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A search for resonant and nonresonant pair production of Higgs bosons in the bb̄τþτ− final state is
presented. The search uses 36.1 fb−1 of pp collision data with

ffiffiffi
s

p ¼ 13 TeV recorded by the ATLAS
experiment at the LHC in 2015 and 2016. Decays of the τ-lepton pairs with at least one τ lepton decaying to
final states with hadrons and a neutrino are considered. No significant excess above the expected
background is observed in the data. The cross-section times branching ratio for nonresonant Higgs boson
pair production is constrained to be less than 30.9 fb, 12.7 times the standard model expectation, at
95% confidence level. The data are also analyzed to probe resonant Higgs boson pair production,
constraining a model with an extended Higgs sector based on two doublets and a Randall-Sundrum bulk
graviton model. Upper limits are placed on the resonant Higgs boson pair production cross-section times
branching ratio, excluding resonances X in the mass range 305 GeV < mX < 402 GeV in the simplified
hMSSM minimal supersymmetric model for tan β ¼ 2 and excluding bulk Randall-Sundrum gravitons
GKK in the mass range 325 GeV < mGKK

< 885 GeV for k=M̄Pl ¼ 1.
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In 2012, the ATLAS and CMS Collaborations at the
LHC discovered a new particle with a mass of approx-
imately 125 GeV [1–3]. According to all current measure-
ments it is compatible with the standard model (SM) Higgs
boson (H) [4–8]. An important pending test of the Brout-
Englert-Higgs mechanism is the measurement of Higgs
boson pair production. At the LHC, pairs of SM Higgs
bosons can be produced via the Higgs self-interaction
(“triangle diagram”) and the destructively interfering top-
quark loop (“box diagram”) [9,10]. Nonresonant Higgs
boson pair production (NR HH) can be significantly
enhanced relative to the SM prediction by modifications
to the top-quark Yukawa coupling, the trilinear Higgs
boson coupling λHHH, or by introducing production mech-
anisms with new intermediate particles. Many theories
beyond the SM predict heavy resonances that could decay
into a pair of SM Higgs bosons, such as a heavy CP-even
scalar X in two-Higgs-doublet models [11], or spin-2
Kaluza-Klein (KK) excitations of the graviton, GKK, in
the bulk Randall-Sundrum (RS) model [12–14].
This Letter describes a search for resonant and nonreso-

nant Higgs boson pair production in a final state with two b
quarks and two τ leptons using 36.1 fb−1 of pp collision

data recorded with the ATLAS detector [15,16] in 2015 and
2016. The τlepτhad and τhadτhad decay channels are consid-
ered, where the subscripts (lep ¼ electron or muon,
had ¼ hadrons) indicate the decay mode of the τ lepton.
Previous searches for Higgs boson pair production were
performed at center-of-mass energies

ffiffiffi
s

p ¼ 8 TeV [17–19]
and

ffiffiffi
s

p ¼ 13 TeV [20–22] by the ATLAS and CMS
Collaborations. The ATLAS search in the 4b channel
constitutes the most sensitive result to date and the
observed (expected) limit excludes a cross section greater
than 13.0 (20.7) times the SM prediction at 95% confidence
level (C.L.).
The SM nonresonant HH process was simulated with

MADGRAPH5_aMC@NLO at next-to-leading order (NLO)
[23–27] using the CT10 parton distribution function
(PDF) set [28]. Parton showers and hadronization were
simulated with HERWIG++ [29] using the UEEE5 set of
tuned parameters (tune) [30]. The events were reweighted
to reproduce the mHH spectrum obtained in Refs. [9,31],
which fully accounts for the finite mass of the top quark.
The cross-section times branching ratio to the bbττ final
state, evaluated at next-to-next-to-leading order (NNLO)
and including next-to-next-to-leading logarithm (NNLL)
corrections and NLO top-quark mass effects, is 2.44þ0.18

−0.22 fb
[32]. Events with a generic narrow-width scalar X or
GKK decaying into HH were produced in MADGRAPH5_
aMC@NLO at leading order (LO) and interfaced to the
PYTHIA 8 [33] parton shower model using the A14 tune [34]
together with the NNPDF23LO PDF set [35]. The cross
section and width of theGKK were taken from Ref. [36] and
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depend on k=M̄Pl, where k corresponds to the curvature of
the warped extra dimension and M̄Pl ¼ 2.4 × 1018 GeV is
the effective four-dimensional Planck scale. Events with
k=M̄Pl ¼ 1 and k=M̄Pl ¼ 2 were simulated.
The dominant SM background processes are tt̄, QCD

multijet and Z bosons produced in association with jets
originating from heavy-flavor quarks (bb; bc; cc), sub-
sequently referred to as Z þ heavy flavor [37]. SM Higgs
boson production in association with a Z boson, sub-
sequently decaying into a bbττ [38] final state, is an
irreducible background in this analysis. The tt̄ and single-
top-quark background events were simulated using
POWHEG-BOX [39], with the CT10 PDF set, and
MADSPIN [40]. The parton showers were simulated using
PYTHIA 6 [41] and the Perugia 2012 tune [42]. The tt̄
background was scaled to match the NNLOþ NNLL cross
sections [43], while the single-top samples were corrected to
NLO [44,45] (approximate NNLO [46]) predictions for the
t- and s-channel (Wt final state). Events withW or Z bosons
and associated jets were simulated with the SHERPA 2.2.1

generator [47–51], using the NNPDF30NNLO PDF set [52]
and normalized to the NNLO cross sections [53]. Diboson
and Drell–Yan backgrounds were produced with SHERPA
2.2.1 [47] using the CT10NLO PDF set and the generator
cross-section predictions. Quark-induced ZH processes
were generated with PYTHIA 8, using the A14 tune and
the NNPDF23LO PDF set. The samples were normalized to
NNLO cross sections for QCD and NLO for electroweak
processes [54–60]. The gluon-induced ZH process [61] was
generated with POWHEG using the CT10 PDF set and using
PYTHIA 8 with the AZNLO tune [62] to simulate parton
showers. Cross sections [63–67] were scaled to NLOþ
NLL in QCD. SM Higgs boson production in association
with a top-quark pair was simulated with MADGRAPH5_
aMC@NLO; PYTHIA 8 was used to simulate the parton
shower, while the cross section was taken from Ref. [10].
In all signal and background samples, the mass of the H
bosonswas set to 125GeV.The contributions fromother SM
Higgs boson processes are negligible. EVTGEN v1.2.0 [68]
was used to model the properties of bottom and charm
hadron decays for all processes except those simulated in
SHERPA. The detector response to the generated events was
simulated with GEANT4 [69,70]. Simulated events are
reweighted to match the distribution of the number of
inelastic collisions per event (pileup) in data.
Events are required to have at least one collision vertex

reconstructed from at least two charged-particle tracks
with transverse momentum [71] ptrack

T > 0.4 GeV. The
primary vertex for each event is selected as the vertex
with the highest

Pðptrack
T Þ2. Jets are formed using the anti-

kt algorithm [72] with a radius parameter R ¼ 0.4 and
calorimeter energy clusters as inputs [73–75]. These jets are
taken as seeds for the reconstruction of the visible products
of hadronically decaying τ leptons (τhad-vis) [76–78], which
are subsequently required to have one or three associated

tracks. In order to distinguish τhad-vis from quark- and
gluon-initiated jets, a boosted decision tree (BDT) [79],
trained separately for τhad-vis with one and three charged
particles, is employed. Selected τhad-vis candidates must
satisfy the “medium” BDT working point [77]. Electron
candidates are identified using a likelihood technique in
combination with additional track-hit requirements [80];
the transition region between the barrel and end cap
calorimeters is excluded. Information from the tracking
and muon systems is used to reconstruct muon candidates
[81]. Only isolated electrons and muons are considered,
where no nearby tracks or calorimeter energy deposits
within a pT-dependent variable-size ΔR cone around the
lepton are allowed. Jets arising from pileup are suppressed
using dedicated track and vertex requirements [82]. The
missing transverse momentum, with magnitude Emiss

T , is
defined as the negative vectorial sum of all reconstructed
and fully calibrated objects in the event, along with an
additional track-based soft term [83]. Jets containing b
hadrons are identified using the MV2c10 multivariate
discriminant [84,85] trained against a light-quark-flavor
sample also containing 10% of c hadrons. Aworking point
with 70% efficiency on simulated tt̄ events is used. An
overlap-removal procedure is applied to the reconstructed
electrons, muons, τhad-vis, and jets to prevent double
counting of energy deposits in the detector as described
in Ref. [86].
The selected final state is characterized by one electron

or muon and one τhad-vis of opposite charge, or two τhad-vis
of opposite charge, plus two b-tagged jets and Emiss

T . In all
cases, events with additional electrons or muons above
7 GeV or τhad-vis above 20 GeV are rejected. The off-line
selection criteria for the electron, muon, and τhad-vis depend
on the triggers used. In the τlepτhad channel events are
selected with a single-lepton trigger (SLT) and a lepton
plus τhad trigger (LTT), which are analyzed separately
and combined with the τhadτhad channel in the final fit.
Depending on the data period, the electron or muon that
passes the SLT trigger is required to have pT >
25–27 GeV. Events which fail this requirement are con-
sidered for the LTT category if the electron (muon) has
pT > 18 GeV (15 GeV). In all cases, these pT require-
ments are 1 GeV higher than the trigger thresholds to
ensure a nearly constant trigger efficiency relative to the
off-line selection. The τlepτhad events are required to have
one τhad-vis candidate with jηj < 2.3 and pT > 20 GeV for
SLT events, raised to 30 GeV for LTT events due to τhad-vis
pT requirements applied in this category of triggers. In the
τhadτhad channel a logical OR of single τhad triggers (STT)
and di-τhad triggers (DTT) is used. The leading τhad-vis
candidate is required to have a minimum pT of 40 GeV for
DTT and between 100 and 180 GeV for STT events,
depending on the data-taking period. The subleading τhad-vis
is required to have a minimum pT of 20 (30) GeV for
STT (DTT) events. The leading jet is required to have
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pT > 45 GeV, except in the LTT and DTT channels where
this is raised to 80 GeV due to a requirement on the
presence of a jet at the Level 1 trigger to reduce the rate
(during 2016 data taking only for the DTT). In all cases the
subleading jet must have pT > 20 GeV. The invariant mass
of the di-τ system, mMMC

ττ , is calculated using the Missing
Mass Calculator [87] and is required to be greater than
60 GeV. Signal region (SR) events are defined as those
meeting the criteria above, and in addition containing two
b-tagged jets; they are further separated into τlepτhad SLT,
τlepτhad LTT and τhadτhad categories.
BDTs are used in the analysis to improve the separation

of signal from background. Their distributions in the three
signal regions, along with control region yields to constrain
the normalization of the dominant backgrounds, form the
inputs to the final fit. The BDTs for the τhadτhad channel are
trained against the main backgrounds, tt̄, Z → ττ, and
multijet events; in the τlepτhad channel they are trained
solely against the dominant tt̄ background. For the BDT
trainings, the tt̄ and Z → ττ backgrounds are taken purely
from simulation, while the multi-jet events are estimated
using the data-driven approach described below. Variables
which provide good discrimination and are minimally
correlated are used as inputs to the BDTs, as summarized
in Table I. The variables selected in each channel differ,
reflecting the different background compositions. In the
resonant search, BDTs are trained separately for each signal
mass considered, from 260 to 1000 GeV (800 GeV for
LTT), where the signal model combines the target reso-
nance mass and its two neighboring mass points, to be

sensitive to masses between the simulated points. For NR
HH production, the BDTs are trained on a signal sample
with the SM admixture of the contributions from the box
diagram and triangle diagram. The BDTs are more sensitive
to the box diagram where the two Higgs bosons are
produced at higher pT and the selection efficiency is
greater.
In both channels, simulated events are used to model

background processes containing reconstructed τhad-vis that
are matched to generated τhad within ΔR ¼ 0.2 (sub-
sequently referred to as true τhad) and other minor back-
ground contributions. The rate of events with at least one
true τhad and a jet reconstructed as an electron or muon is
found to be negligible. For tt̄ background events containing
one or more true τhad the normalization is obtained in the
final fit, constrained mainly by the low τlepτhad BDT score
regions, resulting in a normalization factor of 1.06� 0.13.
The normalization of the Z → ee=ττ þ heavy-flavor back-
ground is determined using Z → μμþ heavy-flavor events.
Their selection closely follows the event selection used for
signal events. Instead of two τ-lepton candidates, two
muons with pT > 27 GeV and dimuon invariant mass
between 81 and 101 GeV are selected. To remove the
contribution from SM ZHðH → bbÞ production, mbb is
required to be lower than 80 GeVor greater than 140 GeV.
The normalization is determined by including the Z →
μμþ heavy-flavor control region yield in the final fit,
resulting in a normalization factor of 1.34� 0.16.
Normalization factors are not applied to the Z þ
light-flavor contributions. The modeling of the BDT score

TABLE I. Variables used as inputs to the BDTs for the different channels and signal models. Here, mHH is
reconstructed from the ττ and bb systems using a 125 GeV Higgs mass constraint; mMMC

ττ is the invariant mass of
the di-τ system, calculated using the Missing Mass Calculator [87]; mbb is the invariant bb-mass; ΔRðτ; τÞ is
evaluated between the electron or muon and τhad-vis (two τhad-vis) in the case of the τlepτhad (τhadτhad) channel; Emiss

T ϕ

centrality quantifies the relative angular position of the Emiss
T relative to the visible τ decay products in the transverse

plane [88] and is defined as ðAþBÞ=ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2þB2

p
Þ, where A¼ sinðϕEmiss

T
−ϕτ2Þ=sinðϕτ1 −ϕτ2Þ, B ¼ sinðϕτ1 − ϕEmiss

T
Þ=

sinðϕτ1 − ϕτ2Þ, and τ1 and τ2 stand for electron or muon and τhad-vis (two τhad-vis) in the case of the τlepτhad (τhadτhad)
channel; mW

T is the transverse mass of the lepton and the Emiss
T ; ΔϕðH;HÞ is the azimuthal angle between the two

Higgs boson candidates; ΔpTðlep; τhad-visÞ is the difference in pT between the electron or muon and τhad-vis.

Variable
τlepτhad channel
(SLT resonant)

τlepτhad channel
(SLT nonresonant & LTT) τhadτhad channel

mHH ✓ ✓ ✓

mMMC
ττ ✓ ✓ ✓

mbb ✓ ✓ ✓
ΔRðτ; τÞ ✓ ✓ ✓
ΔRðb; bÞ ✓ ✓ ✓

Emiss
T ✓

Emiss
T ϕ centrality ✓ ✓

mW
T ✓ ✓

ΔϕðH;HÞ ✓
ΔpTðlep; τhad-visÞ ✓
Subleading b-jet pT ✓
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distributions is validated in the 0-b-tag and 1-b-tag regions
as well as in dedicated tt̄ and Z þ heavy-flavor validation
regions.
Contributions from processes in which a quark- or

gluon-initiated jet is misidentified as a τhad-vis candidate
(fake-τhad) are estimated using data-driven methods for
major backgrounds. A fake-τhad enriched sample is defined
by requiring that a τhad-vis fails the “medium” BDT
identification but satisfies a very loose requirement on
the BDT score. This selection maintains a composition of
quark- and gluon-initiated jets similar to those mimicking
τhad-vis in the SR. In the case where the event contains more
than one such fake τhad, one is chosen randomly. The SR
selection, except for the τhad-vis identification, is applied to
the fake-τhad enriched sample to extract template distribu-
tions for the fake-τhad background after the true-τhad
contamination is subtracted using simulation. The tem-
plates are scaled with fake factors (FF) defined as the ratio
of the number of fake τhad that pass the τhad-vis identification
to the number that fail, calculated in dedicated control
regions (CR) and parametrized in pTðτhad-visÞ and the
number of associated tracks.
For the τlepτhad final state, fake-τhad background con-

tributions from tt̄, W þ jets and multijet processes are
estimated using a combined fake-factor method similar to
that described in Refs. [86,89]. In order to account for the
different sources of fake τhad, the FFs are derived separately
for each background contribution. The CR for multijet
events is defined by inverting the isolation requirement
applied to the electron or muon for events with 0 or 1
b-tagged jets. The tt̄ (W þ jets) control region is defined
by requiring two (zero) b-tagged jets and mW

T > 40 GeV,

wheremW
T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2plep

T Emiss
T ð1−cosΔϕlep;Emiss

T
Þ

q
, andΔϕlep;Emiss

T

is the azimuthal angle between the electron or muon and the
Emiss
T . Fake factors for tt̄ and W þ jets are found to be

consistent for both processes. The individual fake factors
are then combined as FFðcombÞ ¼ FFðQCDÞ × rQCD þ
FFðtt̄=W þ jetsÞ × ð1 − rQCDÞ, where rQCD is defined as
the fraction of fake τhad from (predominantly multijet)
processes contributing to the data in the fake τhad enriched
template region that are not accounted for by simulated
background processes, and is less than 5% in the 2-b-tag
region. Because of the different origin of fake τhad, the FFs
for tt̄=W þ jets can be up to 30% larger than those for
multijet processes. Events with two b-tagged jets but a
same-sign charge (SS) electron or muon and τhad-vis are
used for validating the fake-τhad background, showing all
distributions are well modeled. Given this, and the small
size of the contribution, no transfer factor is applied to
correct the multijet estimation from the 1-b-tag region to
the 2-b-tag region.
In the τhadτhad final state, only the multijet background is

estimated from data using the FF method. The differential
FFs are derived in a 1-b-tag SS control region, while the

overall normalization is taken from the 2-b-tag SS control
region. The tt̄ background is estimated from simulation,
where the fake-τhad tt̄ contribution is corrected in bins of
ηðτhad-visÞ using the probability for a jet from a hadronic
W-boson decay to mimic a τhad-vis candidate (fake rate), as
measured with data in the τlepτhad tt̄ control region [86].
Contributions from true τhad are subtracted using simulation.
The uncertainty in the integrated luminosity of the

combined 2015þ 2016 data set is 2.1% [90] and is applied
to the signal and background components whose normal-
izations are derived from simulation. An uncertainty related
to the pileup reweighting procedure is also applied [91].
Experimental uncertainties in the identification and
reconstruction of the electron [92], muon [93], τhad-vis
[76], and jets [74,94] are accounted for and propagated
through the analysis to determine their effect on the final
results. These affect the trigger requirements, the identi-
fication and reconstruction efficiencies, the isolation,
and the reconstructed energies and their resolutions. The
uncertainties are propagated to the calculation of the
Emiss
T [83], which has an additional uncertainty from

the soft term. The uncertainties with the largest impact
on the result are those related to the τhad-vis identification
efficiency, which correspond to an uncertainty of 16% on
the NR signal strength, i.e., the simulated NR HH yield
assuming a cross-section times branching fraction equal to
the expected limit and normalized to the SM expectation
(σexp=σSM). Uncertainties in flavor tagging [95,96] also
have a significant impact, inducing an uncertainty in the
NR signal strength of 8.3%, dominated by those associated
with the b-tagging efficiency.
Theory uncertainties in themodeling of the tt̄ background

containing one or more true τhad are assessed by varying
the matrix element generator (using aMC@NLO instead
of POWHEG-BOX) and the parton shower model (using
HERWIG++ instead of PYTHIA 6), and by adjusting the
factorization and renormalization scales along with the
amount of additional radiation. The resulting variations in
the BDT distributions are included as shape uncertainties in
the final fit. In order to account for potential acceptance
differences between control and signal regions, the normali-
zation of the tt̄ background containing true τhad, determined
predominantly from the τlepτhad SR in the final fit, is allowed
to vary within a range determined by the acceptance
variations associated with the tt̄ modeling uncertainties.
This amounts to þ30%= − 32% for the τhadτhad SR and
þ8.1%= − 9.3% for the Z → μμþ heavy-flavor control
region. This is the dominant uncertainty in the tt̄ modeling.
For the Z þ jets background, the theory uncertainties

in the modeling of the BDT shapes are derived by
comparing the nominal SHERPA sample with an alternative
MADGRAPH5_aMC@NLO + PYTHIA 8 sample and by
varying the choice of renormalization and factorization
scales, along with the PDF prescription [97]. The normali-
zation of the Z → ττ þ heavy-flavor background in the
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τlepτhad (τhadτhad) SR is allowed to vary by 29% (35%)
relative to the normalization derived in the Z → μμþ
heavy-flavor control region in order to account for accep-
tance differences between the two. An additional 20%
normalization uncertainty in the Z → eeþ light-flavor
background, related to the misidentification of electrons
as taus, is derived by comparing data and simulation in a
Z → ee control region with 0 or 1 b-tagged jets. The ZH
(ttH) background normalization is varied by 28% (30%)
based on ATLAS measurements [98,99]. The normaliza-
tions of the remaining minor backgrounds taken from
simulation are allowed to vary within their respective
cross-section uncertainties.
The uncertainty in the modeling of backgrounds due to

jets being misidentified as τhad-vis is estimated by varying
the fake factors and fake rates within their statistical
uncertainties and varying the amount of true-τhad back-
ground subtracted. Based on studies with simulated tt̄ and
W þ jets events, a systematic uncertainty is assigned to
cover the difference in the gluon and quark flavor compo-
sition of jets misidentified as a τhad-vis between the signal
region and the fake-τhad enriched sample, parametrized as a
function of the τhad-vis identification BDT score. The
uncertainty in the extrapolation of FFðQCDÞ to the signal
region is estimated from the difference between the
nominal FFs and alternative ones, calculated either in
the SS region for the τlepτhad channel or a multijet enriched
region, where Δϕðτhad-vis; τhad-visÞ > 2.0, in the τhadτhad
case. Similarly, changes in the fake-τhad determination
when varying the tt̄ control region mW

T requirement in
simulation and data are used to estimate a systematic
uncertainty in both the fake factors and fake rates. The
overall effect of these uncertainties on the fake-τhad back-
ground estimate leads to an 8.4% variation of the NR signal
strength, predominantly due to the true-τhad subtraction in
the tt̄ control region and the composition of the fake τhad.
Theory uncertainties in the signal acceptance are calcu-

lated by independently varying the renormalization and
factorization scales, the choice of PDF and each PDF set by
its uncertainties. The uncertainty in the parton shower is
taken into account by comparing the default HERWIG++
with PYTHIA 8. Uncertainties in the underlying event,
initial-state radiation and final-state radiation are accounted
for by changing the PYTHIA tune, but are small. The effects
of various categories of uncertainty on the measured
nonresonant signal strength corresponding to the expected
upper limit at 95% C.L. are summarized in Table II. The
individual sources of uncertainty making up the categories
listed in the table are grouped together in the final fit to
determine their correlated combined effect on the signal
strength. For all signal hypotheses, the statistical uncer-
tainties dominate.
For each signal model considered, a profile-likelihood

fit [100] is applied to the BDT score distributions
simultaneously in the three SRs to extract the signal cross

section, along with the tt̄ and Z þ heavy-flavor normal-
izations. The lattermost is constrained by including the
dedicated control region in the fit. All sources of system-
atic and statistical uncertainty in the signal and back-
ground models are implemented as deviations from the
nominal model, scaled by nuisance parameters that are
profiled in the fit. None of the dominant nuisance
parameters are significantly constrained or pulled relative
to their input value by the fit. The BDT score distributions
for the nonresonant search and the GKK signal are shown
in Fig. 1 after performing the fit and assuming a back-
ground-only hypothesis. The acceptance times efficiency
for the NRHH signal is 4.2% (2.9%) in the combined SLT
and LTT τlepτhad (τhadτhad) channel over the full BDT
distribution, decreasing to 3.3% (2.4%) for the two most
sensitive BDT bins. As no significant excess over the
expected background is observed, upper limits are set on
nonresonant and resonant Higgs boson pair production at
95% C.L. using the CLs method [101].
Table III presents the upper limits on the cross section for

nonresonantHH production times theHH → bbττ branch-
ing ratio, and comparisons with the SM prediction. The
observed (expected) limit is 30.9 fb (36.0 fb), 12.7 (14.8)
times the SM prediction. In order to compare with previous
results, the BDTs are trained and applied to the signal
sample without reweighting the mHH spectrum to
Refs. [9,31], giving an observed (expected) limit of
37.4 fb (33.5 fb), 15.4 (13.8) times the SM prediction.
The results of searches for resonant HH production are

presented as exclusion limits on the cross-section times the
HH → bbττ branching ratio as a function of the resonance
mass. The expected and observed limits for narrow-width

TABLE II. The percentage uncertainties on the simulated
nonresonant signal strength, i.e., the simulated NR HH yield
assuming a cross-section times branching fraction equal to the
95% C.L. expected limit of 14.8 times the SM expectation.

Source Uncertainty (%)

Total �54
Data statistics �44
Simulation statistics �16
Experimental uncertainties
Luminosity �2.4
Pileup reweighting �1.7
τhad �16
Fake-τ estimation �8.4
b tagging �8.3
Jets and Emiss

T �3.3
Electron and muon �0.5
Theoretical and modeling uncertainties
Top �17
Signal �9.3
Z → ττ �6.8
SM Higgs �2.9
Other backgrounds �0.3
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FIG. 1. Distributions of the BDT score for NR HH signal (left) and bulk RS signal with mGKK
¼ 500 GeV and k=M̄Pl ¼ 1 (right) in

the (a),(b) τlepτhad single-lepton trigger (SLT), (c),(d) leptonþ τhad trigger (LTT) and (e),(f) τhadτhad channels. Distributions are shown
after the fit to the background-only hypothesis and the signal is scaled to approximately the expected limit. The hatched band indicates
the combined statistical and systematic uncertainty in the background. The ratio of the data to the sum of the backgrounds is shown in
the lower panel.
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scalar resonances X and GKK signal models are shown in
Fig. 2. For scalar resonances, the results are interpreted in a
simplified minimal supersymmetric model, the hMSSM
[102,103], where the mass of the light CP-even Higgs
boson is fixed to 125 GeV. The mass range 305 GeV <
mX < 402 GeV is excluded at 95% C.L. for tan β ¼ 2,
where tan β is the ratio of the vacuum expectation values
of the scalar doublets. Gravitons are excluded at 95% C.L.
in the mass range 325 GeV < mGKK

< 85 GeV assuming
k=M̄Pl ¼ 1. Above ∼600 GeV, the limits are largely
insensitive to the value of k=M̄Pl, while at low mHH they
improve significantly with increasing k due to the larger

natural width. The limits on resonant HH production are
significantly more stringent than previous results in the
bbττ channel and competitive with limits obtained in other
channels.
In summary, a search for resonant and nonresonant

Higgs boson pair production in the bbττ final state is
conducted with 36.1 fb−1 of pp collision data delivered by
the LHC at

ffiffiffi
s

p ¼ 13 TeV and recorded by the ATLAS
detector. The analysis of nonresonant Higgs pair produc-
tion excludes an enhancement of the SM expectation by
more than a factor of 12.7 at 95% C.L. This is the most
stringent limit on HH production to date. Upper limits are
set on resonant Higgs boson pair production for a narrow-
width scalar X and a spin-2 Kaluza-Klein graviton GKK in
the bulk RS model.
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23bINFN Sezione di Bologna, Italy
24Physikalisches Institut, Universität Bonn, Bonn, Germany

25Department of Physics, Boston University, Boston, Massachusetts, USA
26Department of Physics, Brandeis University, Waltham, Massachusetts, USA

27aTransilvania University of Brasov, Brasov, Romania
27bHoria Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania

27cDepartment of Physics, Alexandru Ioan Cuza University of Iasi, Iasi, Romania

PHYSICAL REVIEW LETTERS 121, 191801 (2018)

191801-19



27dNational Institute for Research and Development of Isotopic and Molecular Technologies,
Physics Department, Cluj-Napoca, Romania

27eUniversity Politehnica Bucharest, Bucharest, Romania
27fWest University in Timisoara, Timisoara, Romania

28aFaculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovak Republic
28bDepartment of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic

29Physics Department, Brookhaven National Laboratory, Upton, New York, USA
30Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
31Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
32aDepartment of Physics, University of Cape Town, Cape Town, South Africa

32bDepartment of Mechanical Engineering Science, University of Johannesburg, Johannesburg, South Africa
32cSchool of Physics, University of the Witwatersrand, Johannesburg, South Africa

33Department of Physics, Carleton University, Ottawa, Ontario, Canada
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