs. [9,31],
which fully accounts for the finite mass of the top quark.
The cross-section times branching ratio to the bbrz final
state, evaluated at next-to-next-to-leading order (NNLO)
and including next-to-next-to-leading logarithm (NNLL)
corrections and NLO top-quark mass effects, is 2.447518 fb
[32]. Events with a generic narrow-width scalar X or
Gkx decaying into HH were produced in MADGRAPHS_
aMC@NLO at leading order (LO) and interfaced to the
PyTHIA 8 [33] parton shower model using the A14 tune [34]
together with the NNPDF23LO PDF set [35]. The cross
section and width of the Ggx were taken from Ref. [36] and
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depend on k/Mp,, where k corresponds to the curvature of
the warped extra dimension and Mp, = 2.4 x 10'® GeV is
the effective four-dimensional Planck scale. Events with
k/Mp = 1 and k/Mp, = 2 were simulated.

The dominant SM background processes are ¢, QCD
multijet and Z bosons produced in association with jets
originating from heavy-flavor quarks (bb, bc, cc), sub-
sequently referred to as Z 4 heavy flavor [37]. SM Higgs
boson production in association with a Z boson, sub-
sequently decaying into a bbrzr [38] final state, is an
irreducible background in this analysis. The /7 and single-
top-quark background events were simulated using
PowHEG-Box [39], with the CT10 PDF set, and
MADSPIN [40]. The parton showers were simulated using
PyTHIA 6 [41] and the Perugia 2012 tune [42]. The #f
background was scaled to match the NNLO + NNLL cross
sections [43], while the single-top samples were corrected to
NLO [44,45] (approximate NNLO [46]) predictions for the
t- and s-channel (Wt final state). Events with W or Z bosons
and associated jets were simulated with the SHERPA 2.2.1
generator [47-51], using the NNPDF30NNLO PDF set [52]
and normalized to the NNLO cross sections [53]. Diboson
and Drell-Yan backgrounds were produced with SHERPA
2.2.1 [47] using the CTIONLO PDF set and the generator
cross-section predictions. Quark-induced ZH processes
were generated with PYTHIA 8, using the Al4 tune and
the NNPDF23LO PDF set. The samples were normalized to
NNLO cross sections for QCD and NLO for electroweak
processes [54—60]. The gluon-induced ZH process [61] was
generated with POWHEG using the CT10 PDF set and using
PyTHIA 8 with the AZNLO tune [62] to simulate parton
showers. Cross sections [63—-67] were scaled to NLO +
NLL in QCD. SM Higgs boson production in association
with a top-quark pair was simulated with MADGRAPHS_
aMC@NLO; PYTHIA 8 was used to simulate the parton
shower, while the cross section was taken from Ref. [10].
In all signal and background samples, the mass of the H
bosons was set to 125 GeV. The contributions from other SM
Higgs boson processes are negligible. EVTGEN v1.2.0 [68]
was used to model the properties of bottom and charm
hadron decays for all processes except those simulated in
SHERPA. The detector response to the generated events was
simulated with GEANT4 [69,70]. Simulated events are
reweighted to match the distribution of the number of
inelastic collisions per event (pileup) in data.

Events are required to have at least one collision vertex
reconstructed from at least two charged-particle tracks
with transverse momentum [71] p‘TraCk > 0.4 GeV. The
primary vertex for each event is selected as the vertex
with the highest >_(p#k)2. Jets are formed using the anti-
k, algorithm [72] with a radius parameter R = 0.4 and
calorimeter energy clusters as inputs [73—75]. These jets are
taken as seeds for the reconstruction of the visible products
of hadronically decaying t leptons (y,,q.vis) [76—78], which
are subsequently required to have one or three associated

tracks. In order to distinguish 7,4, from quark- and
gluon-initiated jets, a boosted decision tree (BDT) [79],
trained separately for 7y,4.,;; With one and three charged
particles, is employed. Selected 7},4.,is candidates must
satisfy the “medium” BDT working point [77]. Electron
candidates are identified using a likelihood technique in
combination with additional track-hit requirements [80];
the transition region between the barrel and end cap
calorimeters is excluded. Information from the tracking
and muon systems is used to reconstruct muon candidates
[81]. Only isolated electrons and muons are considered,
where no nearby tracks or calorimeter energy deposits
within a pp-dependent variable-size AR cone around the
lepton are allowed. Jets arising from pileup are suppressed
using dedicated track and vertex requirements [82]. The
missing transverse momentum, with magnitude E‘}liss, is
defined as the negative vectorial sum of all reconstructed
and fully calibrated objects in the event, along with an
additional track-based soft term [83]. Jets containing b
hadrons are identified using the MV2cl10 multivariate
discriminant [84,85] trained against a light-quark-flavor
sample also containing 10% of ¢ hadrons. A working point
with 70% efficiency on simulated 77 events is used. An
overlap-removal procedure is applied to the reconstructed
electrons, muons, 7p,q.is, and jets to prevent double
counting of energy deposits in the detector as described
in Ref. [86].

The selected final state is characterized by one electron
or muon and one 7y,4.is Of opposite charge, or tWo 7j,,4.vis
of opposite charge, plus two b-tagged jets and EF. In all
cases, events with additional electrons or muons above
7 GeV or 1y,4.vis above 20 GeV are rejected. The off-line
selection criteria for the electron, muon, and 7},,4.,;s depend
on the triggers used. In the 7j,7p,q channel events are
selected with a single-lepton trigger (SLT) and a lepton
plus 7y, trigger (LTT), which are analyzed separately
and combined with the 7},47,9 channel in the final fit.
Depending on the data period, the electron or muon that
passes the SLT trigger is required to have p; >
25-27 GeV. Events which fail this requirement are con-
sidered for the LTT category if the electron (muon) has
pr > 18 GeV (15 GeV). In all cases, these pr require-
ments are 1 GeV higher than the trigger thresholds to
ensure a nearly constant trigger efficiency relative to the
off-line selection. The 7j,p7y,q €vents are required to have
one Tp,q.yis candidate with || < 2.3 and py > 20 GeV for
SLT events, raised to 30 GeV for LTT events due to 7j,,4.yis
pr requirements applied in this category of triggers. In the
ThadThad Channel a logical OR of single 7y, triggers (STT)
and di-rp,q triggers (DTT) is used. The leading 7y,q.yis
candidate is required to have a minimum p; of 40 GeV for
DTT and between 100 and 180 GeV for STT events,
depending on the data-taking period. The subleading 7},,4.yis
is required to have a minimum p; of 20 (30) GeV for
STT (DTT) events. The leading jet is required to have
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pr > 45 GeV, except in the LTT and DTT channels where
this is raised to 80 GeV due to a requirement on the
presence of a jet at the Level 1 trigger to reduce the rate
(during 2016 data taking only for the DTT). In all cases the
subleading jet must have pr > 20 GeV. The invariant mass
of the di-7 system, mMMC is calculated using the Missing
Mass Calculator [87] and is required to be greater than
60 GeV. Signal region (SR) events are defined as those
meeting the criteria above, and in addition containing two
b-tagged jets; they are further separated into 7jep7p,g SLT,
TiepThad LTT and 7y,q7pnaq categories.

BDTs are used in the analysis to improve the separation
of signal from background. Their distributions in the three
signal regions, along with control region yields to constrain
the normalization of the dominant backgrounds, form the
inputs to the final fit. The BDTs for the 7,47}, channel are
trained against the main backgrounds, 7, Z — 7z, and
multijet events; in the 7j,74,q channel they are trained
solely against the dominant ¢7 background. For the BDT
trainings, the 77 and Z — 77 backgrounds are taken purely
from simulation, while the multi-jet events are estimated
using the data-driven approach described below. Variables
which provide good discrimination and are minimally
correlated are used as inputs to the BDTs, as summarized
in Table I. The variables selected in each channel differ,
reflecting the different background compositions. In the
resonant search, BDTs are trained separately for each signal
mass considered, from 260 to 1000 GeV (800 GeV for
LTT), where the signal model combines the target reso-
nance mass and its two neighboring mass points, to be

TABLE I

reconstructed from the 7z and bb systems using a 125 GeV Higgs mass constraint; m,;

sensitive to masses between the simulated points. For NR
HH production, the BDTs are trained on a signal sample
with the SM admixture of the contributions from the box
diagram and triangle diagram. The BDT's are more sensitive
to the box diagram where the two Higgs bosons are
produced at higher p; and the selection efficiency is
greater.

In both channels, simulated events are used to model
background processes containing reconstructed 7y,,q.,;s that
are matched to generated 7y, within AR = 0.2 (sub-
sequently referred to as true 7;,,4) and other minor back-
ground contributions. The rate of events with at least one
true 7y,,q and a jet reconstructed as an electron or muon is
found to be negligible. For 7 background events containing
one or more true 7,4 the normalization is obtained in the
final fit, constrained mainly by the low 7i.,7,¢ BDT score
regions, resulting in a normalization factor of 1.06 = 0.13.
The normalization of the Z — ee/77 4 heavy-flavor back-
ground is determined using Z — uu + heavy-tlavor events.
Their selection closely follows the event selection used for
signal events. Instead of two z-lepton candidates, two
muons with pr > 27 GeV and dimuon invariant mass
between 81 and 101 GeV are selected. To remove the
contribution from SM ZH(H — bb) production, m,, is
required to be lower than 80 GeV or greater than 140 GeV.
The normalization is determined by including the Z —
uu + heavy-flavor control region yield in the final fit,
resulting in a normalization factor of 1.34 +0.16.
Normalization factors are not applied to the Z+
light-flavor contributions. The modeling of the BDT score

Variables used as inputs to the BDTs for the different channels and signal models. Here, myy is

MMC {5 the invariant mass of

the di-r system, calculated using the Missing Mass Calculator [87]; my,, is the invariant bb-mass; AR(z,7) is
evaluated between the electron or muon and 7y,q.yis (tWO Tpag.yis) in the case of the 7y¢,Tpag (ThaaThae) Channel; E7 ¢

centrality quantifies the relative angular position of the Ef'* relative to the visible 7 decay products in the transverse
plane [88] and is defined as (A + B)/(V/A® + B?), where A =sin(¢ g — bz, )/ sin(¢e, —r,), B = sin(¢,, — i)/
sin((/),] — ¢.,), and 7; and 7, stand for electron or muon and 7,,q.yis (tWO Thaq.yis) in the case of the 7ie, Thag (Thaa Thaa)

channel; m?’ is the transverse mass of the lepton and the E’}‘iss; A¢(H, H) is the azimuthal angle between the two
Higgs boson candidates; Apy(lep, Thaa.is) is the difference in py between the electron or muon and 7p,q.y.
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Variable (SLT resonant)

TiepThaa Channel
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Er]g?ss
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distributions is validated in the 0-b-tag and 1-b-tag regions
as well as in dedicated 77 and Z + heavy-flavor validation
regions.

Contributions from processes in which a quark- or
gluon-initiated jet is misidentified as a 7},4.,is candidate
(fake-7y,q) are estimated using data-driven methods for
major backgrounds. A fake-z,,4 enriched sample is defined
by requiring that a 7,4, fails the “medium” BDT
identification but satisfies a very loose requirement on
the BDT score. This selection maintains a composition of
quark- and gluon-initiated jets similar to those mimicking
Thad-vis 1N the SR. In the case where the event contains more
than one such fake 7;,,4, one is chosen randomly. The SR
selection, except for the 7;,4.,;s identification, is applied to
the fake-7,,4 enriched sample to extract template distribu-
tions for the fake-7j,q background after the true-zy,4
contamination is subtracted using simulation. The tem-
plates are scaled with fake factors (FF) defined as the ratio
of the number of fake 7},,4 that pass the 7y,,4.,is identification
to the number that fail, calculated in dedicated control
regions (CR) and parametrized in pr(7ja4.is) and the
number of associated tracks.

For the 71,7y, final state, fake-7,,4 background con-
tributions from 77, W + jets and multijet processes are
estimated using a combined fake-factor method similar to
that described in Refs. [86,89]. In order to account for the
different sources of fake 7y,,4, the FFs are derived separately
for each background contribution. The CR for multijet
events is defined by inverting the isolation requirement
applied to the electron or muon for events with 0 or 1
b-tagged jets. The 17 (W + jets) control region is defined
by requiring two (zero) b-tagged jets and m) > 40 GeV,

where m)} = \/ 2P EMisS (1 —cos Aoy s ), and Agpye, s
is the azimuthal angle between the electron or muon and the
ERiss, Fake factors for 7 and W + jets are found to be
consistent for both processes. The individual fake factors
are then combined as FF(comb) = FF(QCD) x rqcp +
FF(17/W + jets) x (1 — rqcp), Where rocp is defined as
the fraction of fake 7,4 from (predominantly multijet)
processes contributing to the data in the fake 7,4 enriched
template region that are not accounted for by simulated
background processes, and is less than 5% in the 2-b-tag
region. Because of the different origin of fake 7,4, the FFs
for t1/W + jets can be up to 30% larger than those for
multijet processes. Events with two b-tagged jets but a
same-sign charge (SS) electron or muon and 7j,4.,; are
used for validating the fake-7;,4 background, showing all
distributions are well modeled. Given this, and the small
size of the contribution, no transfer factor is applied to
correct the multijet estimation from the 1-b-tag region to
the 2-b-tag region.

In the 7y,,47h,q final state, only the multijet background is
estimated from data using the FF method. The differential
FFs are derived in a 1-b-tag SS control region, while the

overall normalization is taken from the 2-b-tag SS control
region. The 7 background is estimated from simulation,
where the fake-},4 17 contribution is corrected in bins of
7(Thadvis) Using the probability for a jet from a hadronic
W-boson decay to mimic a 7y,4.,;s candidate (fake rate), as
measured with data in the 7i¢p7h,q 7 control region [86].
Contributions from true 7,4 are subtracted using simulation.

The uncertainty in the integrated luminosity of the
combined 2015 + 2016 data set is 2.1% [90] and is applied
to the signal and background components whose normal-
izations are derived from simulation. An uncertainty related
to the pileup reweighting procedure is also applied [91].
Experimental uncertainties in the identification and
reconstruction of the electron [92], muon [93], Tpud.vis
[76], and jets [74,94] are accounted for and propagated
through the analysis to determine their effect on the final
results. These affect the trigger requirements, the identi-
fication and reconstruction efficiencies, the isolation,
and the reconstructed energies and their resolutions. The
uncertainties are propagated to the calculation of the
E‘}ms [83], which has an additional uncertainty from
the soft term. The uncertainties with the largest impact
on the result are those related to the 7y,4.,; 1dentification
efficiency, which correspond to an uncertainty of 16% on
the NR signal strength, i.e., the simulated NR HH yield
assuming a cross-section times branching fraction equal to
the expected limit and normalized to the SM expectation
(6°*?/63M). Uncertainties in flavor tagging [95,96] also
have a significant impact, inducing an uncertainty in the
NR signal strength of 8.3%, dominated by those associated
with the b-tagging efficiency.

Theory uncertainties in the modeling of the /7 background
containing one or more true 7y,,q are assessed by varying
the matrix element generator (using aMC@NLO instead
of POWHEG-BOx) and the parton shower model (using
HERWIG++ instead of PYTHIA 6), and by adjusting the
factorization and renormalization scales along with the
amount of additional radiation. The resulting variations in
the BDT distributions are included as shape uncertainties in
the final fit. In order to account for potential acceptance
differences between control and signal regions, the normali-
zation of the ¢f background containing true 7;,,4, determined
predominantly from the 7,71, SR in the final fit, is allowed
to vary within a range determined by the acceptance
variations associated with the ¢7 modeling uncertainties.
This amounts to +30%/ — 32% for the 7p,q7h.q SR and
+8.1%/ —9.3% for the Z — pu + heavy-flavor control
region. This is the dominant uncertainty in the 7 modeling.

For the Z + jets background, the theory uncertainties
in the modeling of the BDT shapes are derived by
comparing the nominal SHERPA sample with an alternative
MADGRAPH5_aMC@NLO + PYTHIA 8 sample and by
varying the choice of renormalization and factorization
scales, along with the PDF prescription [97]. The normali-
zation of the Z — 77 + heavy-flavor background in the
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TiepThad (ThadThaa) SR is allowed to vary by 29% (35%)
relative to the normalization derived in the Z — uu +
heavy-flavor control region in order to account for accep-
tance differences between the two. An additional 20%
normalization uncertainty in the Z — ee + light-flavor
background, related to the misidentification of electrons
as taus, is derived by comparing data and simulation in a
Z — ee control region with 0 or 1 b-tagged jets. The ZH
(1tH) background normalization is varied by 28% (30%)
based on ATLAS measurements [98,99]. The normaliza-
tions of the remaining minor backgrounds taken from
simulation are allowed to vary within their respective
cross-section uncertainties.

The uncertainty in the modeling of backgrounds due to
jets being misidentified as 7,4.yis 1S estimated by varying
the fake factors and fake rates within their statistical
uncertainties and varying the amount of true-z,,4 back-
ground subtracted. Based on studies with simulated #7 and
W + jets events, a systematic uncertainty is assigned to
cover the difference in the gluon and quark flavor compo-
sition of jets misidentified as a 7y,4.,j; between the signal
region and the fake-7},,4 enriched sample, parametrized as a
function of the 7,4, identification BDT score. The
uncertainty in the extrapolation of FF(QCD) to the signal
region is estimated from the difference between the
nominal FFs and alternative ones, calculated either in
the SS region for the 7,7y, channel or a multijet enriched
region, where A¢(Thad.vis> Thadovis) > 2.0, in the 7j,qThag
case. Similarly, changes in the fake-zy,4 determination
when varying the 7 control region m}’ requirement in
simulation and data are used to estimate a systematic
uncertainty in both the fake factors and fake rates. The
overall effect of these uncertainties on the fake-z;,,4 back-
ground estimate leads to an 8.4% variation of the NR signal
strength, predominantly due to the true-z},,q subtraction in
the ¢7 control region and the composition of the fake 7},,4.

Theory uncertainties in the signal acceptance are calcu-
lated by independently varying the renormalization and
factorization scales, the choice of PDF and each PDF set by
its uncertainties. The uncertainty in the parton shower is
taken into account by comparing the default HERWIG++
with PyTHIA 8. Uncertainties in the underlying event,
initial-state radiation and final-state radiation are accounted
for by changing the PYTHIA tune, but are small. The effects
of various categories of uncertainty on the measured
nonresonant signal strength corresponding to the expected
upper limit at 95% C.L. are summarized in Table II. The
individual sources of uncertainty making up the categories
listed in the table are grouped together in the final fit to
determine their correlated combined effect on the signal
strength. For all signal hypotheses, the statistical uncer-
tainties dominate.

For each signal model considered, a profile-likelihood
fit [100] is applied to the BDT score distributions
simultaneously in the three SRs to extract the signal cross

TABLE II. The percentage uncertainties on the simulated
nonresonant signal strength, i.e., the simulated NR HH yield
assuming a cross-section times branching fraction equal to the
95% C.L. expected limit of 14.8 times the SM expectation.

Source Uncertainty (%)
Total +54
Data statistics +44
Simulation statistics +16
Experimental uncertainties

Luminosity +2.4
Pileup reweighting +1.7
Thad +16
Fake-7 estimation +8.4
b tagging +8.3
Jets and Epss +3.3
Electron and muon +0.5
Theoretical and modeling uncertainties

Top +17
Signal +9.3
Z 1T +6.8
SM Higgs +2.9
Other backgrounds +0.3

section, along with the ¢f and Z + heavy-flavor normal-
izations. The lattermost is constrained by including the
dedicated control region in the fit. All sources of system-
atic and statistical uncertainty in the signal and back-
ground models are implemented as deviations from the
nominal model, scaled by nuisance parameters that are
profiled in the fit. None of the dominant nuisance
parameters are significantly constrained or pulled relative
to their input value by the fit. The BDT score distributions
for the nonresonant search and the Ggg signal are shown
in Fig. 1 after performing the fit and assuming a back-
ground-only hypothesis. The acceptance times efficiency
for the NR HH signal is 4.2% (2.9%) in the combined SLT
and LTT 7,74 (ThaaThaa) Channel over the full BDT
distribution, decreasing to 3.3% (2.4%) for the two most
sensitive BDT bins. As no significant excess over the
expected background is observed, upper limits are set on
nonresonant and resonant Higgs boson pair production at
95% C.L. using the CL, method [101].

Table III presents the upper limits on the cross section for
nonresonant HH production times the HH — bbrz branch-
ing ratio, and comparisons with the SM prediction. The
observed (expected) limit is 30.9 fb (36.0 tb), 12.7 (14.8)
times the SM prediction. In order to compare with previous
results, the BDTs are trained and applied to the signal
sample without reweighting the mpyy spectrum to
Refs. [9,31], giving an observed (expected) limit of
37.4 tb (33.5 fb), 15.4 (13.8) times the SM prediction.

The results of searches for resonant HH production are
presented as exclusion limits on the cross-section times the
HH — bbrr branching ratio as a function of the resonance
mass. The expected and observed limits for narrow-width
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FIG. 1. Distributions of the BDT score for NR HH signal (left) and bulk RS signal with m¢_ = 500 GeV and k/ Mp =1 (right) in
the (a),(b) 7)epThaa single-lepton trigger (SLT), (¢),(d) lepton + 7y, trigger (LTT) and (e),(f) ThaaThaa channels. Distributions are shown
after the fit to the background-only hypothesis and the signal is scaled to approximately the expected limit. The hatched band indicates
the combined statistical and systematic uncertainty in the background. The ratio of the data to the sum of the backgrounds is shown in

the lower panel.
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TABLE III.  Observed and expected upper limits on the production cross-section times the HH — bbzt branching
ratio for NR HH at 95% C.L., and their ratios to the SM prediction. The 41 variations about the expected limit are
also shown.
Observed —lo Expected +1lo
S o(HH — bbrr) [fb] 57 49.9 69 96
lep “had sy 23.5 20.5 28.4 39.5
o(HH — bbrr) [fb] 40.0 30.6 42.4 59
ThadThad o/0sm 16.4 12.5 17.4 24.2
Combination o(HH — bbzr) [fb] 30.9 26.0 36.1 50
6/0sm 12.7 10.7 14.8 20.6

scalar resonances X and Gy signal models are shown in
Fig. 2. For scalar resonances, the results are interpreted in a
simplified minimal supersymmetric model, the hMSSM
[102,103], where the mass of the light CP-even Higgs
boson is fixed to 125 GeV. The mass range 305 GeV <
my < 402 GeV is excluded at 95% C.L. for tanf = 2,
where tan f is the ratio of the vacuum expectation values
of the scalar doublets. Gravitons are excluded at 95% C.L.
in the mass range 325 GeV < mg, , < 85 GeV assuming
k/Mp = 1. Above ~600 GeV, the limits are largely
insensitive to the value of k/Mp,, while at low myy they
improve significantly with increasing k due to the larger

| —— hMSSM Scalar (tanp = 2) ATLAS

—_

13 TeV, 36.1 fb™

6 (X — HH — bbt1) [pb]
= 3

—e— Obs 95% CL limit
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FIG. 2. Observed and expected limits at 95% C.L. on the cross
sections of a generic narrow-width scalar X (top) and RS Ggg
(bottom) times the branching fraction to two CP-even Higgs
bosons H, when combining the 7je,7,,q and 74,Thae channels. The
expected cross section for the hMSSM scalar X production at
tan # = 2 and the bulk RS graviton production with k/Mp = 1.0
are also shown in the respective plots. In the hMSSM case, the
bump in the theory prediction around 350 GeV corresponds to the
threshold for X decaying into 7 pairs.

natural width. The limits on resonant HH production are
significantly more stringent than previous results in the
bbtt channel and competitive with limits obtained in other
channels.

In summary, a search for resonant and nonresonant
Higgs boson pair production in the bbzr final state is
conducted with 36.1 fb~! of pp collision data delivered by
the LHC at /s = 13 TeV and recorded by the ATLAS
detector. The analysis of nonresonant Higgs pair produc-
tion excludes an enhancement of the SM expectation by
more than a factor of 12.7 at 95% C.L. This is the most
stringent limit on HH production to date. Upper limits are
set on resonant Higgs boson pair production for a narrow-
width scalar X and a spin-2 Kaluza-Klein graviton Ggy in
the bulk RS model.
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